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ABSTRACT 

 
This paper proposes a Support Vector Machine (SVM) 
based combining scheme that incorporates ideolectal and 
acoustic characteristics for speaker recognition. Two 
statistical model paradigms, namely GMM for acoustic 
modeling and Bigrams for language modeling, provide 
multilevel speaker information that affords a better 
classification performance when SVM-based fusion is 
accomplished. This combining approach is useful for all 
speaker recognition tasks where a considerable amount of 
data is available. Motivated by the absence of Spanish 
databases that made feasible our research experiments, 
more than nine hours of Spanish conversational speech 
was collected and manually transcribed from broadcasted 
radio talk shows. 
 

1. INTRODUCTION 
 
Current speaker recognition systems rely almost 
exclusively on short-time acoustic information. MAP-
adapted Gaussian Mixtures Models [1] represent the state-
of-the-art technique in text independent speaker 
recognition and achieve a very good performance but is 
susceptible to acoustic corruptions such as channel 
variability and noise. However, there are other levels of 
information in speech which convey speaker identity and 
are not under the influence of those corrupting factors. 
These higher-level information sources are the subject of 
intensive research efforts at present, as shown with the 
inclusion of the “extended data” speaker detection task in 
the NIST [2] yearly evaluation and the recently held  
SuperSID workshop [3] whose main focus was to analyze, 
characterize, extract and apply high-level information to 
speaker recognition tasks.  

Among other long term speech patterns, idiolectal 
differences between speakers have proven to be one of the 
most promising speaker information sources [3,4]. To 
exploit these potential benefits, a considerable amount of 
speech is required in order to perform accurate Bigram 
models [4]. Therefore, only a subset of speaker 
recognition tasks presents a propitious scenario for 

multilevel speaker information fusion. Good examples are 
some forensic areas, specifically those where fully-
automated remote acquisition can be easily accomplished.   
Particularly fitting into that situation we find the Spanish 
scenario, where once a judge has emitted a legal 
authorization for an investigation, substantial amount of 
data can be automatically collected by means of wire 
tapping the telephone line. Also, human transcriptions of 
the speech information are required by the judge to follow 
the investigation. 

Hence, multilevel speaker information fusion affords a 
promising departure point in Spanish forensic scenarios. 
No prior work has been done on Spanish conversational 
speech so this provides an important motivation for the 
present work. 
 

2. BASELINE SYSTEMS 
 
2.1. Acoustic system 
 
Acoustic scores have been calculated with our GMM 
system used in the 2002 NIST evaluation [5]. A gender-
independent 256 mixtures UBM was trained with 
approximately 2 hours (gender balanced) of microphonic 
speech extracted from Ahumada corpus [6]. Target 
speaker models have been trained via MAP adaptation of 
the UBM. Score normalization, namely TNORM and 
ZNORM [1] was performed to develop a common 
likelihood scale. 
 
2.2. Idiolect system 
 
 A language model for each target speaker has been 
trained using word bigrams [4] and a conventional 
likelihood ratio test was used to calculate test segments 
scores. The scoring formula is expressed as follows: 
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where Ntokens(k) is the number of occurrences of bigram 
type k in the test segment and ΛTS(k), ΛBG(k) are the 
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estimated likelihood of bigram k for the target speaker 
model and a background speaker model respectively. Nine 
hours of speech were used to train the background model. 

 
3. FUSION STRATEGIES 

 
Kittler et al. considered in [7] the task of combining 

classifiers in a probabilistic bayesian framework. Several 
ways to combine individual scores were obtained (sum, 
product, max, min, …), based on the Bayes theorem and 
certain hypothesis, from which the Sum Rule (adding 
individual scores normalized to range {0,1}) proved to be 
the best in the experimental comparison (in a multilevel 
biometric fusion problem). This perspective will be 
referred as to rule-based fusion.  

Multilevel fusion can also be treated as a pattern 
classification problem if the scores given by individual 
classifiers are considered as input patterns to be labeled as 
accepted/rejected (for the verification task). Under this 
point of view, any learning machine approach can be 
applied as a fusion strategy. In a recent contribution 
following this approach [8], the paradigm of Support 
Vector Machines (SVMs) has been proved to outperform 
other learning-based (including Neural Networks) and 
rule-based fusion strategies. This objective result 
motivates the SVM-based idiolectal-acoustical 
combination proposed in this paper.   
 
3.1. SVM-based fusion 
 
The principle of SVM relies on a linear separation in a 
high dimension feature space where the data have been 
previously mapped, in order to take into account the 
eventual non-linearities of the problem.  

Formally, the training set 1( )l R
i iX == ⊂x R , where l is 

the number of training vectors, R stands for the real line 
and R is the number of modalities, is labeled with two-
class targets 1( )l

i iy = , where: 

  { } { }1,1 " "," "iy Impostors Clients∈ − = . : R FΦ →R  

maps the data into a feature space F. Vapnik [9] has 
proved that maximizing the minimum distance in space F 
between ( )XΦ  and the separating hyperplane 

{ }( , ) | , 0FH b F b= ∈ < > + =w f w f , (where <·,·>F 

denotes inner product in space F), is a good means of 
reducing the generalization risk. Vapnik also proved [9] 
that the optimal hyperplane can be obtained solving the 
convex quadratic programming (QP) problem: 
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where constant C and slack variables iξ  are introduced to 

take into account the eventual non-separability of ( )XΦ  
into F. Applying the Karush-Kuhn-Tucker conditions to 
the problem in (2), the following sparse expression is 
obtained for the optimal hyperplane H(w*,b*): 
                         * ( )i i i

i SV

yα
∈

= Φ∑w x                             (3) 

where { }| 0iSV i α= >  is the set of support vectors. 

Taking into account that the decision function D that 
classifies a test pattern xT is: 
              { }* *( ) , ( )T T FD sign b= < Φ > +x w x                  (4) 

defining ( , ) ( ), ( )i j i j FK =< Φ Φ >x x x x  as the kernel 

function and using (3) leads to: 

             *( ) ( , )T i i i T
i SV

D sign y K bα
∈

 
= + 

 
∑x x x               (5) 

Problem (2) is generally solved for 1( )l
i iα =  and b* in its 

dual form with QP solvers which, together with decision 
function (5), avoids manipulating directly the elements of 
F and starting the design of the SVM for classification 
directly from the kernel function. Typical choices for K 
are: 

Linear Kernel: ( , ) , Ri j i jK =< >
R

x x x x   

Polynomial Kernel: ( , ) ( , 1)R
p

i j i jK = < > +
R

x x x x   

Gaussian kernel: 
2 2( , ) exp( 2 )i j i jK σ= − −x x x x  

In [8], the fusion strategy relies on the computation of 
the decision function D. A modification in order to obtain 
not a final classifier decision, but a combined multilevel 
score based on the proximity of the test pattern to the 
separating surface is proposed here. The combined score 

Ts ∈ R  of the multilevel pattern R
T ∈x R  will be 

calculated as: 
                      *( , )T i i i T

i SV

s y K bα
∈

= +∑ x x                     (6) 

Following this approach, the verification threshold 
parameter can be adjusted to reach different working 
points. This modification also permits to compare 
competing multilevel fusion strategies in terms of DET 
plots.  

4. EXPERIMENTS 
 
4.1. Database 
 
There are not publicly available Spanish conversational 
speech databases that allow exploring the benefits of 
fusing acoustic and idiolect speaker information. 
Therefore, more than nine hours of Spanish conversational 
speech were collected and manually transcribed from 
broadcasted radio talk shows, during a period of time of 
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two months, ensuring enough variability in both acoustic 
and idiolect characteristics. Nine speakers compound the 
database (7 male, 2 female) and each speaker data was 
divided into training and testing subset. For the idiolect 
experiments the training subset of associated transcription 
files were divided into three text segments of an equivalent 
duration of 30, 15, and 10 minutes of speech. The testing 
subset was dived into 5 segments of 3 equivalent minutes 
of speech. Regarding to the acoustic data, a NIST [2] 
oriented scheme was followed. Two minutes segments 
were created for training each speaker model and 20 
seconds of speech were extracted from each of the 5 test 
segments. 

Bigram models were trained for each of the nine 
speakers with the 30 minutes-equivalent text training 
segment of the database. GMM were trained using the 2 
minutes training segments corresponding to each speaker. 
To assess both systems performance the same testing 
strategy was conducted in each of them. Scores for each 
target were calculated with 5 target trials and 40 non-target 
trials. 
 
4.2. Asymptotic performance 
 
A statistically-motivated experimental procedure has been 
applied to the resulting DET curves in order to smooth 
them. Due to the inherent difficulty to collect a larger 
database in Spanish some scarcity data side effects seem to 
appear in the DET plots, adding an arduous effort to 
accomplish a visual comparison. The smoothing procedure 
works as follows: two GMM with 4 components each are 
estimated respectively from client and impostor score 
histograms using the EM algorithm [10]. Then 10,000 
points from the resulting distributions are generated and 
used as input for the performance testing DET plots. 
Figure 1 shows an example of a DET plot without 
smoothing (top) and with the smoothing procedure 
(bottom). 
 
4.3. Rule-Based Fusion 
 
For rule-based fusion strategies, all test scores will be used 
for testing the verification performance.  

Figure 1 shows the results from both systems and also 
the resulting scores of two rule-based combination 
strategies, namely sum and product (where idiolectal and 
acoustic scores were previously mapped linearly into 
{0,1} range). As may be observed, the acoustic system 
performance is at least twice better than the idiolect 
system in all the operating points. Therefore, ideolectal 
speaker information may be considered as a potential 
boosting factor for acoustic speaker recognition 
performance but not as an isolated system.  

The rule-based combination strategies accomplished 
were not capable to exploit the potential synergy between 
speaker language characteristics and acoustic traits.  

 
Figure 1.- Baseline systems performance without smoothing 

(top) and with smoothing procedure (bottom). 
 

4.4. SVM-Based Fusion 
 
For the SVM-based fusion experiments, the leave-one-out 
method [7] will be used to maximize the size of the 
training and testing data of the learning machine, while 
maintaining their independence. Idiolectal and acoustic 
scores from one user will be combined with a SVM trained 
on other users, generating 5 client and 40 impostor 
combined scores. This strategy is carried out on the 
remaining 8 subjects, yielding 5×9 = 45 client and 40×9 = 
360 impostor combined test scores. A Gaussian kernel 
(Radial Basis Function) has been used, and 2σ  parameter 
has been varied in order to find a good generalization 
point. Figure 3 shows the detection performance of the 
SVM-based fusion approach with three different kernel 
parameters.   
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In order to visualize the discrimination capability of the  
RBF SVM fusion approach, client and impostor maps of 
idiolectal and acoustic scores before the fusion are plotted 
in Figure 2. Decision boundaries and curves of equal 
combined score for one user of the leave-one-out 
procedure, whose client and impostor scores have been 
enlarged, have also been included.  

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

RBF(0.05)
RBF(5)   
RBF(1)   

 
Figure 3.- RBF SVM fusion results varying the 2σ  parameter 

 
As a result, the performance comparison of idiolectal, 

acoustic and SVM-based combined verification systems is 
plotted in Figure 4.  

 
5. CONCLUSIONS 

 
SVM fusion techniques provide an excellent framework 
for combining ideolectal and acoustic speaker information 
in Spanish conversational speech. Compared to the best 
performing baseline system (acoustic), an improvement of 
at least 40% in all the operating points was achieved by 
the SVM fused system. Ruled-based fusion techniques 
were not able to exploit the potential benefits of 
combining two different level information sources. 
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Figure 4.- Performance improvement of the SVM fusion 
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Figure 2.-User and impostor acoustic-idiolect normalized score map used for training and testing one SVM 
with the trained separating hyperplane (bold) and curves of equal combined score (dashed). 
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