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Abstract

The elements of multimodal authentication along with
system models are presented. These include the machine
experts as well as machine supervisors. In particular finger-
print and speech based systems will serve as illustration of
a mobile authentication application. A novel signal adap-
tive supervisor, based on the input biometric signal quality
is evaluated. Experimental results on data collected from
mobile telephones are reported demonstrating the benefits
of the proposed scheme'.

1. Introduction

Automatic access of persons to services is becoming
increasingly important in the information era. Although
person authentication by machine has been a subject of
study for more than thirty years [18, 1], it has not been
until recently that the matter of combining a number of
different traits for person verification has been considered
[8, 5]. There are a number of benefits of doing so, just
to name a few: false acceptance and false rejection error
rates decrease, the authentication system becomes more ro-
bust against individual sensor or subsystem failures and the
number of cases where the system is not able to give an an-
swer (e.g. bad quality fingerprints due to manual work or
larynx disorders) vanishes. The technological environment
is also appropriate because of the widespread deployment
of multimedia-enabled mobile devices (PDAs, 3G mobile
phones, tablet PCs, laptops on wireless LANS, etc.). Within
this technological framework, multimodal authentication is
no longer conceived as a top security access control tool.
As a result, much research work is currently being done in
order to fulfill the requirements of applications for masses.

Two early sound theoretical frameworks for combining
different machine experts in a multibiometric system are de-
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scribed in [4] and [19], the former from a risk analysis per-
spective [3] and the later from a statistical pattern recogni-
tion point of view [9]. Both of them concluded (under some
mild conditions which normally hold) that the weighted av-
erage is a good way of conciliating the different experts.
Soon after, multimodal fusion was studied as a two-class
classification problem by using a number of machine learn-
ing paradigms [2, 29, 15], for example: neural networks,
decision trees and support vector machines. They too con-
firmed the benefits of performance gains with trained classi-
fiers, and favored support vector machines over neural net-
works and decision trees. The architecture of the system,
ease of training, ease of implementation and generalization
to mass use were however not considered in these studies.
As happens in every pattern recognition problem which is
application-oriented, these are important issues that influ-
ence the choice of a supervisor.

Interestingly enough, some recent works have neverthe-
less reported comparable performance between fixed and
trained combining strategies [26, 20] and a debate has come
out investigating the benefits of both approaches [10, 25].
As an example, and within this debate, some researches
have shown how to learn user-specific parameters in a
trained fusion scheme [17, 11]. As a result, they have re-
ported that the overall verification performance can be im-
proved significantly.

In this work we focus on some other benefits of a trained
fusion strategy. In particular, an adaptive trained fusion
scheme is proposed and investigated here. With adaptive
fusion scheme, we mean that the supervisor readapts to
each identity claim as a function of the quality of the input
biometric signal, usually depending on external conditions
such as light and background noise. Furthermore, experi-
ments on real data from a prototype mobile authentication
application combining fingerprint and speech data are re-
ported.

This paper is structured as follows. In section 2 some
definitions are provided. The elements of multimodal au-
thentication along with major notations are introduced in
section 3. In section 4, the statistical framework for con-

COMPUTER
SOCIETY

Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03)
0-7695-1948-2/03 $17.00 © 2003 IEEE



Expert Training Data

FACE
RECOGNITION

Reference I
Models

Score X
"1 Normalization

Supervisor Training Data
Jj=1..,n

Identity

claim

Multimodal
Shot
j=n+1

FINGERPRINT
RECOGNITION

V-
Reference I
Models

Score
. . . »
Normalization ||,
in+l

Client  |M_.
Supervisor 1

4
’
1
’
7

M| Decision Accepted or
Threshold Rejected

A}

A

\Y

% Impostor
Supervisor M

qi.n+1 /

SPEAKER Reference I

@ RECOGNITION Models

Feature | Score )
Extraction "1 Normalization | [y "
; m.n

Figure 1. The proposed system model of multi-modal person authentication.

ciliating the different expert opinions together with the pro-
posed adaptive fusion strategy is described. The compo-
nents of our prototype mobile authentication application,
namely fingerprint and speaker verification subsystems, are
briefly described in section 5. Some experiments using the
above-mentioned multimodal authentication prototype on
real data are reported in section 7, where the benefits of the
proposed adaptive fusion scheme are also explored. Con-
clusions will be finally given in section 8.

2. Definitions

In authentication (also known as verification) applica-
tions, the users or clients are known to the system whereas
the impostors can potentially be the world population. In
such applications the users provide their pretended identi-
ties (either true or false) and a one-to-one matching is per-
formed. If the result of the comparison (also score or opin-
ion) is higher than a verification threshold, then the claim is
accepted, otherwise the claim is rejected.

In identification applications, there is no identity claim
and the candidate is compared to a database of client mod-
els, therefore a one-to-many matching is performed in this
case. In the simplest form of identification, also known as
closed-set identification, the best client model is selected.

In open-set identification, the highest score is further com-
pared to a verification threshold so as to accept/reject this
candidate as belonging or not to the database (an implicit
authentication step).

In a multimodal authentication framework, various sub-
systems (also denoted as experts) are present, each one of
them specialized on a different trait. Each expert delivers its
opinion on a “package” of data containing an identity claim
(e.g. face images, fingerprint images, speech data, etc.) that
will be referred to as a shot. This paper is focused on com-
bining the experts opinions (also known as soft decisions).
It will be shown that a careful design of the supervisor (also
known as fusion strategy) yields a combined opinion which
is more reliable than the best expert opinion.

3. System model

Below is a list of the major notations we use throughout
the paper, see also Figure 1.

1 Index of the experts,t € 1...m
7 Index of the shots, 7 € 1...n,n+ 1

x;; Authenticity score delivered by expert ¢ on shot j
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s;; Variance of x;; as estimated by expert ¢
y; The true authenticity score of shot j
z;; The error score of an expert z;; = y; — T;;

Note that the experts are allowed to provide a quality
of the score which is modelled to be inversely proportional
to s;;. This strategy is novel with respect to the imple-
mented supervisors reported so far in that it is the expert
who is providing a variance on every authenticity score it
delivers, not the supervisor. It is also worth pointing out
that y; can take only two numerical values corresponding
to “False” and “True”. If x;; is between 0 and 1 then
these values are chosen to be 0 and 1 respectively. We as-
sume that the experts have been trained on other shots apart
from 7 € 1...n,n + 1. The supervisor is trained on shots
j€1l...n(.e. x;andy; are known for j € 1...n) and
we consider shot n 4 1 as a test shot on the working multi-
modal system (i.e. 2; y1 is known, but y,,; is not known
and the supervisor task is to estimate it).

4. Statistical model

The model for combining the different experts is based
on Bayesian statistics and the assumption of normal dis-
tributed expert errors, i.e. 2;; is considered to be a sample
of the random variable Z;; ~ N (b;, o7;). It has been shown
experimentally [4] that this assumption does not strictly
hold for common audio- and video-based biometric ma-
chine experts, but it is shown that it holds reasonably well
when client and impostor distributions are considered sepa-
rately. Taking this result into account, two different supervi-
sors are constructed, one of them based on expert opinions
where y; = 1

C:{xij,sij|yj:1and1§j§n} (])
while the other is based on expert opinions where ; = 0
I:{xij,31j|yj:0and1§j§n} (2)

The two supervisors will be referred to as client supervisor
and impostor supervisor, respectively (see Figure 1).

The client supervisor estimates the expected true au-
thenticity score of an input claim based on its expertise
on recognizing client data. More formally, it computes
Ml = FE[Y,41|C,x;n+1] (the prime notation will be-
come apparent later on). In case of impostor supervisor,
MY = E[Yn41|Z, 2 n+1] is computed. The conciliated
overall score M" takes into account the different expertise
of the two supervisors and chooses the one which came
closest to its goal, i.e. O for the impostor supervisor and
1 for the client supervisor:

A [ MY [ = MY [0 - ME| <0
MY otherwise

3

Based on the normality assumption of the errors, the su-
pervisor algorithm described in [4] is obtained, see [3] for
further background and details. In the following, we sum-
marize this algorithm in the two cases where it can be ap-
plied.

4.1. Simplified supervisor algorithm

When only the experts scores x;; are available, the fol-
lowing simplified supervisor algorithm is obtained by using
Sij = 1:

1. (Supervisor Training) Estimate the bias parameters of
each expert. In case of the client supervisor the bias
parameters are

1 Qcq
Mi:*E ij and Ve = 4
c ncjzj an c e “)

where j indexes the training set C, n¢ is the number of
shots in C and

1 , 1
aci =y jzi_j—% zj:zu (5)

Similarly M7z; and Vz; are obtained for the impostor
supervisor.

2. (Authentication Phase) At this step, both supervisors
are operational, so that the time instant is always n + 1
and the supervisors have access to expert opinions
Z;n+1 but mot access to the true authenticity score
Yn+1. First the client as well as impostor supervi-
sors calibrate the experts according to their past per-
formance, yielding (for the client supervisor)

Mél =Tin+1+ Mpe¢; and Vél = (TLC + 1)VCi (6)

and then the different calibrated experts are combined

according to
m

’

Ci

M// _ anl (7)
1

Similarly, MZ, V] and MY are obtained. The final
supervisor opinion is obtained according to (3).

The algorithm described above has been successfully ap-
plied in [6] in a multimodal authentication system com-
bining face and speech data. Verification performance im-
provements of almost an order magnitude were reported as
compared to the best modality.
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4.2. Full supervisor algorithm

When not only the experts scores but also the quality of
the scores are available, the following algorithm is obtained:

1. (Supervisor Training) Estimate the bias parameters.
For the client supervisor

v, 3

ij

—— and Vei =
Zj 012 ' Zj 01.2

ij ij

Me; = ()

where the training set C is used. The variances ofj are
estimated through 7; = s - ac;, where

2 -1
1 25 1
wows (- (02) (52) )
&)

Similarly Mz; and Vz; are obtained for the impostor
Supervisor.

2. (Authentication Phase) First the supervisors calibrate
the experts according to their past performance, for the
client supervisor

M& = Tjnt1 + Me; and VC/i = Siny10¢; + Vei
(10)
and then the different calibrated experts are combined
according to (7). Similarly, M7, V; and MY are ob-
tained. The final supervisor opinion is obtained ac-
cording to (3).

The algorithm described above has been successfully ap-
plied in [3] but not in a multimodal authentication applica-
tion and combining only human expert opinions.

4.3. Adaptive strategy

The variance s;; of the score x;; is provided by the ex-
pert and concerns a particular authentication assessment. It
is not a general reliability measure for the expert itself, but a
certainty measure based on qualitative knowledge of the ex-
pert and the data the expert assesses. Typically the variance
of the score is chosen as the width of the range in which one
can place the score. Because such intervals can be conve-
niently provided by a human expert, the algorithm in section
4.2 constitutes a systematic way of combining human and
machine expertise in an authentication application. An ex-
ample of such an application is forensics, where machine
expert approaches can be used [14] and human opinions
must be taken into consideration.

In this work, we propose to calculate s;; for a machine
expert by using a quality measure of the input biometric sig-
nal (see Figure 1). This implies taking into account equation

(10) right, that the trained supervisor adapts the weights of
the experts using the input signal quality. First we define
the quality g;; of the score z;; according to

qij = \/Qij - Qi,claim (1D)

where Q;; and Q; ciqim are the quality label of the biomet-
ric trait used by expert ¢ in shot j and the average quality
of the biometric samples used by expert ¢ for modelling the
claimed identity respectively. The two quality labels Q;;
and Q; ciqaim are supposed to be in the range [0, ¢ynq.] With
Gmaz > 1 where 0 corresponds to the poorest quality, 1
corresponds to normal quality and g, corresponds to the
highest quality. Finally, the variance parameter is calculated
according to

|~

12)

Sij =

N

q

=0

J

5. Monomodal experts
5.1. Speaker expert

For the experiments reported in this paper, the GMM-
based speaker expert from Universidad Politecnica de
Madrid used in the 2002 NIST Speaker Recognition eval-
uation [12] has been used. Below we briefly describe the
basics, for more details we refer to [24, 12].

Feature extraction. Short-time analysis of the speech sig-
nal is carried out by using 20 ms Hamming win-
dows shifted 10 ms. For each analysis window
t € [1,2,...,T], a feature vector m; based on Mel-
Frequency Cepstral Coefficients (MFCC) and includ-
ing first and second order time derivative approxima-
tions is generated. Moreover, the feature vectors M =
{m;,my,...,myp} are supposed to be drawn from a
user-dependent Gaussian Mixture Model A which is
estimated in the enrollment phase via MAP adapta-
tion of a Universal Background Model A\ypas. For
our tests, the UBM is a text-independent 128 mix-
ture GMM which was trained by using approximately
8 hours of Spanish mobile speech data (gender bal-
anced).

Pattern comparison. Given a test utterance parameterized
as M and a claimed identity modeled as A, a matching

score ; 1s calculated by using the log-likelihood ratio

zj; =log (p[X|\]) —log (p[X|Ausnm])  (13)

Score normalization. In order to generate an expert opin-
ion z;; between 0 and 1, the matching score x;j is fur-
ther normalized according to

1
Ty = (14)

’
L+e “"u
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The parameter ¢ has been chosen heuristically on mo-
bile speech data not used for the experiments reported
here.

5.2. Fingerprint expert

For the experiments reported in this paper, the minutiae-
based fingerprint expert described in [27] has been used.
Below we describe the basics, for more details we refer to
[16, 27].

Image enhancement. The fingerprint ridge structure is re-
constructed according to: ¢) grayscale level normaliza-
tion, i) orientation field calculation, according to [7]
ii1) interest region extraction, iv) spatial-variant filter-
ing according to the estimated orientation field, v) bi-
narization, and vi) ridge profiling.

Feature extraction. The minutiae pattern is obtained from
the binarized profiled image as follows: ¢) thinning,
i1) removal of structure imperfections from the thinned
image, and 4i7) minutiae extraction. For each detected
minutia, the following parameters are stored: a) the
x and y coordinates of the minutia, b) the orientation
angle of the ridge containing the minutia, and ¢) the
x and y coordinates of 10 samples of the ridge seg-
ment containing the minutia. An example fingerprint
image from MCYT Database [23], the resulting binary
image after image enhancement, the detected minutiae
superimposed on the thinned image and the resulting
minutiae pattern are shown in Figure 2.

Pattern comparison. Given a test and a reference minu-

tiae pattern, a matching score x;j is computed. First,
both patterns are aligned based on the minutia whose
associated sampled ridge is most similar. The match-
ing score is computed then by using a variant of the
edit distance on polar coordinates and based on a size-
adaptive tolerance box. When more than one reference
minutiae pattern per client model are considered, the
maximum matching score obtained by comparing the
test and each reference pattern is used.

Score normalization. In order to generate an expert opin-
ion x;; between 0 and 1, the matching score x;j is fur-
ther normalized according to

z;; = tanh (c- x;]) (15)
The parameter ¢ has been chosen heuristically on fin-
gerprint data not used for the experiments reported
here.

Figure 2. Fingerprint feature extraction pro-
cess

6. Verification performance evaluation

Biometric verification can be considered as a detection
task, involving a tradeoff between two type of errors: )
Type I error, also denoted as False Rejection (FR) or miss
(detection), occurring when a client, target, genuine, or au-
thorized user is rejected by the system, and i) Type II er-
ror, known as False Acceptance (FA) or false alarm, taking
place when an unauthorized or impostor user is accepted as
being a true user. Although each type of error can be com-
puted for a given decision threshold, a single performance
level is inadequate to represent the full capabilities of the
system and, as such a system has many possible operat-
ing points, it is best represented by a complete performance
curve. These total performance capabilities have been tradi-
tionally shown in form of ROC (Receiver -or also Relative-
Operating Characteristic) plots, in which FA rate versus FR
rate is depicted. A variant of this, the so-called DET (De-
tection Error Tradeoff) plot [22], is used here; in this case,
the use of a normal deviate scale makes the comparison of
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competing systems easier. Moreover, the DET smoothing
procedure introduced in [13], which basically consists in
Gaussian Mixture Model estimation of FA and FR curves,
has been also applied.

A specific point is attained when FAR and FRR coin-
cide, the so-called EER (equal error rate); the global EER
of a system can be easily detected by the intersection be-
tween the DET curve of the system and the diagonal line
y = x. Nevertheless, and because of the step-like nature
of FAR and FRR plots, EER calculation may be ambiguous
according to the above-mentioned definition, so an opera-
tional procedure for computing the EER must be followed.
In the present contribution, the procedure for computing the
EER described in [21] has been applied.

7. Experiments
7.1. Database description and expert protocol

Cellular speech data consist of short utterances (the mo-
bile number of each user). 75 users have been acquired,
each one of them providing 10 utterance samples from 10
calls (within a month interval). The first 3 utterances are
used as expert training data and the other 7 samples are
used as expert test data. The recordings were carried out by
a dialogue-driven computer-based acquisition process, and
data were not further supervised. Moreover, 10 real impos-
tor attempts (i.e. each impostor knew the mobile number
and the way it was pronounced by the user he/she was forg-
ering) per user are used as expert testing data. Taking into
account the automatic acquisition procedure and the highly
skilled nature of the impostor data, near worst-case scenario
has been prevailing in our experiments.

Fingerprint data from MCYT corpus has been used. For
a detailed description of the contents and the acquisition
procedure of the database, see [23]. Below, some informa-
tion related to the experiments we have conducted is briefly
described.

MCYT fingerprint subcorpus comprises 295 individuals
acquired at 4 different Spanish academic sites by using high
resolution capacitive and optical capture devices. For each
user, the 10 prints were acquired under different acquisition
conditions and levels of control. As a result, each individual
provided a total number of 240 fingerprint images to the
database (10 prints x 12 samples/print x 2 sensors/sample).
Figure 3 shows three examples acquired with the optical
scanner under the 3 considered control levels.

Only the index fingers of the first 75 users in the database
are used in the experiments. 10 print samples (optical scan-
ner) per user are selected, 3 of them (each one from a dif-
ferent control level) are used as expert training data and the
other 7 are used as expert testing data. We have also con-
sidered a worst-case scenario using for each client the best

Figure 3. Fingerprint images from MCYT cor-
pus. Control level from left to right: low,
medium and high

10 impostor fingerprint samples from a set of 750 different
fingerprints.

All fingerprint images have been supervised and labelled
according to the image quality by a human expert [28]. Ba-
sically, each different fingerprint image has been assigned
a subjective quality measure from O (lowest quality) to 9
(highest quality) based on image factors like: incomplete
fingerprint, smudge ridges or non uniform contrast, back-
ground noise, weak appearance of the ridge structure, sig-
nificant breaks in the ridge structure, pores inside the ridges,
etc. Figure 4 shows four example images and their labelled
quality.

Figure 4. Fingerprint images from MCYT cor-
pus. Quality labelling from left to right: 0, 3,
6 and 9

As a conclusion, each expert protocol comprises 757
client test attempts and 75x 10 impostor test attempts in a
near worst-case scenario.

7.2. Supervisor protocol

Several methods have been described in the literature in
order to maximize the use of the information in the training
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Figure 6. Verification performance of finger-
print/speaker experts and Sum/SVM/Bayes
supervisors

samples during a test [9]. For the error estimation in mul-
timodal authentication systems, variants of the jackknife
sampling using the leave-one-out principle are the common
choice [6, 11]. In this work, and depending on the experi-
ment at hand, one of the three following supervisor proto-
cols has been used:

Non-trained. In the case of a non-trained supervisor (e.g.
Sum Rule), all expert test scores are used as supervisor
test scores.

Trained-Jack. In the case we want to maximize the size
of the training set, the jackknife paradigm is conve-
nient. One user is left out for supervisor testing, the
supervisor training is carried out on the other users,

the scheme is rotated for all the users and finally the
errors are averaged.

Trained-Boot. In the case the size of the training set is var-
ied, a bootstrap sampling is used: N users are chosen
at random for training, the testing is performed on the
other users, the scheme is iterated B times and finally
the errors are averaged.

7.3. Results

In the first experiment, we evaluate the verification per-
formance of the individual speaker and fingerprint experts
and compare it to the verification performance of the 3 most
popular multimodal fusion schemes, namely: ¢) Sum Rule
[19], which consists of averaging expert outputs; i) Sup-
port Vector Machine fusion [2] with linear kernel, which
consists of separating client and impostor distributions by
means of a large margin classifier (see [11] for details);
and i) The non-adaptive Bayesian Conciliation scheme
[4] as described in section 4.1 (i.e. with s;; = 1 for all
authentication claims). The non-trained supervisor pro-
tocol has been used for testing the Sum Rule approach.
The trained-Jack protocol has been followed for testing the
other two fusion strategies. Verification results are plot-
ted in Figure 6. We first observe that any of the three
fusion strategies clearly outperforms both the fingerprint
(EER=4.55%) and the speaker expert (EER=4.32%). We
also note that both trained approaches outperform the Sum
Rule (EER=1.66%). The SVM strategy (EER=1.40%) had
the widest set of best performance working points but it
was clearly inferior to the Bayesian scheme (EER=1.33%)
at a large zone around the EER. This can be explained by
equation (3) where impostor and client supervisor errors
are equally important. Giving them non-equal weights (i.e.
we |1 — M}| —wz |0 — M¥| < 0) is one way to shift the
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fied and adaptive Bayes supervisors

optimal operation zone, where the Bayesian Conciliation
outperforms the SVM approach. Nevertheless, we are only
interested in setting a starting point for the following exper-
iments, not to make a comparative study for which wider
scope than that of this paper would be necessary.

In Figure 5, the client-impostor separation surfaces for
3 different left-out users of the trained-Jack supervisor pro-
tocol are depicted together with the score map of both the
training (background) and testing (enlarged) data. We note
that the Sum Rule scheme does not take into account the ac-
tual client and impostor distributions, that is a skilled expert
is weighted equally as a less skilled expert. Also interesting
is the similarity between SVM and Bayesian Conciliation
separation surfaces, the former being highly dependent on
the data near the surface (as it is expected) while the later

is almost the same for different users of the leave-one-out
scheme. We stress the fact that different separation surfaces
are obtained due to the jackknife procedure, although we
are estimating the error for a trained but non-adaptive fu-
sion scheme.

In the second experiment, we investigate the benefits of
the proposed adaptive strategy described in section 4.3. For
the fingerprint expert, we have used the quality labels in
MCYT database normalized into the range [0,2]. For the
speech expert s;; = 1 is used. The trained-Jack supervi-
sor protocol has been followed. Verification results com-
paring the non-adaptive scheme (without score quality) and
the claim-adaptive case (with score quality) are shown in
Figure 8. As aresult, verification performance improves al-
most in every working point (EER decreases from 1.33% to
0.94%).

Some examples that may provide an intuitive idea about
how the supervisor is adapted depending on the image qual-
ity of the input fingerprints are shown in Figure 7. We plot
the separation surfaces for 3 different left-out users of the
supervisor testing protocol together with the score map of
both the training (background) and testing (enlarged) data.
In the case the score quality is considered, we observe that
the supervisor is adapted so as to increase or reduce the
weight of the fingerprint expert opinion based on the fin-
gerprint quality: the higher the image quality the higher the
fingerprint expert weight and the lower the quality the lower
the weight.

In the last experiment, we study the influence of increas-
ing the number of clients IV in the supervisor training set
over the verification performance. In this case, the trained-
Boot supervisor protocol with B=200 iterations has been
used. As it is shown in Figure 9, the error rate decreases
monotonically with the number of clients in the supervisor
training set. In particular, a fast decay occurs for the first 10
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Figure 9. Error rate vs number of clients in
supervisor training set

clients and small improvements are obtained for more than
20 users.

8. Conclusions

In this paper we have first reviewed some common ter-
minology and notations in multimodal authentication sys-
tems and developed the statistical model proposed in [4].
We have also derived an adaptive supervisor strategy and
proposed a signal quality-based implementation of such a
scheme. The elements of a mobile authentication appli-
cation based on speech and fingerprint data have been de-
scribed and some experiments using this prototype on real
data have been reported.

From the experiments, we conclude that multimodal sys-
tems combining different biometric traits (EER=4.55% and
EER=4.32% respectively for the fingerprint and speaker ex-
perts in a near-worst case scenario) and using simple super-
visor algorithms such as averaging can provide great bene-
fits (EER=1.66%) in terms of verification error rates. More-
over, various referenced trained supervisors have been also
tested. In this case, it has been shown that weighting each
expert output according to its past performance decreases
error rates (EER=1.33%). Finally, we have also shown that
the proposed adaptive fusion strategy can further improve
the verification performance (EER=0.94%) compared to a
trained but non-adaptive fusion strategy.

Future work includes the investigation of automatic qual-
ity measures for the different audio- and video-based bio-
metric signals and the exploitation of the user-specific char-
acteristics in the overall multimodal authentication architec-
ture.
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