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ABSTRACT 
 
This paper is focused on algorithmic issues for biometric face 
verification (i.e., given an image of the face and an identity 
claim, decide whether they correspond to each other or not). 
Several alternatives for geometric normalization of images, 
photometric normalization, dimensionality reduction and 
similarity measures are proposed and compared using the 
XM2VTS database and the associated Lausanne protocol [10], 
[11]. Experiments under this particular framework show that 
best verification results are obtained when holistic approaches 
for face recognition (such as eigenfaces or fisherfaces) are 
combined with techniques traditionally associated to local 
feature-based approaches, such as Gabor decompositions. 

 

1. INTRODUCTION 
 
Biometric signals and traits (fingerprints, speech, face images, 
etc.) contain identity information about the subject they belong 
to. Automatic extraction of these cues has given raise to a 
particular branch of pattern recognition (biometrics) where the 
goal is to infer identity of people from biometric data. The 
increasing interest on biometrics is related to the important 
number of applications where a correct assessment of identity is 
a crucial point. 

One of the drawbacks of face recognition, compared to 
other biometric modalities as fingerprint, is that it is very 
sensitive to the problem of variability or mismatch between 
training and testing conditions. Some sources of this variability 
are changes in scale, location or rotation due to the point of 
view of the camera, changes in expression, illumination, ageing, 
make-up, etc. (see Fig. 1). 

 

 
Fig. 1: Example of variability of face images 

 
Representation schemes for face recognition can be divided 

into local and global, depending on whether the face is 
represented as a whole, or as a series of small regions [1]. Face 
recognition and verification systems based on both approaches 
have already been compared in published competitions [2],[3]. 
On the one hand, dimensionality reduction is a key step in the 
case of global strategies for face recognition [4], [5]. On the 

other hand, Gabor features (commonly used in local face 
appearance representation schemes) constitute also a successful 
option among face recognition practitioners [6]. Experiments 
reported here show that face verification performance can be 
improved considering jointly these two important ideas. 
 

2. DESCRIPTION OF THE SYSTEM 
 
All the results provided here have been obtained following the 
same basic processing scheme in order to obtain a final 
similarity measure for verification. It consists of the following 
sequence of steps: geometric normalization, photometric 
normalization, dimensionality reduction and final computation 
of the similarity measure.  
 
2.1. Geometric normalization 
 
The first task to be performed in a fully automatic face 
recognition practical system should be the detection and 
segmentation of the face [7]. As the emphasis in this 
contribution is put on recognition, automatic segmentation will 
be skipped over here, and manually located positions of 6 
relevant facial features (center of the iris, nostrils and mouth 
corners, see Fig. 2) will be used. 

Geometric normalization is performed in order to overcome 
two drawbacks. First non-face pixels (background) are not 
meaningful for identity purposes. Second, subsequent 
processing techniques assume that the images are geometrically 
aligned, i.e. an association between pixel position and facial 
feature represented by this pixel can be roughly established. The 
operations comprised in this geometric normalization stage in 
our tests are: 

 

 
Fig. 2: From left to right: example images after steps (1), (2) 
and (3) of the geometric normalization stage. 
 

(1) The original 720×576 X2MVTS images are first converted 
to 128×128 images, simply by cropping and decimation. 

(2) The 128×128 images obtained in (1) are warped so that the 
6 reference points fall on fixed positions using thin-plate 
splines as in [8]. Occasionally, only 2 points (centers of the 
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iris) are used in the experiments. In this case an affine 
geometric transformation is used.  

(3) A binary mask consisting of an elliptic patch is applied to 
the result of (2), so that only interior parts of the face 
meaningful for recognition are kept. 

The result of the geometric normalization stage (see Fig. 2) 
consists of a vector comprising the 2347 grayscale pixels inside 
the elliptic patch.  

2.2. Photometric normalization 
 
The following options are proposed and tested here concerning 
what we call photometric normalization (i.e. techniques applied 
in order to reduce the influence of factors of variability affecting 
globally the values of the pixels, such as illumination): 
(1) No photometric normalization. 
(2) Application of two affine transformations. 
(3) Histogram equalization. 
(4) Gabor transform.  

In option (2), first, for each 2347 vector a transformed 
vector is obtained so that the mean value is 0 and its standard 
deviation is 1. Afterwards, a similar transformation is applied, 
but now the purpose is to have 0 as mean and 1 as standard 
deviation for each of the components of all the images 
belonging to the training set. The same transformation is applied 
to test images (not belonging to the training set). 

What we call Gabor transform (4) consists of the application 
of a set of Gabor filters and posterior subsampling. The Gabor 
filters are: 

2 2 2 2

2 2( ) exp exp( ) exp
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j j
j j
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i σψ

σ σ
   

= − − −         
x k x  

where j is the index for the filter used and kj its central 
frequency. 12 Gabor filters were applied to the full 128×128 
images (without elliptic patch), corresponding to 4 orientations 
(0, π/4, π/2 and 3π/4) and 3 scales (π/8, π /4, π /2) for the central 
frequency and σ =2. The final vector representation had a 
dimension of 3108 and was obtained retaining only the 
magnitude of pixel values inside the elliptic patch containing the 
face in the subsampled images. 

   
Fig. 3: From left to right: example images after photometric 
normalization schemes (1) and (3). Right image is a 
reconstruction from Gabor units. 

 
2.3. Dimensionality reduction 
 
Two traditional techniques in face recognition, Principal 
Component Analysis (PCA, [4]) and Linear Discriminant 
Analysis (LDA) ([5], [9]), have been applied in order to reduce 
the dimension of the vector. PCA provides an orthonormal 
reduced basis of vectors (eigenfaces) so that, when training 
examples are projected onto it, the projections have minimun 
squared error with respect to the original vectors. LDA provides 
a linear transformation (by projecting to fisherfaces) that 

reduces the dimensionality trying to maximize some criteria of 
separability between classes.  

From these techniques, the following options are considered 
for reducing de dimensionality: 
(1) No reduction.  
(2) PCA features: reducing just by projecting onto PCA-space 

(150 components). 
(3) White features: reducing by projecting onto PCA-space 

(150 components) and scaling each component in the PCA 
space so that all of them have unit variance. 

(4) LDA features: reducing just by applying the LDA 
transformation (180 components). 

 
2.4. Similarity measures 
 
For verification purposes, a measure of similarity (a score for 
brief) is needed in order to compare the reference data m (in our 
case, the mean of the vectors with reduced dimensionality 
corresponding to the claimed identity within the training set) 
with the data to be tested t. In face recognition systems, the 
measure of similarity is usually fairly simple thanks to the 
complexity of the feature extraction process [9]. In particular, 
the following scoring formulae will be tested: 
(1) Minus Euclidean distance: 2

1( , ) ( [ ] [ ])
i

s i i= − −∑m t m t  

(2) Dot product: 2 ( , ) [ ] [ ]
i

s i i= ∑m t m t  

(3) Norm. dot product: 3 2 2 2( , ) ( , ) ( , ) ( , )s s s s=m t m t m m t t  
 

3.  EXPERIMENTS 
 
3.1. Verification performance assessment  
 
Two kinds of measures of the performance of verification 
systems are provided here: numerical and graphical. First, 
numerical values correspond to False Alarm (FA) and False 
Rejection (FR) rates at some working points. A false alarm 
event arises when an impostor accesses the system claiming the 
identity of a user. False reject happens when a user, claiming his 
identity, is not accepted. Graphical representations for the 
verification performance are provided here in terms of DET 
curves (which are FA vs. FR rate plots with particular axis 
scaling) [5]. 
 
3.2. Database description and protocol 
 
The XM2VTS [10] multimodal database consists of face 
images, video sequences and speech information of 295 
subjects.  

Experiments reported here use 8 frontal face images from 4 
different sessions for each subject. Lausanne protocol [11] splits 
the subjects into 3 groups: 200 users, 25 evaluation impostors 
and 70 test impostors. In this context, verification performance 
is studied comprising 3 stages: training (the systems learn from 
particular data of each user how to compute a similarity value as 
it has been seen in section 2), evaluation (data from users and 
impostors are used in order to fix threshold values on the 
similarity score so that FA or FR meet certain requirement on 
the evaluation set) and testing (final values of FA and FR are 
measured in a set different from the one used for training or for 
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Fig. 4: Performance on the evaluation set (a posteriori thresholds) for different methods of dimensionality reduction (rows), 
similarity measure (columns) and photometric normalization (see legends in each plot). From upper to lower row: no dimensionality 
reduction, PCA, white features and LDA. From left to right column: euclidean distance, dot product and normalized dot product. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 



fixing the thresholds). Configuration II from this protocol 
employs the following statistics: 4 images from each user 
(200×4) are used for training, corresponding to sessions 1 and 2. 
For evaluation, 2 images per user (session 3, 200×2=400) are 
used to compute FR and all the available images from 
evaluations impostors (25×8=200) to compute FA. A posteriori 
thresholds on the similarity values can be computed then to 
meet specific requirements over FA and FR in the evaluation 
set. For testing, 2 images per user (session 4, 200×2=400) are 
used to compute FR and all the available images from test 
impostors (70×8=560) to compute FA. Final values of FR and 
FA are computed with the thresholds established a priori in the 
evaluation set. 
 
3.3. Results  
 
Detailed results for a posteriori decision threshold selection (on 
evaluation data) are provided in Fig. 4 as a grid of DET plots, 
where the wide range of performances attainable when 
combining in different ways the available options described so 
far is remarkable.  

Results on test data with thresholds established a priori over 
the evaluation set according to Lausanne protocol for selected 
options are given in Table I, where the combination with best 
verification performance have been highlighted. 
 

TABLE I 
PERFORMANCE ON THE TEST SET FOR A PRIORI THRESHOLDS  

  FRE=0 FRE=FAE FAE=0 
System 
(Fig. 4) 

Phot.  
Norm. 

FR 
(%) 

FA 
(%) 

FR 
(%) 

FA 
(%) 

FR 
(%) 

FA 
(%) 

(a) No Phot. 0.0 90.0 11.6 12.5 95.0 0.0 
(e) Affine 0.5 55.7 5.8 5.8 91.7 0.0 
(h) Hist. eq. 0.3 28.7 0.5 1.9 20.9 0.0 
(h) Hist. eq.  

(2 feat.)  
0.5 20.9 2.3 2.4 43.7 0.0 

(h) Gabor 0.3 14.3 1.0 0.9 11.8 0.1 
(l) Gabor 0.3 15.8 1.0 1.9 9.8 0.0 

(l) Hist. eq.  
(2 feat.)  

0.3 30.6 0.8 3.0 12.3 0.0 

 
4. CONCLUSIONS 

 
Our performance results (see highlighted row in Table I) show 
competitiveness with respect to other referenced works [3] on 
same database with same experimental protocol. Two 
fundamental differences from referenced systems [3] are our 
geometric normalization stage (based on 6, instead of 2, 
manually marked reference points) and the Gabor photometric 
normalization scheme.  

With regard to geometric normalization, we have included 
results in Fig. 4 and Table I using only 2 reference features 
(eyes) in order to test the performance worsening. This result 
encourages the research in full automatic geometric 
normalization schemes for face recognition when global 
appearance representation strategies are used.  

In relation to photometric normalization, we have shown 
the verification performance improvement of several 
techniques, being the Gabor-based method the best of them in 

almost every case. Dimensionality reduction techniques have 
also been shown to increase verification performance, yielding 
PCA+whitening and LDA similar results for best performing 
similarity measures, which are dot product-based. 
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