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ABSTRACT 
 
The aim of this paper, regarding multimodal biometric 
verification, is twofold: on the one hand, to review some score 
fusion strategies reported in the literature and, on the other hand, 
to compare experimentally a selection of them using as 
monomodal baseline systems our template-based face, minutiae-
based fingerprint and HMM-based on-line signature verification 
systems on the MCYT multimodal database. A new strategy is 
proposed and discussed in order to compute a multimodal 
combined score by means of Support Vector Machine (SVM) 
classifiers.  

 

1. INTRODUCTION 
 
Biometric signals and traits (fingerprints, speech, face images, 
etc.) contain identity information about the subject they belong 
to. Automatic extraction of these cues has given raise to a 
particular branch of pattern recognition (biometrics) where the 
goal is to infer identity of people from biometric data [1]. The 
increasing interest on biometrics is related to the important 
number of applications (mainly, related to security, forensics and 
remote managing) where a correct assessment of identity is a 
crucial point. 

Our efforts at Biometrics Research Lab. (Universidad 
Politecnica de Madrid, Spain), have been focused on three basic 
biometric characteristics, namely, on-line signature –which is a 
behavioral trait-, face and fingerprint –which are physiological 
ones-, due to the following reasons: i) regarding fingerprint, due 
to its uniqueness and high discriminative capability; ii) regarding 
face, for its direct visualness with respect to in situ human 
interaction; and iii) regarding signature, for its personal, social 
and legal acceptability as an identification procedure. 

Some studies [2] have showed that the performance of any 
single-trait verification system can be improved by unimodal (or 
monomodal) fusion, i.e., the combination of several verification 
strategies applied on the same input data. Even greater 
verification performance improvement can be expected through 
the use of multiple biometric characteristics if we assume 
statistical independence between them [3]. Some works related 
to the multimodal fusion approach are [3]-[6].  

Based on the above-mentioned research on multimodal 
fusion, the aim of this paper is twofold: on the one hand, to 
review the fusion strategies reported in the literature and, on the 
other hand, to compare experimentally some of them using our 
single trait systems and the MCYT multimodal database [7]. 

In verification or authentication (the problem addressed 
here) a claim is made concerning the identity of a person and the 
biometric system has to take the binary decision of accepting or 
rejecting it based on the information extracted from the 
considered biometric trait. In a verification context, two 
situations of error are possible: an impostor is accepted (false 
alarm, FA) or the correct user is rejected (false reject, FR). 
Performance measures of verification systems are related to the 
frequency with which these situations of error happen. One 
common performance measure is, for example, the so-called 
EER (equal error rate) which is the point attained when FA and 
FR rates coincide. Here, the performance of competing systems 
based on different fusion strategies will be compared by means 
of DET plots [8], which are graphical representations of FA vs. 
FR rates with a particular axis scaling. 
 

2. MULTIMODAL FUSION 
 
2.1. Fusion strategies 
 
Biometric multimodality can be studied as a classifier 
combination problem [2], [9]. Kittler et al. considered in [9] the 
task of combining classifiers in a probabilistic Bayesian 
framework and provided an example of multimodal biometric 
verification (fusing speech, frontal and profile images 
modalities). Considering R modalities, 2 classes ( 1ω  for clients 
and 2ω  for impostors), and a given pattern Z that generates the 
feature vector xi for modality i, the classifiers (or experts) are 
considered to give the a posteriori probability for each class k: 
P(ωk | xi). Several ways to implement the fusion of the modalities 
are then obtained (sum, product, max, …), based on the Bayes 
theorem and certain hypothesis, from which the Sum Rule: 
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outperformed the remainder in the experimental comparison, due 
to its robustness to errors in the estimation of P(ωk | xi) made by 
the individual classifiers. From now on, this perspective will be 
referred to as rule-based (or fixed) fusion, because it does not 
takes into account the actual distribution of outputs from the 
experts.  

Multimodal fusion can also be treated as a pattern 
classification problem [10]. Under this point of view, the scores 
given by individual expert modalities are considered as input 
patterns to be labeled as accepted/rejected (for the verification 
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task). Verlinde et al. followed this approach and compared in 
[11] the following pattern classification techniques for 
multimodal fusion (sorted by relative decreasing performance): 
Logistic Regression, Maximum a Posteriori, k-Nearest 
Neighbors classifiers, Multilayer Perceptrons, Binary Decision 
Trees, Maximum Likelihood, Quadratic classifiers and Linear 
classifiers. In a recent contribution [12], the paradigm of Support 
Vector Machines (SVMs) has been compared with all the above-
mentioned techniques carrying out the same experiments, 
outperforming all of them. From now on, this perspective will be 
referred to as learning-based (or trained) fusion, because it 
requires sample outputs from the experts to train the pattern 
classifiers. 
 
2.2. Rule-based fusion vs. learning-based fusion 
 
Although it could be thought that learning-based fusion should 
have better performance than rule-based fusion, some examples 
have been reported in the literature where the Sum Rule have 
outperformed other learning-based approaches [3]. This rather 
surprising result motivates the experiments carried out from 
which we will show that an adequate design of the best reported 
learning-based fusion strategy (based on SVM) outperforms the 
Sum Rule approach.    
 
2.3. Multimodal fusion via SVM 
 
We have used the SVM not to provide a binary verification 
decision, as has been reported in related works [11][12], but to 
provide a fused score combining the outputs of the considered 
monomodal systems. We will now introduce our approach 
providing references for further details.  

The principle of SVM relies on a linear separation in a high 
dimension feature space where the data have been previously 
mapped, in order to take into account the eventual non-linearities 
of the problem [13]. In order to achieve a good level of 
generalization capability, the margin between the separator 
hyperplane and the data is maximized. 

Formally, the training set 1( )l R
i iX == ⊂x R , where l is the 

number of training vectors, R stands for the real line and R is the 
number of modalities, is labeled with two-class targets 1( )l

i iy = , 

where { } { }1,1 " "," "iy Impostors Clients∈ − = . : R FΦ →R  maps 

the data into a feature space F. Vapnik [13] has proved that 
maximizing the minimum distance in space F between ( )XΦ  
and the separating hyperplane 

{ }( , ) | , 0FH b F b= ∈ < > + =w f w f , (where <·,·>F denotes inner 

product in space F), is a good means of reducing the 
generalization risk. Vapnik also proved [13] that the optimal 
hyperplane can be obtained solving the convex quadratic 
programming (QP) problem: 
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where constant C and slack variables iξ  are introduced because 
of the eventual non-separability of ( )XΦ  in space F. Applying 
the Karush-Kuhn-Tucker conditions to the problem in (1), the 
following sparse expression is obtained for the optimal 
hyperplane H(w*,b*): 

                     * ( )i i i
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where { }| 0iSV i α= >  is the set of support vectors. Taking 

into account that the decision function D that classifies a test 
pattern xT is: 

{ }* *( ) , ( )T T FD sign b= < Φ > +x w x                     (3) 

defining ( , ) ( ), ( )i j i j FK =< Φ Φ >x x x x  as the kernel function and 

using (2) leads to: 
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Problem (1) is solved for 1( )l
i iα =  and b* in its dual form with 

a standard QP solver which, together with decision function (4), 
avoids manipulating directly the elements of F and starting the 
design of the SVM for classification directly from the kernel 
function. The choice for K has been in this case a Radial Basis 
Function (RBF): 

                 
2 2( , ) exp( 2 )i j i jK σ= − −x x x x                        (5) 

In [12], the fusion strategy relied on the computation of the 
decision function D. A modification in order to obtain not a final 
classifier decision, but a combined multimodal score based on 
the proximity of the test pattern to the separating surface is 
proposed here. The combined score Ts ∈R  of the multimodal 

pattern R
T ∈x R  will be calculated as: 

*( , )T i i i T
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Following this approach, the verification threshold 
parameter can be adjusted to reach different working points. 
This modification also permits to compare competing 
multimodal fusion strategies in terms of DET plots, trading-off 
the two error rates (FA and FR) of the verification task.  

 
3. EXPERIMENTAL COMPARISON 

 
3.1. Database description 
 
We have randomly selected 50 subjects from the MCYT 
Multimodal Database including fingerprint and on-line signature 
samples. For the experiments, a subset of 50 different subjects 
from the XM2VTS face database [14] have been also randomly 
selected. It has been supposed for convenience, and thanks to the 
independence of signature, fingerprint and face traits [3], that the 
individuals from MCYT and from XM2VTS coincide.  

The following training and testing procedure for monomodal 
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systems had been established: 
• Training: i) Fingerprint: Each client’s index finger has 

been represented with 1 high-controlled minutiae pattern; 
ii) Signature: Each signature has been modeled with 6 
samples, and iii) Face: Each face has been modeled with 4 
samples, according to Configuration II of the Lausanne 
Protocol [14].  

• Testing: i) Targets: 4 more samples of each trait (face, 
fingerprint and signature) have also been selected for tests 
(2 from evaluation and 2 from test data of the Lausanne 
Protocol in the case of face samples); ii) Impostors: 3 
different impostors (skilled forgeries in the case of 
signature) for each client have been considered and, from 
each impostor, 5 samples have been selected. 

Consequently, the subcorpus for the experiments consists of 
50×4=200 client, and 50×3×5=750 impostor multimodal scores. 
 
3.2. Monomodal baseline systems 
 
Medium performance individual verification systems have been 
intentionally used because it makes the comparison of 
subsequent fusion strategies easier. In particular, and taking into 
account the above-mentioned training and testing database 
structure, we have considered: a 11.5%-EER template-based 
face verification system, a 2.6%-EER minutiae-based fingerprint 
verification system and a 4.8%-EER HMM-based on-line 
signature verification system. For a detailed description of these 
systems, see [15]. 
 
3.3. Multimodal experimental procedure 
 
For rule-based fusion strategies, all multimodal test scores (200 
from clients and 750 from impostors) are used for testing the 
verification performance. For learning-based fusion strategies, 
the leave-one-out method [10] is used to maximize the size of 
training and testing data for the learning machine, while 
maintaining their independence. Multimodal scores of one user 
are combined with a SVM trained on other users, generating thus 
4 client and 15 impostor combined scores. This strategy is 
carried out on the remaining 49 subjects, yielding 4×50=200 
client and 15×50=750 impostor combined test scores.  

It has been demonstrated [11], [12] that multimodal fusion 
schemes can have such a good performance that their 
comparison over a restricted size test data can be very difficult, 
if not impossible (leading even to error-free combined systems 
[12], due to the scarceness of data). In the present contribution, a 
statistical-motivated experimental procedure denominated as 
Asymptotic Performance, which reduces side effects produced 
by data scarceness and avoids the uninformative zero EER 
result, has been used. The proposed statistically-motivated 
experimental procedure works as follows. Two Gaussian 
Mixture Models (GMM) with 4 components each are estimated 
respectively from client and impostor score histograms using the 
EM algorithm [10]. Then, 10,000 points from the resulting 
distributions are generated and used as input data for the 
performance testing DET plots. This procedure also simplifies 
the comparison of competing fusion strategies because it 
smoothes the performance plots.  

3.4. Results 
 
In Figure 1, the asymptotic performance of the monomodal 
baseline systems together with the performance of some rule-
based combined systems are plotted. In this case, and trying to 
approximate the above-mentioned a posteriori probabilities 
described in [9], monomodal scores are normalized into the 
range [0,1] before the operation by means of a linear mapping in 
case of fingerprint and face, and with an exponential mapping in 
case of on-line signature (to undo de log-probability given by 
the HMM). 

 
Figure 1. Performance of monomodal baseline systems and 
rule-based fusion strategies. 
 

Results for the learning-based approach are plotted in the 
upper row of Figure 2. From left to right, DET performance 
plots of the RBF-SVM fusion strategy on normalized scores with 
three different kernel parameters are included. In all plots, the 
asymptotic detection performance of the Sum Rule on 
normalized scores is plotted in gray for better comparison.  

In order to visualize the discrimination capability of the 
trained RBF-SVM fusion approach, client and impostor maps of 
signature and fingerprint scores before the fusion are plotted in 
the lower part of Figure 2. Decision boundaries and curves of 
equal combined multimodal score for one user of the leave-one-
out procedure, whose client and impostor scores have been 
enlarged, have been also included. 
 

4. CONCLUSIONS 
 
A statistical-motivated experimental procedure has been 
introduced and applied to compare best published learning-based 
and rule-based fusion strategies by means of DET plots. 
Appropriate selection of parameters for the learning-based 
scheme has led to a fusion strategy that clearly outperforms the 
rule-based strategy.  

Starting from a 11.5% EER face verification system, a 4.8% 
EER on-line signature verification system and a 2.6% EER 
fingerprint verification system, it has been shown that the Sum 
Rule reduced the EER to 1%. The RBF SVM fusion strategy 
performed even better reducing the EER to 0.3%.       
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Figure 2. Learning-based fusion strategies. Upper row: performance of RBF-SVM fusion for different different kernel parameters 
(a),(b),(c): { }2 0.5,0.1,0.05σ = . Lower row: score map plots for different kernel parameters (d),(e),(f): { }2 0.5,0.1,0.05σ = .  
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