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Abstract

This paper reports on experiments investigating the ef-
fects of packet loss for two online signature verification
systems distributed over the Internet. The effects on veri-
fication performance of using different signature data re-
covery strategies are explored. Justifications are given
taking into account the statistical nature of the signa-
ture models used for the verification task. Under realis-
tic packet loss conditions, it is found that marginalising
the lost feature vectors at the verification stage outper-
forms other feature-based data imputation methods such
as packet repetition.

1. Introduction

Distributing software and hardware components of a bio-
metric authentication system over hosts linked by a net-
work introduces additional challenges compared to de-
veloping a centralised system. Among these, fault tol-
erance and network transfer resilience are of particular
importance. Specifically, transmission of data over IP
networks is not without flaws [1]: overflowing router
queues, parallelised data streams, variability in traffic
load, non-constant delay between packet arrivals, packet
corruption, and many other causes can lead to data loss,
packet reordering and transmission delays, depending on
the transport layer protocol used.

It is thus crucial to the successful deployment of dis-
tributed biometric authentication systems that biomet-
ric data transmission problems be addressed and mecha-
nisms for ensuring successful authentication in the event
of transmission problems be built in.

An area that has seen much research in recent years,
and from which knowledge can be transferred to the case
of distributed biometrics, is that of streaming audio over
IP networks. A large amount of data recovery methods
have been developed to cope with network pathologies
such as packet loss [2] for streaming audio. While many
such methods (for instance silence substitution) primar-
ily target minimisation of psychoacoustic distortion in
the audio signal and are not necessarily applicable to
biometrics, some others (such as packet repetition) are
generic enough to be applied to many modalities.

The effect of packet loss on different biometric modal-
ities is a current ongoing subject of investigation, notably
for speech [3], and also for face [4]. However, the effects of
IP network transmission on on-line signature verification

performance have not yet been tested. This contribution
explores the effects of, and possible ways of coping with,
data loss for distributed on-line signature verification sys-
tems.

The rest of this paper is organised as follows: Sec-
tion 2 describes the signature verification systems used
in our tests. Section 3 explains the network modelling
process. Section 4 explains the different data recovery
strategies implemented. Section 5 presents the experi-
mental protocol and the error rates obtained with the
different recovery strategies.

2. Signature verification systems

For the experiments reported in this paper, the HMM-
based on-line signature verification system from Univer-
sidad Politecnica de Madrid competing in the First Intl.
Signature Verification Competition (SVC 2004) has been
used1. Below we briefly describe the basics; for more
details about the use of HMM and GMM in signature
verification, we refer the reader to [5, 6, 7].

Feature extraction. Coordinate trajectories (xn, yn)
and pressure signal pn are the components
of the unprocessed feature vectors un =
[xn, yn, pn]T extracted from the signature signal,
where n = 1, . . . , Ns and Ns is the duration of the
signature in time samples. Signature trajectories
are then preprocessed by subtracting the center
of mass followed by a rotation alignment based
on the average path tangent angle. An extended
set of discrete-time functions are derived from the
preprocessed trajectories consisting of sample by
sample estimations of various dynamic properties.
As a result, the parameterised signature O

consist in the sequence of feature vectors on =
[

xn, yn, pn, θn, vn, ρn, an, ẋn, ẏn, ṗn, θ̇n, v̇n, ρ̇n, ȧn

]T
,

n = 1, . . . , Ns, where the upper dot notation
represents an approximation to the first order
time derivative and θ, v, ρ, a stand respectively
for path tangent angle, path velocity magnitude,
log curvature radius and total acceleration magni-
tude. A whitening linear transformation is finally
applied to each discrete-time function so as to
obtain zero mean and unit standard deviation
function values.

1See http://www.cs.ust.hk/svc2004/
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Similarity computation. Given the parameterised en-
rollment set of signatures of a client C, a left-
to-right Hidden Markov Model (HMM) λC is es-
timated by using the Baum-Welch iterative algo-
rithm. No transition skips between states are per-
mitted and multivariate Gaussian Mixture Model
(GMM) state observation distributions are used.
Given a test signature parameterised as O (with
a duration of Ns time samples) and the claimed
identity C represented by its signature model λC,
the matching score s

s =
1

Ns

log p
(

O|λC
)

(1)

is computed by using the Viterbi algorithm.
Matching scores are finally aligned between clients
by using the a posteriori target-dependent score
normalization technique based on individual EERs
described in [8].

For the experiments carried out in this work two con-
figurations of the above system are used, namely: i) High
performance HMM verification system, where 2 states
and 32 mixtures per state are considered; and ii) Robust
GMM system, where 1 state and 64 mixtures are used.

3. Packet loss simulation

Simulating IP transmission based on a network pathol-
ogy model rather than actually transmitting data over
the Internet ensures careful control of experimental con-
ditions and makes for relatively easier implementation,
but is limited by the accuracy of the model. To en-
able different recognition systems to be tested, several
degraded versions of the original on-line signature corpus
were produced with built-in packet recovery strategies, at
two different mean packet loss rates.

3.1. Building packets for distributed on-line sig-

nature verification

The simulated transport protocol is the User Datagram
Protocol (UDP) [9]. This transport protocol does not
guarantee delivery or delivery order, but has the advan-
tage over the Transmission Control Protocol (TCP) [10]
of using smaller headers, at 8 bytes vs. 20 bytes (without
options), and lower complexity. It is suited to real-time
data delivery applications because it does not retrans-
mit lost packets or adjust transmission rate according
to network congestion. UDP transmission can be made
more reliable by the use of a higher-level protocol such
as the Real Time protocol (RTP) [11]. This is typically
used in real-time speech applications as it facilitates the
implementation of higher-level functionality such as se-
quence numbering and timestamping. An example of the
IP/UDP/RTP combination is found in the H.323 video
conferencing standard [12].

In the simulated distributed signature verification
system, unprocessed signature feature vectors un are
packetised in groups of 10 per packet, leading to a pay-
load of 200 bytes per packet. The simulated IP and UDP
headers add respectively 20 and 8 bytes. In addition, the
sending of a 60-byte proprietary file header containing
the total signature data payload size, packet sequence

number, and other information with every packet is sim-
ulated. While this is certainly suboptimal and the file
header could be much simplified, at 288 bytes, the over-
all packet size is below the minimum reassembly buffer
size of 576 bytes mandated by IPv4 [13], thus ensur-
ing that any conforming implementation will accept the
packet. Furthermore, at 288 bytes the packet size stays
well below the 1500 bytes Maximum Transmission Unit
(MTU) of Ethernet links, which is often equivalent to the
path MTU between two hosts [14], ensuring that packets
would not be fragmented and thus ensuring more accu-
rate packet loss modelling. This assumption could how-
ever prove wrong depending on the particular routing
conditions, as Internet routing is often asymmetric [15].
Lastly, in real applications the payload may have to be
encrypted to prevent covert acquisition.

3.2. IP network modelling

A large body of literature exists on packet dynamics in
IP networks. A model that is simple yet has been shown
to capture essential properties of IP traffic, such as loss
burstiness, is the two-state Markov model (also called
Gilbert model). Higher order models [16], or segmented
two-state Markov models [17] are better descriptors of IP
traffic, at the cost of higher complexity. The experiments
presented here use a simple two-state Markov model to
simulate various amounts of mean packet loss rates over
a UDP connection, using realistic model values derived
from large-scale Internet packet traces [18, 19], with the
assumptions that:

1. These model parameters apply to a wider range of
users than those using high-speed internet connec-
tions found in academic institutions. The route
used in [18] could be atypical for non-academic
users.

2. The signature packet sizes are small enough that
network parameters estimated with smaller pack-
ets can apply.

The two-state s = {loss, noloss} Markov chain is en-
tirely defined by the two parameters gl, the probability of
transitioning to the loss state from the noloss state, and
sl, the probability of staying in the loss state (also called
clp for conditional loss probability), which controls the
burstiness of the loss process. Thus the transition ma-
trix T for the Markov chain is:

T =

(

1− gl 1− sl

gl sl

)

(2)

The mean packet loss rate, or steady-state probability
of being in the loss state P̄ (s = loss), also called uncon-
ditional loss probability (ulp), can be computed as:

P̄ (s = loss) = ulp =
gl

1− sl + gl
(3)

It was chosen to experiment with “medium” and
“high” packet loss with parameters as shown in Table 1.
It can be observed that these values are in accordance
with the observation made in [18] that the conditional
loss probability sl is higher than the unconditional loss
probability ulp. This can be attributed to the fact that
neighbouring packets are more likely to see correlated
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router buffer states, which is one of the causes of loss
burstiness.

loss condition name ulp gl sl

“medium” 12.5% 0.1 0.3
“high” 25.6% ∼0.14 0.6

Table 1: Two-state Markov model parameters

4. Signature data recovery strategies

Assuming packets have been lost, different strategies can
be put in place to minimise the impact of data loss. A
useful framework for dealing with missing or unreliable
data is based on missing feature theory [20], where the
approaches can be roughly divided into two: Either ig-
nore the missing features (marginalisation), or try to re-
cover them with estimated values (imputation). Packet
loss can be construed as an extreme case of missing fea-
tures, where all components of a feature vector are lost
simultaneously.

From a statistical pattern recognition standpoint,
packet loss causes a random number of consecutive fea-
ture vectors in the original sequence of unprocessed fea-
ture vectors U to be lost. If no data recovery strategy is
implemented, the received sequence of observation vec-
tors Ũ will be shorter than the original. Because of the
random nature of the loss process, the lost feature vec-
tors could be ones that represent a significant part of
their state’s observation distribution. Therefore, the cor-
rupted received signature Õ may have a lower likelihood
given the estimated probability density function (PDF)
for each state.

Additionally, the segmentation of Õ effected by the
Viterbi algorithm could be sub-optimal compared to the
case where no feature vectors are missing, leading to de-
creased likelihoods: the observation probability of non-
lost observations following lost observations will be com-
puted with respect to the emission probability of earlier
HMM states, e.g. P (o5|state = j) could be computed
as P (õ5|state = j − 1) for the corrupted observation se-
quence.

The effect of sub-optimal segmentation is not ex-
pected to be very pronounced for HMMs with a low num-
ber of states (1 or 2 for those described in Section 2): it
is expected that statistical distribution of features will be
more important than timewise alignment.

Finally, it is probable that different recovery strate-
gies are best suited to different signature features. For
instance, for latin script signatures, which generally
progress horizontally from left to right, the x coordinate
on average increases with time. Thus, linear or low-order
polynomial interpolation could be a good approximation
in case of packet loss. The pressure p however does not
behave linearly and thus linear interpolation will not nec-
essarily be a good strategy for this feature.

4.1. No recovery

With the “no recovery” strategy, lost packets are not
replaced. The signature length is shortened by trans-
mission. In the verification process, feature vectors con-
tained in lost packets are marginalised.

4.2. Zero-substitution and corpus mean substitu-

tion

A classic and straightforward technique used in stream-
ing speech applications is to replace lost packets with zero
values [2], which play out as silence. The suitability of
this approach for signature verification is tested. Except
for the pen pressure value, zeros do not normally occur in
the training or testing corpora. Thus, while the length of
the signature is preserved, many outliers are introduced.
This will introduces a severe bias in the feature normal-
isation stage.

An enhancement on zero-substitution can be made
by estimating means across all users for each feature
from the training corpus. This is similar to unconditional
mean replacement [21].

4.3. Packet repetition

Packet repetition consists of replacing lost packets by the
last received packet before the loss. In case the first
packet is lost, the next received packet is used to fill
the gap instead. This technique has the advantage of
not introducting outliers to the feature distributions, but
will bias the mean and variance estimates of each state’s
observation distribution by over-representing the values
contained in the repeated packet. In preliminary exper-
iments [22], this recovery strategy has been shown to be
substantially more effective than zero-substitution for a
“medium” amount of packet loss.

4.4. Linear interpolation

The linear interpolation recovery strategy replaces lost
packets with a linear interpolation between the last fea-
ture vector ũl of the last packet received before the loss
gap and the first feature vector ũf of the first packet
received after the loss gap. The nth estimated feature
vector ûn for a total number of lost feature vectors Nl is
computed according to

ûn = ũl + n
ũf − ũl

Nl

(4)

where n = 1, . . . , Nl. If the first or last packet in the sig-
nature are lost, ũl, respectively ũf , are set to be equal to
a training corpus mean vector computed as per Sec. 4.2.

5. Experiments

5.1. Signature database and experimental proto-

col

50 users have been randomly selected from the UPM con-
tribution to the MCYT Bimodal Database [23]. The fol-
lowing training and testing strategy is used:

Training: Each signature is modelled with 5 samples
from a single set. Each contributor in the MCYT
Database provides 5 sets of 5 signatures each and
he/she is asked to forge other clients between sets,
so inter-set variability is obtained [7].

Testing: i) Clients: the remaining 20 samples from each
client are considered as client trials; ii) Impostors:
5 different impostors for each client are considered
and, for each impostor, 5 signature samples are
used. Skilled forgeries with natural dynamics are
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considered for the experiments (i.e., contributors
are requested to sign naturally without breaks or
slowdowns).

Some signature examples from uncorrupted and de-
graded MCYT corpus are given respectively in Fig. 1 and
Fig. 2.
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Figure 1: Signature examples from the MCYT corpus.
Two genuine signatures (left) and two skilled forgeries
(right) are given for a random client.
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Figure 2: Signature examples from degraded MCYT cor-
pus under “high” loss. Recovery strategies from left to
right: zero-substitution, linear interpolation, packet rep-
etition and no recovery.

As a result, each verification experiment described
in the following consists of 50 × 20 = 1000 client, and
50×5×5 = 1250 impostor trials. The baseline verification
performance for the HMM system is an Equal Error Rate
(EER) of 0.44%, while the GMM system has an EER of
0.89%. The results of the experiments are provided using
Detection Error Tradeoff (DET) curves [24].

5.2. Recovery strategies evaluation

5.2.1. Zero-substitution and corpus mean substitution

As can be seen in Fig. 3, these strategies perform poorly
compared to others. This can be expected because they
essentially replace a dynamic signal with constant val-
ues, introducing many outliers in all replaced features;
corpus mean substitution only minimally improves on
zero-substitutions because the values are more probable.
With the MCYT database used, corpus mean substitu-
tion for raw feature data is further made inappropriate
because the signatures are acquired in sequence on a rect-
angular grid, making x and y features inconsistent across
users or signature realisations. This underlines the need
for recovery strategies to take into account acquisition
conditions at every stage.

5.2.2. Linear interpolation

Linear interpolation performs substantially better than
substitution of a fixed value. This is probably because
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Figure 3: (top) Verification performance of HMM sys-
tem trained on clean data for different recovery strate-
gies under “medium” packet loss conditions. (bottom)
same system under “high” packet loss conditions. ZS:
zero-substitution, CMS: corpus mean substitution, LI:
linear interpolation, PR: packet repetition, DN: do noth-
ing (no recovery), clean: baseline, ML: “medium” loss,
HL: “high” loss

the values imputed by Eq. 4 are more likely to appear in
the uncorrupted signature (at least for x and y). How-
ever, depending on the position of the lost packets, very
discriminative information can be lost and replaced with
poor approximations. Furthermore, the pressure p is sub-
ject to sudden drops and increases, making linear inter-
polation a very poor choice. This method introduces too
many outliers, which cause the mean and variance of the
corrupted signature to be strongly biased.

5.2.3. Packet repetition and no recovery

Packet repetition performs the best of all the imputation
methods. By replicating existing feature vectors, no out-
lying data is added. However, the discontinuities caused
by the packet boundaries are likely to modify first-order
time derivatives.

The best method of all is the no recovery strategy,
where lost packets are simply marginalised during ver-
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ification. Remarkably, this result also holds for “high”
packet loss rates, suggesting that unless the underlying
individual features can be modelled for a general user
population with good accuracy, imputing data is a risky
process. This agrees with results for speaker verification
in [25], namely, imputation often performs worse than
marginalisation. This result however is largely depen-
dent on the nature of the features extracted from the
signal, their modelling, and correlation.

In light of these results, a strategy which would seem
likely to provide appropriate values for replacement is
user-dependent imputation with state sampling, where
missing feature vectors would be replaced by a feature
vector sampled from a given state’s observation distribu-
tion in a particular user’s model. However, for biomet-
ric applications this may not be desirable because parts
of forged signatures could be replaced with data drawn
from an authentic user’s model, thus potentially increas-
ing the likelihood of the signature and the number of false
acceptances. It is likely that many user model-based im-
putation techniques should be applied only with caution
to the biometric case.

5.3. Training conditions evaluation
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Figure 4: Impact of training conditions (clean data or
corrupted data) on verification performance for HMM
system under “medium” loss. Legend as per Fig. 3.

To evaluate other potential robustness techniques,
the user models were trained with corrupted signatures.
Matching training and testing conditions is a common
technique in speech processing [26]. The results pre-
sented in Fig. 4 indicate that, for verifying signatures
subjected to a similar amount of packet loss, this results
in decreased error rates. However, it is likely that the
verification performance of the corrupted models with
clean test data would be decreased. Additionally, this
result should be taken with care, as fixed network model
parameters used to train user signature models cannot
match the diversity of real, time-varying Internet condi-
tions; it is likely that robustness should be achieved by
other means.
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Figure 5: Verification performance comparing HMM and
GMM systems with two strategies under “medium” and
“high” loss. Legend as per Fig. 3.

5.4. Signature Models evaluation

As can be seen in Fig. 5, at EER the GMM and HMM
systems perform very similarly for both “medium” and
“high” loss conditions, using both packet repetition and
no recovery. This is likely to be because, with packets
lost, the HMM system looses the modelling advantage
given by segmentation in the clean case. It can also be
noted that, with good recovery strategies, the GMM sys-
tem suffers from less performance drop (relative to no
packet loss) than the HMM system.

6. Conclusions

The effects of packet loss in IP networks on distributed
on-line signature verification have been investigated. It
was found that even moderate amouts of loss can lead
to serious degradations in error rates (one order of mag-
nitude) unless corrective measures are taken. Even with
the best data recovery strategy (“no recovery”) it was
found that the error rate is significantly worse than in
the no loss condition.

Therefore, it is important that distributed on-line sig-
nature verification systems ensure that packets are safely
delivered. This can be achieved by using TCP “out of the
box”, or by adding features to UDP to provide retrans-
mission (for instance by using RTP fields to implement
application-level retransmission). This would avoid over-
heads associated with TCP: connection establishment in-
creases latency, transmission can be slow under high net-
work congestion because TCP retransmits lost packets
and adapts the rate of transmission to take into account
network load2, and streaming of feature vectors for imme-
diate use is made more difficult because of the re-ordering
buffer.

Because it is also expected that out-of-order packet

2note that one full signature in the ATVS system weighs
only about 13 KB on average
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delivery would lower performance for HMM signature
verification systems using more than one state, reordering
mechanisms may be necessary. The trade-off between re-
sponse times and application-layer complexity needs to
be more fully evaluated in the context of real applica-
tions, taking into account system response time, usability
factors, and modality under use.
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