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Abstract

The use of quality information on automatic recogni-
tion systems is studied. From an apparent definition of
what constitutes a quality measure, a framework for the
successful exploitation of the quality information is de-
rived. Potential applications are also introduced at dif-
ferent phases of the recognition process, namely: enroll-
ment, scoring and multi-level fusion stages. Traditional
likelihood scoring stage is further developed providing
guidelines for the practical application of the proposed
ideas. Preliminary experiments corroborate the benefits
of the proposed quality-guided recognition approach. In
particular, a frame-level quality measure meeting a good-
ness criterion based on deviation from the fundamental
frequency is used, obtaining encouraging initial results.

1. Introduction

One of the key points addressed nowadays by automatic
Speaker Recognition research is the exploitation of multi-
level information in the speech signal [1, 2, 3]. This idea
is founded in self-observation and experience since lis-
teners rely on several types or levels of information in the
speech signal to recognize speaker’s identity [1]. In the
same way, it is also observable that humans are able to
perform a number of sophisticated tasks, related to the
quality of the information available and the sources of
that information, when attempting to make a decision.
For example, if a person is to make a decision about the
identity of a speaker, based on a noisy and low fidelity
speech recording, it is logical to think that the portions of
the recording less corrupted by the noise should have a
higher influence in the final decision. Furthermore, if the
person has to make the decision based on the judgement
of two experts, it is highly probable that the person would
assign different credibilities to each expert depending on
the quality of their opinions.

Based on these intuitive ideas, the aim of this paper
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is to provide a generic framework in which it is possi-
ble to incorporate the described capacities to improve the
recognition performance.

Previous work in biometrics has shown promising re-
sults when incorporating quality measures into the recog-
nition process [4]. New research efforts are also dedi-
cated to the establishment of objective quality measures
of biometric traits such as fingerprint [5] and speech sig-
nals [6]. Other applications concerned with quality esti-
mations in the field of speaker recognition include model
quality assessment [7] and quality-based feature selection
as proposed in [1].

2. Theoretical framework

The concept of quality may be defined1 as the degree of
goodness of an element given a certain criterion. Conse-
quently, a quality measure functionQξ(·) may be formu-
lated as:

Qξ(Y ) = p(Y meets ξ) (1)

whereξ is a specific goodness criterion forY . As a result
of this formulation,Qξ(·) is bounded and takes values
in the range[0−1]. Hence, a reliable quality measure
function should be able to quantify the quality ofY with a
value of1 whenY totally satisfiesξ and with a value of0
whenY does not meet the established goodness criterion
at all.

Once a general definition of what constitutes a qual-
ity measure is established, a framework results in which
it is possible to explore its potential uses throughout the
speaker recognition process. The crucial benefits brought
into the recognition process by knowing the quality of the
elements involved are significant, since this information
allows the system to be dynamically adjusted. Examples
include the importance given to certain portions of the in-
coming speech signal during the computation of its likeli-
hood or even how the system relies on each of the scores
produced by the different levels of information conveyed
in the speech signal.

To some extent there might be some confusion be-
tween the well known concept of confidence measure,

1Cambridge Klett Dictionary.
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Figure 1: General system model for speaker recognition based on quality measures.

widely used in ASR [8], and the proposed idea of quality
measure since both provide information that may be in-
terpreted as how reliable a certain element involved in the
recognition process is. It is important to notice that the
essence of these two ideas is substantially different. The
main purpose of a confidence measure is to quantify how
well a model matches some speech data [9], whereas the
goal of a quality measure is to quantify how well a certain
goodness criterion is satisfied by an element of the sys-
tem. Thus, the benefit of assigning a confidence estimate
to a decoding is succinctly summarized by the phrase:
”knowing what you don’t know”[9], whereas the benefit
of estimating the quality of an element of the recognition
process is summarized by the phrase:”knowing the qual-
ity of what you have”. Furthermore, the interpretation
of a quality measure as an estimation of the reliability
of an element is valid and useful, but it is not the only
one. Hence, the concept of quality measure should be
regarded as a more general idea than the concept of con-
fidence measure. Therefore, its use should not only be re-
stricted to assessing a confidence estimate of any element
of the recognition process, but also to providing infor-
mation useful for the dynamic adjustment of the system
components.

In order to incorporate this general concept of quality
measure into the specific framework of speaker recogni-
tion systems, we can think ofY as any element of the
system (e.g, speech signal, scores, models, thresholds,
etc.) andξ as any factor that affects the behavior ofY
and hence the system performance (e.g, SNR, amount of
data, course of time, etc.). For example, if we are work-
ing with data observed in noisy conditions,Y may be
considered as the speech signal andξ as a criterion based
on SNR. Consequently, a quality measure may be stated

as follows:

Qξ=SNR(Y ) = p(Y > noise) (2)

If we consider the noise normally distributed with
meanµt and varianceσt, then the quality of the speech
signal,Y = {yt; t = 1, . . . , T}, could be segmentally
computed by means of the resulting expression [10]:

qξ
t = p(yt > noise)

=
∫ yt

−∞

1√
2π |σt|

exp
(
− (θ − µt)2

2σ2
t

)
dθ (3)

The resulting quality signal,Qξ = {qξ
t ; t = 1, . . . , T}

can be used by the speaker recognition system in sev-
eral useful ways such as: eliminating the portions of the
signal with low quality during the score computation or
model training, incorporating the quality information in
the score computation function, etc.

3. Potential uses

3.1. Model quality

A major source of performance degradation in Speaker
Recognition systems is the mismatch between the acous-
tic conditions encountered during training and those seen
during operation [11]. As a consequence, there is a grow-
ing interest in algorithms which adapt models parameters
to closely match the incoming speech during the testing
phase. Ideally, model adaptation should be based upon
the portion of data which increases the quality of the
model. Moreover, operational Speaker Recognition sys-
tems need an indication of the quality of the newly en-
rolled models to decide whether to re-enroll or request
more enrollment material [7]. Hence, Model Quality



measures provide a mean to refine unsupervised model
adaptation procedures and also information to guide the
decisions to be taken during the enrollment phase.

3.2. Quality-based score computation

The state of the art in Speaker Recognition systems
has been widely dominated during the past decade by
the UBM-MAP adapted GMM approach working at
the short-time spectral level [12]. Recently, new ap-
proaches based on Support Vector Machines (SVM) [13]
are achieving similar performance, working at the spec-
tral level, and also providing complementary information
useful for the fusion of both approaches, thus increas-
ing the performance in an additive way [14]. Further-
more, higher levels of information conveyed in the speech
signal have shown promising discriminative capabilities
among speakers and are a major goal of present Speaker
Recognition research efforts [1].

A common practice shared among all the above men-
tioned Speaker Recognition techniques is the use of a
pre-processing stage in which two major tasks are accom-
plished:i) the signal is enhanced according to certain cri-
teria (e.g, channel effects removal, noise reduction, etc.)
pursuing an increase in the quality of the signal;ii) hard
decisions about the correctness of the basic constituting
elements of the data are made (e.g, silence removal, non-
speech sound rejection, etc.), preserving those pieces of
information that satisfy certain criteria and dismissing the
remaining.

This pre-processing approach, combined with a con-
ventional scoring mechanism, has the drawback of re-
garding all the preserved information as equal in terms
of importance or quality once the signal has been pre-
processed. Therefore it omits, during the score computa-
tion process, the fact that both the information concerning
speaker identity and the perturbing artifacts are not dis-
tributed uniformly along the pre-processed signal [15].

The underlying idea in the Quality Based Score Com-
putation (QBSC) approach suggests that instead of forc-
ing hard decisions, at an early stage of processing, the
score calculation procedure should be adapted to incor-
porate estimated quality measures (carried on during pre-
processing) as weighting factors in the score computation
process, see Fig. 1.

Although the QBSC concept is applicable to any of
the above mentioned techniques used in Speaker Recog-
nition systems, in the following we are going to particu-
larize for the case of GMM’s working at the short-term
spectral level, since it is the most widely used paradigm
for Speaker Recognition [11].

3.2.1. Quality-based GMM score computation

For aD-dimensional feature vector,o, and a weighted
linear combination ofM unimodal Gaussian densities,

p(o), with the parameters of the density model denoted

λ = {wi, µi, Σi} i = 1, . . . , M (4)

the likelihood function is defined as

p(o|λ) =
∑M

i=1
wip(o|µi,Σi) (5)

Given a sequence of feature vectors,O =
{o1,o2, . . . ,oT }, usually assumed independent,
and a quality signal

Qξ =
{

qξ
1, q

ξ
2, . . . , q

ξ
T

}
(6)

computed through the speech signalY with a specific
goodness criterionξ, the likelihood of the modelλ in-
corporating the quality measure as a weighting factor is
denoted

p(O|Q,λ) =
∏T

t=1
p(ot|λ)qξ

t (7)

The log-likelihood is computed as

log p(O|Q,λ) =
∑T

t=1
qξ
t log p(ot|λ) (8)

Often, the average log-likelihood is used to normalize
out duration effects from the likelihood value. This can
be accomplished by dividing Eq. (8) by

∑T
t=1 qξ

t . Since
the assumption of independence between the feature vec-
tors is not precise, this scaling factor can be considered a
rough duration compensation [12].

If a quality measure that works in spectro-temporal
regions (assigns quality values to each feature vector co-
efficient) is used instead of one that works in tempo-
ral regions (same quality assigned to the entire feature
vector), conventional missing data approaches, such as
bounded marginalization (BMG) or bounded data impu-
tation (BDI), can be used for the likelihood computa-
tion [16].

3.3. Quality-based score fusion

In order to successfully exploit the different levels of in-
formation conveyed in the speech signal (e.g., lexical,
prosodic, acoustic, etc.) [2, 3] efficient score combina-
tion methodologies are necessary [1]. This problem can
be formulated as the fusion of different machine experts.

Two sound theoretical frameworks for combining dif-
ferent machine experts in an authentication system are
described in [17] and [18], respectively. The former
is derived from a risk analysis perspective [19] and the
later is based on the statistical pattern recognition theory
[20]. Both of them concluded (under some mild condi-
tions which normally hold in practice) that the weighted
average is a good way of conciliating different experts
and they provided experimental evidence on a multi-
modal authentication system. Interestingly enough, the
approach in [17] was further developed in [4] providing
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Figure 2: System performance on Switchboard I database for female (left), male (center) and pooling of both (right).

guidelines for the use of quality signals. In particular, a
quality-based score fusion scheme is derived in which the
weighted average is adapted depending on quality mea-
sures of the input biometric samples. Experimental ev-
idence was also reported on a prototype of an authenti-
cation application for mobile devices based on voice and
fingerprint traits demonstrating the benefits of incorpo-
rating quality information at the score fusion level. In the
aforementioned work, only quality labels of the finger-
print images were available.

The ideas introduced in this paper can serve as a basis
to develop quality labels in case of voice signals. As an
example, for a GMM-based speaker verification machine
expert, the quality signal in Eq. (6) can be averaged so as
to obtain the quality label of the score produced by the
voice segment at hand.

4. Experiments

4.1. Databases and experimental protocol

4.1.1. Switchboard I landline database

Partitions 1, 2 and 3 of the Switchboard I database (SWB-
I), as defined in [1], have been used for the performance
assessment of a speaker verification system on landline
telephone data. The number of speaker models involved
is 486 (260 male + 226 female). Each target model has
been trained with a speech segment of approximately 2.5
minutes comprising one side of a 5 minute telephonic
conversation. Two different test sets have been used for
the system assessment:i) one side of the conversation
test segments (approx. 2.5 min. of speech);ii) two sides
of the conversation test segments (approx. 5 min. of
speech). The total number of trials obtained with each
test set is 8248 (2416 target, 5832 non-target).

4.1.2. NIST 2001 Cellular database

A randomly selected subcorpus of 30 speakers (15 male
+ 15 female) from the NIST 2001 Cellular database [23]
has been established for the preliminary performance as-
sessment of a speaker verification system on cellular data.
The total number of trials obtained with this subcorpus is
4215 (281 target, 3943 non-target). Two minutes speech
segments were used for target model training and 30 sec-
onds segments for testing. No cross-gender trials have
been performed.

4.2. Baseline system

A simplified version (no score normalization has been ap-
plied and the number of the GMM mixtures has been re-
duced to 256) of the ATVS UBM-MAP adapted GMM
system [21] has been used to provide a baseline result for
comparison with the QBSC adapted implementation of
this baseline GMM system.

4.3. Goodness criterion

In order to obtain a quality value for each feature vec-
tor, a quality signal was computed at the same frame rate
used in the feature extraction process (10ms). A goodness
criterion, ξF0 based onF0 deviations2 from the mean,
µF0, was established for that purpose. This criterion is
identity-claim dependent (vs. those which are indepen-
dent of the claimed identity, e.g, SNR) since a model of
the F0 distribution of the claimed identity is necessary
to compute the quality signal. Due to the fact that the
F0 distribution is Gaussian [22], the training segment of
each user was used for the estimation of a user-dependent
unimodal gaussian model,λF0 = {µF0, σF0}. For each
test file, the quality value of each feature vector (belong-
ing to a voiced region of the speech signal) was defined

2All F0 values are in a logarithmic scale.
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Figure 3: System performance on a subset of NIST 2001 cellular database for female (left), male (center) and pooling of
both (right).

at discrete time instantt as

qξF0
t = p(|yF0

t − µF0| < |F0− µF0|) (9)

where F0 ∼ N(µF0, σF0) is the pitch model of the
claimed user andyF0

t is the estimated pitch of the test
segment at instantt.

For the unvoiced regions of the speech signal a fixed
quality value,qtunv is set a priori. In the following exper-
iments this value was fixed to0.5.

4.4. Results

In Figs. 2 and 3 the performance assessment of both
the baseline GMM Speaker Verification system and the
QBSC adaptation are depicted in the form of DET plots
for the aforementioned corpora.

In relation to the one-side test set of the SWB-I
database, see Fig. 2, a slight improvement is obtained by
means of using the QBSC adaptation of the baseline sys-
tem for all the gender partitions. This result is more no-
ticeable in the low false alarm region of the DET curve,
and especially in the female partition. Table 1 shows the
baseline and QBSC adaptation performance for the EER
and DCF3 operational points.

A bigger improvement is obtained for the two-sides
test set, see Fig. 2 and Table 2. The fact that 2 speakers
are involved in the two-sides test segments makes this set
more suitable for the achievement of better results since
a bigger portion of the speech signal may be considered
as corrupted. In the special case of a quality measure ca-
pable of quantifying the speech segments not belonging
to the target speaker with a low quality value, the QBSC
adapted system may perform some kind of “speaker spot-
ting”. This may be the case for the selectedF0-based
quality criterion since it is possible to discriminate among

3As defined in the yearly NIST-SRE [23].

speakers based onF0 information [22]. Therefore, the
“speaker spotting” effect of the selectedF0 quality mea-
sure provides a justification for the better performance on
the two-sides test set.

Baseline Quality-Based
Partition EER(%) DCF(%) EER(%) DCF(%)

Female 5.64 0.0268 5.31 0.0254
Male 6.31 0.0258 6.09 0.0244
Pooled 6.13 0.0277 5.88 0.0257

Table 1: Results on the Switchboard I one-side test set.

Baseline Quality-Based
Partition EER(%) DCF(%) EER(%) DCF(%)

Female 15.52 0.0682 14.52 0.0636
Male 14.72 0.0593 13.34 0.0548
Pooled 15.09 0.0657 14.01 0.0602

Table 2: Results on the Switchboard I two-sides test set.

Regarding the NIST 2001 Cellular subcorpus, the
QBSC adaptation of the baseline system obtains a sub-
stantial improvement in the system performance for the
female and pooled partitions, remaining almost equal for
the male partition. The biggest improvement, see Ta-
ble 3, is obtained for the female partition, more than3
points in EER (20% relative improvement). The fact
that highly pitch-mismatched speech segments degrade
speaker recognition performance, especially for female
speakers [24], may be a justification for this result. The
QBSC system reduces the contribution of the highly
pitch-mismatched regions to the final score value and
therefore increases the system performance.



Baseline Quality-Based
Partition EER(%) DCF(%) EER(%) DCF(%)

Female 15.01 0.0604 11.95 0.0535
Male 15.72 0.0458 16.47 0.0430
Pooled 15.23 0.0537 12.89 0.0486

Table 3: Results on NIST 2001 Cellular subcorpus.

5. Conclusions

An overview of the use of quality information for au-
tomatic speaker recognition systems has been reported.
From an apparent definition of what constitutes a qual-
ity measure, a framework for the successful exploita-
tion of the information conveyed in the estimated qual-
ity has been derived. Potential applications have also
been introduced at different phases of the recognition
process, namely: enrollment, scoring and multi-level fu-
sion stages. Finally, traditional likelihood scoring has
been further developed providing guidelines for the prac-
tical application of the proposed ideas.

Preliminary experiments on quality-based score com-
putation corroborate the benefits of the proposed quality-
guided recognition approach on both landline and cellular
data. In particular, a frame-level quality measure meeting
a goodness criterion based on deviation from the funda-
mental frequency has been used. Up to20% of relative
improvement at the EER operational point has been ob-
tained for the female partition of the preliminary NIST
2001 Cellular subcorpus.
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