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ABSTRACT

Automatic Speaker Recognition systems have been
largely dominated by acoustic-spectral-based systems,
relying in proper modelling of the short-term vocal tract
of speakers. However, there is scientific and intuitive
evidence that speaker-specific information is embedded in
the speech signal in multiple short- and long-term
characteristics. In this work, a multilevel speaker
recognition system combining acoustic, phonotactic, and
prosodic subsystems is presented and assessed by blind
submission to NIST 2005 Speaker Recognition
Evaluation.

INTRODUCTION

Text-independent identification of speakers by their voices
has been a subject of interest for decades for its potential use
in areas such as intelligence and security. The first really
successful results in actual telephone conversational speech
came in the 1990s, where acoustic-spectral based systems
[14] were able to obtain remarkable performance in really
challenging out-of-laboratory tasks. The series of NIST
Speaker Recognition Evaluations (SRE) has fostered research
and development in this area since the mid-1990s [10]. This
important forum has led to yearly significant improvements
in the speaker recognition technology, which has been shared
among participants to these evaluations. However, there was
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by that time significant room for improvement which was not
taken into account in the use of higher non-acoustic levels of
information. This information has demonstrated to be
extremely characteristic in the inter-speaker communication
process and well-known in linguistics, but it was not
exploited at that time by automatic speaker recognition
technology. It was in the early 2000s when the pioneering
work on idiolectal differences between speakers [7] and
especially the confluence of different sources of knowledge
that were presented in the SuperSID project [16] gave a
major impulse to multilevel and fusion approaches to
automatic speaker recognition. Presently, multilevel speaker
recognition systems may include generative [14] or
discriminative [4, 12] acoustic-spectral sub-systems, prosodic
[1], and phonotactic [3, 9] sub-systems among others.

In this contribution, a sample multilevel speaker
recognition system is presented. Our research group, ATVS,
has successfully participated in NIST 2001, 2002, and 2004
SREs with different progressively evolutioned versions of a
UBM-MAP-GMM acoustic-spectral system, focused in the
lconv-lconv task (one side of a five-minute conversation for
training - typically about two minutes of net speech - and
one side of a different same size conversation for testing).
However, for SRE 2005 we have also participated in the
8conv-lIconv task (eight one-side conversations for training
and one for testing), which allows a more effective use of
high level sources of information, due to a higher amount of
training data. This paper describes the different implemented
systems, their individual assessment, their participation in
blind conditions in NIST SIZE 2005 8conv-lconv task, and
an analysis of result, where the complementariness of the
different levels of information is highlighted and the
improvement obtained by the recently developed
non-acoustic systems is objectively quantified.

ACOUSTIC SPEAKER RECOGNITION

Systems exploiting acoustic information are based on the
short-term spectral identity information in the speech signal.
Given a speech production model, we can argue that some
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Fig. 1. Likelihood ratio GMM score computation based on a speaker model and an alternate model
(Universal Background Model)

spectral characteristics in the speech signal (formant
distribution and variation, etc.) are related to
speaker-dependent characteristics, such as vocal tract
configuration. Therefore, this spectral information may be
analyzed in order to recognize the speaker identity. Many
feature extraction schemes have been proposed in the
literature [6]. ATVS acoustic systems use Mel Frequency
Cepstral Coefficients (MFCC) [6] obtained from a short-term
windowing process. The speech signal is first windowed
(using 20 ins. windows) and then each frame is processed,
obtaining a MFCC vector per framne. Thus, each utterance is
represented by a temporal stream of MFCC vectors.

Gaussian Mixture Models (GMM)
The state-of-the-art in text-independent speaker

recognition has been widely dominated during the past
decade by the Gaussian Mixture Model (0MM) approach
working at the short-term spectral level [14]. This system
exploits spectral characteristics of the speech in order to
discriminate speakers. A GMM system will then use spectral
features extracted from the speech signal in order to model
speaker acoustic features in a statistical way.

The baseline ATVS 0MM system is a likelihood ratio
detector with target and alternative probability distributions
modelled by Gaussian mixture models [14]. Briefly, let 0 be
the set of d-dimensional feature vectors (observation vectors)
representing a given utterance. Let X. be a speaker model, and
an Universal Background Model (UBM), both represented as
d-dimensional multivariate mixtures of Gaussians. The score
can be computed by a likelihood ratio of both GMM models
evaluated in each one of the observation vectors. Figure 1
represents the likelihood score computation process.

Speaker models in the described system are derived using
Maximum A Posteriori (MAP) adaptation from the UBM
using the Expectation Maximization algorithm [14]. MFCC
feature extraction in order to obtain the 0 sequence for each

utterance is performed as described above. Then, Feature
Warping [11 ] has been used in order to compensate channel
effects. The score normalization was performed by the
KL-TNorm technique [ 13], an adaptive speaker-dependent
cohort selection algorithm for T-normalization based on a
fast estimation of Kullback-Leibler divergence for 0MM
models.

Support Vector Machines (SVM)
Support Vector Machines [12] are a discriminative

learning technique based on minimum risk optimization,
which aims at establishing an optimal separation boundary
between classes. Because of their flexibility and their good
performance in a variety of problems, they have been widely
used in the last years. One of the main reasons of SVM
success is the use of the so-called kernel trick [12], which
maps each data vector into a high dimensional feature space
where classes are linearly separable through a maximum
margin hyperplane (MMH). Obtaining the MvMH is a
quadratic programming problem which can be solved with
classical optimization techniques.

The objective of a SVM speaker recognition system is to
obtain a likelihood score for the incoming speech taking into
account the two classes involved: target and non-target
speakers. From this discriminative approach, the score may
be computed as a value proportional to the distance of the
MMII to each vector by score = W* x where w is the MMH
and x is the expanded featured testing vector to be classified.
The kernel trick allows us to obtain this score as a function
of: 1) the support vectors which represent the MMH; and 2)
the testing vector to be classified. For each vector, the score
is obtained without performing any explicit high dimensional
mapping, and therefore the classification process is
performed very efficiently [12]. The score for the whole
testing utterance is finally computed as an average for all
vectors extracted from it.
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Fig. 2. Verification of an Utterance against a speaker model
in phonotactic speaker recognition

The ATYS SVM system uses the same MFCC parameters
as in the GMM system described above. A spherical
normalization has been performed in order to improve system
accuracy. A channel compensation scheme has also been
applied [17], as it has been demonstrated that channel
variability seriously degrade the performance of acoustics
SVM systems. The kernel trick has been applied by means of
a second degree Generalized Linear Discriminant Sequence
kernel proposed in [4].

HIGHER LEVEL SPEAKER RECOGNITION

Traditionally, automatic speaker recognition systems have
relied only on the acoustic properties of speech, represented
by statistical models like GMMs or discriminative models
like SVMs (see the section entitled Support Vector
Machines). However, recent research has shown that other
features extracted from higher levels of information present
in speech (e.g., pronunciation idiosyncrasies, linguistic
content, prosody, etc.) can also be effectively used in
automatic speaker recognition. In particular, numerous
experiments have shown that, due to the complementary
characteristics of acoustic and higher level features, the
fusion of the information provided by these two features
yields further improvements in speaker recognition.

The interest in the use of these higher level features was
motivated by the work of Doddington [7], who used the
lexical content of the speech, modeled through statistical
language models (word n-grams), for speaker recognition
using the Switchboard-il corpus. This relatively simple
technique improved the results obtained by an acoustic-only
speaker recognition system.

After the work of Doddington a number of research works
have continued exploring the use of higher level features in
the field of speaker recognition. Some of these works
[2,3,9,16] made use of similar techniques (n-gramn statistical
language models) applied to the output of phonetic decoders
(i.e. speech recognition engines configured to recognize any
phonetic sequence), leading to the techniques known as
phonotactic speaker recognition. Instead of modeling the
lexical content, these techniques aim to model speaker
pronunciation idiosyncrasies. This technique also yielded
promising results, particularly when several phonetic
decoders for different languages were used and combined.
More recently, similar modeling techniques (n-gramn
statistical language models) have been applied to model the
prosody (mainly fundamental frequency and energy) of the
different speakers [1,16], giving rise to the field known as
prosodic speaker recognition. As in the initial work of
Doddington [7], all of these higher-level techniques were
particularly useful in combination with traditional
acoustic-only speaker recognition systems. In this section we
describe in more detail our phonotactic and prosodic speaker
recognition systems.

Phonotactic Speaker Recognition
A typical phonotactic speaker recognition system consists

of two main building blocks: the phonetic decoders, which
transform speech into a sequence of phonetic labels; and the
n-gram statistical language modeling stage, which models
the frequencies of phones and phone sequences for each
particular speaker.

The phonetic decoders can either be taken from a
preexisting speech recognizer or trained ad hoc. In our
systems, phonetic decoders are based on Hidden Markov
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Fig. 3. Prosodic token alphabet (top table) and sample tokenization
of pitch and energy contours (bottom figure)

Models (HMMs) and were implemented and trained ad hoc
using the Hidden Markov Model ToolKit (HTK) (available
for download at: <http://htk.eng.cam.ac.ukl>). The phonetic
HMMs are three-state left-to-right models with no skips and
the output probability density function of each state is
modeled as a weighted mixture of Gaussians. These HMMs
take as input speech features extracted using a standard
front-end (the Advanced Distributed Speech Recognition
Front-End defined by the European Telecommunications
Standards Institute, ETSI, (available at: <www.etsi.org>). We
trained context- independent phonetic HMMs for American
English using the TIMIT corpus (available at:
<www.ldc.upenn.edu>). 39 phones were considered for
American English. At this point it is important to emphasize
that, for the purpose of speaker recognition, it seems that it is
not important to have accurate phonetic decoders and it is not
even important to have a phonetic decoder in the language of
the speakers to be recognized. This somewhat surprising fact
has been analyzed by the authors [18] concluding that
speaker-dependent phonetic errors made by the decoder seem
to be speaker-specific, and therefore useful information for
speaker recognition as long as these errors are consistent for
each particular speaker.

Once a phonetic decoder is available, the phonetic
decodings of many sentences from many speakers can be
used to train a Universal Background Phone Model (UBPM)
that models all possible speakers. Speaker Phone Models
(SPM) are trained using several phonetic decoders of each
particular speaker. Since the speech available to train a

speaker model is often limited, speaker models are
interpolated with the UBPM to increase robustness in
parameter estimation. The optimal weight of the UBPM in
this interpolation depends on several factors such as the
amount of data available from the speakers and the
complexity of the n-gram modeling and needs to be adjusted
for each particular decoder. Once the statistical language
models are trained, the procedure to verify a test utterance
against a speaker model SPM, is represented in Figure 2. The
first step is to produce its phonetic decoding, X, in the same
way as the decodings used to train SPM, and UBPM. Then,
the phonetic decoding of the test utterance, X, and the
statistical models (SPMi, UBPM) are used to compute the
likelihoods of the phonetic decoding, X, given the speaker
model 5PM, and the background model UBPM. The
recognition score is the log of the ratio of both likelihoods
(Figure 2), where the higher the score the higher the
similarity between training and test speech. This process may
be repeated for different phonetic decoders (e.g., different
languages or complexities) and the different recognition
scores simply added or fused for better performance. For the
experiments presented in this article, the language models
used were trigram models.

Prosodic Speaker Recognition
Our prosodic speaker recognition system consists of two

main building blocks: the prosodic tokenizer, which analyzes
the prosody, and represents it as a sequence of prosodic
labels or tokens and the n-gram statistical language modeling
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stage, which models the frequencies of prosodic tokens and
their sequences for each particular speaker. This second
block is exactly the same for phonetic and prosodic speaker
recognition with only minor adjustments to improve
performance (e.g., adjusting the weight of the universal
model in the generation of the speaker model). For this
reason this second block will not be described herein.

The tokenization process carried out in our system consists
of two stages. First, for each speech utterance, both temporal
trajectories of the prosodic features, (fundamental frequency
- or pitch - and energy) are extracted. Second, both contours
are segmented and labelled by means of a slope
quantification process.

To extract contours, the Praat toolkit (available for
download at: <www.praat.org>) was used. The slope
quantification process was performed as follows: first, a
finite set of tokens were defined using a four level
quantization of the slopes (fast-rising, slow-rising,
fast-falling, slow-falling) for both energy and pitch contours
[1]. Thus, the combination of levels generate sixteen different
tokens when combined pitch and energy contours are
considered. Second, both contours were segmented using the
start and end of voicing and the maximums and minimums of
the contours. These points were detected as the
zero-crossings of the contours derivatives using a ±2 frame
span. On the other hand, silence intervals were detected with
an energy-based voice activity detector. Finally, each
segment was converted into a set of tokens which describe
the joint-dynamic variations of slopes. Therefore, utterances
with different sequences of tokens contain different prosodic
information.

Since errors in the pitch and energy estimation are likely
to generate small segments, all segments smaller than 30 ms
were removed from the sequence of joint-state classes. Three
special tokens were further included: 1) token UV, which
represents unvoiced regions, and 2) tokens <s> and <Is> as
utterance delimiters. Figure 3 shows all possible tokens used
to describe the speech utterances, and an example of a
segmented utterance.

MULTI-LEVEL FUSION FOR
IMPROVED SPEAKER RECOGNITION

There are many works related to the combination of
different speaker characteristics and modelling methods
for a speaker verification system, such as [5,7,8].
State-of-the-art systems as [ 15] are commonly not a single
system but the fusion of several. The performance
improvement of a fused system is based on the fact that
different systems provide different information about the
speaker, and therefore errors committed by a certain system
may be cancelled out by other systems. In fact, the potential
benefits from fusion increase with the uncorrelation between
the involved systems. Fusion can be performed at different
stages of the process, but the most common approach is to
fuse individual scores provided by each system. At that stage,
fusion strategies can be based on rules (as sum fusion or
product fusion rules) but the problem can also be considered
as a pattemn classification problem, and therefore almost any
classification technique like Gaussian-class classifiers,
Neural Networks, and SVMs can be applied. In this article
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we have used SVM-based fusion, which is described in the
next section.

SVM-Based Fusion
SVM basic concepts have been described in the section

entitled Support Vector Machines (SVM) In order to perform
SVM-based fusion, the components of the input vector are
the output scores of the systems to be fused, using labels 1-,
1) for impostor and genuine scores respectively. Linear
SVMs have been trained to separate the genuine and
impostor distributions of scores. The fused scores are
obtained as signed distances to the computed separating
hyperplane. As the amount of client training data is usually
smaller than the amount of impostor data, improvements in
classification can be achieved by applying different weights
to false rejection errors and false alarm errors. Details about
these techniques may be found in [8].

EXPERIMENTS AND RESULTS

In order to assess the performance of the multilevel
speaker recognition system, the 8side-lside task of NIST
SIZE 2004 has been used as a reference benchmark. Later, the
submitted systems were assessed (after NIST SRE 05) with
the evaluation keys (the "solutions)." A good match between
both conditions (SRE 04 and 05) is expected if systems are
properly designed, as the origins of the data in both
evaluations was mostly the same. In fact, our experiments
showed a match so good between the development (SRE 04
data) and test (SRE 05 blind data) conditions that the figures
obtained are virtually the same, which highlights the good
generalization of our systems. Figure 4A shows the results of
all submitted ATVS individual systems in the 8conv-lconv
SRE 05 task, as well as the SVM fusion of all. This task
contained about 500 speaker models trained with 8 telephone
conversations about 5 minutes each. These models were
tested with single telephone conversations of about 5
minutes, where a total of over 23,000 trials of this kind were
performed. Our newly-developed phonotactic and prosodic
systems work clearly worse than the other (acoustic) systems,
which was consistently found by other researchers, perhaps
because the amount of prosodic and phonotactic information
for this type of modeling is smaller than the acoustic
information provided by the same amount of speech. It is
worth noting, at this point, that our phonotactic and prosodic
systems performed similarly to the best phonotactic and
prosodic systems submlitted to NIST SRE 2004. On the
acoustic systems, our SVM system performs clearly worse
than our GMM system. The main reason for this is that our
GLDS-SVM system by that time for implementation reasons
performed just second-order polynomial expansion, where
third-order is mandatory to obtain competitive performance,
as we have obtained after the evaluation.

Figure 4A shows that a significant improvement relative to
the GMM performance (the unique ATVS 2004 system) is
obtained with the inclusion of the 2005 just-developed
systems. An important result is also shown in Figure 4B

where ATVS3, showing all the 2005 just-developed
non-GMM systems, obtains a remarkable performance
relative to the well-established GMM One.

CONCLUSIONS

In this contribution, a multi-level (phonotactic, acoustic
and prosodic) automatic speaker recognition system has been
described and assessed through blind submission to NIST
2005 Speaker Recognition Evaluation (SRE). A description
of the individual implemented systems and their relative
performance has been presented in this paper, assessing the
importance of using different information levels with the
objective of reliably identifying speakers by their voices.

Results have shown that, as expected, acoustic systems
provide the best speaker recognition results. However
higher-level systems like phonotactic or prosodic systems,
despite providing poorer results on their own, provide plenty
of information that can be exploited using an appropriate
fusion mechanisms.
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