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Abstract- The applicability of Universal Background Models
as a score normalization technique is studied for the case of
dynamic signature verification. This technique is commonly
used in speaker verification systems. Background Models are
tested in two different systems based on global features: one
based on Parzen Windows and another based on adapted Gaus-
sian Mixture Models. Experiments are carried out in the large
MCYT database (16,500 signatures from 330 users) revealing
a significant improvement in the overall system performance,
specially in the casual impostor scenario.

I. INTRODUCTION

The increasing need of automatic personal identification
in our society has motivated the raise of biometrics as a
convenient approach since no tokens or passwords must
be kept by the user [1]. Signature is among the most
socially accepted biometric traits, and it is commonly used
for document validation, and legal and financial transactions
(e.g. bank checks). Thus, many approaches for automatic
signature verification have been studied [2]-[4]. Neverthe-
less, signature verification is affected by some factors which
still make it a challenging task. These are the large intra-
class variability, as signers tend to vary their signature over
periods of time, and the existence of skilled forgers, which
can perform signature imitations leading to a very low inter-
class variability.

Signature verification systems can be classified in two
types: off-line systems use only static information extracted
from the signature still images while on the other hand
on-line (or dynamic) systems take advantage of dynamic
information from the signature (e.g. velocity, pressure, etc.)
which must be captured by a digitizing tablet or equivalent
device. Traditionally, the on-line or dynamic approach has
provided better performance than the off-line approach [2].
Two main approaches exist in dynamic signature verifica-

tion systems [2]. Feature-based systems extract holistic fea-
ture vectors from the signatures and compare them in order to
obtain similarity measures. Function-based systems consider
the signing process as a discrete time function and perform
the matching process based on elastic or statistical mathing
of sequences such as Dynamic Time Warping (DTW) or
Hidden Markov Models (HMM) [3]. Feature-based signature
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verification systems are considered in this work. In such
systems, similarity between signature samples is generally
computed as a distance measure or using statistical pattern
classification techniques [5]. These techniques consider the
verification task as a two-class problem, where the user input
signature must be classified as genuine or as non-genuine (i.e.
belonging to an impostor). Decisions are made by comparing
the similarity score between the input and the enrolled
signatures with a given threshold [6]. Similarity scores can be
normalized to allow fusion from multiple scores (e.g. multi-
matchers) or to increase the system performance [6], [7].

In this work, a score normalization approach for dynamic
signature verification based on Universal Background Mod-
els (UBM) [8], which consist in statistical models of an
"average" user, is proposed. In the verification process, the
user signature is compared to his claimed template and the
resulting score is normalized by its similarity to the UBM. In
Fig. 1 the signature verification system model, including the
UBM score normalization step, is depicted. This technique
has led to very good results in speaker verification sys-
tems [9], [10]. However, it has not been applied to signature
verification systems to the extent of our knowledge. Our
proposed UBM is tested on an existing system based on
Parzen Windows and on a new system based on adapted
Gaussian Mixture Models (GMM) adapted from the UBM.
GMMs have been applied in signature verification both for
function-based [ 11], [ 12] and feature-based approaches [13 ].
Nevertheless, none of the existing works, to the best of our
knowledge, have applied model adaptation.

This paper is structured as follows. A theoretical
background for score normalization is given in Sect. II,
UBMs and model adaptation are presented in Sect. III,
verification systems are described in Sect. IV. The
experimental protocol and results are given in Sect. V and
conclusions are finally drawn in Sect. VI.

II. THEORETICAL BACKGROUND

Several normalization techniques have been proposed with
the aim of re-scaling scores produced by different matchers
to a common domain in order to allow their fusion [7]. These
approaches don't generally affect the individual matcher
performance, but the combined performance of a multi-
biometric system. This is because the score normalization
function is the same for all enrolled subjects and inputs.
User-dependent score normalization approaches for signature
verification are studied in [6], and are demonstrated to
improve the performance of a single matcher. The present
work is focused on test-dependent score normalization.
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Fig. 1. Signature Verification System architecture showing the score normalization step based on UBM.

Let's state the verification task as a two-class Hc,Ho
problem, each representing an hypothesis:

. Hc: the signature is from the claimed user C.

. H0: the signature is not from the claimed user C.
Then, the optimum decision is taken using the likelihood

ratio test or, equivalently, the log-likelihood ratio test [5]:

logp (x IHc) -logp (x H0) { > log 0, accept Hc (1)
<<logO0, reject Hc

where x is the input feature vector and 0 is a fixed decision
threshold. It is a common practice to compute the match
score between the test vector x and the target user feature
statistical model AC as the likelihood function

s = logp (x lAc). (2)

So, following the previous notation, a normalized score sn
may be obtained as follows:

Sn = S-logp (x A0). (3)

where AC represents a model of the rest of potential users
or attackers to the system.

This type of normalization is known as test-dependent
normalization [6] and requires a pool of users for training the
normalization function. Other approaches that depend only
on the claimed user and not on the test input are called user-
or target-dependent score normalization techniques [6]. Uni-
versal Background Models provide a convenient approach to
approximate the distribution p (x AC).

III. METHODS
A. Universal Background Models

The UBM proposed in this work is a Gaussian Mixture
Model (GMM) trained with feature vectors from a pool of
users [8]. These vectors are obtained from a database, and are
no longer used for the experiments. The number of vectors
must be large enough to cover a representative user space.
The UBM must be trained once and can be then used for all
the claiming users. GMMs model a statistic distribution as
a linear combination of d-dimensional Gaussian probability
density functions:

In order to be a valid pdf, the weights must satisfy
z7 i = 1. The parameters to be estimated are then

{wi, ,i, , i = 1, ..., N, where N is the number of
Gaussian components specified by the system designer.
The covariance matrices are chosen to be diagonal, as
full matrices don't usually provide an advantage in the
model approximation [9]. The model parameters can be
estimated from a pool of user features using the Expectation
Maximization (EM) algorithm [5].

B. Adapted Gaussian Mixture Models

User models can be derived from the UBM by employing
the user feature vectors and a form of Bayesian learning
or Bayesian adaptation [9]. This approach allows to derive a
user-specific GMM by combining the UBM and the informa-
tion provided by the specific user feature vectors. The UBM
parameters are updated using a modified MAP (Maximum A
Posteriori) estimation. The following steps are performed.

First, the probabilistic alignment between the user training
vectors {xl, ..., XT} and the UBM is computed:

(5)P (i|xt) = WPi (Xt)
Y:j=l loiPi (xt)

The sufficient statistics for the weight, mean and variance
are then computed:

T

ni = ZP(ilxt)
t=l

IT
Ei (x) =-E (i |t)

t=l

I T

(6)

(7)

(8)Ei t

where x2 = xxT and xT denotes transpose. Finally, the
parameters are updated in the following manner:

N

p (x AO) = Ew ipi (x)
i=l

where

P(x) x{ (x r2 = aE (x2) + (1- a) (a 2-_2) i_4# (11)

Decision
Threshold

(4)
wi = [ani/T + (1- a) wj] -Y (9)

(10)I =aEi(x)+(I-a)piAi

Ai)T E-1 (X pi) .i
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Fig. 2. (a) Bi-dimensional example of adapted GMM vs. UBM with 5 centers for two example features and 20 training signatures. It can be observed
that only two components have been significantly adapted. (b) For the same signer and number of training signatures, model based on Parzen Windows.
The 2o- contour is depicted for each Gaussian component and features have been normalized. Some signatures of the user considered are shown in Fig. 3.

Fig. 3. Two genuine signatures (left and center) and one skilled forgery (right) and examples of associated captured signals.

where p2 ,i-T a2 = diag(E), and a' is a constant
computed to ensure that 1 wi = 1. The parameter a is
an adaptation coefficient that controls the contribution of the
old and new parameters to the adapted model and is defined
as

ni
a =

ni +r

of features are: signature duration, number of pen-ups,

direction histograms and acceleration and velocity statistics.
The features are normalized using tanh-estimators [7] to a

range of (0,1). Two approaches are taken in order to create
the user's signature model: Parzen Windows [5] and adapted
GMMs.

(12)

where r is a fixed relevance factor [9] that must be specified.
Note that mixture components with low ni won't be almost
adapted to the user parameters, while mixtures with high ni
will have their parameters considerably modified by the user

data. The main advantage of this method is that the user

model and the UBM are "coupled", in the sense that the
comparison of a given feature vector with the user's GMM
and the UBM provides a measure of the user's specificities
against the average signer.

A. Parzen Window models

The approach based on Parzen Windows is the same

presented in [14]. Gaussian Windows are selected in order to
estimate the feature vector probability density function A4w
of a given user C. The number of Gaussian Windows is equal
to the amount of signatures selected for the training phase (5
or 20, in our experiments). The similarity score between an

input vector XT and the user's model A4w is then computed
as

IV. VERIFICATION SYSTEMS

The verification systems studied in this work use global
features extracted from the captured signature signals.
Each signature is represented by 40 features, of which a

detailed description may be found in [14]. Some examples

SPW = logp (XT 4ACW). (13)

Note that this model based on Gaussian Parzen Windows
can be considered as a particular case of GMM, with equal
weights = 1/N, i = 1, ..., N, and a covariance matrix
that is a scalar multiple of the identity matrix ,i = (J2I.
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Fig. 4. Effect of the parameters on the system performance. (a) Effect of a2 in Parzen Windows, (b) Effect of the number of GMM components with

,r= 2, (c) Effect of r using 4 GMM components; and (d) Effect of r using GMM component. Note that figures have different scales.

B. Adapted GMMs

The proposed adapted GMM system is designed as fol-

lows: once the UBM has been calculated, it is adapted to

each user C with (5)-(12) leading to an estimation of the

user's model AAG The optimal parameter r is studied in the

experiments section. The similarity score SAC is computed

as in the case of Parzen Windows:

SAG log9 p(XT 4G)C (14)

An example of a bi-dimensional Parzen Window model

and an adapted G1MM for two example global features and

20 training signatures of a user is shown in Fig. 2. Example

signatures of this user and the related dynamic functions

are shown in Fig. 3

V. EXPERIMENTS

A. Database and Experimental Protocol

The signature corpus of the bimodal MCYT database [15]

is used for the experiments. This database consists of 330

users, with 25 genuine signatures and 25 skilled forgeries

per user, which have been performed by other users that have

been let to train for each forgery. Une half of the signature

corpus is used to train the UBM (25 x 165 signatures). From

the remaining half, either 5 or 20 genuine signatures per user

are left to train the user models, while the remaining genuine

signatures are used for testing purposes (leading to 20 x 165

or 5 x 165 genuine test scores respectively). This is done

to assess the impact of the training set size in the system

performance. The 25 skilled forgeries per user are used for

testing (i.e. 25 x 165 skilled impostor scores). Simple forgery

scores (the case where an impostor claims to be another user

but traces his own signature) are computed by comparing one

signature from each user with another from the rest of users

in the evaluation test (i.e. 164 x 165 simple forgery scores).

In the experiments, we investigate the best UBM pa-

rameters for different training set sizes in the two systems

under study. In the case of Parzen Windows, the Gaussian

window covariance matrix constant value u72 is analyzed,

since in [14] no information about or2 is provided. For the

adapted GMMs, the effect of the number of components N

and of the parameter r is studied.
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TABLE I
SYSTEM PERFORMANCE USING ADAPTED GMMS FOR 20 AND 5 TRAINING SAMPLES. SP AND SK DENOTE SIMPLE AND SKILLED FORGERIES

RESPECTIVELY.

Approach N
[ 20 Training Samples 5 Training Samples 1

ApproachPN j__r I[EERsp(%) EERsk(%) 11 EERsp(%) EERsk(%)
Adapted GMM / UBM 4 2 0.74 8.16 2.69 | 13.41
Adapted GMM / UBM 4 3 0.64 8.95 l 2.58 15.34
Adapted GMM / UBM 4 1 0.99 7.43 3.33 11.07
Adapted GMM / UBM 1 5 0.72 5.59 3.11 27.96
Adapted GMM / UBM 1 0.25 0.97 14.05 2.06 10.49

Adapted GMM [4 T3 [ 4.19 6.79 11.25 J 13.21
Adapted GMM [1 0.25 [ 0.85 J 4.73 2.61 | 8.11

TABLE II
SYSTEM PERFORMANCE USING PARZEN-WINDOW MODELS AND UBM NORMALIZATION FOR 20 AND 5 TRAINING SAMPLES AND DIFFERENT

NUMBER OF GAUSSIAN COMPONENTS IN THE UBM GMM. SP AND SK DENOTE SIMPLE AND SKILLED FORGERIES RESPECTIVELY.

Approach N 20 Training Samples 5 Training Samples
EERsp(%)I EERsk(%) EERsp(%) EERsk(%)_

Parzen/ UBM 4 0.85 6.10 2.45 9.59
Parzen / UBM 2 0.97 4.85 2.48 8.70
Parzen / UBM 1 0.76 5.50 2.30 9.33

TABLE III

SYSTEM PERFORMANCE USING PARZEN WINDOWS FOR A DIFFERENT NUMBER OF TRAINING SAMPLES. SP AND SK DENOTE SIMPLE AND SKILLED

FORGERIES RESPECTIVELY.

Approch T 72 N 20 Training Samples 5 Training Samples
Approach 5 EERsp(%) FEERs5k(%) EERsp(%) T EERsk(%)

Parzen Windows 0.0002 N/A 1,36 5,08 3,60 9,58
Parzen / UBM 0.0002 1 0.76 5.50 2.30 9.33

Adapted GMM / UBM N/A 1 (r = 5) 0.72 (r = 5) 5.59 (r = 0.25) 2.06 (r = 0.25) 10.49

B. Experimental Results

a) Reference system - Parzen Windows without score

normalization: As a starting point, the performance of
the system based on Parzen Windows with no score

normalization is studied. The effect of the value of au2 in
the system performance is depicted in Fig. 4.a. As it can be
seen, the best configuration for all EERs is or2 = 0.0002.
Lower values of or2 lead to very poor results due to the
over-fitting phenomenon, caused by too narrow Parzen
Windows with very little overlap, each one centered on a

training sample. This effect is much more pronounced in
the case of 5 training signatures. The EER values for the
best configuration are shown in the first row of Table III.

b) Adapted GMMs and UBM normalization: The effect
of the number N of GMM components with a fixed relevance
factor r = 2 is first studied. It is shown in Fig. 4.b that,
depending on the scenario being considered (5 or 20 training
signatures, skilled or random forgeries), the optimum number
of Gaussian components varies from 1 to 4. The EER for
the 4-component, which gives a good performance for all
scenarios is shown in the first row of Table I.

The effect of the relevance factor r is studied for the
case of 4 and 1 components, as they provide two reasonable
working points. The system EER as a function of r is
presented in Figs. 4.c and 4.d for N = 4 (best suited for
20 training samples) and N = 1 (best suited for 5 training
samples) respectively. For the case of 4 components, it can
be observed that as r increases, the EER for skilled forgeries
increases after a local minimum while in the case of simple
forgeries, it remains stable after an initial steep descent.
This may be caused by the fact that the model becomes
less adapted to the user's specificities as r increases, causing
it to be more generalist and thus easier to imitate. On the
other hand, even with large r, the adapted model provides
enough user-specific information to be discriminative among
simple forgeries. In the case of N = 1 (Fig. 4.d), the most
remarkable difference with N = 4 (Fig. 4.c) can be seen
in the EER for skilled forgeries, which is higher in general
but experiments a local minimum around r = 5, lower than
the best possible configuration with 4 centers. A selected
set of results using adapted GMMs is presented in Table I,
both with and without UBM score normalization. As can
be seen, the performance improvement over the reference



system based on Parzen Windows is achieved mainly due to
the UBM normalization and not due to the adaptation.
When comparing the results of the adapted GMMs with

UBM normalization to the reference system based on Parzen
Windows, a notable reduction of the EER is detected for the
case of simple forgeries, while the EER for skilled forgeries
increases slightly.

c) Parzen Window models and UBM normalization:
We now study the effect of UBM normalization on the
system based on Parzen Windows. In Table II a notorious
improvement in the performance of the Parzen-Window
based system can be observed. UBM normalization allows
to reduce the EER for simple forgeries while keeping the
EER for skilled forgeries at similar values than without
normalizing. This effect may be produced by the fact that
UBM normalization allows to highlight the user's signature
most characteristic features vs. the global pool of background
signatures, improving the performance for simple forgeries.
The relative invariability of the performance with skilled
forgeries may be explained by the fact that the highlighted
user specificities are indeed the ones that the forgers are not
able to reproduce. Consequently, the overall performance of
Parzen Windows is significantly improved by including UBM
normalization and is higher than the one for adapted GMMs.
The experimental results suggest that the improvement in
the system's performance using adapted GMM and Parzen
Windows with UBM is primarily caused by the UBM nor-
malization, as occurred with the adapted GMMs.

Finally, we compare in Table III the baseline
reference system based on Parzen Windows, and the
best configurations achieved for adapted GMMs and
Parzen Windows with UBM score normalization. The
performance improvement of both approaches over the
baseline system is similar, with slightly better exploitation
of the user specificities among different signers (i.e., better
EER,P) by the adapted GMM for small training set size
(5 signatures), at the cost of slightly worse EER,k and
increased computational complexity.

VI. CONCLUSIONS AND FUTURE WORK

A test-dependent score normalization technique with Uni-
versal Background Models has been applied to two on-line
signature verification systems using global features. This
approach allows to normalize the matcher's output score by a
factor dependent on the similarity between the input vector
and the UBM, which is a Gaussian Mixture Model of an
"average" user built from a pre-selected pool of users.

Normalization has been tested on an existing system
based on Parzen Windows and on a novel system based
on adapted GMMs. Adapted GMMs allow to compute a
user statistical model based on a weighted combination of
the UBM parameters and the user's feature vectors and are
widely used in speaker verification systems.

Experiments have been carried out on the MCYT database
comprising 16500 signatures from 330 contributors and the
influence of the different types of parameters has been

studied. It has been found that UBM normalization allows
to a remarkable improvement on the system's performance
in the scenario of simple forgeries, while not substantially
affecting the performance for skilled forgeries. Parzen Win-
dows with UBM normalization have been found to have
a similar performance than adapted GMMs, while being
less computationally demanding. On the other hand, the
adapted GMM approach outperformed the Parzen Windows
in exploiting the user-specificities among different signers
with small training set size. Finally, we have observed that
the performance improvement in the adapted GMM approach
comes mainly from the UBM score normalization step.

Future work includes the use of UBM score normalization
and model adaptation in signature verification systems based
on Hidden Markov Models (HMM).

REFERENCES

[1] A. K. Jain, A. Ross, and S. Pankanti, "Biometrics: A tool for
information security," IEEE Trans. on Information Forensics and
Security, vol. 1, no. 2, pp. 125-143, 2006.

[2] R. Plamondon and G. Lorette, "Automatic signature verification and
writer identification: The state of the art," Pattern Recognition, vol.
22, no. 2, pp. 107-131, 1989.

[3] R. Plamondon and S. N. Srihari, "On-line and off-line handwriting
recognition: A comprehensive survey," IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 22, pp. 63-84, 2000.

[4] J. Fierrez and J. Ortega-Garcia, Handbook of Biometrics, chapter On-
line signature verification, Eds. A. K. Jain and A. Ross and P. Flynn
(in press), 2007.

[5] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, Wiley-
Interscience, 2001.

[6] J. Fierrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-Rodriguez, "Tar-
get dependent score normalization techniques and their application to
signature verification," IEEE Trans. on Systems, Man and Cybernetics,
part C, vol. 35, no. 3, pp. 418-425, 2005.

[7] A. K. Jain, K. Nandakumar, and A. Ross, "Score normalization in
multimodal biometric systems," Pattern Recognition, vol. 38, no. 12,
pp. 2270-2285, 2005.

[8] D. A. Reynolds, "Comparison of background normalization methods
for text-independent speaker verification," in Proc. of 5th European
Conf on Speech Communication and Technology (Eurospeech), 1997,
vol. 2, pp. 963-966.

[9] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, "Speaker verification
using adapted Gaussian Mixture Models," Digital Signal Processing,
vol. 10, pp. 19-41, 2000.

[10] F. Bimbot, J. F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-
Chagnolleau, S. Meignier, T. Merlin, J. Ortega-Garcia, D. Petrovska-
Delacretaz, and D. A. Reynolds, "A tutorial on text-independent
speaker verification," EURASIP Journal on Applied Signal Processing,
vol. 2004:4, pp. 430-451, 2004.

[11] J. Richiardi and A. Drygajlo, "Gaussian mixture models for on-line
signature verification," in Intl Multimedia Conf, Proc. ACM SIGMM
workshop on Biometrics methods and applications, 2003, pp. 115-122.

[12] S. Garcia-Salicetti, J. Fierrez-Aguilar, F. Alonso-Fernandez, C. Viel-
hauer, R. Guest, L. Allano, T. Doan Trung, T. Scheidat, B. Ly Van,
J. Dittmann, B. Dorizzi, J. Ortega-Garcia, J. Gonzalez-Rodriguez,
M. Bacile di Castiglione, and M. Fairhurst, "Biosecure reference
systems for on-line signature verification: A study of complemen-
tarity," Annals of Telecommunications, Special Issue on Multimodal
Biometrics, vol. 62, no. 1-2, pp. 36-61, January-February 2007.

[13] J. Richiardi, H. Ketabdar, and A. Drygajlo, "Local and global
feature selection for on-line signature verification," in Proc. IAPR
8th International Conference on Document Analysis and Recognition,
ICDAR, Seoul, Korea, August-September 2005.

[14] J. Fierrez-Aguilar, L. Nanni, J. Lopez-Penalba, J. Ortega-Garcia, and
D. Maltoni, "An on-line signature verification system based on fusion
of local and global information," in Proc. ofIAPR Intl. Conf on Audio-
and Video-Based Biometric Person Authentication, AVBPA. 2005, pp.
523-532, Springer LNCS-3546.

[15] J. Ortega-Garcia, Fierrez-Aguilar, et al., "MCYT baseline corpus: a
bimodal biometric database," IEE Proc. Vision, Image and Signal
Processing, vol. 150, no. 6, pp. 391-401, 2003.


