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Abstract

A function-based approach to on-line signature verification is presented. The system

uses a set of time sequences and Hidden Markov Models (HMMs). Development

and evaluation experiments are reported on a subcorpus of the MCYT bimodal

biometric database comprising more than 7,000 signatures from 145 subjects. The

system is compared to other state-of-the-art systems based on the results of the

First International Signature Verification Competition (SVC 2004). A number of

practical findings related to feature extraction and modeling are obtained.
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1 Introduction

Automatic signature verification has been an intense research area because of

the social and legal acceptance and widespread use of the written signature as

a personal authentication method (Plamondon and Lorette, 1989; Leclerc and

Plamondon, 1994; Plamondon and Srihari, 2000), and still is a challenging

problem. This is mainly due to the large intra-class variations and, when

considering forgeries, small inter-class variations.

This paper deals with on-line signature verification. On-line refers here to

the use of the time functions of the dynamic signing process (e.g., position

trajectories, or pressure versus time), which are obtained using acquisition

devices like touch screens or digitizing tablets.

Many different approaches have been considered in the literature in order to

extract discriminative information from on-line signature data (Plamondon

and Lorette, 1989). The existing methods can broadly be divided into two

classes: i) feature-based approaches, in which a holistic vector representation

consisting of a set of global features is derived from the signature trajec-

tories (Lee et al., 1996; Ketabdar et al., 2005), and ii) function-based ap-

proaches, in which time sequences describing local properties of the signature

are used for recognition (Nalwa, 1997; Fairhurst, 1997; Jain et al., 2002; Li

et al., 2006), e.g., position trajectory, velocity, acceleration, force, or pressure

(Lei and Govindaraju, 2005). Although recent works show that feature-based

approaches are competitive with respect to function-based methods in some

conditions (Fierrez-Aguilar et al., 2005b), the latter methods have tradition-

ally yielded better results.
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Fig. 1. Architecture of the proposed on-line signature verification system.

Function-based approaches can be classified into local and regional methods.

In local approaches, the time functions of different signatures are directly

matched by using elastic distance measures such as Dynamic Time Warping

(Munich and Perona, 2003; Kholmatov and Yanikoglu, 2005; Faundez-Zanuy,

2007). In regional methods, the time functions are converted to a sequence

of vectors describing regional properties. One of the most popular regional

approaches is the method based on Hidden Markov Models (Yang et al., 1995;

Kashi et al., 1997; Dolfing et al., 1998). In most of these cases, the HMMs

modeled stroke-based sequences. In this paper, we study the application of

HMMs to time sequences directly based on the dynamic functions, extending

the work reported in (Ortega-Garcia et al., 2003a).

The system architecture of the proposed on-line signature verification system

is depicted in Fig. 1.

The system described in this paper was submitted by the Biometric Recogni-

tion Group – ATVS to the First International Signature Verification Competi-

tion 2004 with very good results (Yeung et al., 2004), which will be summarized

in Section 4.6.

The paper is organized as follows. In Section 2, the feature extraction process is

presented. The statistical modeling based on HMMs is described in Section 3.

The experimental setup and the database used are presented in Section 4,

which are followed by the experimental results regarding feature extraction,
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HMM configuration, training strategy, and a comparison with other state-of-

the-art systems based on SVC 2004 results. Some conclusions are finally drawn

in Section 5.

2 Feature extraction

2.1 Basic functions

The signature representation considered in this work is based on the following

five time sequences: horizontal xn and vertical yn position trajectories, azimuth

γn and altitude φn of the pen with respect to the tablet, and pressure signal

pn. The value n = 1, . . . , N is the discrete time index given by the acquisition

device and N is the time duration of the signature in sampling units. Although

pen inclination trajectories have shown some discriminative capabilities in

other works (Hangai et al., 2000; Sakamoto et al., 2001; Pacut and Czajka,

2001), the use of these two functions in our system degrades the verification

performance (as it is shown in Section 4.4.1). As a result, the basic function

set consists of xn, yn and pn.

2.2 Geometric normalization

A signature acquisition process on a restricted size frame is assumed (Fierrez-

Aguilar et al., 2004). As a result, users are supposed to be consistent in size and

writing dynamics. Moreover, a geometric normalization consisting of position

normalization followed by rotation alignment is applied.
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Position normalization consists in aligning the center of mass

[x̄, ȳ]T = (1/N)
∑N

n=1
[xn, yn]

T (1)

of the different signatures, where [·]T denotes transpose. Rotation normaliza-

tion consists in aligning the average path tangent angle

α = (1/N)
∑N

n=1
arctan (ẏn/ẋn) (2)

of the different signatures, where the upper dot notation denotes first order

time derivative.

2.3 Extended functions

After geometric normalization, 4 extended sequences are derived from the

basic function set. Previous results with other dynamic sequences have shown

good levels of performance (Ortega-Garcia et al., 2003a). In the present work,

four dynamic sequences have been used as extended functions, namely (Nelson

and Kishon, 1991):

• Path-tangent angle: θn = arctan (ẏn/ẋn)

• Path velocity magnitude: vn =
√

ẋ2
n + ẏ2

n

• Log curvature radius: ρn = log (1/κn) = log
(

vn/θ̇n

)

, where κn is the curva-

ture of the position trajectory and log (·) is applied in order to reduce the

range of function values.

• Total acceleration magnitude: an =
√

t2n + c2
n, where tn = v̇n and cn = vn · θ̇n

are respectively the tangential and centripetal acceleration components of
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the pen motion.

In all cases, (discrete) time derivatives have been computed by using the

second-order regression described in Section 2.4. The complete instantaneous

function-based feature set, including three basic and four extended time se-

quences is as follows:

un = [xn, yn, pn, θn, vn, ρn, an]T , n = 1, . . . , N, (3)

where N is the time duration of the considered signature in sampling units.

2.4 Time derivatives

First order time derivatives of complete instantaneous function-based feature

sets are highly effective as discriminative parameters regarding verification

with other behavioral traits (Soong and Rosenberg, 1988), so we have decided

to incorporate time derivatives in our system. Because of the discrete nature

of the above-mentioned functions, first order time derivatives are calculated

by using a second order regression (Young et al., 2002), expressed through

operator ∆:

ḟn ≈ ∆fn =

∑2
τ=1 τ(fn+τ − fn−τ )

2 ·
∑2

τ=1 τ 2
. (4)

In this way, each parameterized signature is formally described as a matrix

V = [v1, . . . ,vN ], where vn =
[

uT
n , (∆un)T

]T
, n = 1, . . . , N .
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2.5 Signal normalization

A final signal normalization, oriented to obtain zero mean and unit standard

deviation function values, is applied:

on = Σ−1/2(vn − µ), n = 1, . . . , N, (5)

where µ and Σ are respectively the sample mean and sample diagonal covari-

ance matrix of vectors vn, n = 1, . . . , N .

As a result, each signature is represented by a matrix O = [o1, . . . , oN ] com-

prising 14 normalized discrete time sequences.

3 Signature modeling

3.1 Background on Hidden Markov Models

Hidden Markov Models were introduced in the pattern recognition field as a

robust method to model the variability of discrete time random signals where

time or context information is available (Rabiner, 1989). Some previous works

using HMMs for signature verification include (Yang et al., 1995; Kashi et al.,

1997; Dolfing et al., 1998). Basically, the HMM represents a doubly stochastic

process governed by an underlying Markov chain with finite number of states

and a set of random functions each of which is associated with the output

observation of one state (Yang et al., 1995). At discrete instants of time n, the

process is in one of the states and generates an observation symbol according
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to the random function corresponding to that current state. The model is

hidden in the sense that the underlying state which generates each symbol

cannot be deduced from simple symbol observation.

Formally, a HMM is described as follows:

• H , which is the number of hidden states {S1, S2, . . . , SH}. The state at

discrete time n will be denoted as qn.

• The state transition matrix A = {aij} where

aij = P (qn+1 = Sj |qn = Si), 1 ≤ i, j ≤ H. (6)

• The observation symbol probability density function in state j, bj(o), 1 ≤

j ≤ H .

• The initial state distribution π = {πi} where

πi = P (q1 = Si), 1 ≤ i ≤ H. (7)

3.2 HMM configuration

In our system, the observation symbol probabilities bj(o) have been modeled

as mixtures of M multi-variate Gaussian densities:

bj(o) =
M
∑

m=1

cjmp(o|µjm,Σjm), 1 ≤ j ≤ H, (8)

where p(o|µjm,Σjm) is a multi-variate Gaussian distribution with mean µjm

and diagonal covariance matrix Σjm, and the coefficients are restricted to

∑M
m=1 cjm = 1, for 1 ≤ j ≤ H . Thus, the observation symbol density functions
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can be parameterized as B =
{

cjm, µjm,Σjm

}

, 1 ≤ j ≤ H, 1 ≤ m ≤ M .

The set λ = {π,A, B} models the K training signatures of a given sub-

ject. The similarity score of an input signature O = [o1, . . . , oN ] claiming the

identity λ is calculated as (1/N) log P (O |λ) by using the Viterbi algorithm

(Rabiner, 1989).

The client model λ is estimated with K training signatures
{

O(1), . . . ,O(K)
}

,

where O(k) = [o
(k)
1 , . . . , o

(k)
Nk

], k = 1, . . . , K, by means of the following iterative

strategy:

(A) Initialize λ. Each one of the training signatures O(k), 1 ≤ k ≤ K, is

divided into H segments S
(k)
1 , . . . ,S

(k)
H where

S
(k)
i = [o

(k)
(i−1)⌈Nk/H⌉+1, o

(k)
(i−1)⌈Nk/H⌉+2, . . . , o

(k)
(i)⌈Nk/H⌉], 1 ≤ i ≤ H − 1,

S
(k)
H = [o

(k)
(H−1)⌈Nk/H⌉+1, o

(k)
(H−1)⌈Nk/H⌉+2, . . . , o

(k)
Nk

],

(9)

and ⌈·⌉ denotes equal or higher nearest integer. Observations from the seg-

ments

S
(1)
i ,S

(2)
i , . . . ,S

(K)
i are clustered into M groups by using the k-means al-

gorithm (Theodoridis and Koutroumbas, 2003a) and the samples from

cluster m are used to calculate, according to the Maximum Likelihood

criterion (Theodoridis and Koutroumbas, 2003b), the initial parameters

B = {cim, µim,Σim}, 1 ≤ i ≤ H, 1 ≤ m ≤ M . Initial A takes into

account a left-to-right topology without skipping state transitions as rep-

resented in Fig. 2. Thus, aij = 0 for i > j or j > i + 1, aii = (Oi − 1)/Oi

and ai,i+1 = 1/Oi, where Oi is the number of observations in the segments
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observation observation

Fig. 2. Topology of the Hidden Markov Model: left-to-right without skipping state

transitions.

S
(1)
i ,S

(2)
i , . . . ,S

(K)
i . The initial state distribution π = {π1, π2, . . . , πH} is

set up as {1, 0, . . . , 0}.

(B) Re-estimate a new model λ̄ from λ by using the Baum-Welch re-estimation

equations (Rabiner, 1989), which guarantee that:

K
∏

k=1

P (O(k)|λ̄) ≥
K
∏

k=1

P (O(k)|λ). (10)

(C) Replace λ by λ̄ and go to step (B) until:

K
∏

k=1

P (O(k)|λ̄) −
K
∏

k=1

P (O(k)|λ) ≤ Θ. (11)

where the threshold Θ is chosen heuristically and the maximum number

of iterations is limited to ten.

In the experiments that follows, the training algorithm typically converges

after five iterations.

4 Experiments

In the present section, we describe the signature database used and the vari-

ability factors considered in its design. This is followed by a discussion of
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various aspects of performance assessment in biometric verification systems.

Finally, we present the experimental results.

4.1 MCYT database

For the experiments reported in this paper we used data from the MCYT

bimodal biometric database. In this section we provide a brief description of

this corpus. For more details we refer the reader to (Ortega-Garcia et al.,

2003b).

The MCYT bimodal biometric database consists of fingerprint and on-line

signature modalities. In order to acquire the dynamic signature sequences, a

WACOM pen tablet was employed, model INTUOS A6 USB. The pen tablet

resolution is 2,540 lines per inch (100 lines/mm), and the precision is ±0.25

mm. The maximum detection height is 10 mm (so pen-up movements are also

considered), and the capture area is 127 mm (width) × 97 mm (height). This

tablet provides the following discrete-time dynamic sequences: i) position xn

in x-axis, ii) position yn in y-axis, iii) pressure pn applied by the pen, iv)

azimuth angle γn of the pen with respect to the tablet, and v) altitude angle

φn of the pen with respect to the tablet. The sampling frequency is set to

100 Hz. Taking into account the Nyquist sampling criterion and the fact that

the maximum frequencies of the related biomechanical sequences are always

under 20-30 Hz (Baron and Plamondon, 1989), this sampling frequency leads

to a precise discrete-time signature representation. The capture area is further

divided into 37.5 mm (width) × 17.5 mm (height) blocks which are used as

frames for acquisition (Fierrez-Aguilar et al., 2004).
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Fig. 3. Signatures from MCYT database corresponding to three different subjects.

For each subject, the two left signatures are genuine and the one on the right is a

skilled forgery. Plots below each signature correspond to the available information,

namely: position trajectories (horizontal x, and vertical y), pressure (p), and pen

inclination (azimuth and altitude angles).
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Signature corpus comprises genuine and shape-based skilled forgeries with nat-

ural dynamics. The forgeries were generated by contributors to the database

imitating other contributors. For this task they were given the printed sig-

nature to imitate and were asked not only to imitate the shape but also to

generate the imitation without artifacts such as time breaks or slowdowns.

Fig. 3 shows some example signatures.

The acquisition procedure was as follows. User n wrote a set of 5 genuine signa-

tures, and then 5 skilled forgeries of client n−1. This procedure was repeated

4 more times imitating previous users n− 2, n − 3, n − 4 and n − 5. Summa-

rizing, signature data for each client user n include 25 samples of his/her own

signature and 25 skilled forgeries produced by users n + 1, n + 2, n + 3, n + 4,

and n + 5. Taking into account that the signer was concentrated in a differ-

ent writing task between genuine signature sets, the variability between client

signatures from different acquisition sets (also called sessions throughout the

paper) is higher than the variability of signatures within the same acquisition

set.

4.2 Score normalization

Typical representations of the verification performance of a given biometric

system are the ROC and DET plots (Martin et al., 1997). Those represen-

tations consider all possible users of the system with the same scoring scale.

This common scale representation is equivalent to the use of a global decision

threshold for all clients of the system. User-specific decision thresholds pro-

duce results that in average usually outperform the global user-independent

decision approach (Jain et al., 2002; Ortega-Garcia et al., 2003a). Some score
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normalization schemes have been proposed in order to exploit this fact (Auck-

enthaler et al., 2000), as the following target-dependent score normalization

technique based on EERs (TDSN-EER), which consists in normalizing the

score s(O, λT ) obtained from a test signature O claiming the model λT by

means of (Fierrez-Aguilar et al., 2005c):

sn(O, λT ) = s(O, λT ) − sEER(G, I), (12)

where sEER is the decision threshold at the empirical EER point for a given

set of genuine G and impostor I scores corresponding to the subject at hand.

In this work, the above described TDSN-EER has been applied a posteriori

(i.e., G and I score sets are the same used for system performance evaluation).

This is done to minimize the effects of the score misalignments across users

when studying the different modules of the system.

In an operating system, the statistics necessary to estimate the parameters

of the normalization functions have to be estimated from the available train-

ing data, using a priori score normalization schemes (Fierrez-Aguilar et al.,

2005c). Interestingly, the application of these a priori schemes in SVC 2004

proved to be quite useful in spite of the training data scarcity (only 5 training

signatures) and the challenging scenario: invented signatures written with-

out visual feedback, time span between sessions of at least one week and

only between-sessions comparisons, etc. (Yeung et al., 2004). In particular,

the application of a target-centric score normalization approach provided a

18% performance improvement to our HMM system for skilled forgeries while

maintaining the performance for random forgeries. This can be observed in

the competition results, summarized in Section 4.6. The systems 19a and 19b
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submitted by the authors were identical except for an a priori score normal-

ization step (a = without score normalization, b = with score normalization).

The score normalization step in this case was the a priori score normalization

technique rotTC-3 described in (Fierrez-Aguilar et al., 2005c).

4.3 Experimental protocol

For the experiments presented here, we have used two disjoint subsets of the

MCYT database, the first one for development (50 subjects) and the second

one for evaluation (145 subjects). All the signatures of each subject are used

in both cases (25 genuine signatures and 25 skilled forgeries).

The client signatures not used for training are used for testing. The skilled

forgeries are used only for testing. In case of testing against random forgeries

and for a particular subject, all client signatures from the remaining subjects

are used during development (i.e., 50 × 49 × 25 impostor trials), but only 2

signatures from each of the remaining subjects are used during evaluation (i.e.,

145 × 144 × 2 impostor trials).

Experiments have been carried out according to the following procedure. We

first study the effects of function set selection, modeling and training strategy

on the verification performance using the development set. Results are given

as DET plots applying the a posteriori target-dependent score normalization

technique described in Section 4.2. From these development experiments, and

considering the EER as the cost function to minimize, an enhanced system

configuration is obtained. Finally, verification performance of the enhanced

system is provided on the evaluation set. Separate results are reported for
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Fig. 4. Feature extraction experiments. Verification performance results for skilled

forgeries are given for various function sets including: position trajectories x and y,

pressure p, azimuth γ, altitude φ, path tangent angle θ, path velocity magnitude v,

log curvature radius ρ, and total acceleration magnitude a.

random and skilled forgeries.

4.4 Development experiments

4.4.1 Feature extraction

The initial configuration for the experiments is as follows (Ortega-Garcia et al.,

2003a): 4 HMM states, 8 mixtures per state and 5 training signatures from

different sessions. Results for different functions are shown in Fig. 4.

In Fig. 4(a) we compare some basic function sets. The EER decreases from

10.37% to 4.54% when pressure signal is included to the basic position trajec-

tory information but increases to 4.84% and 6.28% when altitude and azimuth

signals are respectively considered.
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Fig. 5. Training strategy experiments. Verification performance results are given

for skilled forgeries with increasing number of training signatures: (a) training and

testing signatures from different sessions, (b) training and testing signatures from

the same sessions.

In Fig. 4(b) we show the progressive improvement in verification performance

when extended functions are included one by one to the basic set {x, y, p}

(4.54% EER). When path tangent angle θ, path velocity magnitude v, log

curvature radius ρ, and total acceleration mangnitude a are progressively in-

cluded, we obtain the following EERs: 2.57%, 1.99%, 1.44%, and 0.68%. The

set composed by these 7 functions {x, y, p, θ, v, ρ, a} will be referred to as w.

4.4.2 Training strategy

The initial configuration for the experiments is as follows: w+∆w functions, 4

HMM states and 8 mixtures per state. Results for different training strategies,

considering only skilled forgeries, are shown in Fig. 5.

In Fig. 5(a) we evaluate the performance improvement of our system for in-

creasing number of training signatures when training and testing signatures
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come from different sessions. In order to do so, training signatures are selected

from the minimum number of sessions possible (i.e., 1 set for 1 to 5 training

signatures, 2 sessions for 6 to 10 signatures, and so on). As a result, the EER

does not improve significantly for more than 5 training samples.

In Fig. 5(b) we evaluate the performance improvement in our system when

the number of training signatures is increased and the training and testing

signatures come from the same sessions. For that purpose, we have selected

training signatures from the maximum possible number of sessions (i.e., 1

session for 1 training signature, 2 sessions for 2 training signatures, 3 sessions

for 3 training signatures, 4 sessions for 4 training signatures and 5 sessions for

5 to 20 training signatures). As a result, the EER improves significantly with

the first 5 training signatures (0.85% EER) and keeps improving for a higher

number of signatures (0.05% EER for 20 training samples).

Finally, we test the verification performance for a fixed number of training

signatures from an increasing number of sessions. In this case we provide a

DET plot (see Fig. 6) where, testing with two sessions, the fixed 5 training

samples have been selected from the other one (0.84% EER), two (0.82% EER)

and three (0.48% EER) sessions, respectively. As can be observed, verification

performance improves when training data come from different sessions.

4.4.3 Signature modeling

The initial configuration for the experiment is: w+∆w functions and 5 training

signatures from the first acquisition set. In Table 1 we show the results for

different HMM parameters including the degenerated case of the single state

HMM, which is equivalent to modeling based on Gaussian Mixture Models

18
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Fig. 6. Training strategy experiments. Verification performance results for skilled

forgeries for a fixed number of training signatures from an increasing number of

sessions.

(Richiardi and Drygajlo, 2003). From this table we observe that for a given

complexity of the model ≈ H × M (Richiardi and Drygajlo, 2003), i.e., a

diagonal in Table 1, the configuration H = 2 is usually the best.

The best HMM parameters for our system are H = 2 and M = 32. This

result is in accordance with the recent trend of reducing the number of states

in HMM-based on-line signature verification systems (Richiardi and Drygajlo,

2003). This can be explained because the majority of signatures in the MCYT

database consist of written name and flourish (Fierrez-Aguilar et al., 2004).

Both parts usually have different dynamic statistics that the 2-state modeling

approach may be exploiting. Another explanation of the degraded performance

when using a large number of states is the data scarcity in on-line signatures

as compared to speech recognition, where HMM is the dominant approach.
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Table 1

EER (in %) for different HMM configurations (skilled forgeries). H = number of

states; M = number of Gaussian mixtures per state.

H M = 1 M = 2 M = 4 M = 8 M = 16 M = 32 M = 64 M = 128

1 1.74 1.05 0.70 0.71

2 1.51 0.74 0.30 0.44

4 1.64 0.87 0.52 0.48

8 1.81 0.79 0.76 0.35

16 1.20 0.96 0.74

32 1.28 0.97

Finally, we represent in Fig. 7 DET plots for H = 2 with different values of

M , where the verification performance improvement for increasing values of

M can be seen, until the optimum M = 32 is reached.

4.5 Evaluation experiments

Summarizing the results of the experiments reported above, we conclude that

the best system configuration is the following: i) feature extraction based on

seven discrete-time functions (x trajectory, y trajectory, pressure, path tangent

angle, path velocity magnitude, log curvature radius and total acceleration

magnitude) and their first order time derivatives, and ii) HMM recognition

with 2 states and 32 Gaussian mixtures per state.

We finally show error rates on the evaluation set using as training data 10
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Fig. 7. Signal modeling experiments. Verification performance results are given for

an increasing number of Gaussian mixtures per state M , being the number of states

fixed H = 2 (skilled forgeries).
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Fig. 8. Verification performance results on the evaluation set for skilled (a) and

random forgeries (b).

signatures per model from different sessions both for skilled, Fig. 8(a), and

random forgeries, Fig. 8(b). Verification performance is shown for three a pos-
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Table 2

System performance on the evaluation set (EER in %).

Type of Forgery Raw scores z-norm EER-TDSN

Skilled 3.36 4.44 0.78

Random 1.04 1.41 0.09

teriori target-dependent score normalization techniques, namely: no score nor-

malization, z-norm (Auckenthaler et al., 2000), and Target-Dependent Score

Normalization based on individual EERs (EER-TDSN) as described in Sec-

tion 4.2. The EERs are reported in Table 2. As a result, we observe (EER for

skilled forgeries is specified):

• Score normalization using the z-norm technique degrades the verification

performance (4.44%) with respect to no score normalization (3.36%).

• Verification performance is highly improved when using the target-dependent

score normalization technique (0.78%), which is equivalent to the use of

user-dependent decision thresholds.

4.6 Comparison with the state-of-the-art

The First International Signature Verification Competition (SVC) was orga-

nized in 2004, and provided a public benchmark for signature verification

(Yeung et al., 2004). The development corpus of the extended task (pen coor-

dinate, orientation and pressure information are available) is available through

the competition website 1 . This corpus consists of 40 sets of signatures. The

evaluation set is comprised of 60 additional sets of signatures. Each set con-

1 http://www.cs.ust.hk/svc2004/
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Fig. 9. Signature examples from SVC 2004 corpus. For a particular subject, two

genuine signatures (left columns) and two skilled forgeries (right columns) are given.

Plots of the coordinate trajectories, pressure signal and pen orientation functions

are also given.

tains 20 genuine signatures from one contributor (acquired in two separate ses-

sions) and 20 skilled forgeries from five other contributors. The SVC database

is especially challenging due to several factors, including: i) no visual feedback

when writing (acquisition was conducted by using a WACOM tablet with a

Grip Pen), ii) subjects used invented signatures different to the ones used in

daily life in order to protect their personal data, iii) skilled forgers imitated

not only the shape but also the dynamics, and iv) time span between train-

ing and testing signatures was at least one week. The signatures are in either

English or Chinese (see Fig. 9).

The authors participated to SVC 2004 with the system described in the present

paper (team ID 19). A summary of the evaluation results for the extended
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task is given in Tables 3 and 4, which correspond to the development and the

evaluation sets, respectively (Yeung et al., 2004). Training data consisted of

5 signatures randomly selected from the first acquisition session, and testing

data consisted of the 10 genuine signatures of the second session, together

with 20 skilled or random forgeries. As indicated in Section 4.2, the different

systems submitted by the authors (a, b, and c) were identical except for an a

priori score normalization step: a = without score normalization, b and c =

different types of user-dependent score normalization (Fierrez-Aguilar et al.,

2005c).

In the evaluation set, the proposed HMM system was ranked second for

skilled forgeries and first for random forgeries. It was only outperformed by

the winner of the competition, which was based on a Dynamic Time Warp-

ing approach (Kholmatov and Yanikoglu, 2005). Interestingly, it has been

recently shown that the HMM approach outperforms an implementation of

the DTW approach used by the winner when enough training signatures are

available (Fierrez-Aguilar et al., 2005a). More comparative experiments with

other state-of-the-art systems can be found in (Garcia-Salicetti et al., 2006).

5 Conclusions

An on-line signature verification system based on dynamic time functions and

Hidden Markov Models has been presented.

In the experiments, we have explored various aspects of feature extraction and

modeling. With respect to HMM modeling we have shown that the best con-

figuration is 2 HMM states and 32 Gaussian mixtures per state. Experiments
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Table 3

EER statistics in % (Yeung et al., 2004) for the extended task of SVC 2004 (devel-

opment set, 40 subjects). SD denotes standard deviation.

Skilled forgeries Random forgeries

Team ID Average SD Maximum Average SD Maximum

19b 6.90 9.45 50.00 3.02 3.65 15.00

19c 6.91 9.42 50.00 3.02 3.65 15.00

6 6.96 11.76 65.00 3.47 4.23 20.00

29 7.64 12.62 60.00 4.45 6.84 50.00

19a 8.90 11.72 71.00 3.08 3.74 15.00

14 11.29 13.47 70.00 4.41 5.35 28.57

18 15.36 13.88 60.00 6.39 7.03 45.00

17 19.00 14.43 70.00 4.29 4.69 30.00

3 20.01 18.44 76.19 5.07 8.13 44.44

4 21.89 17.05 73.33 8.75 9.71 48.72

on the training strategy have shown that training with multi-session data re-

markably improves the verification performance and 5 training signatures are

enough for obtaining robust models.

Our verification performance results are 0.74% and 0.05% EER for skilled

and random forgeries, respectively (with a posteriori user-dependent decision

thresholds). These results were achieved on a database of 145 subjects compris-
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Table 4

EER statistics in % (Yeung et al., 2004) for the extended task of SVC 2004 (evalu-

ation set, 60 subjects). SD denotes standard deviation.

Skilled forgeries Random forgeries

Team ID Average SD Maximum Average SD Maximum

6 2.89 5.69 30.00 2.55 5.66 50.00

19b 5.01 9.06 50.00 1.77 2.92 10.00

19c 5.13 8.98 51.00 1.79 2.93 10.00

19a 5.91 9.42 50.00 1.70 2.86 10.00

14 8.02 10.87 54.05 5.19 8.57 52.63

18 11.54 12.12 50.00 4.89 6.65 45.00

17 12.51 13.01 70.00 3.47 5.53 30.00

4 16.34 14.00 61.90 6.17 9.24 50.00

ing 3,625 client signatures, 3,625 skilled forgeries and 41,760 random impostor

attempts. The system described in this work was submitted by the Biometric

Recognition Group – ATVS to SVC 2004 (Yeung et al., 2004), from which

selected results in comparison with other systems have been also reported.
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