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ABSTRACT
A biometric template protection system for dynamic signature
veri cation is presented. The approach uses auxiliary (helper)
data that allows the matching with secure templates but do not
provide information to a potential attacker. The performance
of the proposed system is evaluated using the MCYT signa-
ture database comprising 330 users, with 25 genuine signa-
tures and 25 skilled forgeries per user. The results show simi-
lar performance compared to the baseline unprotected system.
However, the security of the proposed system against attacks
to the template database is signi cantly higher.

Index Terms— Template protection, signature veri ca-
tion, helper data.

1. INTRODUCTION

With the growth in scale of biometric systems deployed in
the last years, privacy issues related to the protection of the
biometric data have emerged as a crucial challenge for the
widespread use of biometric solutions. The protection of bio-
metric patterns requires actions that should enhance data re-
silience against attacks while allowing the matching to be per-
formed ef ciently.
In biometric systems, a template with the features extracted

from the registration of the user (enrollment) is usually stored
in a database. Unprotected templates can reveal partial or
complete information regarding the registered biometric, there-
fore becoming a threat to users’ privacy and the security of the
system [1].
In this context, a number of research works have pro-

posed biometric template protection systems. The fuzzy vault
scheme [2] allows the matching of two suf ciently similar
patterns in a transformed domain. In this construction, a se-
cret (typically, a random binary key) is encoded using an un-
ordered set of points A, resulting in an indivisible vault V .
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The original secret can only be reconstructed if another set B
is presented and overlaps substantially withA. The fuzzyness
of this construction ts well with the intra-variability of bio-
metrics. Its template protection capacity comes from the fact
that the only value that is stored in the enrollment database is
a one-way-transformed version of the biometric pattern.
When workingwith protected templates, the matching typ-

ically takes place in the transformed domain. However, the
matching of transformed patterns is much more dif cult than
in the non-protected feature space. To overcome this problem,
the use of helper data has been proposed [3, 4], where some
auxiliary data is stored along with the protected template in
order to make the matching of protected templates easier. The
helper data should not reveal useful information to a potential
attacker. Practical helper data systems have been proposed for
several biometric traits, such as 3D face [5].
In the current contribution we propose a template protec-

tion system based on helper data for dynamic signature veri -
cation. Within biometrics, handwritten signature has interest-
ing applications in authentication and identity management,
due to its widespread social and legal acceptance [6, 7]. We
use dynamic (or on-line) signature veri cation, which is char-
acterized by the availability of information of the signature
realization, such as the position trajectory and the pressure
signal over time.
This paper is structured as follows. In Sect. 2 we ex-

plain the framework for template protection using helper data.
In Sect. 3, the application to dynamic signature templates is
showed. The experimental framework and results are pre-
sented in Sect. 4. Finally, our conclusions are drawn in Sect. 5.

2. TEMPLATE PROTECTION BASED ON HELPER
DATA

The proposed template protection system is based on the helper
data system (HDS) proposed in [3, 5]. The HDS allows the
matching of an enrolled pattern X with a test pattern Y, with
the help of some auxiliary data (helper data). The helper data
is extracted from the enrolled pattern and should not reveal in-
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Fig. 1. Architecture of the helper data system, adapted from [5].

formation to a potential attacker. When the pattern Y emerges
from the same source than X (e.g., a genuine biometric ver-
i cation claim), Y can be seen as a noisy version of X. The
HDS allows the correction of a given number of errors in the
test pattern, by using a binary BCH error correcting code [8].
In Fig. 1 we show the architecture of the helper data sys-

tem, which is divided into three phases: training, enrollment,
and veri cation.

2.1. Training

In the training stage, a global model is built with statistics of
training data from real users. Given a set of training real-
valued feature vectors T = {ti}, i = 1, . . . , NT , of di-
mension M , the mean feature vector t is computed as t =
(1/NT )

∑NT

i=1
ti.

2.2. Enrollment

The enrollment stage consists of a series of steps that produce
a protected template with its associated helper data. First, the
NE enrollment feature vectors in the set X = {xi} are av-
eraged extracting the mean feature vector x. Then each com-
ponent of x is binarized using each corresponding component
of t as the threshold, reaching the binary vector xB . Then, a
selection of the most reliable features for the given enrollment
is performed (details in Sect. 3.2), producing a reliable binary
feature vector xR, of dimension L ≤ M . The index of the
selected features are stored as the helper feature h1.
On the other hand, a random binary string s is generated

and encoded using an Error Correcting Code (ECC) such as
the binary BCH code [8]. The encoded string c is XOR-ed
with xR, producing the helper feature h2.
Finally, the random string s is hashed using a crypto-

graphic hashing function, such as SHA-256, and the result

is stored as the helper feature h3 = h(s).

2.3. Veri cation

In the veri cation stage, NV feature vectors from the veri -
cation set Y = {yi} are averaged into a mean feature vec-
tor y (note that the usual case in biometric veri cation will
be NV = 1). A binarized feature vector is produced as in
the enrollment stage, and then it is reduced using the selec-
tion stored in h1, producing yR. This reliable binary feature
vector is then XOR-ed with h2, and the result c′ is decoded
using the ECC. The decoded string s′ is transformed using the
cryptographic one-way transform used in the enrollment. The
comparison between this hashed value h(s′) and h3 = h(s)
determines the nal accept/reject decision of the system.

3. SECURE DYNAMIC SIGNATURE TEMPLATES

We present a system for template protection in dynamic sig-
nature veri cation based on the helper data system presented
in Sect. 2, using global feature vectors based on statistical in-
formation of the signature.

3.1. Feature extraction

We use an on-line signature representation based on global
features [7]. In particular, a 100-dimensional global feature
vector is extracted from each on-line signature [9], including
features based on timing information, number of strokes, ge-
ometry, pen trajectory, pressure over time, etc.

3.2. Feature selection

At the enrollment stage, the reliabilitymeasure proposed in [5]
is used in order to select the most reliable features. For each
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Fig. 2. Performance results of the template protection system for dynamic signature veri cation.

feature, the reliability is computed as:

rj =
|t̄j − x̄j |

σj

for all the M available features (100 in our case), where t̄j
is the training value of the j-th feature, and x̄j and σj are
the mean and the standard deviation of the j-th feature of the
signatures presented at enrollment, respectively.

4. EXPERIMENTS

4.1. Database and experimental protocol

The MCYT on-line signature corpus is used for the experi-
ments [10]. This database contains 330 users with 25 genuine
signatures and 25 skilled forgeries per user, captured in four
acquisition sites. Forgers were asked to imitate after observ-
ing the static image of the signatures to imitate, tried to copy
them at least 10 times, and then they wrote the forgeries nat-
urally without breaks or slowdowns.

For the experiments presented here, we have followed a 3-
fold cross-validation strategy. The database has been divided
into two sets: a training set, formed by one third of the users
(users 1, 4, 7, ...; 2, 5, 8, ...; and 3, 6, 9, ... for the three it-
erations of the cross-validation procedure, respectively), and
an evaluation set, with the remaining ones. For each user
in the evaluation, the enrollment has been conducted using
1 ≤ N ≤ 15 genuine signatures. False Rejection (FRR)
and False Acceptance Rates (FAR) for 1-signature veri ca-
tion were obtained with the last 10 genuine signatures (FRR),
the 25 skilled forgeries (FAR skilled forgeries) and one gen-
uine signature from the rest of the users avoiding symmetric
matches (FAR random forgeries). Equal Error Rates (EER)
are also reported in some experiments [7].
Although the nal accept/reject decision of the system is

based on the comparison between h(s) and h(s′), we gener-
ate the matching scores for our experiments using the frac-
tional Hamming distance (FHD) between xR and yR, which
highly simpli es the experiments. This can been done be-
cause h(s) = h(s′) iff s = s′ iff FHD(c, c′) ≤ n, where n is
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Table 1. Veri cation performance of different protected con gurations for 7 enrollment signatures. Note that the number of security bits is
equal to the length of the random string s.

Con guration EER-skilled (%) EER-random (%) Security (bits) FRR (%) FAR-skilled (%) FAR-random (%)
protected-15 24.52 10.77 7 18.95 40.04 11.73

11 51.68 19.68 5.22
protected-31 20.16 5.89 11 10.73 34.85 4.22

16 36.05 15.49 1.05
protected-63 17.75 4.70 16 24.42 11.61 0.44

18 33.83 7.93 0.23

the number of correctable bits by the ECC, and:

FHD(c, c
′) = FHD(xR ⊕ h2,y

R ⊕ h2) = FHD(xR
,y

R)

In this way, we are able to estimate the performance of the
complete signature veri cation system using protected tem-
plates without actually simulating the followingmodules: ran-
dom string generation, ECC encoding/decoding, and hashing.

4.2. Results

Performance results are presented in Fig. 2. In Fig. 2 a) we
rst present the EER of different unprotected con gurations,
one based on theMahalanobis distance between the real-valued
feature vectors and the other two with a binarization of the
features with the matching scores based in the Hamming dis-
tance, for all the available 100 features and for the best 63
according to the individual ranking in [9]. We observe that
the system based onMahalanobis distance shows the best per-
formance when considering skilled forgeries with more than
5 enrollment signatures. With the other con gurations, the
binarization achieves better results in terms of the EER.
The use of binary BCH codes imposes a length for the en-

coded random string of 2n − 1, which must be smaller than
the feature vector size (100 bits). Therefore, the protected
con gurations selected for the experiments have been 15, 31
and 63 bits, which are compared in Fig. 2 b). The results
show that protected-63 is the best operating point in terms of
the EER, both for random and skilled forgeries. We also ob-
serve that the protected template performs similarly than the
unprotected system in the bin-63 con guration. In Fig. 2 c),
FRR, FAR-skilled and FAR-random curves are displayed for
1, 3 and 7 enrollment signatures for the protected-63 con g-
uration. Finally, Fig. 2 d) shows the error curves for different
con gurations with 7 enrollment signatures.
Although the EER is a good measure to compare different

con gurations, the template protection scheme that we used
in this paper does not allow to operate at the EER point (i.e.,
where FAR and FRR are equal). This is because of the nature
of the BCH codes introduced in the system, which restrict the
maximum number of correctable bits [8]. Therefore, to mea-
sure the real performance of the template protection system
we provide the FAR and FRR for xed threshold values. A
summary of the real performance of the best con gurations is
presented in the Table 1.

5. CONCLUSIONS

A biometric template protection system based on helper data
for dynamic signature veri cation has been proposed. The
performance has been evaluated using the MCYT signature
database, comprising 16,500 signatures. The protected tem-
plates are more robust against attacks to the template database,
while the results show similar performance in terms of the
EER compared to baseline unprotected con gurations. With
the proposed system, a security of 18 bits is achieved with an
FRR of 33.83% and a FAR of 7.93% and 0.23% for skilled
and random forgeries, respectively.
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