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Abstract1

This Thesis is focused on the quality assessment of biometric signals and its ap-

plication to multimodal biometric systems. Since the establishment of biometrics as an

specific research area in late 90s, the biometric community has focused its efforts in the

development of accurate recognition algorithms and nowadays, biometric recognition is

a mature technology that is used in many applications. However, we can notice recent

studies that demonstrate how performance of biometric systems is heavily affected by

the quality of biometric signals. Quality measurement has emerged in the biometric

community as an important concern after the poor performance observed in biometric

systems on certain pathological samples.

We first summarize the state-of-the-art in the biometric quality problem. We

present the factors influencing biometric quality, which mainly have to do with four

issues: the individual itself, the sensor used in the acquisition, the user-sensor interac-

tion, and the system used for processing and recognition. After that, we give strategies

to ensure the best possible quality of acquired biometric samples. Next, we present

existing frameworks for evaluation of the performance of biometric quality measures.

The relationship between human and automatic quality assessment, as well as the role

of quality measures within biometric systems is then analyzed. Lastly, we summarize

standardization efforts related to biometric quality and we point out further issues and

challenges of the quality problem.

The experimental part of the Thesis starts with the study of quality in fingerprint

images. We evaluate the impact of selected image quality measures in the performance

of the two most used approaches for fingerprint recognition using a multi-session and

a multi-sensor database. It is observed high correlation between the different quality

measures in most cases, although some differences are found depending on the sensor.

The behavior of the two matchers under varying image quality conditions has been also

found to be different.

We then study the problem of quality assessment in off-line signature images. We

present several measures aimed to predict the performance of off-line signature verifica-

tion systems measuring factors like signature legibility, complexity, stability, duration,

etc. We also present a new matcher based on local contour features, which is com-

pared with two other approaches. Some remarkable findings of this chapter are that

1Se incluye un resumen extenso de la Tesis en español en el Caṕıtulo 7.



better performance is obtained with legible signatures and skilled forgeries, or that

performance is worsened with highly variable signatures.

Finally, we contribute with a quality-based multibiometric architecture that is gen-

eralizable to biometric systems working with multiple sources of information (different

modalities, matchers, acquisition devices, etc.). In this approach, quality is used to

switch between different system modules depending on the data source, and to con-

sider only data of enough quality. We compare the proposed architecture with a set of

simple fusion rules. It is demonstrated that the proposed system outperforms the rest

when coping with signals originated from heterogeneous biometric sources, pointing

out its effectiveness. An additional overall improvement of 25% is observed in the

EER by incorporating a quality-based score rejection scheme, showing the benefits of

incorporating quality information in biometric systems.
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Chapter 1

Introduction

This PhD Thesis is focused on biometric sample quality assessment, and its ap-

plication in multimodal biometric systems. In particular, this PhD Thesis explores the

quality assessment problem in two traits: fingerprints and signature images. Contrar-

ily to fingerprint images, where we can objectively define quality, in behavioral traits

like signature it is not straightforward to define what quality is. We also explore the

incorporation of quality information in multibiometric systems, showing the benefits of

adapting the system to the quality of the sample at hand.

Every human being has experience in recognizing a familiar person based on his/her

specific characteristics, like voice, face, gait, handwriting, signature and so on. Some

people, more than others, have even the ability to recognize unknown persons, after

having seen or heard them. Nowadays, due to the expansion of the networked society,

there as increasing need for reliable personal identification by automatic means. Estab-

lishing the identity of individuals is recognized as fundamental not only in numerous

governmental, legal or forensic operations, but also in a large number of civilian ap-

plications. This has resulted in the establishment of a new research and technology

area known as biometric recognition, or simply biometrics (Jain et al., 2006). The

term “biometrics” refers to automatic recognition of an individual based on behavioral

and/or anatomical characteristics (e.g., fingerprints, face, iris, voice, signature, etc.).

The difficulties associated with person identification and individualization were al-

ready highlighted by the pioneers of forensic sciences. Alphonse Bertillon developed in

the eighteenth century an anthropometric identification approach, based on the measure

of physical characteristics of a person (Bertillon, 1893). Automatic person authentica-

tion has been a subject of study for more than thirty five years (Atal, 1976; Kanade,

1973), although it has not been until the last decade when biometric research has been
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established as an specific research area (Bolle et al., 2004; Jain et al., 1999, 2008; Li

and Jain, 2004; Maltoni et al., 2003; Nanavati et al., 2002; Ratha and Bolle, 2004;

Ross et al., 2006; Wayman et al., 2005; Zhang, 2002). In order to provide certain ser-

vices, a variety of applications require reliable confirmation of a person’s identity by

recognizing an individual. The increasing interest of biometrics in the last years is also

evidenced by efforts focused on the organization of specific conferences (AVBPA, 2005;

BTAS, 2007; ICB, 2007; ICBA, 2004; SPIE-BTHI, 2008), several cooperative interna-

tional projects (BioSec, 2004; BioSecure, 2004; COST-2101, 2006; COST-275, 2003),

the standardization in the field of biometrics (BioAPI, 1998; CBEFF, 2001; INCITS

M1, 2007; ISO/IEC JTC1 SC37, 2002) and the development of common benchmark

tools and evaluation campaigns for biometric systems (BMEC, 2007; FpVTE, 2003;

FRVT, 2006; FVC2006, 2006; ICE, 2006; Mansfield and Wayman, 2002; NIST SRE,

2006; SVC, 2004; Wayman et al., 2005). There has been also in the last years an increas-

ing institutional interest from government (DoD, 2007), industry (IBG, 2007), research

bodies (NIST-ITL, 2007) and the establishment of international consortia dedicated

specifically to biometric recognition (BC, 2005; EBF, 2003).

This introductory chapter presents the basics of biometric systems, including prop-

erties, common performance measures and the combination of multiple sources of bio-

metric information into a multibiometric system. We also outline the topic of biometric

quality assessment, from which the motivation of this Thesis is also derived. We finish

the chapter by stating the Thesis, giving an outline of the Dissertation, and summariz-

ing the research contributions originated from this work.

Although no special background is required for this chapter, the reader will benefit

from introductory reading in biometrics as Jain et al. (2006, 2004b). A deeper reference

is Jain et al. (2008).

1.1 Biometric systems

A biometric system essentially makes use of behavioral or anatomical characteristics

to recognize individuals by means of pattern recognition techniques and statistical

methods. Biometric systems are used nowadays in many government and civilian ap-

plications, offering greater convenience and several advantages over traditional security

methods based on something that you know (normally a secret password or PIN, which

can be shared, forgotten or copied) or something that you have (a physical object that

is presented to receive access, such as keys, magnetic cards, identity documents, etc.,

which can be shared, stolen, copied or lost). Without sophisticated means, biometrics
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are difficult to share, steal or forge and cannot be forgotten or lost. Therefore, this

latter solution provides a higher security level in identity prove. In addition, the com-

bination of possession and knowledge with biometrics makes the identity proof even

more secure.

Such a system involves four aspects (Jain et al., 2000): data acquisition and pre-

processing, feature extraction, similarity computation and decision-making. The digital

representation recorded in the system database, which describes the characteristics or

features of a physical trait, is defined as a template. It is obtained by a feature extrac-

tion algorithm, and is generated through an enrolment or training process, which is

depicted in Figure 1.1 (top). The recognition process can be performed in two modes

by a biometric system (Jain et al., 2008):

• Identification. In this mode, the correct identity of an unknown person is

selected from the database of registered identities. It is called a “one to many”

matching process, because the system is asked to complete a comparison between

the persons biometrics and all the biometric templates stored in the database

(Figure 1.1, middle). The system can take either the “best” match, or it can

score the possible matches, and rank them in order of similarity. Two modes of

identification are possible, positive and negative. The positive identification tends

to determine if a given person is really in a specific database, whereas a negative

identification determines if a given person is not in a “watchlist” database.

• Verification. This mode consists in verifying whether a person is who he or she

claims to be. It is called a “one to one” matching process, as the system has

to complete a comparison between the person’s biometric and only one chosen

template stored in the database (Figure 1.1, bottom). Such a method is applied

when the goal is to secure and restrict specific accesses with obviously cooperative

users.

This Thesis is focused on biometric verification (also called authentication). In

this mode, the clients or targets are known to the system (through the enrolment

process), whereas the impostors can potentially be the world population. The result

of the comparison between the biometric sample X provided by the user and his/her

claimed identity T is a similarity score s, which can be further normalized to sn before

comparing it to a decision threshold. If the score is higher than the decision threshold,

then the claim is accepted, otherwise the claim is rejected.

Depending on the biometric trait used by the system, impostors may know infor-

mation about the client that lowers verification performance when it is exploited (e.g.

3
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Figure 1.1: System model of biometric authentication.

signature shape in signature verification). As a result, two kinds of impostor are usu-

ally considered, namely: i) casual impostors (producing random forgeries in case of

signature recognition), when no information about the target user is known, and ii)

real impostors (producing skilled forgeries in the case of signature recognition), when

some information regarding the biometric trait being forged is used.

Biometric traits can be classified into anatomical and behavioral traits (Jain et al.,

2006). Examples of anatomical traits are: iris, fingerprint, hand, retinal scan, DNA, etc.

and examples of behavioral traits are: speech, signature, handwriting, etc. Anatomical

characteristics can be measured on a part of the body at some point in time (passive),

and are always present. On the other hand, behavioral characteristics are learned or

acquired over time (active) and are produced with a special effort, requiring a “realiza-

tion” (e.g. a signature realization or a voice utterance). Hence, they are dependent to

some degree on the individual’s state of mind. Because of that, anatomical traits show

less time variability than behavioral traits. Voice biometric is viewed as a combination

4
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1.1 Biometric systems

Figure 1.2: Example of biometric traits.

of anatomical and behavioral traits (Jain et al., 2004b). Indeed, the voice depends on

physical features such as vibrations of vocal cords and vocal tract shape, but also on

behavioral features, such as the state of mind of the person who speaks.

Some of these traits have a long history and can be considered mature technologies.

But contrary to the common belief, most of them, even the established traits like

fingerprints (Maltoni et al., 2003) are still challenging research topics. Examples of

several biometric traits are given in Figure 1.2.

Ideally any human characteristic should satisfy the following properties to be used

as a biometric identifier (Jain et al., 2004b):

• Robustness over time: the characteristic should not change (Permanence).

• Distinctiveness over the population: a great variation of the characteristic

should exist (Uniqueness).

• Availability: Ideally, the whole population should possess the characteristic

(Universality).

5

ChapterIntro/Figures/example_traits.eps
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• Accessibility: The characteristic should be easy to acquire (Collectability).

Besides these basic properties, some additional properties have to be considered in

the context of a biometric system:

• Performance, which refers to all the factors that influence and affect the accu-

racy, efficiency, robustness, computational speed and resource requirements of a

biometric system.

• Acceptability: The population should accept the fact that the characteristic is

taken from them.

• Circumvention, which refers to the ability of a system to resist against potential

threats and spoof attacks.

• Exception handling, which has to do with the ability to complete a manual

matching process in the case of an impossibility of feature extraction and modality

use for certain persons.

• System cost, which refers to all the costs of the system components, in adequate

and normal use.

A practical biometric system should meet the specified recognition accuracy, speed,

and resource requirements, be harmless to the users, be accepted by the intended

population, and be sufficiently robust to various fraudulent methods and attacks to

the system. Unfortunately, none single biometric satisfies all the above mentioned

properties. While some biometrics have easy and friendly collectability (e.g. face or

voice), their distinctiveness is low. Other biometrics with high distinctiveness are not

easy to acquire (e.g. iris).

1.2 Multibiometric systems

In multibiometric systems, multiple sources of biometric information are combined with

the purpose of overcoming some of the limitations shown by unibiometric systems (Ross

et al., 2006). Using a single trait for recognition is often affected by practical problems

like:

1. Noise in sensed data due to imperfect or variable acquisition conditions, resulting

in individuals being incorrectly rejected by the system.
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2. Non-universality, due to individuals whose biometric data is not meaningful to

the system, resulting in a Failure to Enroll (FTE) error and in the need of an

exception procedure to handle with them.

3. Lack of distinctiveness of the biometric trait, due to an implicit upper bound in

the recognition accuracy that a trait can provide.

4. Spoof attacks by means of imitation of behavioral traits (voice, signature, etc.)

or synthetic reproductions of anatomical traits (e.g. fingerprint or iris), resulting

in impostors being incorrectly accepted.

The use of multiple biometric indicators for identifying individuals has been shown

to increase accuracy and population coverage, while decreasing vulnerability to spoof-

ing. Multibiometric systems integrate the evidence presented by multiple sources. Two

broad levels of fusion can be defined: fusion before matching and fusion after matching.

Fusion before matching include fusion at the sensor and the feature level, while fusion

after matching include fusion at the matching score, rank and decision levels. This

classification is based on the fact that the amount of information available for fusion is

enormously reduced once the matching is done. Integration at the matching score level

is the most common approach in multibiometric systems due to the ease in accessing

and processing the scores generated by different matchers (Fierrez-Aguilar, 2006; Ross

et al., 2006). In score-level fusion, the different scores are combined to generate a new

matching score that is then used for recognition.

Fusion methods at the matching score level are broadly classified into three cat-

egories: density-based methods, transformation-based methods and classifier-based

methods (Ross et al., 2006). In density-based fusion methods, joint-density functions

p (s|ω0) and p (s|ω1) of the genuine (ω0) and impostor (ω1) classes are estimated for a

given score vector s = [s1, s2, · · · , sR], where R is the number of matchers. The Bayes

decision rule is then applied (Duda et al., 2004):

Assign s → ωi if
p(s|ωi)
p(s|ωj)

> τ, i 6= j and i, j = {0, 1} (1.1)

where p (s|ωi) /p (s|ωj) is a likelihood ratio and τ = P (ωj)/P (ωi) is a pre-determined

threshold that depends on the a priori probability of observing classes ωj and ωi
1.

1Bayes’ rule as expressed here assumes that the cost of each type of misclassification error is the
same for all possible classes (Duda et al., 2004). Since this particularization has not been considered
in this Thesis, we will not introduce misclassification costs for clarity.
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Estimation of the density p (s|ωi) is done from a training set of matching score vec-

tors using parametric or non-parametric techniques. Several approaches following this

method have been proposed in the literature (Dass et al., 2005; Kittler et al., 1998; Ross

et al., 2006). In order to accurately estimate the density functions, a large number of

training samples is usually needed, especially if the dimensionality of the vector s is

large. In transformation-based fusion methods, matching scores are directly combined

using simple fusion operators (such as the sum of scores, the maximum/minimum, etc.)

(Kittler et al., 1998). In this case, a normalization process is needed to transform the

different matching scores into a common domain (Jain et al., 2005). Classifier-based fu-

sion methods use the matching scores from the multiple matchers as input to a trained

pattern classifier (Duda et al., 2004) in order to determine the class label (genuine or

impostor), instead of giving an scalar value. In this case, the scores usually do not

need to be transformed into a common domain prior to the classification, and a large

number of training samples is also often needed to compute the parameters of the clas-

sifier. Several classifiers have been used in the biometric literature to combine scores

from different matchers: hyper BF networks (Brunelli and Falavigna, 1995), k-Nearest

Neighbors (Verlinde and Chollet, 1999), decision trees (Ben-Yacoub et al., 1999; Ross

and Jain, 2003; Verlinde and Chollet, 1999), linear logistic regression (Verlinde and

Chollet, 1999), k-means and fuzzy clustering (Chatzis et al., 1999), Support Vector Ma-

chines (SVM) (Ben-Yacoub et al., 1999; Fierrez-Aguilar et al., 2005a,e; Garcia-Romero

et al., 2003), multilayer perceptrons (Ben-Yacoub et al., 1999), Fisher discriminants

(Ben-Yacoub et al., 1999; Wang et al., 2003), Bayesian classifiers (Ben-Yacoub et al.,

1999; Bigun et al., 1997) and neural networks (Wang et al., 2003).

1.3 Quality information in biometric systems

Quality assessment algorithms have been developed mainly for fingerprint images (Alonso-

Fernandez et al., 2007c) and recently, for iris (Chen et al., 2006a; Kalka et al., 2005),

voice, (Garcia-Romero et al., 2006; Richiardi and Drygajlo, 2008; Richiardi et al., 2007),

face (Kryszczuk and Drygajlo, 2007) and signature signals (Alonso-Fernandez et al.,

2007a; Muller and Henniger, 2007). In many of these works, it is demonstrated that the

performance of a biometric system is heavily affected by the quality of biometric signals.

Biometric quality assessment is an active field of research in recent years (BQW, 2007;

Grother and Tabassi, 2007) and even the best verification systems worldwide struggle in

the presence of noisy images, as demonstrated in the series of International Fingerprint

Verification Competitions, FVC (Cappelli et al., 2006b). The series of FVC competi-
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tions have been organized biannually since 2000 by the Biometrics Systems Laboratory

of Bologna University, the Pattern Recognition and Image Processing Laboratory of

Michigan State University, the Biometric Test Center of San Jose State University and,

more specifically, in FVC2006 also by the ATVS/Biometric Recognition Group of the

Universidad Autonoma de Madrid. In the first competition FVC2000, data consisted

of fingerprint images acquired without any special restrictions, and the best system

obtained an average Equal Error Rate (EER) of 1.73%. In the 2002 edition, data were

also acquired without special restrictions, and average error rates decreased signifi-

cantly (0.19% EER for the best system). In some sense, these results demonstrated

the maturity of fingerprint verification systems. But in the 2004 edition, image qual-

ity of the acquired data was artificially corrupted by using an acquisition procedure

with exaggerated plastic distortions, artificial dryness and moistness. Surprisingly, the

results of FVC2004 were much worse even than those in FVC2000 (an average EER

of 2.07% for the best system), thus demonstrating that degradation of quality has a

severe impact on the recognition rates.

Recent efforts have also been focused on the standardization of biometric quality

information and its incorporation to biometric data structures (Benini, 2007; Benini

and et al, 2003, 2006). There are a number of roles regarding a quality measure in

the context of biometric systems (Benini, 2007; Grother and Tabassi, 2007): i) qual-

ity algorithms may be used as a monitoring tool (Ko and Krishnan, 2004) in order

to accumulate relevant statistics of the system (e.g. to identify sources experiencing

problems and submitting poor quality samples); ii) quality of enrolment templates

and/or samples acquired during an access transaction can be controlled by acquiring

until satisfaction (recapture); and iii) some of the steps of the recognition system can

be adjusted based on the estimated quality (quality-based conditional processing).

A number of recent works have followed this last direction. The algorithm pro-

posed by Fronthaler et al. (2008) discards unreliable fingerprint regions from the score

decision. Chen et al. (2005) proposed a fingerprint matching algorithm in which high

quality minutiae contribute more to the computation of the matching score. Quality

measures are used as weights for matching distances of an iris recognition system by

Chen et al. (2006a). Alonso-Fernandez et al. (2007c) studied the effect of rejecting

low quality samples using a selection of fingerprint quality estimation algorithms and

a database acquired with three sensors of different technology. Several works have

also taken into account how differences among fingerprint capture devices impact on

the quality measure computation (Alonso-Fernandez et al., 2008; Grother et al., 2005;

Kang et al., 2003; Sickler and Elliott, 2005).
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Quality information has also been incorporated in a number of multimodal fusion

approaches. Garcia-Romero et al. (2006) adapted the standard SVM fusion approach

to take into account the quality information of speech signals. Fierrez-Aguilar et al.

(2006) used an adaptive score-level fusion approach which exploits differences in be-

havior of two fingerprint matchers as image quality varies, which can be seen as a

particular example of their more general quality-based fusion approach presented in

Fierrez-Aguilar et al. (2005e). Nandakumar et al. (2006) proposed a likelihood ratio-

based fusion scheme that takes into account the quality of the biometric samples when

estimating the joint densities of the genuine and impostor classes. A novel device-

specific quality-dependent score normalization technique is presented by Poh et al.

(2007). Fronthaler et al. (2008) introduced a Bayesian-adaptive cascaded scheme that

dynamically switches on different matchers in case of low quality and adapts fusion pa-

rameters based on past performance of the matchers. Finally, Kryszczuk and Drygajlo

(2008) presented a theoretical framework of credence estimation and error prediction

in multibiometric systems, showing how erroneous classification decisions are better

handled using quality measures.

1.4 Performance evaluation of biometric systems

In first research works on biometrics conducted over three decades ago, it was common

to evaluate biometric products on small custom or proprietary datasets (Atal, 1976;

Kanade, 1973) and therefore, experiments were not repeatable and a comparative as-

sessment could not be accomplished. As biometric systems are being deployed, joint

efforts have been conducted to perform common experimental protocols and technology

benchmarks. Several evaluation procedures (Mansfield and Wayman, 2002), databases

and competitions have been settled in the last years, e.g. the NIST Speaker Recognition

Evaluations (NIST SRE, 2006), the FERET and FRVT Face Recognition Evaluations

(FRVT, 2006), the series of Fingerprint Verification Competitions (FVC) (FVC2006,

2006), the Iris Challenge Evaluation (ICE) (ICE, 2006) or the Signature Verification

Competition (SVC) (SVC, 2004).

Different rates can be used to quantify the different properties of biometric systems

described in Section 1.1. In this Thesis, we concentrate on performance indicators to

compare different systems, and more specifically on the accuracy of the authentication

process. We do not consider other performance indicators that are strongly related to

particular implementations and hardware/software architectures, as the computational

efficiency, resources, speed, etc.

10



1.4 Performance evaluation of biometric systems

Figure 1.3: Example of verification performance comparison with ROC (left)
and DET (right) curves.

Biometric authentication can be considered as a detection task, involving a tradeoff

between two types of errors (Ortega-Garcia et al., 2004): i) Type I error, also named

False Rejection Rate (FRR) or miss (detection), occurring when a client, target, genuine

or authorized user is rejected by the system, and ii) Type II error, known as False

Acceptance Rate (FAR) or false alarm, taking place when an unauthorized or impostor

user is accepted as being a true user. Although each type of error can be computed

for a given decision threshold, a single performance level is inadequate to represent

the full capabilities of the system and, as such a system has many possible operating

points, it is best represented by a complete performance curve. These total performance

capabilities have been traditionally shown in form of ROC (Receiver - or also Relative -

Operating Characteristic) plot, in which FAR versus FRR is depicted for all the possible

decision thresholds. A variant of the ROC curve, the so-called DET (Detection Error

Tradeoff) plot, is used in this work (Martin et al., 1997). In the DET curve, the use of a

normal deviate scale makes the comparison of competing systems easier. A comparison

between ROC and DET curves for two hypothetical competing verification systems A

and B is given in Figure 1.3.

A specific point is attained when FAR and FRR coincide, the so-called EER (Equal

Error Rate). The global EER of a system can be easily detected by the intersection

between the DET curve of the system and the diagonal line y = x. Nevertheless,

and because of the step-like nature of FAR and FRR plots, EER calculation may be

ambiguous according to the above-mentioned definition, so an operational procedure

11

ChapterIntro/Figures/ROCDET.eps
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for computing the EER must be followed. In this work, the procedure for computing

the EER described by Maio et al. (2002) has been applied.

1.4.1 Statistical significance of experimental results

In the work presented by Guyon et al. (1998), the minimum size of the test data set,

N , that guarantees statistical significance in a pattern recognition task is derived. The

goal was to estimate N so that it is guaranteed, with a risk α of being wrong, that the

probability of error P does not exceed the estimated error rate from the test set, P̂ , by

an amount larger than ε (N,α), that is

Pr
{

P > P̂ + ε (N,α)
}

< α. (1.2)

Letting ε (N,α) = βP , and supposing recognition errors as Bernouilli trials (Pa-

poulis, 1984), we can derive the following relation:

N ≈ − ln α

β2P
. (1.3)

For a typical configuration (α = 0.05 and β = 0.2), the following simplified criterion

is obtained:

N ≈ 100/P. (1.4)

If the samples in the test data set are not independent (due to correlation factors

including the recording conditions, some types of sensors, certain groups of users, etc.)

then N must be further increased. The reader is referred to Guyon et al. (1998) for a

detailed analysis.

1.5 Motivation of the Thesis

Provided that the performance of a biometric system is heavily affected by the quality

of biometric signals, this Thesis is focused on the biometric quality assessment problem,

and its application in multimodal biometric systems. The research carried out in this

Thesis is motivated by the following observations from the state-of-the-art:

• Prior work on quality evaluation and sample quality analysis is limited (Grother

and Tabassi, 2007). Biometric quality measurement is an operationally important

and difficult step that is nevertheless massively under-researched in comparison

to the primary feature extraction and pattern recognition task. Although many
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quality assessment algorithms have been developed, mainly for fingerprint images,

they have been tested under limited and heterogenous frameworks. It has not been

until the last years when the concept of sample quality has been formalized and a

framework for evaluating biometric quality measures has been proposed (Grother

and Tabassi, 2007; Youmaran and Adler, 2006). Thus, there are no comparative

studies of biometric quality algorithms under a common framework, using the

same dataset and the same protocol.

• Previous studies have shown that the performance of biometric systems is heavily

affected by the quality of biometric signals. For the case of fingerprints, the two

most popular approaches for fingerprint recognition are found to behave differ-

ently as image quality varies (Fierrez-Aguilar et al., 2006). Some works have also

taken into account how differences among fingerprint capture devices impact on

the quality measure computation (Grother et al., 2005; Kang et al., 2003; Sickler

and Elliott, 2005). However, results are based on an specific quality assessment

algorithm and/or databases acquired with a single sensor. It can be hypothesized

that using other quality assessment algorithms or fingerprint sensors may lead to

different results.

• In behavioral biometric traits such as signature, it is harder to define what quality

is. There are studies that relate performance with signature complexity or vari-

ability (Allgrove and Fairhurst, 2000; Fierrez-Aguilar et al., 2005d). The effect of

different features extracted automatically from online signatures is also studied

by Muller and Henniger (2007). There are also works focused on speech quality

(Garcia-Romero et al., 2006). However, prior work on sample quality analysis for

behavioral traits is quite limited.

• Additional problems may arise when a biometric device is replaced without re-

acquiring the corresponding template (Poh et al., 2007), or when a biometric tem-

plate is matched against a template generated using a different algorithm (Grother

et al., 2005). These are common interoperability problems, which typically are not

specifically overcome by biometric systems, and thus lower the recognition perfor-

mance, sometimes dramatically (Alonso-Fernandez et al., 2005c, 2006c; Grother

et al., 2005; Ross and Jain, 2004). Unfortunately, as biometric technology is ex-

tensively deployed, it will be a common situation to replace parts of operational

systems as they are damaged or newer designs appear, or to exchange informa-

tion among several applications involving systems developed by different vendors

(Poh et al., 2007). Examples are the necessity of all ePassports issued by each
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country to be readable by readers placed at borders of other countries, or indi-

viduals remotely accessing to a system using their own sensor (e.g. a PDA or

mobile telephone with biometric signal acquisition capabilities).

• Incorporating biometric quality information in multibiometric systems is cur-

rently a research challenge (BMEC, 2007; BQW, 2007). Multibiometric systems

integrate the evidence presented by multiple biometric systems (Jain et al., 2006).

Such systems are more robust to variations in the sample quality as shown in sev-

eral studies (Fierrez-Aguilar et al., 2006; Nandakumar et al., 2006). Incorporation

of quality information in biometric systems can also provide additional improve-

ment (BQW, 2007; Fierrez-Aguilar et al., 2005e; Grother and Tabassi, 2007). For

example, dynamically assigning weights to the outputs of individual matchers

based on the quality of the samples presented at the input (quality-based fusion)

can improve the overall recognition performance. Other works (Chen et al., 2005)

are focused on adapting the steps of the recognition system based on the quality

of the samples (quality-based conditional processing).

These observations will be discussed in Chapter 2, in which the biometric quality

assessment problem is analyzed in depth.

1.6 The Thesis

The Thesis developed in this Dissertation can be stated as follows:

The incorporation of quality information in biometric systems can provide sig-

nificant benefits in their performance. Examples of quality-based approaches

in biometrics include the adaptation of parts of the system to the quality of the

sample at hand, and the reacquisition of samples that do not satisfy certain

quality criteria.

To incorporate quality information in a biometric system, we first should assess

how the system performance is affected by the quality of biometric signals. This task

is addressed in Chapters 3 and 4 for fingerprints and signature, respectively. An exper-

imental study of system adaptation to the quality of biometric signals is carried out in

Chapter 5, in which we propose a multibiometric system architecture generalizable to

biometric systems working with heterogeneous sources of information.
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1.7 Outline of the Dissertation

The main objectives of this PhD Thesis are as follows:

1. Review and study of the problem of biometric quality analysis.

2. Definition of a framework for evaluating biometric quality measures.

3. Review of existing fingerprint quality assessment algorithms, including the imple-

mentation of a representative set and a comparative evaluation.

4. Review of existing signature quality assessment algorithms, including the proposal

of new quality measures and a comparative evaluation.

5. Incorporation of biometric quality measures in multibiometric systems, including

quality-based fusion and quality-based conditional processing.

This Dissertation is structured according to a traditional complex type (Paltridge,

2002) with literature review, theoretical and practical methods and three experimental

studies in which the methods are applied. The chapter structure is as follows:

• Chapter 1 introduces the topic of biometric systems and gives the motivation,

outline and contributions of this PhD Thesis.

• Chapter 2 summarizes related works and details the motivations for this Thesis

based on these previous works.

• Chapter 3 studies the problem of quality assessment of fingerprint images. The

taxonomy of existing approaches for fingerprint image quality assessment is a

contribution of this PhD Thesis, therefore they will be presented in some detail.

• Chapter 4 studies the problem of quality assessment of signature images. Several

measures to predict the performance of signature systems are proposed as contri-

bution. Also, one of the three verification systems used is a contribution of this

PhD Thesis.

• Chapter 5 conducts a study of system adaptation to the quality of biometric

signals. We contribute with a quality-based multibiometric architecture that is

generalizable to biometric systems working with heterogeneous sources of infor-

mation.
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Chapter 1:
“Introduction”

Chapter 2:
“Quality measures

Chapter 3:
“Fingerprint quality”

Chapter 4:
“Signature quality”

Chapter 5:
“Quality in multibiometrics”

Chapter 6:
“Conclusions”

Preceeding block is required
Preceeding block is recommended

Introduction, related works, methods,
materials, and conclusions

Chapters reporting experimental results

in biometrics”

Figure 1.4: Dependence among Dissertation chapters.
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• Chapter 6 concludes the Dissertation summarizing the main results obtained and

outlining future research lines.

The dependence among the chapters is illustrated in Figure 1.4. In order to properly

follow the experimental chapters, a background in biometric systems and multibiomet-

rics is desirable. We refer the reader to introductory readings in these topics (Jain and

Ross, 2004; Jain et al., 2006, 2004b). For a deeper view, we refer to Jain et al. (2008);

Ross et al. (2006).

Some methods developed in this PhD Thesis are strongly based on popular ap-

proaches from the pattern recognition literature. The reader is referred to standard

texts for a background on the topic (Duda et al., 2004; Jain et al., 2000; Theodoridis

and Koutroumbas, 2003). Chapters 3 and 4 assume a knowledge of the fundamentals

of image processing (Gonzalez and Woods, 2002). Chapter 3 also assumes knowledge

of the fundamentals of computer vision (Bigun, 2006).

1.8 Research contributions

The research contributions of this PhD Thesis are the following (some publications

appear in several items of the list):

• Literature reviews.

1. A taxonomy of fingerprint image quality assessment algorithms (Alonso-

Fernandez et al., 2007c, 2005b).

2. State of the art in fingerprint verification (Alonso-Fernandez et al., 2008a).

• Novel methods.

1. Novel methods for signature quality assessment and performance prediction

(Alonso-Fernandez et al., 2007a,b).

2. Novel methods for quality-based multimodal verification generalizable to

biometric systems working with multiple sources of information (Alonso-

Fernandez et al., 2008b).

• New biometric systems.

1. A new off-line signature verification system based on contour features (Gilperez

et al., 2008), developed jointly with Pecharroman-Balbas (2007).
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• New experimental studies.

1. Comparative evaluation of fingerprint quality measures depending on sensor

technology using a minutiae- and a ridge-based matcher (Alonso-Fernandez

et al., 2007c, 2008; Fierrez-Aguilar et al., 2005b).

2. Evaluation of impact of signature legibility and signature type in the per-

formance of three off-line signature verification systems (Alonso-Fernandez

et al., 2007b).

3. Evaluation of performance of off-line signature verification systems in terms

of two new proposed measures aimed to estimate signature stability/variability

(Alonso-Fernandez et al., 2007a).

4. Study of combination of different contour features for off-line signature ver-

ification (Gilperez et al., 2008).

5. Study of system adaptation to the quality of biometric signals coming from

different sources, including quality-based fusion and quality-based condi-

tional processing (Alonso-Fernandez et al., 2008b).

• New biometric data.

1. A new multimodal database including face, speech, signature, fingerprint,

hand and iris data modalities from more than 650 subjects acquired within

the framework of the BioSecure Network of Excellence (Alonso-Fernandez

et al., 2008b). This new database is unique in its class, in the sense that

it includes three scenarios in which the subjects have been simultaneously

acquired (over the Internet, in an office environment with a PC, and in

indoor/outdoor environments with mobile devices). Part of this database is

used in the experimental section of Chapter 5.

Other research contributions by the author during his PhD studies that fall outside

of the scope of his Ph.D. Thesis include:

• Literature reviews.

1. State of the art in on-line signature verification in the framework of the

BioSecure Network of Excellence (Garcia-Salicetti et al., 2008).

2. Review of fingerprint and signature databases and evaluations (Alonso-Fernandez

and Fierrez, 2008; Garcia-Salicetti et al., 2008).
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3. Review of biometrics and its applications (Alonso Fernandez et al., 2008).

• New biometric systems.

1. An iris verification system based on Gabor features, developed jointly with

Tome-Gonzalez (2008).

• New biometric applications.

1. Application of signature verification to portable Tablet PC and PDA devices

(Alonso-Fernandez et al., 2005a, 2006a; Martinez-Diaz et al., 2007).

• Novel methods.

1. New multialgorithm fingerprint adaptive fusion schemes based on image

quality (Fronthaler et al., 2008).

2. New user-dependent score normalization scheme that exploits quality infor-

mation (Alonso-Fernandez et al., 2006b).

• New experimental studies.

1. Multi-algorithm fingerprint and signature verification in the framework of

the BioSecure Network of Excellence (Alonso-Fernandez et al., 2008a, 2007d;

Garcia-Salicetti et al., 2007, 2008).

2. Study of the capability of fingerprint quality measures to discriminate be-

tween images of different quality (Alonso-Fernandez et al., 2005b, 2007e,

2008).

3. Attacks to fingerprint recognition systems (Galbally-Herrero et al., 2006;

Martinez-Diaz et al., 2006) and iris recognition systems (Ruiz-Albacete et al.,

2008).

4. Study of sensor interoperability and sensor fusion in fingerprint and on-line

signature verification (Alonso-Fernandez et al., 2005c, 2006c).

5. Study of effects of image quality in the performance of individual users with

a multisensor database on a minutiae-based fingerprint verification approach

(Alonso-Fernandez et al., 2006b).

6. Study of effects of time variability in iris recognition (Tome-Gonzalez et al.,

2008).
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• New biometric data.

1. A new on-line signature database of 53 subjects acquired with Tablet PC

(Alonso-Fernandez et al., 2005a).

2. A new multimodal database including speech, iris, face, signature, finger-

prints, hand and keystroking modalities from 400 subjects acquired within

the framework of the BiosecurID project funded by the Spanish MEC (Gal-

bally et al., 2007).

• Public technical reports.

1. Activities carried out within the BioSecure Network of Excellence, available

at BioSecure (2004): 1) acquisition of a new multimodal database, to be

released soon, activity in which the author has been actively involved (Al-

lano et al., 2007; Ortega-Garcia and Alonso-Fernandez, 2005a; Ortega-Garcia

et al., 2006b,c, 2007), 2) legal issues regarding biometric data (Ortega-Garcia

et al., 2006a), 3) reports on existing biometric databases and tools (Ortega-

Garcia and Alonso-Fernandez, 2005b; Ortega-Garcia et al., 2006d), 4) re-

ports on activities carried out on specific fields of interest for the author

(Veldhuis et al., 2006, 2007).
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Chapter 2

Quality Measures in Biometric

Systems

Biometric quality measurement is an operationally important step that is nev-

ertheless under-researched in comparison to the primary feature extraction and pattern

recognition task. Recently, quality measurement has emerged in the biometric commu-

nity as an important concern after the poor performance observed in biometric systems

on certain pathological samples (Grother and Tabassi, 2007). There are a number of

factors that can affect the quality of biometric signals, and there are numerous roles

of a quality measure in the context of biometric systems. Standardization bodies are

also developing standards that incorporate quality measures in existing standardized

biometric data storage and exchange formats.

Since 2006, it is celebrated a new Workshop sponsored by the National Institute

of Standards and Technology (NIST) that is dedicated to Biometric Quality Mea-

surements (BQW, 2007). Also, independent evaluations of commercial and research

prototypes conducted during the last decade include in each edition new scenarios and

conditions that are progressively more difficult in nature. We observe that, in many

cases, this results in a performance worsening, and it is not until the next edition that

the algorithms show progress under the new challenging conditions. For instance, in

the 2000 and 2002 editions of the International Fingerprint Verification Competition,

FVC (Cappelli et al., 2006b), the fingerprint samples used were acquired without any

special restriction, resulting in a decrease of one order of magnitude in the error rates

(see Table 2.1). However, in the 2004 edition, fingerprint samples were intentionally

corrupted (e.g. by asking people to exaggeratedly rotate or press the finger against
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2. QUALITY MEASURES IN BIOMETRIC SYSTEMS

database 2000 2002 2004 2006

DB1 0.67% 0.10% 1.97% 5.56%

DB2 0.61% 0.14% 1.58% 0.02%

DB3 3.64% 0.37% 1.18% 1.53%

DB4 1.99% 0.10% 0.61% 0.27%

average 1.73% 0.19% 2.07% 2.16%

Table 2.1: Results in terms of Equal Error Rate (EER) of the best performing
algorithm in each of the four databases of the FVC competitions (Cappelli
et al., 2006b).

the sensor, or by artificially drying or moisturizing the skin with water or alcohol).

The result was that the error rates of the best systems were much worse (an order of

magnitude) than those of previous editions, although the technology improvement for

good quality images. This result shows the significant impact that the degradation

of quality can have on the recognition performance, and highlights the importance of

measuring and dealing with it in biometric systems.

This chapter summarizes the state-of-the-art in the biometric quality problem, giv-

ing an overall framework of the different factors related to it. It is structured as

follows. We first define what sample quality is from the point of view of biometric

systems. Next, we present the factors influencing biometric quality and the strategies

to ensure the best possible quality of acquired biometric samples. Next, we present

existing frameworks for evaluation of the performance of biometric quality measures.

The relationship between human and automatic quality assessment, as well as the role

of quality measures within biometric systems is then analyzed. Lastly, we summarize

standardization efforts related to biometric quality and we point out further issues and

challenges of the quality problem.

Original contributions in this chapter include a taxonomy of factors affecting bio-

metric quality, a taxonomy of strategies to ensure good quality in acquired biometric

samples, and a taxonomy of roles of quality measures in the context of biometric sys-

tems.
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Figure 2.1: Definition of biometric quality from three different points of view: character, fidelity or utility.
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2. QUALITY MEASURES IN BIOMETRIC SYSTEMS

Figure 2.2: Factors affecting the quality of biometric signals.

2.1 Definition of biometric sample quality

It has not been until the last years that there is consensus about what biometric sample

quality is. Broadly, a sample is of good quality if it is suitable for personal recognition.

Recent standardization efforts (Benini and et al, 2006) have established that biometric

sample quality can be considered from three different points of view, see Figure 2.1:

i) character, which refers to the quality attributable to inherent physical features of

the subject; ii) fidelity, which is the degree of similarity between a biometric sample

and its source, attributable to each step through which the sample is processed; and

iii) utility, which refers to the impact of the individual biometric sample on the overall

performance of a biometric system. The character of the sample source and the fidelity

of the processed sample contribute to, or similarly detract from, the utility of the

sample.

It is generally accepted that a quality metric should most importantly mirror the

utility of the sample (Grother and Tabassi, 2007), so that samples assigned higher

quality lead to better identification of individuals. Thus, quality should be predictive

of the recognition performance. This statement, however, is largely subjective: not
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EFFECTS AVOIDABLE
Age ∗ X X X X X X

Gender X X Variability
Race X X

Amputation X X X Lack of data No
Skin condition ∗∗ X X

Diseases X X X X X X Lack of data
Injuries X X X X X X or invalid data

∗ Age: although iris pigmentation and fingerprint characteristics are highly stable, they change until the
adolescence and during the old age. The other traits are subject to natural evolution throughout our life.
∗∗ Skin condition: it refers to factors like dryness/wetness, sweat, cuts, bruises, etc., which can have
impact on traits involving analysis of skin properties (fingerprint and hand).

Table 2.2: Physiological factors that can have impact on biometric quality.

all the automatic recognition algorithms work equally, and their performance is not

affected by the same factors. Therefore, an adequate quality measure will be largely

dependent on the type of automatic recognition algorithm considered. As the recogni-

tion performance of different algorithms may not be affected by the same signal quality

factors, the efficacy of a quality estimation algorithm will be usually linked to a par-

ticular recognition algorithm, or a particular class of algorithms. As a result, a quality

measure capable of predicting the performance of a given system may not be useful

when considering other systems.

2.2 Factors influencing biometric quality

There are a number of factors affecting the quality of biometric signals. Unfortunately,

some of them fall out of our control. For this reason, it is important upon capture of a

biometric sample to assess its quality in order to perform appropriate corrective actions.

We summarize in Figure 2.2 the different factors that can have impact on the quality of

acquired signals. They are classified depending on their relationship with the different

parts of the system. We can distinguish among four different classes: factors related

entirely to the user, factors that have to do with the user-sensor interaction process,

factors related to the acquisition device, and factors related with the processing system:

• User-related factors. Here we have physiological and behavioral factors. As

they have to do entirely with the “user side”, they are the most difficult to control.

We give a summary of the most important ones in Tables 2.2 and 2.3, together
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EFFECTS AVOIDABLE
Tiredness X X X X X X Difficult

Distraction X X X X X X Yes
Cooperativity X X X X X X Depending on
Motivation X X X X X X
Nervousness X X X X X X the application

Distance X X X Invalid data
Frontalness X X

Blink, eyes closed X X Yes, recapture
Pressure against sensor X X X

Inconsistent contact X X
Pose, gaze X X
Illiteracy X X Lack of data No

Manual work ∗ X X or invalid data
Facial expression X Yes, recapture
Ethnic origin ∗∗ X X X X No

Hairstyle, beard, make-up X
Clothes X Variability Difficult, except coat/sweater

Hat X
Jewelry X X X Yes, take off and recapture

Glasses/contact lenses X
X Invalid data

∗ Manual work: it may affect the skin condition (dryness, cuts, bruises, dirt, diseases, etc.), in some cases
irreversibly.
∗∗ Ethnic origin: it affects to iris (pigmentation is different in some ethnic groups), face (physical features,
hairstyle, beard, jewelry, etc.), speech (language, lexicon, intonation, etc.) and signature (American
signatures typically consist of a readable written name, European signatures normally include flourish
Oriental signatures consist of independent symbols, etc.).

Table 2.3: Behavioral factors that can have impact on biometric quality.
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EFFECTS AVOIDABLE
Indoor/outdoor X X X X X X Variability (light, noise, skin, sensor)

Background X Variability
Temperature X X Variability (skin properties)

Humidity X X Yes
Illumination X X X Variability, invalid data

Light reflection X X
Ambient noise X Invalid data

Object occlusion X
Season X X Variability (clothing, skin properties) Yes

Table 2.4: Environmental factors that can have impact on biometric quality.
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2.2 Factors influencing biometric quality

with an indication of what biometric trait is affected by each one, their effects,

and to what degree we can control them. Notice that most physiological factors

fall out of our control (e.g. age, gender, race, etc.). A number of them do not

necessarily produce degradation on the biometric data, but additional biometric

intra-variability (e.g. face or speech characteristics are different in males and

females, faces change as we grow up, etc.). These additional variability factors,

if not properly considered by the recognition algorithm, may lead to degraded

performance. Other factors, like diseases or injuries, may alter a part of our

body, our skin, our voice, our ability to sign, etc., resulting in invalid data. In

some cases, the alteration may be irreversible, making the affected biometric

trait infeasible for recognition. On the contrary, behavioral factors are easier to

alleviate than physiological ones, although it is not always possible or convenient,

as we would have to modify the people’s behavior or habits. People may not

be motivated to provide their biometric data at a certain moment or for certain

applications. Or they may be tired, distracted or nervous. In other situations,

as for the case of criminals, we expect them to be non-cooperative. Note that

when dealing with many behavioral factors, one solution is just to recapture after

taking corrective actions (e.g. “put off your hat/coat/ring/glasses” or “keep your

eyes opened”), but this is not always possible or appropriate.

• Factors related to the user-sensor interaction. Two types of factors are

included here: environmental and operational , which we summarize respec-

tively in Tables 2.4 and 2.5. In principle, they are easier to control than user-

related factors, although users still play a part in them. For instance, impact of

environmental factors will be low if we can control the environment. The quality

of face images or videos depends on illumination, background, object occlusion,

etc., and fingerprint images are affected by modifications of the properties of the

skin due to humidity or temperature. Also, illumination and light reflections have

great impact on iris images due to the reflective properties of the eye, whereas the

quality of speech is highly dependent of factors affecting background noise. Out-

door operation is specially problematic, as we can lose control on many factors

affecting not only the biometric trait but also the sensor itself: temperature, hu-

midity, weather, noise, illumination, etc. Outdoor operation demands additional

actions to us regarding sensor conditions and its maintenance. Unfortunately, in

certain applications, we cannot control the environment, as in the case of modern

applications that make use of handheld devices with acquisition capabilities of

biometric samples (e.g. PDA, mobile phone, etc.) and/or the Internet.
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EFFECTS AVOIDABLE
User familiarity X X X Yes

Feedback of acquired data X X X X
Supervision by an operator X X X X X X Invalid data,

Sensor cleaning X X variability Depending on
Physical guides ∗ X X X X the application
Ergonomics ∗∗ X X X X X

Time between acquisitions ∗∗∗ X X X X X X Variability

∗ Physical guides: In some cases, they are incorporated in some sensors to facilitate the acquisition (e.g.
hand, finger).
∗∗ Ergonomics: it refers to how the design of the acquisition device facilitates the interaction with the user.
∗∗∗ Time between acquisitions: it is also known as ageing. The biometric data acquired from an individual
at two different moments may be very different, having great impact on the system performance.

Table 2.5: Operational factors that can have impact on biometric quality.

As in the case of environmental factors, operational ones (Table 2.5) can be con-

trolled if we have influence on the acquisition act itself. Again, if the acquisition is

not done physically in our premises, we will not be able to provide help or super-

vision to the user, we will not know if the sensor is cleaned periodically, or we will

not be able to guarantee the ergonomics of the acquisition kiosk. An important

factor that has to do with the operation of the system is the time passed between

acquisitions, also known as ageing. There is an intrinsic variability in biometric

data characteristics as time passes, not only in the long-term (e.g. changes of

our face, voice, etc. or differences in the way we interact with the system) but

also in the short-term (e.g. clothes, temporary diseases). The most important

consequence is that biometric data acquired from an individual at two different

moments may be very different. This affects to any biometric trait, although

some of them are more sensitive than others (Jain et al., 2008), as it is the case

of signature, face or voice. Another operational factor that we should consider

is if the user receives feedback of the acquired data via display or similar, which

leads to better acquired samples.

• Factors related to the acquisition sensor. A number of sensor features can

affect the quality of acquired biometric data: its ease of use and maintenance, the

size of its acquisition area, the resolution or the acquisition noise, its reliability

and physical robustness, its dynamic range or the time it needs to acquire a

sample. It is important that these factors be compliant with existing standards,
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2.3 Ensuring good quality in biometric samples

so we will be able to replace the sensor without degrading the reliability of the

acquisition process. This is specially important, because replacing the sensor is

very common in operational situations as it is damaged or newer designs appear.

Standards compliance also guarantees that we can use different sensors to interact

with the system, as in the case of people with their own personal devices.

• Factors related to the processing system. Here we find the factors that are

easiest to control, which are related to how we process a biometric sample once it

has been acquired by the sensor. Factors affecting here are the data format we use

for exchange or storage and the algorithms we apply for data processing. If there

are storage or exchange speed constraints, we may need to use data compression

techniques, which may degrade the sample or template quality.

As can be seen in Figure 2.2, the user-related factors have impact on the character of

the biometric sample, that is, the quality attributable to the inherent physical features.

In this sense, the control we have on these factors is low, as the inherent features of a

person are difficult or impossible to modify. The remaining factors affect the fidelity,

or in other words, the faithfulness between a biometric sample and its source. Their

degree of control is, as discussed before, higher than user-related factors.

2.3 Ensuring good quality in biometric samples

In the previous section, we have summarized the usual factors affecting the quality of

biometric signals. We will now report some helpful guidelines to control these factors.

For that purpose, we identify three points of action, as it can be observed in Figure 2.3:

i) the capture point, ii) the quality assessment algorithm itself, and iii) the system

that performs the recognition process.

Most of the factors affecting the quality of biometric signals are related with the

“user side”, as we have discussed before. For this reason, there are many things that

can be done at the capture point:

• Supervision of the acquisition by an operator, ensuring that he is well trained,

works in an adequate environment, and has enough time to capture good quality

signals. Note that this is a repetitive task that may cause tiredness, boredom or

lack of motivation in the operator, factors that we must try to control.

• Use of adequate sensors, with enough capabilities for our application (size, reso-

lution, etc.) and with enhanced features allowing the acquisition of bad quality

sources (e.g. touchless fingerprint sensors, 3D cameras).

29



2. QUALITY MEASURES IN BIOMETRIC SYSTEMS

Figure 2.3: Biometric quality assurance process.
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2.3 Ensuring good quality in biometric samples

• Use of an adequate Graphical User Interface (GUI), with a large display providing

real time feedback of acquired data, as it has been demonstrated that users tend

to provide better signals over time and to habituate faster to the system if they

have feedback of their acquisitions.

• To ensure an adequate acquisition environment (light, temperature, background,

noise, etc.), with a clear acquisition procedure (e.g. “gaze at the camera” or

“place your finger here”), being at the same time ergonomic and user-friendly.

• To ensure a good maintenance of the sensor and of the acquisition kiosk in general,

with periodical cleaning and substitution of damaged parts.

Unfortunately, sometimes these guidelines are not possible to put into practice.

As we have pointed out in the previous section, a number of uncontrolled situations

exist in the “user side”, specially as new deployments making use of portable devices

and/or remote access appear. This is a challenge that should encourage the biometric

community to define a set of best capture practices, and to work towards a common

working criteria.

Regarding the “system side” (right part of Figure 2.3), the most important action

to ensure good quality of biometric samples is to perform quality-dependent processing

and/or quality-dependent fusion. In brief words, it means to invoke different algorithms

and to combine them with different weighting depending on the quality of the signal at

hand. This approach enables to integrate specific developments for poor quality signals

into established recognition strategies. It is also important that the system monitors the

quality of biometric signals, generating periodic reports (Ko and Krishnan, 2004). This

is useful to identify sudden problems (e.g. a damaged sensor) and to carry out trend

analysis that helps to determine if there is a hidden systematic problem that needs

corrective action (e.g. is the quality between two terminals of the same application

different and why? is there an specific scanner working worse that the others? is there

an specific hour when the quality of acquired signals is worse?). Specially important

is to identify if there is a user-scanner learning curve, i.e. if once the users get more

familiar with the interaction with the acquisition device, their acquired biometric signals

exhibit better quality. This allows us to avoid the “first time user” syndrome, specially

for elder people or people who is not used to interact with machines. Another quality-

corrective action, which is still under-researched, is known as template adaptation or

update (Uludag et al., 2004). It is typical for the stored template data to be significantly

different to the processed biometric data obtained during an authentication access due

to natural variations across time. In this case, storing multiple templates that represent
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2. QUALITY MEASURES IN BIOMETRIC SYSTEMS

the variability associated with a user’s biometric data and to update/substitute them

with new acquisitions is an efficient way to deal with this problem, ensuring at the

same time the best possible quality of stored biometric data.

Between the “user side” and the “system side” (see Figure 2.3), we position the

quality assessment algorithm. Since the quality of the acquired signal conditions subse-

quent actions, it is very important that the quality of biometric samples be computed

in real-time. The assessment algorithm should be able to identify which factor is de-

grading the quality of acquired signals and based on it, start the appropriate corrective

action. In some cases, we will be able to reacquire until satisfaction, but in others we

will not have the opportunity of ask for a new sample, so we will have to deal with the

“bad” sample at hand. Based on the assessed quality, we can invoke different processing

algorithms, or we can reject the acquired signal. In this case, we should have defined

an exception procedure for users whose samples are rejected by the quality assessment

algorithm (e.g. invoke human intervention for an alternative recognition procedure).

The cost of this last option, as well as the inconvenience to the user, is a good reason to

highlight the importance of having a good quality assessment module in any biometric

system.

We should note that adhesion to standards is recommended throughout the quality

assurance process: for sensors, software, interfaces, etc. With the use of standards, we

obtain great flexibility and modularity, fast technology interchange, sensor and system

interoperability, and proper interaction with external security systems.

2.4 Performance of quality assessment algorithms

2.4.1 Previous works

We can find many quality assessment algorithms in the literature (NIST-BQH, 2007).

Quality assessment algorithms have been developed mainly for fingerprint images (Alonso-

Fernandez et al., 2007c) and recently, for iris (Chen et al., 2006a; Kalka et al., 2005),

voice, (Garcia-Romero et al., 2006; Richiardi and Drygajlo, 2008; Richiardi et al., 2007),

face (Kryszczuk and Drygajlo, 2007) and signature signals (Alonso-Fernandez et al.,

2007a,b; Muller and Henniger, 2007).

In spite of the number of existing quality assessment algorithms, almost all of them

have been tested under limited and heterogenous frameworks (Grother and Tabassi,

2007). Biometric quality measurement is an operationally important difficult to bench-

mark, mainly because it has not been until the last years when the biometric community

has formalized the concept of sample quality and has developed several frameworks for
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2.4 Performance of quality assessment algorithms

evaluating biometric quality measures.

As shown in Figure 2.1, we can consider biometric sample quality from the point

of view of character (inherent properties of the source), fidelity (faithfulness of the

biometric sample to the source), or utility (predicted contribution to performance).

Youmaran and Adler (2006) have developed a theoretical framework for measuring bio-

metric sample fidelity. They relate biometric sample quality with the amount of iden-

tifiable information that the sample contains, and suggest that this amount decreases

with a reduction in quality. They measure the amount of identifiable information for

a person as the relative entropy D(p||q) between the population feature distribution q

and the person’s feature distribution p. Based on this, we can measure the information

loss due to a degradation in sample quality as the relative change in the entropy.

Quality measurement algorithms are increasingly deployed in operational biometric

systems (Grother and Tabassi, 2007) and there is now international consensus in in-

dustry (Benini and et al, 2006), academia (Chen et al., 2005) and government (Tabassi

et al., 2004) that a statement of a biometric sample’s quality should be related to its

recognition performance. That is, a quality measurement algorithm takes a signal or

image, x, and produces a scalar, q = Q(x), which is predictive of error rates associated

with that sample. In other words, most of the operational schemes for quality esti-

mation of biometric signals are focused on the utility of the signal. A framework for

evaluating and comparing quality measures in terms of their capability of predicting

the system performance is presented by Grother and Tabassi (2007). We adhere to this

framework to report the experimental results of this Ph.D. Thesis.

We should note that, although biometric matching involves at least two samples,

they are not acquired at the same time (we store samples in the system database that

are later compared with the new ones provided for recognition). Therefore, a quality

algorithm should be able to work with individual samples, even though its ultimate

intention is to improve recognition performance when matching two (or more) samples.

We should also note that the efficacy of a quality algorithm is usually related to a

particular recognition algorithm, or to a particular class of algorithms (Grother and

Tabassi, 2007). Can vendor A’s quality measure be used with vendor B’s recognition

algorithm? To cope with this problem, there are recent efforts focused on the use

of quality vectors instead of quality scalars, where each component of the vector is

focused on a specific quality factor (Mansfield, 2007). However, this approach still

needs the consensus of researchers and standardization bodies to decide which are

the key factors for a given technology and how to provide universal quality measures

interpretable by different algorithms. We will later discuss this issue in Section 2.7,
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related to standardization efforts.

2.4.2 A framework for evaluating biometric quality measures

Broadly, a sample should be of good quality if it is suitable for automated matching.

“Bad” quality in this context refers to any property or defect associated with a sample

that would cause performance degradation. We then formalize the concept of sample

quality as a scalar quantity that is related monotonically to the performance of biomet-

ric matchers (Grother and Tabassi, 2007). Throughout this work, we use low quality

values to indicate poor sample properties.

Consider a data set D containing two samples, d
(1)
i and d

(2)
i collected from each of

i = 1, ..., N individuals. The first sample can be regarded as an enrollment sample,

the second as a user sample collected later for verification or identification purposes.

Consider that a quality algorithm Q can be run on the enrollment sample to produce

a quality value

q
(1)
i = Q(d

(1)
i ) (2.1)

and likewise for the authentication (use-phase) sample

q
(2)
i = Q(d

(2)
i ) (2.2)

Consider K verification algorithms, Vk, that compare pairs of samples (or templates

derived from them) to produce match (i.e., genuine) similarity scores,

s
(k)
ii = Vk(d

(1)
i , d

(2)
i ), (2.3)

and, similarly, nonmatch (impostor) scores,

s
(k)
ij = Vk

(
d
(1)
i , d

(2)
j

)
i 6= j (2.4)

Assume now that the two quality values involved in a matching can be used to

produce an estimate of the genuine similarity score

s
(k)
ii = P (q

(1)
i , q

(2)
i ) + ǫ

(k)
ii , (2.5)

where the function P is some predictor of a matcher k’s similarity scores, and ǫii is the
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Figure 2.4: Raw similarity scores from a fingerprint matcher versus the av-
erage quality of the enrolment and the test images.

error in doing so for the ith score. Then substituting Equation (2.1) gives

s
(k)
ii = P (Q(d

(1)
i ), Q(d

(2)
i )) + ǫ

(k)
ii , (2.6)

and it becomes clear that, together, P and Q would be perfect imitators of the matcher

Vk in Equation (2.3) if it was not necessary to apply Q to the samples separately.

This separation is usually a necessary condition for a quality algorithm to be useful

because, at least half of the time (i.e., enrollment), only one sample is available. Thus,

the quality problem is complex, first, because Q is considered to produce a scalar and,

second, because it is applied separately to the samples. The obvious consequence of this

formulation is that it is inevitable that quality values will imprecisely map to similarity

scores, i.e., there will be a scatter of the known scores, sii, for the known qualities

q
(1)
i and q

(2)
i . For example, Figure 2.4 shows the raw similarity scores of a fingerprint

matcher versus the average quality of the enrolment and the test images. They trend

in the correct direction: worse quality gives lower similarity scores. However, it is

inappropriate to require quality measures to be linear predictors of the similarity scores;

instead, the scores should be a monotonic function (higher quality samples give higher

scores) (Grother and Tabassi, 2007).

Quality algorithms should be targeted to application-specific performance variables,

i.e., false match and non-match rates. Verification applications are positive applica-
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2. QUALITY MEASURES IN BIOMETRIC SYSTEMS

tions, which means that samples are captured overtly from users who are motivated to

submit high quality samples. For this scenario, the relevant performance metric is the

False Rejection Rate (FRR) because two high quality samples from the same individual

should produce a high score. Regarding the False Acceptance Rate (FAR), high quality

images should give very low impostor scores, but low quality images should also pro-

duce low scores (Grother and Tabassi, 2007). Indeed, it is undesirable that a matching

algorithm produces high impostor scores from low quality samples.

Biometric matching involves at least two samples. We are then faced with relating

performance to two quality values q
(1)
i and q

(2)
i . To simplify the analysis, the two

qualities are combined:

qi = H(q
(1)
i , q

(2)
i ) (2.7)

Enrolment is usually a supervised process, and it is common to improve the qual-

ity of the final stored sample by acquiring as many samples as needed. Subsequent

authentication samples gathered in the use-phase of a system can be supervised or un-

supervised, thus having samples of less controlled quality. To capture this concept, we

can consider H(x, y) =min(x, y), i.e., the worse of the two samples drives the similarity

score. Another utilized functions H(x, y) are (Fierrez-Aguilar et al., 2005b; Grother

and Tabassi, 2007): the arithmetic and geometric means, H(x, y) = (x + y)/2 and

H(x, y) =
√

xy.

2.4.3 Evaluation of quality algorithms

The primary choice for evaluation of quality algorithms in several existing studies is the

DET curve (Chen et al., 2005; Fierrez-Aguilar et al., 2005b; Tabassi and Wilson, 2005).

DET curves are widely used in the biometric field to report performance capabilities of

a system (Martin et al., 1997). Data is partitioned in L levels according to some quality

criteria and L rank-ordered DET curves are plotted. However, because DET curves

combine the effect of quality on both genuine and impostor performance, we lose sight

of the separate effects of quality on FAR and FRR. Three methods for partitioning the

data are given by Grother and Tabassi (2007). The simplest case uses scores obtained by

comparing authentication and enrolment samples whose qualities are both k. Although

common, this method is not representative of an operational use of quality. Instead,

by computing performance from scores obtained by comparing authentication samples

of quality k with enrolment samples of quality greater than or equal to k, we model

the situation in which the enrolment samples are at least as good as the authentication
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Figure 2.5: Verification performance of a fingerprint matcher as samples with
the lowest quality value are rejected.

samples. Such use of a quality would lead to failures to acquire for the low quality levels.

On the contrary, if we compare performance across all authentication samples against

enrolment samples of quality greater than or equal to k, we model the situation where

quality control is applied only during enrolment. Although some differences are found,

experiments reported by Grother and Tabassi (2007) show that the ranked separation

of the DETs is maintained with the three methods.

An alternative approach to the DET curve is the error-vs-reject curve. This curve

models the operational case in which quality is used to reject low quality samples with

the purpose of improving performance. Similarity scores with associated samples having

a quality value lower than a predefined threshold are not included in the computation of

the error rates. Note that this procedure involves the combination of quality from two

samples (see Equation 2.7). For a good quality algorithm, error rates should decrease

quickly with the fraction rejected. An example is shown in Figure 2.5.

2.5 Human vs. automatic quality assessment

It is often assumed that human assessment of biometric quality is the gold standard

against which automatic quality measures should be measured. There is an established

community of human experts in recognizing biometric signals for certain applications
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(e.g. signatures in cheques or fingerprints in the forensic field) and the use of manual

quality verification is included in the workflow of some biometric applications such as

immigration screening and passport generation (Adler and Dembinsky, 2006).

Many authors make use of datasets with manually labeled quality measures to

optimize and test their quality assessment algorithms (e.g. see Alonso-Fernandez et al.

(2007c) and the references therein). On the other hand, there are some studies that

test the relationship between human and algorithm based quality measures (Adler

and Dembinsky, 2006). From these studies, it is evident that human and computer

processing are not always functionally comparable. For instance, if a human judges

a face or iris image to be good because of its sharpness, but a recognition algorithm

works in low frequencies, then the human statement of quality is inappropriate. We can

improve the judgement of human inspectors by adequate training on the limitations of

the recognition system, but this could be prohibitively expensive and time consuming.

In addition, if we decide to incorporate a human quality checker, we must consider the

human factors such as tiredness, boredom or lack of motivation that a repetitive task

like this may cause in the operator.

2.6 Incorporating quality measures in biometric systems

Different uses of sample quality measures in the context of biometric systems have been

identified throughout this chapter. These possible uses are represented in Figure 2.6.

We should note that these roles are not mutually exclusive. Indeed, the ideal situation

would be to include all of them in our application. We can distinguish among:

• Recapture loop or conditional reacquisition. If an acquired sample does

not satisfy our quality criteria, we can implement for instance an “up to three

attempts” policy. This depends on the applications constraints, which may re-

quire to process the first acquired sample regardless of the quality. Also it is

very important to know the reasons for poor quality samples, so we can improve

the process, for example: giving feedback to the user including corrective be-

havior that would improve the quality of the reacquisition, using another sensor,

collecting additional samples, invoking different processing, etc. To avoid reac-

quisition, some systems select the best signal in a stream captured while the user

is interacting with the sensor, such as iris or face images from a video.
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Figure 2.6: Roles of a sample quality measure in the context of biometric systems.
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• Invoke human intervention. In the undesirable case that the biometric data

of a user does not meet the quality requirements, we can either deny the access

to this person, or (more friendly) invoke human intervention for an alternative

recognition procedure. Human intervention is certainly time and cost consuming,

and inconvenient for users. Therefore, it is important to capture the best possible

input signals.

• Quality-based processing. In biometric systems, once a signal has been ac-

quired, two steps are typically performed before the signal is matched against

the templates stored in the system database: i) pre-processing, in which the in-

put signal is enhanced to simplify the task of feature extraction, and ii) feature

extraction, in which we further process the signal to generate a discriminative

and compact representation. Depending on the quality of the acquired signal, we

can adapt these two steps accordingly. If the quality of the sample is low, we

can invoke special enhancement algorithms. Also, we can extract features robust

to the kind of degradation that the biometric signal is suffering. In some cases

there will be useless parts of the biometric signal (e.g., damaged fingerprint re-

gions). Local quality measures can help to extract features only from the useful

regions (Fronthaler et al., 2008), taking into account that a minimum amount of

information is needed to reliably using the biometric signal for recognition. It

is also possible to rank the extracted features depending on the quality of local

regions of the biometric signal, and exploit that information afterwards during

the matching.

• Update of enrolment data. Biometric data is subject to natural variations

across time. To cope with this problem, multiple templates representing the

variability associated with the user can be stored in the database, which can be

updated with new acquisitions (Ko and Krishnan, 2004; Uludag et al., 2004).

To improve the overall quality of the biometric database over time, we can also

update the currently enrolled samples of a subject with better quality samples

captured during the operation of the system, thereby improving the overall system

match accuracy.

• Quality-based matching and decision. Once we extract the feature repre-

sentation of the input biometric signal, it is compared against one (verification)

or more (identification) templates stored in the system database. This compari-

son process is also called matching. The result of the comparison is a similarity

or matching score, which in verification systems is then compared to a decision
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threshold in order to accept or reject an input identity claim. Depending on the

quality of acquired templates, we can use different matching algorithms (which

also depend on the kind of features extracted in the previous step) (Fierrez-

Aguilar et al., 2005e). Also, we can adjust the sensitivity of the matcher or the

decision threshold to the quality of the signals under comparison (Chen et al.,

2006a). We can discard features with low quality from the matching or give more

weight to high quality features (Chen et al., 2005).

• Quality based-fusion. Multibiometric systems integrate the evidence presented

by multiple sources with the purpose of overcoming some of the limitations shown

by the individual sources. The most widely used approach is integrating the

matching scores provided by different systems due to the ease in accessing and

processing outputs generated by different matchers (Ross et al., 2006). Quality

information has been incorporated in a number of fusion approaches, for instance

weighting results from the multiple sources depending on the quality (Fierrez-

Aguilar et al., 2005e), or using only sources with a minimum quality. There

are systems that implement a cascade scheme (e.g. Fronthaler et al. (2008)) by

dynamically switching on the different sources in case of uncertainty (low quality)

with the available ones. Other works that incorporate quality information in the

fusion are Fierrez-Aguilar et al. (2006); Garcia-Romero et al. (2006); Kryszczuk

and Drygajlo (2008); Nandakumar et al. (2006).

• Monitoring and reporting. We can use quality measures to monitor quality

across the different parts of our system with the objective of identifying problems

that lead to poor quality signals. Ko and Krishnan (2004) have documented a

methodology for this purpose. They identify different aspects related to biometric

signal quality that can be monitored and reported:

1. Signal quality by application. Different application scenarios may require

different scanners, capture software, environment configuration and settings,

and these differences may have different impact on the overall quality of

captured signals. Therefore, it is important to monitor the signal quality

distribution for different applications to find application-specific problems.

2. Signal quality by site/terminal. This helps to identify abnormal sites or

terminals due to operator training, site configuration, operational conditions,

damaged sensor, environment, etc.

3. Signal quality by capture device. There can be variations in the quality of
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captured signals between devices due to differences in the physical acquisi-

tion principle (Alonso-Fernandez et al., 2008), mechanical design, etc. Re-

porting quality distributions by scanner type identifies device-specific prob-

lems, helping us to initiate corrective actions.

4. Signal quality by subject. It is known that once the users get more familiar

with the interaction with the acquisition device, and with the system in

general, their acquired biometric signals exhibit better quality. Identifying

the interaction learning curve helps us to better train new users, specially

elder people or people who is not used to interact with machines, alleviating

the “first time user” syndrome.

5. Signal quality by template. As we have discussed before, template substi-

tution/updating is a good strategy to deal with the variability of biometric

data across time and to improve the quality of stored templates. Periodic

quality distribution reports of stored biometric data allows us to detect how

the quality of the database is varying, helping us to improve the template

substitution/updating algorithm.

6. Signal quality by biometric input. In multibiometric systems, where multi-

ple sources of biometric information are combined (Ross et al., 2006), this

kind of report is aimed to examine the quality distributions of these different

sources. It allows us to detect, for instance, if an specific source is experi-

encing problems, or if the way we are combining the different sources can be

improved.

7. Signal quality trend analysis. This provides the quality statistics of all appli-

cations, sites, etc., allowing us to identify trends in signal quality or sudden

changes that need further investigation.

2.7 Standardizing biometric quality

Standards compliance allows us to replace parts of deployed systems with various tech-

nological options coming from open markets. Also, as biometric technology is exten-

sively deployed, a common situation is the exchange of information between several

applications, involving diverse biometric systems developed by different vendors. This

interoperable scenario is also enabled by the adoption of standards. Examples of in-

teroperable scenarios are the use of ePassports readable by different countries, or the

exchange of lists of criminals among Security Forces.
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Figure 2.7: Use of standards in biometric systems to ensure good quality.

During the last decade, standardization bodies have launched important efforts

focused on developing standards for biometric systems. Among the most important

international standardization bodies with published biometric standards, or currently

under development, we find:

• The International Organization for Standardization (ISO), with the Subcom-

mittee 37 for Biometrics (SC37) of the Joint Technical Committee on Informa-

tion Technology (JTC1), known as ISO/IEC JTC1/SC37 (ISO/IEC JTC1 SC37,

2002).

• The InterNational Committee for Information Technology Standards (INCITS),

with the Technical Committee M1 on Biometrics, known as INCITS M1 (INCITS

M1, 2007).

• The Information Technology Laboratory (ITL) of the American National Institute

of Standards and Technology (NIST) (NIST-ITL, 2007).

Other international bodies driving or collaborating on biometric initiatives are: the Bio-

metrics Consortium (BC), the International Biometrics Group (IBG), the Biometrics
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Management Office of the American Department of Defense (DoD), the Federal Bu-

reau of Investigation (FBI), the European Biometrics Forum (EBF), the International

Civil Aviation Organization (ICAO), the International Biometric Industry Association

(IBIA), or the American National Standards Institute (ANSI).

We summarize in Figure 2.7 which parts of a biometric system can be standardized.

As a result of the efforts carried out by these standardization bodies, we find that

international standards relating to biometrics are maturing quickly:

• Standards for interfaces between modules, as the BioApi Specification (BioAPI,

1998), sponsored in 1999 by the NIST-ITL and the US Biometric Consortium,

and adopted by ISO/IEC and INCITS as the ISO/IEC 19784-1:2005 and ANSI

INCITS 358-2002 standards, respectively.

• Standards for data formats, as: i) the Common Biometric Exchange Formats

Framework (CBEFF), sponsored by the NIST-ITL and the Biometric Consortium

in 2001/2004, ii) the FBI Wavelet Scalar Quantization (WSQ) image compression

algorithm for fingerprint images, developed to archive the large FBI fingerprint

database, iii) the Electronic Fingerprint Transmission Specification (EFTS) (FBI

Biometric Specifications (BioSpecs)) of the FBI, initially developed for electroni-

cally encoding and transmitting fingerprint images, identification and arrest data,

and recently expanded to include additional biometric modalities (palmprint, fa-

cial, and iris), or iv) the ANSI/NIST-ITL 1-2000 that specifies a common format

for exchanging fingerprint, facial, scar, mark, and tattoo identification data be-

tween law enforcement and related criminal justice agencies.

• Standards for acquisition practices, as: i) the ISO-19794-5/ICAO requirements

and best practices for facial portraits, with recommendations about the deploy-

ment of biometrics in machine readable travel documents, or ii) the best practices

Annex to ISO 19794-5 standard regarding conditions for taking photographs for

face image data, with indications about lighting and camera arrangement, and

head positioning.

Most of the biometric existing standards define a quality score field aimed to in-

corporate quality measures. Nevertheless, the content of this field is not explicitly

defined or is somewhat subjective (Benini, 2007). The reason for this vagueness is

that traditionally there has not been consensus on how to provide universal quality

measures interpretable by different algorithms, or which are the key factors that define
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quality in a given biometric trait. These problems are being the source of many re-

search works nowadays, and have led to the multipart standardization effort ISO/IEC

29794-1/4/5 on biometric sample quality (Benini, 2007). The goals of this standard

are to enable harmonized interpretation of quality scores from different vendors, al-

gorithms and versions. Ongoing works within this standardization project include: i)

standardizing quality scoring algorithms by setting the key factors that define qual-

ity in different biometric traits (e.g., for face recognition, they would be metrics like

eyes closed/obstructed, lighting uniformity on face, image focus, face rotation, etc.), ii)

achieving normalization of scores, with different algorithms expressing quality scores

on the same scale, iii) building a database of samples and assigned quality scores that

would serve as reference for vendors, and iv) incorporating fields to existing data inter-

change format standards to identify the algorithm used to generate the quality scores.

The latter approach, known as Quality Algorithm ID (QAID), incorporates standard-

ized data fields (International Biometric Industry Association (IBIA)) that uniquely

identifies a quality algorithm, including its vendor, product code and version. It enables

to differentiate between quality scores generated by different algorithms/vendors and

to adjust them for any differences in processing or analysis as necessary. QAID fields

can be easily added to existing data interchange formats such as CBEFF, enabling a

modular multi-vendor environment that accomodates samples scored by different qual-

ity algorithms. It should noted that this approach does not attempt to define what is

good/bad quality or to set how quality measures should be computed, it just provides

means to interchange and interpret biometric sample quality scores via existing data

interchange formats.

2.8 Issues and challenges

The increasing development of biometrics in the last decade, related to the number of

important applications where a correct assessment of identity is a crucial point, has

not been followed by extensive research on the biometric quality measurement problem

(Grother and Tabassi, 2007). Biometric data quality is a key factor in the performance

of identification systems, as the biometric community has realized that biometric sys-

tems fail on certain pathological samples. Now that there is international consensus

that a statement of a biometric sample’s quality should be related to its recognition

performance, efforts are going towards an harmonized and universal interpretation of

quality measures by defining the key factors that need to be assessed in each biometric

trait, and by setting good acquisition practices. This will enable a competitive multi-
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vendor marketplace, allowing interoperability of multiple vendors quality assessment

algorithms.

A biometric system has to be resilient in processing data with heterogeneous quality

yet providing good recognition performance. Although there are several corrective

actions that can be performed to improve the quality of acquired signals, some factors

fall out of our control or cannot be avoided. In this respect, specially challenging

scenarios for biometrics are the ones based on portable devices and/or remote access

through Internet, which are expected to work in an unsupervised environment, with no

control on the ambient noise, on the user-sensor interaction process, or on the sensor

maintenance. Therefore, it is very important upon capture of biometric samples to

assess their quality as well as having specific developments for poor quality signals.

Quality is intrinsically multi-dimensional, with factors of very different nature af-

fecting it. A biometric system must adequately address this multifactor nature of the

sample quality. There are a number of things that quality measures can do for us in the

context of our system to improve the overall performance, such as altering the sample

processing/comparison process, or weighting the results from different systems depend-

ing on the quality. Some research works have dealt with these matters, but much work

is still to be done in this area. Recent independent evaluations of commercial and re-

search prototypes are also starting to include quality studies in their scenarios, as the

Minutiae Interoperability Exchange Test in 2005 (Grother et al., 2005) or the BioSecure

Multimodal Evaluation Campaign in 2007 (BMEC, 2007).

2.9 Chapter summary and conclusions

Since the establishment of biometric research as an specific research area in late 90s

(Jain et al., 2008), the biometric community has focused its efforts in the development

of accurate recognition algorithms. Nowadays, biometric recognition is a mature tech-

nology that is used in many applications (e.g. e-Passports, ID cards or border control

(US-VISIT Program of the U.S. Department of Homeland Security)). However, we

can notice recent studies that demonstrate how performance of biometric systems is

heavily affected by the quality of biometric signals. The problem of biometric quality

measurement has arisen in the last years and at this moment, it is a current research

challenge within the biometric community (Grother and Tabassi, 2007).

In this chapter, we present an overall framework of the different issues that make

up the biometric quality problem. Issues like the factors influencing biometric quality,

the strategies to ensure the best possible quality of acquired biometric samples, or the
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role of quality measures within biometric systems are addressed here. We also present

a framework for evaluation of the performance of biometric quality measures, as well

as existing standardization efforts related to biometric quality.

This chapter includes novel contributions regarding the taxonomy of factors affect-

ing biometric quality, the taxonomy of strategies to ensure good quality in acquired

biometric samples, and the taxonomy of roles of quality measures in the context of

biometric systems.
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Chapter 3

Quality Assessment of

Fingerprint Images

Due to its permanence and uniqueness, fingerprint recognition is the most widely

deployed biometric technology (Maltoni et al., 2003). Fingerprints are used in forensic

investigations since the XIX century by Security Forces worldwide. Nowadays, a large

number of convenience applications such as access control or on-line identification also

make use of fingerprints (Jain et al., 2006). Nearly half of invests in the biometric

market go to the fingerprint technology (IBG, 2007).

This chapter compares several representative fingerprint quality measures by study-

ing both their correlation and their utility. We evaluate the impact of the selected image

quality measures in the performance of a minutiae- and a ridge-based matcher, which

are the two most popular approaches for fingerprint verification (Maltoni et al., 2003).

We use for our experiments a multi-session database (Fierrez et al., 2007) acquired with

three sensors of different technology. High correlation is found between quality mea-

sures in most cases, however, some differences are observed depending on the sensor.

Regarding the utility of the selected measures, it has been found that for the approach

based on minutiae, the highest performance improvement is obtained in the False Re-

jection Rate, whereas for the ridge-based approach the highest improvement is observed

in the False Acceptance Rate. We also contribute in this chapter with a comprehensive

survey of existing fingerprint quality algorithms. We provide basic algorithmic descrip-

tions of each quality estimation measure and the rationale behind, including visual

examples that show the behavior of the measures with fingerprint images of different

quality.
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Figure 3.1: Acquisition principles of silicon and optical sensors.

This chapter is structured as follows. We first present the basics of fingerprint recog-

nition systems, including its different phases and the most common used algorithms.

We next give a comprehensive description of existing approaches for fingerprint image

quality assessment. After that, we outline the fingerprint matching systems and the

experimental framework used. Results are then described and finally, a summary and

some conclusions are given.

The minutiae-based matcher used in this Chapter is the one released by the National

Institute of Standards and Technology (Watson et al., 2004), and the ridge-based one is

a proprietary system developed at the Biometric Recognition Group - ATVS (Fierrez-

Aguilar et al., 2005b), therefore they are not contributions of this Thesis. Similarly,

quality measures used in this Chapter are not original, although they have been imple-

mented and optimized in the framework of this Ph.D. Thesis. Original contributions

in this chapter are related to the taxonomy of fingerprint image quality assessment

algorithms, the implementation of a representative set of them, the study of correlation

between the selected quality algorithms, and the study of utility of the quality measures

for two different matchers with sensors of different technology.

This chapter is based on the publications: Alonso-Fernandez et al. (2008a, 2007c,

2005b, 2008); Fierrez-Aguilar et al. (2005b).
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Figure 3.2: Solid-state sensors embedded in portable devices.

3.1 Automatic fingerprint recognition

A fingerprint verification system follows the general architecture of a biometric system

presented in Chapter 1. We now describe the most popular strategies for the different

phases, namely: i) fingerprint sensing, in which the fingerprint of an individual is

acquired by a fingerprint scanner to produce a raw digital representation; ii) pre-

processing, in which the input fingerprint is enhanced and adapted to simplify the task

of feature extraction; iii) feature extraction, in which the fingerprint is further processed

to generate discriminative properties, also called feature vectors; and iv) matching, in

which the feature vector of the input fingerprint is compared against the template

(feature vector) of a single user.

3.1.1 Fingerprint Sensing

The acquisition of fingerprint images has been historically carried out by spreading the

finger with ink and pressing it against a paper card. The paper card is then scanned,

resulting in a digital representation. This process is known as off-line acquisition and

is still used in law enforcement applications. Nowadays, it is possible to acquire the

fingerprint image by pressing the finger against the flat surface of an electronic finger-

print sensor. This process is known as on-line acquisition. There are three families of

electronic fingerprint sensors based on the sensing technology (Maltoni et al., 2003):

• Optical (right part of Figure 3.1): The finger touches a glass prism and the prism

is illuminated with diffused light. The light is reflected at the valleys and absorbed

at the ridges. The reflected light is focused onto a CCD or CMOS sensor. Optical
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(a) (b) (c)

Figure 3.3: (a) loop and delta singularities, (b) ridge ending, (c) ridge bifur-
cation.

fingerprint sensors provide good image quality and large sensing area but they

cannot be miniaturized because as the distance between the prism and the image

sensor is reduced, more optical distortion is introduced in the acquired image.

• Solid-state or silicon sensors (left part of Figure 3.1): they consist of an array

of pixels, each pixel being a sensor itself. Users place the finger on the surface

of the silicon, and four techniques are typically used to convert the ridge/valley

information into an electrical signal: capacitive, thermal, electric field and piezo-

electric. Since solid-state sensors do not use optical components, their size is

considerably smaller and can be easily embedded for instance in PDAs or laptops

as seen in Figure 3.2, but silicon sensors are expensive, so their sensing area is

typically small.

The large-scale deployment of small and low cost sensors also makes possible its

incorporation in portable hand-held devices like PDAs or laptops.

• Ultrasound : Acoustic signals are sent, capturing the echo signals that are reflected

in the fingerprint surface. Acoustic signals are able to cross dirt and oil that may

be present in the finger, thus giving good quality images. On the other hand,

ultrasound scanners are large and expensive, and take some seconds to acquire

an image.

A new generation of touchless live scan devices that generate a 3D representation of

fingerprints is appearing (Chen et al., 2006b). Several images of the finger are acquired

from different views using a multi-camera system, and a contact-free 3D representation

of the fingerprint is then constructed. This new sensing technology overcomes some of

the problems that intrinsically appear in contact-based sensors such as improper finger

placement, skin deformation, sensor noise or dirt.
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3.1.2 Preprocessing and Feature Extraction

A fingerprint is composed of a pattern of interleaved ridges and valley. They smoothly

flow in parallel and sometimes terminate or bifurcate. At a global level, this pattern

sometimes exhibits a number of particular shapes called singularities which can be

classified into three types: loop, delta and whorl. In Figure 3.3a we can see an example

of loop and delta singularities (the whorl singularity can be defined as two opposing

loops). Singularities at the global level are commonly used for fingerprint classification,

which simplifies search and retrieval across a large database of fingerprint images. At

the local level, the ridges and valleys pattern can exhibit a particular shape called

minutia. There are several types of minutiae but for practical reasons, only two types of

minutiae are considered: ridge ending (Figure 3.3b) and ridge bifurcation (Figure 3.3c).

The gray-scale representation of a fingerprint image is known to be unstable for

fingerprint recognition (Maltoni et al., 2003). Although there are fingerprint matching

techniques that directly compare gray images using correlation-based methods, most

of the fingerprint matching algorithms use features which are extracted from the gray-

scale image. To make this extraction easy and reliable, a set of preprocessing steps is

commonly performed, namely: i) computation of local ridge orientation and ii) local

ridge frequency, iii) enhancement of the fingerprint image, and iv) segmentation of the

fingerprint area from the background.

• The local ridge orientation at a pixel level is defined as the angle that the fin-

gerprint ridges form with the horizontal axis. Most of the algorithms do not

compute the local ridge orientation at each pixel, but over a square-meshed grid

(Figure 3.4). The simplest approach for local ridge orientation estimation is based

on the gray-scale gradient. Since the gradient phase angle denotes the direction

of the maximum pixel-intensity change, the ridge orientation is orthogonal to

this phase angle. There are essentially two orientation estimation techniques:

the direction tensor sampling, (Bigun and Granlund, 1987) and spectral tensor

discretization (Knutsson, 1982) using Gabor filters. For its computational effi-

ciency the method independently suggested by Bigun and Granlund (1987) is the

most commonly utilized in fingerprint applications because the spectral approach

needs more filtering. We refer to Bigun (2006) for a detailed treatment of both

approaches.

• The local ridge frequency at a pixel level is defined as the number of ridges per

unit length along a hypothetical segment centered at this pixel and orthogonal to
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Figure 3.4: Local ridge orientation of a fingerprint image computed over a
square-meshed grid: (a) original image, (b) orientation image, (c) smoothed
orientation image. Each element of (b) and (c) denotes the local orientation
of the ridges. Figure extracted from Simon-Zorita (2003).

Figure 3.5: Modeling of ridges and valleys as a sinusoidal-shaped wave.

the local ridge orientation (Maltoni et al., 2003). As in the case of the local ridge

orientation, the local ridge frequency is computed over a square-meshed grid. Ex-

isting methods (Hong et al., 1998; Kovacs-Vajna et al., 2000; Maio and Maltoni,

1998) usually model the ridge-valley structure as a sinusoidal-shaped wave (Fig-

ure 3.5), where the ridge frequency is set as the frequency of this sinusoid, and

the orientation is used to angle the wave.

• Ideally, in a fingerprint image, ridges and valleys flow smoothly in a locally con-

stant direction. In practice, however, there are factors that affect the quality of a

fingerprint image: wetness or dryness of the skin, noise of the sensor, temporary

or permanent cuts and bruises in the skin, variability in the pressure against the

sensor, etc. Several enhancement algorithms have been proposed in literature
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Figure 3.6: Enhancement of fingerprint images.

Figure 3.7: Segmentation of fingerprint images. Left: original image. Right:
segmentation mask.

with the aim of improving the clarity of ridges and valleys. The most widely

used fingerprint enhancement techniques utilize contextual filters, which means

changing the filter parameters according to the local characteristics (context) of

the image. Filters are tuned to the local ridge orientation and/or frequency, thus

removing the imperfections and preserving ridges and valleys (Figure 3.6).

• Fingerprint segmentation consists in the separation of the fingerprint area (fore-

ground) from the background. This is useful to avoid subsequent extraction of

fingerprint features in the background, which is the noisy area. Global and local

thresholding segmentation methods are not very effective and more robust seg-

mentation techniques are commonly used (Bazen and Gerez, 2001; Jain et al.,

1997b; Maio and Maltoni, 1997; Mehtre, 1993; Nilsson, 2005; Shen et al., 2001).

These techniques exploit the existence of an oriented periodical pattern in the

foreground, and a nonoriented isotropic pattern in the background (Figure 3.7).

Once the fingerprint image has been preprocessed, a feature extraction step is per-

formed. Most of the existing fingerprint recognition systems are based on minutiae
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Figure 3.8: Binarization and thinning of fingerprint images using contextual
filters. Figure extracted from Simon-Zorita et al. (2003).

Figure 3.9: Thinning step: (a) typical imperfections appeared during the
thinning step, (b) a thinned fingerprint structure before and after removing
imperfections.

matching, so that reliable minutiae extraction is needed. Usually, the preprocessed fin-

gerprint image is converted into a binary image which is then thinned using morphol-

ogy (Figure 3.8). The thinning step reduces the ridge thickness to one pixel, allowing

straightforward minutiae detection. During the thinning step, a number of spurious

imperfections may appear (Figure 3.9a) and thus, a postprocessing step is sometimes

performed (Figure 3.9b) in order to remove the imperfections from the thinned image.

Several approaches for binarization, thinning and minutiae detection have been pro-

posed in the literature (Maltoni et al., 2003). However, binarization and thinning suffer

from several problems: i) spurious imperfections, as mentioned; b) loss of structural

information; c) computational cost; and d) lack of robustness in low quality fingerprint

images. Because of that, other approaches that extract minutiae directly from the

gray-scale image have been also proposed (Bolle et al., 2002; Chang and Fan, 2001;

Fronthaler et al., 2006; Jiang et al., 2001; Liu et al., 2000; Maio and Maltoni, 1997).
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Figure 3.10: Minutia represented by its spatial coordinates and angle.

3.1.3 Fingerprint Matching

In the matching step, features extracted from the input fingerprint are compared against

those in a template, which represents a single user (retrieved from the system database

based on the claimed identity). The result of such a procedure is either a degree

of similarity (also called matching score) or an acceptance/rejection decision. There

are fingerprint matching techniques that directly compare gray-scale images (or sub-

images) using correlation-based methods, so that the fingerprint template coincides

with the gray-scale image. However, most of the fingerprint matching algorithms use

features which are extracted from the gray-scale image, as mentioned in Section 3.1.2.

A large number of approaches for fingerprint matching can be found in literature.

They can be classified into: i) correlation-based approaches, ii) minutiae-based ap-

proaches, and iii) ridge or texture-based approaches.

• In the correlation-based approaches, the fingerprint images are superimposed and

the gray-scale images are directly compared using a measure of correlation. Due

to non-linear distortion, different impressions of the same finger may result in dif-

ferences of the global structure, making the comparison unreliable. In addition,

computing the correlation between two fingerprint images is computationally ex-

pensive. To deal with these problems, correlation can be computed only in certain

local regions of the image which can be selected following several criteria. Also,

to speed up the process, correlation can be computed in the Fourier domain or

using heuristic approaches which allow to reduce the number of computational

operations.

• Minutiae-based approaches are the most popular and widely used methods for

fingerprint matching, since they are analogous with the way that forensic experts
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Figure 3.11: Alignment between minutiae of two fingerprints. Figure ex-
tracted from Jain et al. (1997a).

compare fingerprints. A fingerprint is modeled as a set of minutiae, which are

usually represented by its spatial coordinates and the angle between the tan-

gent to the ridge line at the minutiae position and the horizontal or vertical axis

(Figure 3.10). The minutiae sets of the two fingerprints to be compared are

first aligned, requiring displacement and rotation to be computed, as depicted in

Figure 3.11 (some approaches also compute scaling and other distortion-tolerant

transformations). This involves a minimization problem, the complexity of which

can be reduced in various ways (Chikkerur and Ratha, 2005). Once aligned, cor-

responding minutiae at similar positions in both fingerprints are looked for. A

region of tolerance around the minutiae position is defined in order to compensate

for the variations that may appear in the minutiae position due to noise and dis-

tortion. Likewise, differences in angle between corresponding minutia points are

tolerated. Other approaches use local minutia matching, which means combin-

ing comparisons of local minutia configurations. These kind of techniques relax

global spatial relationships which are highly distinctive (Maltoni et al., 2003) but

naturally more vulnerable to nonlinear deformations. Some matching approaches

combine both techniques by first carrying out a fast local matching and then, if

the two fingerprints match at local level, consolidating the matching at global

level.

• Unfortunately, minutiae are known to be unreliably extracted in low image quality

conditions. For this and other reasons, alternative features have been proposed

in literature as an alternative to minutiae (or to be used in conjunction with
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Figure 3.12: Texture information based on local orientation. Figure extracted
from Munoz-Serrano (2004).

minutiae) (Maltoni et al., 2003). The alternative feature most widely studied

for fingerprint matching is the texture information. The fingerprint structure

consists of periodical repetitions of a pattern of ridges and valleys that can be

characterized by its local orientation, frequency, symmetry, etc. In Figure 3.12,

ridges with different local orientations are extracted from a fingerprint image.

Texture information is less discriminative than minutiae, but more reliable under

low quality conditions (Fierrez-Aguilar et al., 2005b).

3.1.4 Issues and Challenges

One of the biggest challenges of fingerprint recognition is the high variability commonly

found between different impressions of the same finger. This variability is known as

intra-class variability and is caused by factors like displacement or rotation between

different acquisitions, partial overlap (specially in sensors of small area), noise in the

sensor (for example, residues from previous acquisitions), etc. Some examples are shown
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(a) Partial overlap (b) Rotation or displacement

Figure 3.13: Examples of intra-class variability in fingerprints. Figure ex-
tracted from Simon-Zorita (2003).

in Figure 3.13. Fingerprint matching remains as a challenging pattern recognition

problem due to the difficulty in matching fingerprints affected by one or several of the

mentioned factors (Maltoni et al., 2003).

A successful approach to enhance the performance of a fingerprint verification sys-

tem is to combine the results of different recognition algorithms. A number of simple

fusion rules and complex trained fusion rules have been proposed in the literature (Bi-

gun et al., 1997; Kittler et al., 1998; Snelick et al., 2005). Examples for combining

minutia- and texture-based approaches are to be found in Alonso-Fernandez et al.

(2008a); Fierrez-Aguilar et al. (2006); Marcialis and Roli (2005); Ross et al. (2003).

Also, a comprehensive study of the combination of different fingerprint recognition sys-

tems is done in Fierrez-Aguilar et al. (2005c). However, it has been found that simple

fusion approaches are not always outperformed by more complex fusion approaches,

calling for further studies of the subject.

Another recent issue in fingerprint recognition is the use of multiple sensors, ei-

ther for sensor fusion (Marcialis and Roli, 2004) or for sensor interoperability (Alonso-

Fernandez et al., 2006c; Ross and Jain, 2004). Fusion of sensors offers some important

potentialities (Marcialis and Roli, 2004): i) the overall performance can be improved

substantially, ii) population coverage can be improved by reducing enrollment and ver-

ification failures, and iii) it may naturally resist spoofing attempts against biometric

systems. Regarding sensor interoperability, most biometric systems are designed under

the assumption that the data to be compared is obtained uniquely and the same for

every sensor, thus being restricted in their ability to match or compare biometric data

originating from different sensors in practise. As a result, changing the sensor may af-

fect the performance of the system. Recent progress has been made in the development
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of common data-exchange formats to facilitate the exchange of feature sets between

vendors (CBEFF, 2001). However, little effort has been invested in the development

of algorithms to alleviate the problem of sensor interoperability. Some approaches to

handle this problem are given in Ross and Jain (2004), one example of which is the

normalization of raw data and extracted features. Interoperability studies have been

included in vendor and algorithm competitions, as in BMEC (2007); Grother et al.

(2005).

Due to the low cost and reduced size of new fingerprint sensors, several devices of

daily use already include fingerprint sensors embedded (e.g. mobile telephones, PC

peripherals, PDAs, etc., see Figure 3.2). However, using small-area sensors implies

having less information available from a fingerprint and little overlap between different

acquisitions of the same finger, which has great impact on the performance of the

recognition system (Maltoni et al., 2003). Some fingerprint sensors are equipped with

mechanical guides in order to constrain the finger position. Another alternative is to

perform several acquisitions of a finger, gathering (partially) overlapping information

during the enrollment, and reconstruct a full fingerprint image.

Biometric systems are also vulnerable to attacks (Uludag and Jain, 2004). Recent

studies have shown the vulnerability of fingerprint systems to fake fingerprints (Galbally-

Herrero et al., 2006; Matsumoto et al., 2002; Putte and Keuning, 2000; Ratha et al.,

2001a). Surprisingly, fake biometric input to the sensor is shown to be quite successful.

Liveness detection could be a solution and it is receiving great attention (Antonelli

et al., 2006; Derakhshani et al., 2003; Schuckers et al., 2004). It has been also shown

that the matching score is a valuable information for the attacker (Martinez-Diaz et al.,

2006; Ratha et al., 2001b; Uludag and Jain, 2004). Using the feedback provided by this

score, signals in the channels of the verification system can be modified iteratively and

the system is compromised in a number of iterations. A solution could be given by

concealing the matching score and just releasing an acceptance/rejection decision, but

this may not be suitable in certain biometric systems (Uludag and Jain, 2004).

With the advances in fingerprint sensing technology, new high resolution sensors are

able to acquire ridge pores and even perspiration activities of the pores. These features

can provide additional discriminative information to existing fingerprint recognition

systems, as studied in Chen and Jain (2007); Jain et al. (2007). In addition, acquiring

perspiration activities of the pores can be used to detect spoofing attacks.
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3.2 Literature review of algorithms for fingerprint image

quality estimation

3.2.1 Assessing the quality of fingerprint images

Fingerprint quality can be defined as a measure of the clarity of ridges and valleys and

the “extractability” of the features used for identification (such as minutiae) (Chen

et al., 2005). In good quality images, ridges and valleys flow smoothly in a locally

constant direction (Hong et al., 1998).

Yao et al. (2004) define a number of factors that contribute to poor fingerprint

quality images (some examples are shown in Figure 3.14):

• Inconsistent contact caused by the 3D-2D mapping performed in fingerprint ac-

quisition, which is typically uncontrolled and thus, it results in different mapped

regions across different impressions due to variability in fingerprint placement,

rotation and pressure.

• Nonuniform contact of the ridge-valley structure due to factors like dryness (too

little ridge contact), humidity (neighboring ridges touching each other), sweat,

dirt, etc., resulting in “noisy” images and feature extraction artifacts.

• Irreproducible contact due to injuries of the finger that change the ridge struc-

ture either temporarily or permanently, for example caused by manual works,

accidents, etc.

• Noise introduced by the act of sensing due to residual dirt or fingerprints on the

sensor surface, shadows in optical sensors, electrical noise in capacitive sensors,

etc.

• Distortion of the sensed finger due to imperfect imaging conditions.

These factors are caused by a number of reasons (Joun et al., 2003) that sometimes

cannot be avoided and/or vary along time, as mentioned in Section 2.2. For the case

of fingerprints they are:

• Physiological reasons: age, amputation, diseases, injuries, skin dryness, etc.

• Behavioral reasons: occupation (manual work), stress, motivation, cooperativity,

hobbies, fingernails, rings, false nails, finger positioning, etc.
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Figure 3.14: Sample images of poor quality due to different factors: (a) displacement with respect to the
center, (b) incomplete fingerprint (out of the scanning area), (c) incomplete fingerprint (low pressure), (d)
blurring, (e) ghost effects (non-zero background), (f) non-homogeneous gray-scale, (g) ridge structure not
well defined, (h) lack of ridge structure in some zones, (i) broken ridge structure due to chaps, (j) artifacts
in ridge structure, (k) visible pores, (l) fingerprint divided in two parts, and (m) fingerprint size. Figure
extracted from Simon-Zorita (2003).
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3. QUALITY ASSESSMENT OF FINGERPRINT IMAGES

• Environmental reasons: light level, weather, humidity, etc.

• Operational reasons: sensor dirt, residual prints, feedback, ease of use, ergonomics,

user familiarity, time ageing, etc.

• Sensor and hardware reasons: type and quality of sensor (size, noise, etc.)

Once the quality of a given fingerprint image is assessed, a number of strategies

can be adopted to overcome the impact of low quality fingerprints as we described in

Section 2.6. For instance, asking the user for a new sample (Grother et al., 2005).

Other strategy is to compensate for the image quality effects in the feature extrac-

tion/matching steps of the recognition system. This is followed by a number of studies,

for example exploiting the signal quality in the segmentation step (Shi et al., 2004), in

the matching step (Chen et al., 2005), or performing quality-based fusion of different

matchers and/or traits at the match score level (Baker and Maurer, 2005; Bigun et al.,

1997; Fierrez-Aguilar et al., 2006, 2005e; Nandakumar et al., 2006; Toh et al., 2004) so

as the weights for the fusion are selected to allow better quality samples to dominate

the fusion.

3.2.2 Fingerprint image quality estimation methods

A number of approaches for fingerprint image quality computation have been described

in the literature. Existing methods assess fingerprint image quality by measuring one or

more of the following properties, see Figure 3.15: ridge strength or directionality, ridge

continuity, ridge clarity, integrity of the ridge-valley structure, or estimated verification

performance when using the image at hand. A number of sources of information are

used to measure these properties: i) angle information provided by the direction field,

ii) Gabor filters, which represent another implementation of the direction angle (Bigun,

2006), iii) pixel intensity of the gray-scale image, iv) power spectrum, and v) Neural

Networks.

Existing approaches for fingerprint image quality estimation can be divided into:

i) those that use local features of the image extracted from non-overlapped blocks;

ii) those that use global features of the image, analyzing it in a holistic manner; and

iii) those that address the problem of quality assessment as a classification problem.

They are described in Sections 3.2.3, 3.2.4 and 3.2.5, respectively. Also, a summary of

existing local and global fingerprint quality measures, including a brief description, is

shown in Tables 3.1 and 3.2, respectively.
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Figure 3.15: Taxonomy of existing fingerprint image quality estimation meth-
ods.

The quality measures presented here are aimed to evaluate the utility of fingerprint

images. There are also works aimed to study their fidelity, which is not considered in

this Ph.D. Thesis. The fidelity of quality metrics is studied by Cappelli et al. (2006a);

Van der Weken et al. (2007); Wilson et al. (2000). Wilson et al. (2000) have studied the

effects of image resolution in the matching accuracy, whereas Cappelli et al. (2006a)

have studied the correlation between the quality characteristics of a fingerprint scanner

with the performance they can assure when the acquired images are matched by a

recognition algorithm. In Van der Weken et al. (2007), we can find a number of quality

metrics aimed at objectively assess the quality of an image in terms of the similarity

between a reference image and a degraded version of it.

3.2.3 Methods based on local features

Methods that rely on local features usually divide the image into non-overlapped square

blocks and extract features from each block. Blocks are then classified into groups of

different quality. A local measure of quality is finally generated. This local measure can

be the percentage of blocks classified with “high” or “low” quality, or an elaborated

combination. Some methods assign a relative weight to each block based on its distance

from the centroid of the fingerprint image, since blocks near the centroid are supposed

to provide more reliable information (Chen et al., 2005; Ratha and Bolle, 2004).

3.2.3.1 Based on the local direction

This group of methods use the local direction information provided by the direction

field (Bigun and Granlund, 1987) to compute several local features in each block. For

a comprehensive introduction of the theory and applications of direction fields we refer

the reader to Bigun (2006).
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SOURCE: LOCAL DIRECTION

Orientation Certainty Level (Lim et al., 2002)
Orientation strength measure computed from the gradient of the gray level image

Ridge frequency, ridge thickness, ridge-to-valley thickness (Lim et al., 2002)
Computed from the sinusoid that models ridges/valleys in the direction normal to ridge flow

Local Orientation (Chen et al., 2004)
Average absolute difference of local orientation with the surrounding blocks

Spatial Coherence (Chen et al., 2005)
Direction coherence measure computed from the gradient of the gray level image

Symmetry features (Fronthaler et al., 2006)
Correlation between linear and parabolic symmetry in a fingerprint image

SOURCE: GABOR FILTERS

Gabor features (Shen et al., 2001)
Standard deviation of m filter responses with different directions

SOURCE: PIXEL INTENSITY

Directionality (Ratha and Bolle, 2004)
Minimum sum of intensity differences between a pixel (i, j) and l pixels selected along a line
segment centered at (i, j), computed for n different directions of the line segment

Variance and local contrast (Joun et al., 2003)

Mean, variation, contrast and eccentric moment (Shi et al., 2004)

Clustering Factor (Lim et al., 2004)
Degree to which similar pixels (i.e. ridges or valleys) cluster in the nearby region

Local Clarity (Chen et al., 2004)
Overlapping area of the gray level distributions of segmented ridges and valleys

SOURCE: POWER SPECTRUM

DFT of the sinusoid that models ridges and valleys (Lim et al., 2004)

SOURCE: COMBINATION OF LOCAL FEATURES

Amplitude, frequency and variance of the sinusoid that models

ridges and valleys (Hong et al., 1998)

Direction map, low contrast map, low flow map and high curve map (Watson et al., 2004)

Table 3.1: Summary of existing fingerprint quality measures based on local
features.
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SOURCE: DIRECTION FIELD

Continuity of the direction field (Lim et al., 2002)
Detection of abrupt direction changes between blocks

Uniformity of the frequency field (Lim et al., 2002)
Standard deviation of the ridge-to-valley thickness ratio

SOURCE: POWER SPECTRUM

Energy concentration in ring-shaped regions of the spectrum (Chen et al., 2005)

Table 3.2: Summary of existing fingerprint quality measures based on global
features.

The method presented by Lim et al. (2002) computes the following features in

each block: Orientation Certainty Level (OCL), ridge frequency, ridge thickness and

ridge-to-valley thickness ratio. Blocks are then labeled as “good”, “undetermined”,

“bad” or “blank” by setting thresholds for the four features. A local quality score

SL is finally computed based on the total number of “good”, “undetermined” and

“bad” quality image blocks in the image. The Orientation Certainty Level measures

the energy concentration along the dominant direction of ridges. It is computed as

the ratio between the two eigenvalues of the covariance matrix of the gradient vector.

Ridge frequency is used to detect abnormal ridges that are too close or too far whereas

ridge thickness and ridge-to-valley thickness ratio are used to detect ridges that are

unreasonably thick or thin. An example of Orientation Certainty Level computation is

shown in Figure 3.16 for two fingerprints of different quality.

The Orientation Certainty Level is also used by Lim et al. (2004) to detect high

curvature regions of the image. Although high curvature has no direct relationship

with the quality of a fingerprint image (e.g. core and delta points), it could help to

detect regions with invalid curvature. The curvature of a block is captured by (Lim

et al., 2004) by combining the orientations of four quadrants and each of their Certainty

Levels. Both measures are used together to distinguish between blocks with core/deltas

and blocks with invalid curvature due to low quality.

The method presented by Chen et al. (2004) computes the average absolute differ-

ence of local orientation with the surrounding blocks, resulting in a Local Orientation

Quality measure (LOQ). A Global Orientation Quality Score GOQS is finally com-

puted by averaging all the Local Orientation Quality scores of the image. In high quality

images, it is expected that ridge direction changes smoothly across the whole image,
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(a) (b)

Figure 3.16: Computation of the Orientation Certainty Level (OCL) for two
fingerprints of different quality. Panel (a) are the input fingerprint images.
Panel (b) are the block-wise values of the OCL; blocks with brighter color
indicate higher quality in the region.

thus the GOQS provides information about how smoothly local direction changes from

block to block. An example of Local Orientation Quality computation is shown in

Figure 3.17 for two fingerprints of different quality.

Recently, Chen et al. (2005) proposed a local quality index which measures the local

coherence of the intensity gradient, reflecting the clarity of local ridge-valley direction

in each block. A local quality score QS is finally computed by averaging the coherence

of each block.

The method presented by Fronthaler et al. (2006) employs symmetry features for

fingerprint quality assessment. In this approach, the orientation tensor (Bigun et al.,

2004) of a fingerprint image is decomposed into two symmetry representations, allow-

ing to draw conclusions on its quality. On one hand, a coherent ridge flow has linear

symmetry and is thus modeled by symmetry features of order 0. On the other hand,

points of high curvature like minutia, core and delta points exhibit parabolic symmetry

and are therefore represented by symmetry features of order 1. Figure 3.18 depicts

these two symmetry representations for two fingerprints of different quality. In a fur-

ther step, the two symmetries are combined and averaged within small non-overlapped

blocks, yielding Sb. To determine the final local quality Qb, Sb is negatively weighted

with the block-wise correlation between the two involved symmetries. A large negative

correlation is desirable in terms of quality, because this suggests well separated sym-

metries. The local quality Qb is also visualized in the last column of Figure 3.18. An

overall quality measure is derived by averaging over the foreground blocks of Qb.
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(a) (b)

Figure 3.17: Computation of the Local Orientation Quality (LOQ) for two
fingerprints of different quality. Panel (a) are the direction fields of the
images shown in Figure 3.16a. Panel (b) are the block-wise values of the
average absolute difference of local orientation with the surrounding blocks;
blocks with brighter color indicate higher difference value and thus, lower
quality.

3.2.3.2 Based on Gabor filters

Gabor filters can be viewed as a filter-bank that can represent the local frequencies.

Two dimensional quadrature mirror filters are close akins of Gabor filters (Knutsson,

1982). Gabor filters were introduced to image processing by Daugman (1988), and

both filter families represent another implementation of the local-direction fields (Bi-

gun, 2006), though they are frequently used stand-alone, without a local-direction field

interpretation.

Shen et al. (2001) proposed a method based on Gabor features. Each block is

filtered using a Gabor filter with m different directions. If a block has high quality (i.e.

strong ridge direction), one or several filter responses are larger than the others. In poor

quality blocks or background blocks, the m filter responses are similar. The standard

deviation of the m filter responses is then used to determine the quality of each block

(“good” and “poor”). A quality index QI of the whole image is finally computed as the

percentage of foreground blocks marked as “good”. If QI is lower than a predefined

threshold, the image is rejected. Poor quality images are additionally categorized as

“smudged” or “dry”. An example of quality estimation using Gabor filters is shown in

Figure 3.19 for two fingerprints of different quality.
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(a) Low quality fingerprint

(b) High quality fingerprint

Figure 3.18: Estimation of fingerprint quality using symmetry features. Fig-
ure shows the decomposition of two fingerprints of different quality into
linear and parabolic symmetry (second and third column, respectively).
The final local quality estimation in blocks is depicted in the fourth column
(blocks with brighter color indicate higher quality in the region).

3.2.3.3 Based on pixel intensity

The method described by Ratha and Bolle (2004) classifies blocks into “directional”

and “non-directional” as follows. The sum of intensity differences Dd (i, j) between a

pixel (i, j) and l pixels selected along a line segment of direction d centered at (i, j)

is computed for n different directions. For each different direction d, the histogram of

Dd (i, j) values is obtained for all pixels within a given foreground block. If only one of

the n histograms has a maximum value greater than a prominent threshold, the block

is marked as “directional”. Otherwise, the block is marked as “non-directional”. An

overall quality score Q is finally computed. A relative weight wi is assigned to each

foreground block based on its distance to the centroid of the foreground. The quality
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(a) (b)

Figure 3.19: Estimation of fingerprint quality using Gabor filters. Panel (a)
are the input fingerprint images. Panel (b) are the block-wise values of the
standard deviation of m filter responses (8 in this example) with different
direction. Blocks with brighter color indicate higher standard deviation
value and thus, higher quality.

score Q is defined as Q =
∑

D wi /
∑

F wi where D is the set of directional blocks

and F is the set of foreground blocks. If Q is lower than a threshold, then the image

is considered to be of poor quality. Measures of the smudginess and dryness of poor

quality images are also defined by Ratha and Bolle (2004).

Two methods based on pixel intensity are presented by Joun et al. (2003). The first

one measures the variance in gray levels in overlapped blocks. High quality blocks will

have large variance while low quality blocks will have a small one. The second method

measures the local contrast of gray values among ridges and valleys along the local

direction of the ridge flow. Blocks with high quality will show high contrast, which

means that ridges and valleys are well separated on the grayscale. Shi et al. (2004)

define further features extracted from the gray level image to characterize a block of a

fingerprint image: mean, variation, contrast and eccentric moment. They use these four

features extracted from the gray level image to improve the fingerprint segmentation

in low quality regions. An example of quality estimation using gray level statistics is

shown in Figure 3.20 for two fingerprints of different quality.

The method presented by Lim et al. (2004) checks the consistency of ridge and

valley’s gray level as follows. It binarizes image blocks using Otsu’s method (Otsu, 1979)

to extract ridge and valley regions and then computes a Clustering Factor, defined as

the degree to which gray values of ridge/valley pixels are clustered. The more clustered

are ridge/valley pixels, the higher the clarity of such structure, and hence its quality.
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(a) Low quality fingerprint

(b) High quality fingerprint

Figure 3.20: Estimation of fingerprint quality using gray level statistics for
the two fingerprints of different quality shown in Figure 3.16a. Figure shows
(from left to right of each subplot): fingerprint image and block-wise val-
ues of mean, standard deviation and contrast value, respectively. Brighter
values in the blocks indicate higher values. For the low quality fingerprint
we observe more fluctuation of the three measures across the image.

Chen et al. (2004) proposed a measure which computes the clarity of ridges and

valleys. For each block, they extract the amplitude of the sinusoidal-shaped wave along

the direction normal to the local ridge direction (Hong et al., 1998) (see Figure 3.21).

A threshold is then used to separate the ridge region and valley region of the block.

The gray level distribution of the segmented ridges and valleys is computed and the

overlapping area of the distributions is used as a measure of clarity of ridges and

valleys. For ridges/valleys with high clarity, both distributions should have a very

small overlapping area. A Global Clarity Score is finally computed by averaging all the

local clarity measures of the image. An example of quality estimation using the Local

Clarity Score is shown in Figure 3.22 for two fingerprint blocks of different quality.
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Figure 3.21: Modeling of ridges and valleys as a sinusoid.

3.2.3.4 Based on Power Spectrum

The method presented by Lim et al. (2004) extracts the sinusoidal-shaped wave along

the direction normal to the local ridge direction (Hong et al., 1998) (see Figure 3.21),

and then computes its Discrete Fourier Transform. Low quality blocks will not exhibit

an obvious dominant frequency, or it will be out of the normal ridge frequency range.

3.2.3.5 Based on a combination of local features

Hong et al. (1998) modeled ridges and valleys as a sinusoidal-shaped wave along the

direction normal to the local ridge direction (see Figure 3.21) and extracted the ampli-

tude, frequency and variance of the sinusoid. Based on these parameters, they classify

blocks as recoverable and unrecoverable.

The minutia detection (MINDTCT) package of the NIST Fingerprint Image Soft-

ware (NFIS) (Watson et al., 2004) locally analyzes the fingerprint image and generates

an image quality map. The quality of each block is assessed by computing several maps:

direction map, low contrast, low flow and high curve. The direction map is indicating

areas of the image with sufficient ridge structure. The low contrast map is marking

blocks with weak contrast, which are considered as background blocks. The low flow

map is representing blocks that could not be assigned a dominant ridge flow. The high

curve map is marking blocks that are in high curvature areas, which usually are core

and delta regions, but also other low quality regions. These maps are integrated into

one quality map, containing 5 levels of quality (an example is shown in Figure 3.23 for

two fingerprints of different quality).
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Figure 3.22: Computation of the Local Clarity Score for two fingerprint blocks
of different quality. Panel (a) are the fingerprint blocks. Panel (b) are the
gray level distributions of the segmented ridges and valleys. The degree of
overlapping for the low and high quality block is 0.22 and 0.10, respectively.

3.2.4 Methods based on global features

Methods that rely on global features analyze the image in a holistic manner and com-

pute a global measure of quality based on the features extracted.

3.2.4.1 Based on the direction field

Lim et al. (2002) presented two features to analyze the global structure of a fingerprint

image. Both of them use the local direction information provided by the direction field,

which is estimated in non-overlapping blocks. The first feature checks the continuity

of the direction field. Abrupt direction changes between blocks are accumulated and

mapped into a global direction score. As we can observe in Figure 3.17, ridge direction

changes smoothly across the whole image in case of high quality. The second feature

checks the uniformity of the frequency field (Maltoni et al., 2003). This is done by

computing the standard deviation of the ridge-to-valley thickness ratio and mapping it

into a global score, as large deviation indicates low image quality.

3.2.4.2 Based on Power Spectrum

Global structure is analyzed by Chen et al. (2005) by computing the 2D Discrete

Fourier Transform (DFT). For a fingerprint image, the ridge frequency values lie within
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LOW CONTRAST MAP LOW FLOW MAP HIGH CURVE MAP QUALITY MAP

(a) Low quality fingerprint

LOW CONTRAST MAP LOW FLOW MAP HIGH CURVE MAP QUALITY MAP

(b) High quality fingerprint

Figure 3.23: Fingerprint quality maps provided by the minutia detection
package of the NIST Fingerprint Image Software for two fingerprints of
different quality.

a certain range. A region of interest (ROI) of the spectrum is defined as an annular

region with radius ranging between the minimum and maximum typical ridge frequency

values. As the fingerprint image quality increases, the energy will be more concentrated

within the ROI, see Figure 3.24a. The global quality index QF defined by Chen et al.

(2005) is a measure of the energy concentration in ring-shaped regions of the ROI.

For this purpose, a set of bandpass filters is employed to extract the energy in each

frequency band. High quality images will have the energy concentrated in few bands

while poor ones will have a more diffused distribution. The energy concentration is

measured using the entropy. An example of quality estimation using the global quality

index QF is shown in Figure 3.24 for two fingerprints of different quality.
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Figure 3.24: Computation of the energy concentration in the power spectrum
for two fingerprints of different quality. Panel (a) are the power spectra of
the images shown in Figure 3.16a. Panel (b) shows the energy distributions
in the region of interest. The quality values for the low and high quality
image are 0.35 and 0.88 respectively.

3.2.5 Methods based on classifiers

The method that uses classifiers (Tabassi and Wilson, 2005; Tabassi et al., 2004) de-

fines the quality measure as a degree of separation between the match and non-match

distributions of a given fingerprint. This can be seen as a prediction of the matcher

performance. Tabassi et al. Tabassi and Wilson (2005); Tabassi et al. (2004) extract

the fingerprint features (minutiae in this case) and then compute the quality of each

extracted feature to estimate the quality of the fingerprint image, which is defined as

stated above.

Let s (xii) be the similarity score of a genuine comparison (match) corresponding

to the subject i, and s (xji), i 6= j be the similarity score of an impostor comparison

(non-match) between subject i and impostor j. Quality QN of a biometric sample xii

is then defined as the prediction of

o (xii) =
s (xii) − E [s (xji)]

σ (s (xji))
(3.1)

where E[.] is mathematical expectation and σ(.) is standard deviation. Eq. (3.1) is a

measure of separation between the match and the non-match distributions, which is

supposed to be higher as image quality increases. The prediction of o (xii) is done by

using a neural network. Output of the neural network is a number that classifies the

quality of the fingerprint into 5 values: 5 (poor), 4 (fair), 3 (good), 2 (very good) and

1 (excellent).
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Figure 3.25: System architecture of the MINDTCT package of the NIST
Fingerprint Image Software 2 (NFIS2).

3.3 Fingerprint matcher based on minutiae

As fingerprint minutiae-based matcher for our study, we use the matcher included in

the freely available NIST Fingerprint Image Software 2 - NFIS2 (Watson et al., 2004).

NFIS2 contains software technology, developed for the Federal Bureau of Investigation

(FBI), designed to facilitate and support the automated manipulation and processing

of fingerprint images. Source code for over 50 different utilities or packages and an

extensive User’s Guide are distributed on CD-ROM free of charge (Watson et al.,

2004). For our evaluation and tests with NFIS2, we have used the following packages:

MINDTCT for minutiae extraction, and BOZORTH3 for fingerprint matching.

MINDTCT takes a fingerprint image and locates all minutiae in the image, assigning

to each minutia point its location, orientation, type, and quality. The architecture of

MINDTCT is shown in Figure 3.25 and it can be divided in the following stages:

1. Generation of image quality map.

2. Binarization.

3. Minutiae detection.

4. Removal of false minutiae, including islands, lakes, holes, minutiae in regions of

poor image quality, side minutiae, hooks, overlaps, minutiae that are too wide,

and minutiae that are too narrow (pores).

5. Counting of ridges between a minutia point and its nearest neighbors.

6. Minutiae quality assessment.
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Because of the variation of image quality within a fingerprint, MINDTCT analyzes

the image and determines areas that are degraded. Several characteristics are measured,

including regions of low contrast, incoherent ridge flow, and high curvature. These

three conditions represent unstable areas in the image where minutiae detection is

unreliable, and together they are used to represent levels of quality in the image. The

image quality map of the stage 1 is generated integrating these three characteristics.

Images are divided into non-overlapping blocks, where one out of five levels of quality

is assigned to each block.

The minutiae detection step scans the binary image of the fingerprint, identifying

local pixel patterns that indicate the ending or splitting of a ridge. A set of minutia

patterns is used to detect candidate minutia points. Subsequently, false minutiae are

removed and the remaining candidates are considered as the true minutiae of the image.

Fingerprint minutiae marchers often use other information in addition to just the points

themselves. Apart from minutia’s position, direction, and type, MINDTCT computes

ridge counts between a minutia point and each of its nearest neighbors.

In the last stage, MINDTCT assigns a quality/reliability measure to each detected

minutia point. Even after performing the removal stage, false minutiae potentially

remain in the list. Two factors are combined to produce a quality measure for each de-

tected minutia point. The first factor is taken directly from the location of the minutia

point within the quality map generated in the stage 1. The second factor is based on

simple pixel intensity statistics (mean and standard deviation) within the immediate

neighborhood of the minutia point. A high quality region within a fingerprint image is

expected to have significant contrast that will cover the full grayscale spectrum (Watson

et al., 2004).

The BOZORTH3 matching algorithm computes a match score between the minutiae

from any two fingerprints to help determine if they are from the same finger. The

BOZORTH3 matcher uses only the location and orientation of the minutia points to

match the fingerprints, and it is rotation and translation invariant. For fingerprint

matching, compatibility between minutiae pairs of the two images are assessed by

comparing the following measures : i) distance between the two minutiae and ii) angle

between each minutia’s orientation and the intervening line between both minutiae.

This process can be observed in Figure 3.26.
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Figure 3.26: Compatibility between minutiae pairs of two different finger-
prints.

Figure 3.27: Processing steps of the ridge-based matcher. From left to right:
original image, filtered image with filter orientation θ = 0 and FingerCode.
Figure extracted from Munoz-Serrano (2004).

3.4 Fingerprint matcher based on ridge information

The ridge-based matcher (also referred to as texture-based) uses a set of Gabor filters

to capture the ridge strength (Fierrez-Aguilar et al., 2005b). The input fingerprint

image is tessellated into square cells, and the variance of the filter responses in each

cell across all filtered images is used as feature vector. This feature vector is called

FingerCode because of the similarity to previous research works (Daugman, 2004; Ross

et al., 2003). The automatic alignment is based on the system described in Ross et al.

(2002), in which the correlation between the two FingerCodes is computed, obtaining

the optimal offset. The ridge-based matcher is divided in two phases: i) extraction of

the FingerCode; and ii) matching of the FingerCodes.

No image enhancement is performed since Gabor filters extract information that is

in a specific (usually low-pass) band that is not affected from noise, to the same extent
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Figure 3.28: Biosec baseline fingerprint sensors.

as the original image is. The complete processing for extracting the FingerCode consist

in the following three steps:

• Convolution of the input fingerprint image with 8 Gabor filters, obtaining 8 fil-

tered images Fθ.

• Tessellation of the filtered images into equal-sized square disjoint cells.

• Extraction of the FingerCode.

For each cell of each filtered image Fθ, we compute the variance of the pixel intensities.

These standard deviation values constitute the FingerCode of a fingerprint image. A

sample fingerprint image, the resulting convolved image with a Gabor filter of orienta-

tion θ = 0◦, and its FingerCode are shown in Figure 3.27.

The sequence of steps for matching of two FingerCodes is: i) alignment of the

two fingerprints to be compared; and ii) similarity computation between the Finger-

Codes. The matching score is computed as the Euclidean distance between the two

FingerCodes. To determine the alignment between two fingerprints, we compute the 2D

correlation of the two FingerCodes (Ross et al., 2002). Correlation involves multiplying

corresponding entries between the two FingerCodes at all possible translation offsets,

and determining the sum, which is computed more efficiently in the Fourier domain.

The offset that results in the maximum sum is chosen to be the optimal alignment.

Every offset is properly weighted to account for the amount of overlap between the two

FingerCodes. It is worth noting that this procedure does not account for rotational off-

set between the two fingerprints. For the database used in this work, which is acquired

under realistic conditions, we have observed that typical rotations between different

impressions of the same fingerprint are compensated by using the tessellation.
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3.5 Experimental framework

3.5.1 Database and protocol

For the experiments in this chapter, we use the BioSec baseline corpus (Fierrez et al.,

2007). Data consists of 19, 200 fingerprint images acquired from 200 individuals in 2

acquisition sessions, separated typically by one to four weeks, using 3 different sensors.

The fingerprint sensors are:

• Capacitive sensor Authentec AES400, with an image size of 96 pixels width and

96 pixels height.

• Thermal sensor Atmel FCDEM04, with an image size of 400 pixels width and 496

pixels height.

• Optical sensor Biometrika FX2000, with an image size of 400 pixels width and

560 pixels height.

The capacitive sensor has a resolution of 250 dpi1, whereas the thermal and the

optical ones have a resolution of 500 dpi. They are shown in Figure 3.28. A total of 4

captures of the print of 4 fingers (right and left index and middle) were captured with

each of the 3 sensors, interleaving fingers between consecutive acquisitions. The total

number of fingerprint images is therefore 200 individuals × 2 sessions × 4 fingers × 4

captures = 6, 400 images per sensor. In Figure 3.29, some fingerprint samples from the

BioSec baseline corpus are shown.

The 200 subjects included in BioSec Baseline are further divided into: i) the devel-

opment set, including the first 25 and the last 25 individuals of the corpus, totaling 50

individuals; and ii) the test set, including the remaining 150 individuals. The develop-

ment set is used to tune the parameters of the different quality assessment algorithms.

No training of parameters is done on the test set. We consider the different fingers of

the test set as different users enrolled in the system, thus resulting in 150 × 4 = 600

users. For evaluation of the verification performance, the following matchings are de-

fined in the test set: a) genuine matchings: the 4 samples in the first session to the 4

samples in the second session, resulting in 150 individuals × 4 fingers × 4 templates

× 4 test images = 9, 600 genuine scores per sensor; and b) impostor matchings: the

first sample in the first session to the same sample of the remaining users, avoiding

symmetric matches, resulting in (150× 4)× (150× 4− 1)/2 = 179, 700 impostor scores

per sensor.

1The NIST-NFIQ quality measure and the NIST-NFIS2 package are developed for 500 dpi images,
thus images from the capacitive sensor are first interpolated using bicubic interpolation.
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Figure 3.29: Example images from the BioSec baseline corpus. Fingerprint
images are plotted for the same finger for (i) capacitive sensor (top row),
optical sensor (medium row), thermal sensor (bottom row), and (ii) three
different fingerprints, one per column.

3.5.2 Selected quality measures

Different measures have been selected from the literature in order to have a represen-

tative set. We have implemented at least one measure that make use of the different

features presented in Tables 3.1 and 3.2: direction information (local direction, Gabor

filters or global direction field), pixel intensity information and power spectrum infor-

mation. The measure that relies on direction information is the Orientation Certainty

Level (OCL) (Lim et al., 2002), the measure based on pixel intensity information is

the Local Clarity Score (LCS) (Chen et al., 2004) and the measure based on the power

spectrum is the energy concentration (Chen et al., 2005). We have also used the ex-
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Figure 3.30: Quality distribution of the images of the BioSec baseline corpus
(test set). All image quality values are normalized into the [0-1] range,
with 0 corresponding to the worst quality and 1 corresponding to the best
quality.

isting measure based on classifiers, NFIQ, which is included in the NIST Fingerprint

Image Software 2 - NFIS2 (Watson et al., 2004).

In the experiments carried out in this chapter, all image quality values are nor-

malized into the [0-1] range for better comparison, with 0 corresponding to the worst

quality and 1 corresponding to the best quality. In Figure 3.30, it is depicted the im-

age quality distribution of the database used in this chapter for the selected quality

measures (test set). Note that the NFIQ measure only have 5 values due to its discrete

nature (Watson et al., 2004).
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(a) Capacitive sensor.

(b) Thermal sensor.

(c) Optical sensor.

Figure 3.31: Correlation between the automatic quality assessment algo-
rithms tested in this work (x- and y-axis are the quality values of the two
algorithms under comparison). Pearson correlation value between the two
algorithms is also shown in each subplot.
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3.6 Results

In Figure 3.31 we plot the correlation among the quality measures tested in this chapter

for the test set of the Biosec database. In addition, we show the Neyman-Pearson cor-

relation values (Papoulis, 1984) between them, which are observed to be high, except

when the NFIQ measure is involved. This could be due to the finite number of quality

labels used by this algorithm (Watson et al., 2004). In spite of the high correlation

observed between most of the measures, their values are different depending on the

sensor (e.g. correlation between the OCL and energy measures is 0.8, 0.71 and 0.44 for

the capacitive, thermal and optical, respectively). This suggest that quality measures

work differently with each sensor, which could be due to their different physical acqui-

sition principles. Also worth noting, the lowest correlation values are obtained with the

optical sensor.

In order to evaluate the utility of the compared quality metrics, i.e. their capabil-

ity to predict the performance of a matcher (Grother and Tabassi, 2007), we plot in

Figures 3.32 and 3.33 the similarity scores of the two matchers (minutiae- and ridge-

based) against the average quality of the two involved fingerprint images. We assign

a quality value to a given score, which is computed as
√

Qe × Qt, where Qe and Qt

are the quality values of the enrolment and test fingerprint, respectively, corresponding

to the matching (note that the NIST-NFIQ quality measure only provides 5 possible

values for Qe and Qt, and thus, the combined value
√

Qe × Qt also exhibit a discrete

nature but with more than 5 possible values). We also give in Figures 3.32 and 3.33 the

Neyman-Pearson correlation between similarity scores and its assigned quality value.

In addition, Figures 3.34 and 3.35 depict the error rates of the two verification systems

as we reject samples (i.e. matching scores) with the lowest quality value. We report the

error rates at three points: the Equal Error Rate (EER), the False Acceptance Rate at

1% FRR, and the False Rejection Rate at 1% FAR.

Minutiae-based matcher.

For the minutiae-based matcher, positive correlation values are observed between

quality measures and genuine similarity scores, as it is plotted in Figure 3.32. On the

other hand, correlation is found to be close to zero for the impostor scores (or even

negative, as in the case of the capacitive sensor).
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(a) Capacitive sensor.

(b) Thermal sensor.

(c) Optical sensor.

Figure 3.32: Minutiae-based matcher. Dependence of similarity scores (y-
axis) on the average quality of the template and the input images (x-axis).
We assign a quality value to a given score, which is computed as

√
Qe × Qt,

where Qe and Qt are the quality values of the enrolment and test fingerprint
samples, respectively, corresponding to the matching.
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3.6 Results

(a) Capacitive sensor.

(b) Thermal sensor.

(c) Optical sensor.

Figure 3.33: Ridge-based matcher. Dependence of similarity scores (y-axis)
on the average quality of the template and the input images (x-axis). We
assign a quality value to a given score, which is computed as

√
Qe × Qt,

where Qe and Qt are the quality values of the enrolment and test fingerprint
samples, respectively, corresponding to the matching.
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As a result of the correlation found between genuine scores and quality values, a

remarkable performance improvement is obtained in the FRR, as can be seen in Fig-

ure 3.34. After rejection of just 5% of the samples, FRR is improved in the best case

about 10%, 30%, and 50% for the capacitive, thermal and optical sensor, respectively.

Significant improvement is also obtained in the EER (about 5%, 20% and 45% , re-

spectively). On the contrary, the smallest improvement is obtained for the FAR (about

7% and 3% for the thermal and optical sensor, respectively) or even no improvement,

as observed in some cases.

Regarding sensor technology, we observe a clear relationship between the sensor

acquisition area and the relative performance improvement: the sensor having the

smallest acquisition area (the capacitive) obtains the lowest improvement, whereas the

sensor with the biggest area (the optical) always results in the highest improvement of

performance. We detail this effect in Table 3.3. It is well known that acquisition surface

of fingerprint sensors has impact on the performance due to the amount of discrimina-

tive information contained in the acquired biometric data (Maltoni et al., 2003). For

a fingerprint matcher based on minutiae features, more acquisition area implies more

minutiae acquired from a fingerprint. As a result, with more acquisition surface, higher

amount of minutiae is affected by quality degradation.

Ridge-based matcher.

As far as the ridge-based matcher is concerned, negative correlation values between

quality measures and similarity scores are found, both for the genuine and impostor

ones (see Figure 3.33). Correlation values are higher for the impostor scores, therefore

the highest improvement of performance when rejecting low quality scores is observed

in the FAR, as can be seen in Figure 3.35. Interestingly enough, no improvement is

observed in the FRR.

In addition, sensor technology does not play a primary role with relative perfor-

mance improvement for the ridge-based matcher, contrarily to what happened with the

minutiae-based matcher. The unique relationship between sensor area and performance

improvement is observed in the FAR.

3.7 Chapter summary and conclusions

In this chapter we have presented a taxonomy of existing approaches for fingerprint

image quality estimation, divided into: i) approaches that use local features of the
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image; ii) approaches that use global features of the image; and iii) approaches that

address the problem of quality assessment as a classification problem. They make use

of different local and global image features that are extracted using several sources:

direction field, Gabor filter responses, power spectrum and pixel intensity values.

Based on the proposed taxonomy, we have performed comparative experiments

using a selection of quality estimation algorithms that includes approaches based on

the three classes defined above. We have used for our experiments the Biosec baseline

corpus, which includes 19,200 fingerprint images from 200 individuals acquired with

three fingerprint sensors based on different acquisition principles. High correlation is

found between quality measures in most cases, although different correlation values

are obtained depending on the sensor. This suggest that the quality measures work

differently with each sensor.

We also have studied the capability of the selected quality algorithms to predict

the performance of the two most widely used approaches for fingerprint recognition. It

has been found that for the approach based on minutiae, when rejecting low quality

samples, the highest performance improvement is obtained in the False Rejection Rate,

whereas for the ridge-based approach the highest improvement is observed in the False

Acceptance Rate. We have also observed a relationship between sensor acquisition area

and the achieved relative performance improvement.

This chapter presents novel contributions regarding the taxonomy of fingerprint

quality assessment algorithms, the study of correlation of a representative set of quality

measures and their utility for two different matchers with sensors of different technology.
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Figure 3.34: Minutiae-based matcher. Verification performance as samples
with the lowest quality value are rejected. Results are shown for all the
quality measures tested in this work in terms of False Acceptance Rate at
1% FRR (first column), Equal Error Rate - EER (second column) and False
Rejection Rate at 1% FAR (third column).
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(c) Optical sensor.

Figure 3.35: Ridge-based matcher. Verification performance as samples with
the lowest quality value are rejected. Results are shown for all the quality
measures tested in this work in terms of False Acceptance Rate at 1% FRR
(first column), Equal Error Rate - EER (second column) and False Rejection
Rate at 1% FAR (third column).
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Minutiae matcher Ridge matcher
sensor image size (pixels) FA EER FR FA EER FR

Capacitive 36,864 ∗ -0.7% -4.8% -9.6% -1.59 -0.87 no improv.
Thermal 198,400 -7.1% -21% -28.6% -1.74 -4.65 no improv.
Optical 224,000 -2.95% -43.7% -53.4% -2.06 -1.90 no improv.

Table 3.3: Relationship between sensor acquisition area and relative perfor-
mance improvement obtained after rejection of 5% of the samples (results
shown in this table are the best cases of Figures 3.34 and 3.35). It is ob-
served that, in general, bigger acquisition area results in higher performance
improvement for the minutiae-based matcher.
∗ Image size of the capacitive sensor is after interpolation to 500 dpi, see
Section 3.5.1.
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Chapter 4

Quality Assessment of Signature

Images

The handwritten signature is one of the most widely used individual authenti-

cation methods due to its acceptance in government, legal and commercial transactions

as a method of identity verification (Fairhurst, 1997; Jain et al., 2004b). People are

used to sign documents to confirm their identity in cheques, financial transactions,

credit card validations, contracts, etc. Moreover, signature capture is a very simple

and common process.

This chapter is focused on off-line signature verification, a pattern classification

problem with a long history, involving the discrimination of signatures written on a

piece of paper (Plamondon and Srihari, 2000). It is worth noting that even professional

forensic document examiners perform a correct classification rate of only about 70%,

confirming that this a challenging research area.

This chapter presents several measures aimed to predict the performance of off-line

signature verification systems. They are used as a measure of utility and evaluated on

three matchers that use different approaches based on global and local image analysis.

The proposed measures, extracted from signature images, assess factors like signature

legibility, complexity, stability, duration, etc. Some remarkable findings of this chapter

are that better performance is obtained with legible signatures and skilled forgeries, or

that performance is worsened with highly variable signatures.

This chapter is structured as follows. We first review the state of the art in off-

line signature recognition, describing the most commonly used approaches. Next, we

present the measures used to evaluate the utility of the system. After that, we outline

93



4. QUALITY ASSESSMENT OF SIGNATURE IMAGES
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Figure 4.1: Example of signatures from MCYT database. The two left sig-
natures are genuine and the one on the right is a skilled forgery. Plots be-
low each signature correspond to the available on-line information, namely:
position trajectories (horizontal x, and vertical y), pressure (p), and pen
inclination (azimuth and altitude angles).

the experimental framework and the signature matching systems used. Results are

then described and finally, a summary and some conclusions are given.

This chapter present novel contributions in one of the matchers that exploits local in-

formation of the signature, which has been developed jointly with Pecharroman-Balbas

(2007), the proposal of measures to predict the performance of signature systems, and

the study of their utility.

This chapter is based on the publications: Alonso-Fernandez et al. (2007a,b); Gilperez

et al. (2008).

4.1 Automatic off-line signature recognition

There are two main automatic signature recognition approaches (Plamondon and Sri-

hari, 2000): off-line and on-line. Off-line methods consider only the signature image,

so only static information is available for the recognition task. On-line systems use

pen tablets or digitizers which capture dynamic information such as velocity and ac-

celeration of the signing process, see Figure 4.1. These features are then available

for recognition, providing a richer source of information than off-line static images.

On-line signature verification systems have traditionally shown to be more reliable as
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dynamic features provide in general a higher variability between users and are harder

to imitate (Plamondon and Lorette, 1989; Rigoll and Kosmala, 1998). But in spite

of the advantages of on-line signature approaches, off-line signature verification has a

wide field of implementation. Signature capture in off-line systems is a very simple

process and we are used to sign documents to confirm our identity in cheques, financial

transactions, credit card validations, contracts, etc. In fact, some authors have tried to

extract pseudo-dynamic features from signature images in an attempt to enhance the

performance of off-line verification systems (Ammar and Fukumura, 1986; Fang et al.,

1999; Lee and Pan, 1992).

Like other biometric systems, signature verification systems are exposed to forgeries,

which can be easily performed by direct observation and learning of the signature by

the forger. Commonly, two kind of impostors are considered in signature verification

tasks: casual impostors, which produce random forgeries that are visually distinct (e.g.

their own signature) from the target signature, and real impostors, that produce skilled

forgeries which attempt to imitate the target signature (Justino et al., 2001), as the

example shown in the right part of Figure 4.1. A robust system against simple forgeries

may be weak against skilled forgeries.

In this section, we describe the main existing approaches for off-line signature recog-

nition. They are presented according to the general architecture of a biometric system

presented in Chapter 1, namely: i) signature acquisition; ii) preprocessing, iii) fea-

ture extraction and iv) matching. This section is based on publication Martinez-Diaz

(2007).

4.1.1 Signature acquisition and preprocessing

Due to their specific nature, off-line signatures are acquired after the user has produced

its signature. The most common way is by document scanning. After the image has

been captured, signature region is segmented from the background (Ammar et al.,

1988). In some cases, noise reduction techniques are used to enhance the signature

extraction phase. The following steps are commonly performed for these purposes:

1. Binarization. Signature images are converted to binary images in most cases in

order to use them as input for other stages. This step is commonly performed

using classical thresholding techniques, like the Otsu method (Otsu, 1979). An

example is shown in Figure 4.2.

2. Noise reduction. Noise may appear after the binarization step. These can be

deleted using morphological operations such as openings and closings (Gonzalez
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Figure 4.2: Signature binarization using the Otsu method.

Figure 4.3: Noise removal using morphological closing.

and Woods, 2002), as can be seen in Figure 4.3.

3. Segmentation. Signature images are segmented by extracting signature strokes

from the background in order to process only the signature traces (Lee and

Lizarraga, 1996). In the work presented by Fierrez-Aguilar et al. (2004), signa-

tures are segmented by locating and eliminating the outermost flourish strokes,

considering the signature image only in the inside of a bounding box, as outer-

most flourish strokes usually present more intra-variability. This process can be

seen in Figure 4.4. A sophisticated method for segmenting signature images is

presented by Sabourin and Plamondon (1988), where statistics of directional data

are used to grow regions using a merging algorithm.

4. Normalization and centering. While some authors consider the signature size and

position as user-specific (Murshed et al., 1995; Sabourin and Drouhard, 1992),

signatures are generally aligned and normalized. In Figure 4.5, an example of

size normalization to a fixed width while maintaining the aspect ratio is depicted

for two different signatures. By using this process, all signatures from an specific

subject are normalized to the same size, as can be observed in Figure 4.6.
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Figure 4.4: Elimination of signature outermost flourish strokes. Figure ex-
tracted from Alonso-Hermira (2003); Moreno-Marquez (2003).

Figure 4.5: Size normalization to a fixed width. Figure extracted from
Alonso-Hermira (2003); Moreno-Marquez (2003).

Other approaches perform the signature extraction process in different ways, like

the approach known as filiformity detection which is presented by Djeziri et al. (1998).

Some authors perform a thinning process to the signature strokes before the feature

extraction phase (Lee and Pan, 1992).

4.1.2 Feature extraction

A vast quantity of approaches have been proposed in the last few years, most of them

summarized by Dimauro et al. (2004); Hou et al. (2004); Leclerc and Plamondon (1994);

Plamondon and Lorette (1989); Sabourin (1992). Feature extraction methods can be

classified in global and local approaches.

Global approaches extract feature vectors based on the whole signature image. First

works used several classical shape description techniques, such as Fourier descriptors,

Hadamard transforms, etc. (Ammar et al., 1988). Some examples of recent approaches

include:
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Figure 4.6: Several signatures of two different subjects after size normaliza-
tion and centering. Figure extracted from Alonso-Hermira (2003); Moreno-
Marquez (2003).

• Directional probability density functions techniques that compute histograms of

the direction of the signature strokes (Sabourin and Drouhard, 1992).

• Vertical and horizontal projection moments, computing the amount of pixels from

each row and column of the image (Bajaj and Chaudhury, 1997).

• Shape-matrices computed over a pseudo-convex hull of the signature image (Sabourin

et al., 1997).

• Slant directions and signature envelope features extracted using morphological

image processing (Lee and Lizarraga, 1996).

• Pixel density based techniques that divide the signature image in cells and com-

pute the amount of signature pixels in each cell (Justino et al., 2000; Rigoll and

Kosmala, 1998).

• Geometrical features such as contour measures based on polar and cartesian co-

ordinates (Ferrer et al., 2005).

• Simple graphometric features such as signature proportion, space between sig-

nature blocks, baseline angle, image area, number of closed loops, number of

crossings, maximum horizontal and vertical projections, global slant angle, num-

ber of edge points, etc. (Baltzakis and Papamarkos, 2001; Justino et al., 2000).

In local approaches, signature images are divided in regions and feature vectors are

then computed from each region. Some recent approaches include:

• Structural descriptors which consider the whole signature as a set of hierarchical

symbols that can be described at different levels in a tree-form structure (Ammar

et al., 1990).
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• In Sabourin et al. (1993), shadow codes are proposed as features. This technique

divides the signature image in cells, and then computes the projection of the

pixels in each cell over different directions.

• Granulometric distributions are proposed by Sabourin et al. (1996). This ap-

proach divides the signature image in cells, which are called retinas, and then

computes the pattern spectrum of the pixels from each retina based on different

morphological operators.

• Simple features such as curvature, angle and size of isolated strokes (Guo et al.,

1997).

• A smoothness index, which allows to compare individual stroke curves based on

their smoothness (Fang et al., 1999).

• Slant directions and signature envelope features extracted from local regions of

the image using morphological image processing (Lee and Lizarraga, 1996).

There are also approaches that combine local and global features similar to the

above-mentioned, as in the works presented by Fierrez-Aguilar et al. (2004); Huang

and Yan (1997); Sabourin et al. (1994).

Features can also been classified in two other types: static and pseudo-dynamic fea-

tures. The features presented until now in this section are all static features. Pseudo-

dynamic features try to extract dynamic information from the signature image, be-

cause, as stated before, dynamic features provide very valuable information to detect

skilled forgeries. In the approach proposed by Ammar and Fukumura (1986), pres-

sure information is retrieved from the strokes structure, thus recovering some dynamic

information which is used to detect skilled forgeries. Directional stroke tracing from

signature images is computed by Lee and Pan (1992); Pan and Lee (1991) by retracing

the signature with an heuristical parametric algorithm emulating the way in which a

human would retrace the signature.

4.1.3 Signature matching

Several techniques have been proposed for off-line signature matching over the past few

decades. They are mainly based on classical pattern classification techniques. Signature

matching approaches can be divided in: minimum distance classifiers, Hidden Markov

Models (HMMs), Neural Networks and Support Vector Machines (SVMs). Other ap-

proaches will be presented at the end of this section.
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• Minimum distance classifiers. This is the simplest classification technique. It

has been widely used as its implementation is completely straightforward. The

distance between feature vectors is directly computed in order to test their simi-

larity. Two types of distances are the most commonly used: Euclidean (Lee and

Lizarraga, 1996; Sabourin et al., 1993, 1997) and Mahalanobis (Fang et al., 1999;

Lee and Lizarraga, 1996; Nagel and Rosenfeld, 1977) distances. One variant of

the previous methods is the Nearest Neighbor classifier (Sabourin et al., 1993),

which matches the test feature vector to the class of the template that is closer

to it.

• Hidden Markov Models (HMMs). An HMM models a double-stochastic process,

governed by a finite-state Markov Chain and a set of random functions. In each

instant, the process generates an observation symbol, according to the random

function corresponding to the actual state. Each state depends only from previous

states. The correct choice of the model topology is crucial when designing an

HMM classifier. Choosing correct probability density functions associated with

each state is also critical. A brief description of HMMs is done by Rabiner (1989).

Hidden Markov Models application examples in off-line signature verification are

given by Fierrez-Aguilar et al. (2004); Justino et al. (2000); Rigoll and Kosmala

(1998).

• Neural Networks. Neural networks have been widely used in signature verification

as they provide a framework adaptable to many kinds of features. Neural networks

are a combination of perceptrons or neurons, which are simple classifiers that can

be interconnected using as inputs their weighted outputs building in this way

multi-layer neural networks. Some examples of systems that use neural networks

are: Bajaj and Chaudhury (1997); Baltzakis and Papamarkos (2001); Huang and

Yan (1997); Murshed et al. (1995); Sabourin and Drouhard (1992).

• Support Vector Machines (SVMs). SVMs are linear classifiers which compute

the optimum hyperplane that maximizes the class separability. One of their main

advantages is that they allow to deal with high-dimensional feature vectors. This

approach is not common in off-line signature verification systems but it has shown

very promising results, as in the work reported by Martinez et al. (2004), where

an SVM classifier is used with geometric features. A complete description of

SVMs implementation is done by Burges (1998). A comparison between SVM

and HMM approaches is carried out by Justino et al. (2005) showing that, for
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the database and features under consideration, the SVM system performs better

than the HMM system.

In the work presented by Guo et al. (1997), a dynamic programming based approach

is used. This technique models the signature as a set of ordered symbols and computes

the cost function for transforming the test signature symbol set into the template set.

An approach based on relaxation matching is presented by Huang and Yan (2002).

This technique uses statistical classifiers that give soft-decisions which are viewed as

matching-confidence values and combined to compute the matching scores.

Fusion of the scores obtained with different classifiers has also been proposed (Fierrez-

Aguilar et al., 2004). Cordella et al. (1999) present a serial multi-expert approach that

combines two classifiers, one aimed against random forgeries and the other one against

skilled forgeries.

4.1.4 Issues and challenges

Off-line signature verification is a very convenient biometric based validation approach.

Unfortunately, none of the approaches given up to date have attained the same re-

liability as other biometric verification systems based on different traits such as iris,

fingerprint, etc. While systems are reasonably robust against simple forgeries, skilled

forgeries are still a challenge. Off-line signature verification is still an open issue, with

new approaches being proposed constantly. Human expert approaches should also be

taken into account. The perceptual influence in human-based signature verification is

studied by Fairhurst and Kaplani (2003). The authors study how different amounts

and typologies of training data and test data lead to very different error rates. These

results are proposed as a path to improve automatic signature verification systems.

Another problem is the scarcity of available signature templates when a user is

enrolled in a system. Usually, several templates are needed to obtain a reasonable

verification performance, but this is not always possible. Moreover, template signatures

should be captured in different sessions in order to obtain a robust model against

medium- and long-term intra-variability. This is a challenging problem in signature

recognition, as many users tend to have a high variation in their signatures between

different realizations or gradually over medium to long periods of time.

The non-existence of publicly available signature databases makes difficult the eval-

uation of off-line recognition systems. This is normally due to legal issues regarding per-

sonal data protection. Verification systems in the literature use proprietary databases,

usually from very small populations which make nearly impossible to systematically
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compare their results. Furthermore, signatures from different parts of the world tend

to be very diverse: European signatures are commonly flourished, Asian signatures use

Asian characters, etc. Systems designed to deal with Western signatures may no be

valid for Asian ones (Hou et al., 2004). Capturing a database containing samples of

each type of signature is a very difficult task.

4.2 Contribution: quality estimation of signature samples

In fingerprint images, we can objectively define quality as the strength, continuity,

clarity, uniformity or integrity of the ridge structure. But in behavioral biometric traits

such signature, it is harder to clearly define what quality is. There are works (Allgrove

and Fairhurst, 2000; Muller and Henniger, 2007) postulating that signature stability can

be considered as a measure of signature quality. Signature complexity could be other

quality measure suitable for signatures (Brault and Plamondon, 1993). But these two

factors, complexity and variability, depend on how a signer decides to sign. It is clear

that a blurred image or a weak impression of a fingerprint is not suitable for recognition,

thus a sufficient reason to ask a user for a new fingerprint sample. However, signature

complexity or variability are weak reasons to reject a signature sample, mainly because

subsequent samples provided by the user probably will have the same complexity or

variability. In this case, signature recognition systems should be able to deal with these

features and to adjust the recognition process based on the estimated complexity or

variability. An optimal system could therefore be designed that chooses a feature set

which best suits the characteristics of the signature at hand (Guest, 2004).

In this Section, we present several measures aimed to predict the performance of

off-line signature verification systems (i.e. quality defined as utility). There are also

works aimed to study signature quality as a fidelity measure, which is not considered

in this Ph.D. Thesis, e.g. Vargas et al. (2007). The proposed measures, extracted from

signature images, include:

• Two manually assessed measures, signature legibility and signature type, aimed

at evaluating how the knowledge about letters, syllables or name instances may

help in the process of imitating a signature (Section 4.2.1).

• One measure that computes the area of a signature where slants with different

directions intersect, which could be considered as a measure of complexity (Sec-

tion 4.2.2).
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NAME NO LEGIBLE OR NO NAME

MEDIUM LEGIBILITY

NAME CLEARLY LEGIBLE

Figure 4.7: Signature examples with different degrees of name legibility (from
top to bottom).
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• One measure that computes the intra-variability of a given set of signatures with

the aim of estimating its stability (Section 4.2.2).

• Three geometrical measures aimed at evaluating the variance of the pen pres-

sure during the process of signing, the signature duration and the signature area

(Section 4.2.3).

4.2.1 Legibility and type of signature

We focus here on occidental signatures, which typically consist of connected text (i.e.

name) and/or some form of flourish. Sometimes, signatures only consist of a readable

written name (e.g. American signatures). In other cases, as frequently happens in

European countries, signatures may consist of only an elaborated flourish. In contrast to

occidental signatures, oriental signatures consist of independent symbols. Examples of

both oriental and occidental signatures can be found in the First International Signature

Verification Competition (Yeung et al., 2004).

Signature verification systems have been shown to be sensitive to some extent to

signature complexity (Fierrez-Aguilar et al., 2005d). Easy to forge signatures result

in increased False Acceptance Rate. Signature variability also has an impact in the

verification rates attainable (Allgrove and Fairhurst, 2000). It can be hypothesized

that these two factors, complexity and variability, are related in some way with signa-

ture legibility and signature type. Moreover, some studies have been concerned with

the ability of humans in recognizing handwritten script (Brault and Plamondon, 1993;

Fairhurst and Kaplani, 2003). Knowledge about letters, syllables or name instances

may help in the process of imitating a signature, which is not the case for an incom-

prehensible set of strokes that, in principle, are not related to any linguistic knowledge.

Therefore, we propose to evaluate the impact of signature legibility and signature type

in the recognition rates of verification systems. In this work, signature legibility and

type are assessed by a human expert. This is a suitable situation in off-line signa-

ture verification environments, where signature acquisition is typically performed by a

human operator using a scanner or a camera (Plamondon and Srihari, 2000).

All signers in the database used for our experiments are manually assigned a legibility

label and a type label. One of three different legibility labels is assigned: i) name not

legible or no name; ii) uncertain; and iii) name clearly legible. Examples are shown

in Figure 4.7. Condition ii) is used in the case that some characters of the name can

be recognized but it is not possible to extract the name completely. In addition, four

different type labels are assigned based on the following criterion: a) simple flourish;
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SIMPLE FLOURISH COMPLEX FLOURISH

NAME + SIMPLE 

FLOURISH

NAME + COMPLEX 

FLOURISH

Figure 4.8: Signature examples of the four types encountered in the MCYT
corpus (from left to right).
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Legibility level Number of users

Non-legible 18 users (24.00%)
Medium 19 users (25.33%)
Legible 38 users (50.67%)

Type Number of users

Simple flourish 5 users (6.67%)
Complex flourish 13 users (17.33%)

Name + simple flourish 35 users (46.67%)
Name + complex flourish 22 users (29.33%)

Table 4.1: Distribution of users on the MCYT database (75 users) based on
name legibility and signature type.

b) complex flourish; c) name + simple flourish; and d) name + complex flourish. Ex-

amples are shown in Figure 4.8. It should be noted that signatures of class a) and b)

are those assigned to the non-legible class. Similarly, signatures of class c) and d) are

those assigned to the medium and legible classes. The distributions of signers in the

database used in this chapter based on name legibility and signature type are shown in

Table 4.1 (the database is described later in Section 4.3).

4.2.2 Slant and variability measures

We have proposed two measures that can be automatically extracted from off-line

signature images (Alonso-Fernandez et al., 2007a). The first computes the area of a

signature where slants with different directions intersect, which could be considered as

a measure of complexity. The second measure computes the intra-variability of a given

set of signatures with the aim of estimating its stability.

We first preprocess input signature images by performing the following steps: bina-

rization by global thresholding of the histogram (Otsu, 1979), morphological opening

plus closing operations on the binary image for noise removal, segmentation of the

signature outer traces, and normalization of the image size to a fixed width while

maintaining the aspect ratio. Segmentation of the outer traces is done because signa-

ture boundary normally corresponds to flourish, which has high intra-user variability,

whereas normalization of the image size is aimed to make the proportions of different

realizations of an individual to be the same.

Next, slant directions of the signature strokes and those of the envelopes of the

dilated signature images are extracted. For slant direction extraction, the preprocessed

106



4.2 Contribution: quality estimation of signature samples

Figure 4.9: Slant measure. Example of two eroded images (bottom row) of
a given signature image (top row). The middle row shows the two struc-
turing elements used for the erosion. The dotted circle denotes a region of
the signature having various strokes crossing in several directions. In this
region, no predominant slant direction exists.

signature image is eroded with 32 structuring elements like the ones presented in the

middle row of Figure 4.9, each one having a different orientation regularly distributed

between 0 and 360 degrees (Fierrez-Aguilar et al., 2004), thus generating 32 eroded

images. A slant direction feature sub-vector of 32 components is then generated, where

each component is computed as the signature pixel count in each eroded image. For

envelope direction extraction, the preprocessed signature image is successively dilated 5

times with each one of 6 linear structuring elements, whose orientation is also regularly

distributed, thus generating 5 × 6 dilated images. An envelope direction feature sub-

vector of 5 × 6 components is then generated, where each component is computed as

the signature pixel count in the difference image between successive dilations. The

preprocessed signature is finally parameterized as a vector o with 62 components by

concatenating the slant and envelope feature sub-vectors. For additional details of

these steps, including the structuring elements used for erosion and dilation, we refer

the reader to Fierrez-Aguilar et al. (2004) and the references therein.

4.2.2.1 Slant Measure

The area of a signature where slants with different directions intersect is measured as

follows. Given the 32 eroded images generated as explained above, a small degree of

overlap is expected among them (i.e. any pixel should be marked in as few eroded
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Figure 4.10: Slant measure. Histogram (left bottom) and cumulative his-
togram (right bottom) of the number of eroded images in which a pixel is
marked for the two example signatures shown.

images as possible). However, there may be regions of the signature having various

strokes crossing with several directions. In these regions, no predominant slant direction

exists or, in other words, any estimation of a dominant slant direction will be unreliable.

As a result, pixels of these regions will be marked in many of the eroded images, as can

be seen in Figure 4.9. For each pixel of the signature, we count the number of eroded

images in which it is marked and then, we plot the histogram and the cumulative

histogram for all the pixels of the image (Figure 4.10). We can see from Figure 4.10

that the histogram of signature 1 is concentrated in low values, whereas it is displaced to

higher values for signature 2. This is because signature 2 exhibits many regions having

various strokes crossing with several directions. We measure the size of these regions by

computing the x-axis point in which the cumulative histogram reaches a certain value

(in our experiments, this value is set to 50%, as seen in Figure 4.10). The higher the

value this point has, the larger is the area of the signature with no predominant slant

direction. For now on, this measure will be denoted as Slant Measure.
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Figure 4.11: Variability measure. Example of two signature sets of different
variability. Vectors {o1, ...,oK} denote the K different signatures (K=5 in
this example). Parameter µ denotes the mean vector of the K signatures
{o1, ...,oK}. Parameters di are the Euclidean distances of each signature oi

to the mean vector µ (i = 1, ...,K).

4.2.2.2 Variability Measure

The intra-variability of a given set of K signatures of a client is computed as follows.

We first extract an statistical model µ of the client which is estimated by using the

set of K signatures, parameterized as {o1, ...,oK}. The parameter µ denotes the mean

vector of the K signatures {o1, ...,oK}. We then compute the Euclidean distance

(Theodoridis and Koutroumbas, 2003) of each signature oi (i = 1, ...,K) to the mean

vector µ, resulting in K distances di (i = 1, ...,K). The variability is finally computed

as E(d1, ..., dK), where the operator E(.) is the statistical mean. The idea behind this

measure is shown in Figure 4.11. In the rest of the chapter, this measure will be denoted

as Variability Measure. An example of two signature sets of different variability based

on this measure is shown in Figure 4.12.

Figure 4.13 depicts the cumulative distribution function of the Slant and Variability

measures for all users of the database used in this chapter (Section 4.3).

4.2.3 Geometrical measures

We propose the evaluation of measures related with geometrical features of the signature

image, that can be also extracted automatically:

• Gray level variance across the signature strokes (see Figure 4.14(a)), which can

be considered as a measure of variance of the pen pressure during the process of

signing.

109

ChapterSignature/Figures/variability_measure.eps


4. QUALITY ASSESSMENT OF SIGNATURE IMAGES

(a) Low variability (measure value = 1,877.3)

(b) High variability (measure value = 12,241)

Figure 4.12: Variability measure. Example of two signature sets of different
variability from the MCYT database.
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Figure 4.13: Cumulative distribution function of the proposed Slant and Vari-
ability measures for all users of the database used in this Chapter.

• Number of pixels of the signature (see Figure 4.14(b)), which can be considered

as a measure of signature duration.

• Size of the bounding box that contains the signature (see Figure 4.14(c)), which

is a measure of the signature area.

Strokes of the signature are extracted by binarizing the signature image by global

thresholding of the histogram (Otsu, 1979), followed by a morphological closing op-

eration on the binary image for noise removal. Figure 4.15 depicts the cumulative

distribution function of the three geometrical measures for all users of the database

used in this chapter (Section 4.3).

4.3 Experimental framework

4.3.1 Database and protocol

We have used for the verification experiments of this chapter a subcorpus of the MCYT

bimodal database (Ortega-Garcia et al., 2003b), which includes fingerprint and on-line

signature data of 330 contributors. The MCYT database includes the largest existing

western signature database publicly available (Garcia-Salicetti et al., 2007). In the case

of the signature data, skilled forgeries are also available. Imitators are provided the

signature images of the client to be forged and, after an initial training period, they

are asked to imitate the shape with natural dynamics. Signature data were acquired

using an inking pen and paper templates over a pen tablet (each signature is written

within a 1.75×3.75 cm2 frame), so the signature images were available on paper. Paper

templates of 75 signers (and their associated skilled forgeries) have been digitized with

a scanner at 600 dpi (dots per inch). The resulting subcorpus comprises 2250 signature
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Variance=87.37 Variance=101.44

Variance=114.54

(a) With increasing gray level variance across the signature strokes (from
left to right).

SIZE=11,012 pixels SIZE=18,003 pixels

SIZE=20,397 pixels

(b) With increasing number of pixels (from left to right).

SIZE=98,160 pixels SIZE=155,364 pixels

SIZE=250,155 pixels

2 2

2

(c) With increasing size of the bounding box (from left to right).

Figure 4.14: Geometrical measures. Example of signatures with different
measure value.
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Figure 4.15: Cumulative distribution function of the proposed geometrical
measures for all users of the database used in this Chapter.

images, with 15 genuine signatures and 15 forgeries per user (contributed by 3 different

user-specific forgers). Examples can be seen in Figures 4.7 and 4.8.

The experimental protocol is as follows. The training set comprises either K =5

or K =10 genuine signatures (depending on the experiment under consideration). The

remaining genuine signatures are used for testing. For a specific target user, casual

impostor test scores are computed by using the genuine samples available from all the

remaining targets. Real impostor test scores are computed by using the skilled forgeries

of each target. As a result, we have 75 × 10 = 750 or 75 × 5 = 375 client similarity

scores, 75×15 = 1, 125 impostor scores from skilled forgeries, and 75×74×10 = 55, 500

or 75 × 74 × 5 = 27, 750 impostor scores from random forgeries.

In order to have an indication of the level of performance with an ideal score align-

ment between users, results here are based on using a posteriori user-dependent score

normalization (Fierrez-Aguilar et al., 2005d). The score normalization function is as

follows s′ = s − sλ(client, impostor), where s is the raw score computed by the sig-

nature matcher, s′ is the normalized matching score and sλ(client, impostor) is the

user-dependent decision threshold at a selected point obtained from the genuine and
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impostor histograms of user λ. In the work reported here, we report verification results

at three points: EER, FAR=10% and FRR=10%.

4.4 Signature matcher based on global information

This matcher is based on global image analysis and a minimum distance classifier as

proposed by Lee and Lizarraga (1996), and further developed by Fierrez-Aguilar et al.

(2004).

4.4.1 Signature preprocessing

Input signature images are first preprocessed according to the following consecutive

steps: binarization by global thresholding of the histogram (Otsu, 1979), morphological

opening plus closing operations on the binary image (Gonzalez and Woods, 2002),

segmentation of the signature outer traces, and normalization of the image size to a

fixed width of 512 pixels while maintaining the aspect ratio (see Figure 4.16 for an

example). Normalization of the image size is used to make the proportions of different

realizations of an individual to be the same, whereas segmentation of the outer traces is

carried out because a signature boundary typically corresponds to a flourish, which has

high intra-user variability. For this purpose, left and right height-wide blocks having all

columns with signature pixel count lower than threshold Tp and top and bottom width-

wide blocks having all rows with signature pixel count lower than Tp are discarded.

4.4.2 Feature extraction and matching

A feature extraction stage is then performed, in which slant directions of the signature

strokes and those of the envelopes of the dilated signature images are extracted using

mathematical morphology operators (Gonzalez and Woods, 2002), see Figure 4.17.

These descriptors are used as features for recognition as proposed by Lee and Lizarraga

(1996). For slant direction extraction, the preprocessed signature image is eroded with

32 structuring elements, thus generating 32 eroded images. A slant direction feature

sub-vector of 32 components is then generated, where each component is computed as

the signature pixel count in each eroded image. For envelope direction extraction, the

preprocessed signature image is successively dilated 5 times with each one of 6 linear

structuring elements, thus generating 5×6 dilated images. An envelope direction feature

sub-vector of 5 × 6 components is then generated, where each component is computed

as the signature pixel count in the difference image between successive dilations. The
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Figure 4.16: Preprocessing stage performed in the signature matcher based on global analysis. Figure extracted
from Alonso-Hermira (2003); Moreno-Marquez (2003).
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++++++++++
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Figure 4.17: Feature extraction stage performed in the signature matcher
based on global analysis. Structuring elements used for slant direction ex-
traction (SE-1 to SE-32) and envelope direction extraction (SE-33 to SE-38)
are also shown. Origin of the element is indicated in gray. The area of SE-1
to SE-32 is 10 pixels and the angle between successive elements is approx-
imately 11 degrees. The areas of SE-33/34 and SE-35/36/37/38 are 7 and
4 pixels respectively. Figure based on plots appearing in Alonso-Hermira
(2003); Moreno-Marquez (2003).

preprocessed signature is finally parameterized as a vector o with 62 components by

concatenating the slant and envelope feature sub-vectors. Each client (enrolee) of the

system is represented by a statistical model λ = (µ,σ) which is estimated by using an

enrolment set of K parameterized signatures {o1, ...,oK}. The parameters µ and σ

denote mean and standard deviation vectors of the K vectors {o1, ...,oK}.

In the similarity computation stage, the similarity score between a claimed model

λ = (µ,σ) and a parameterized test signature o is computed as the inverse of the

Mahalanobis distance (Theodoridis and Koutroumbas, 2003).
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Figure 4.18: Example of division of a signature image into overlapped column
blocks. Figure extracted from Alonso-Hermira (2003); Moreno-Marquez
(2003).

4.5 Signature matcher based on local HMM analysis

The local HMM matcher is based on local image analysis and left-to-right Hidden

Markov Models as used by Justino et al. (2001) but with a local parameterization

derived from Lee and Lizarraga (1996), and also detailed by Fierrez-Aguilar et al.

(2004).

In the preprocessing stage, images are first binarized and segmented as described

in Section 4.4. Next, a feature extraction step is performed, in which slant directions

and envelopes are locally analyzed using the approach described in Section 4.4, but

applied to blocks. Preprocessed images are divided into height-wide blocks of 64 pixels

width with an overlapping between adjacent blocks of 75%. An example is shown in

Figure 4.18. A signature is then parameterized as a matrix O whose columns are 62-

tuples, each one corresponding to a block. Each client of the system is represented by

a Hidden Markov Model λ (HMM) (Ortega-Garcia et al., 2003a; Rabiner, 1989), which

is estimated by using an enrolment set of K parameterized signatures {O1, ...,OK}. A

left-to-right topology of four hidden states with no transition skips between states is

used in this work. Estimation of the model is made by using the iterative Baum-Welch

procedure (Rabiner, 1989).

The similarity computation between a claimed model λ and a parameterized test

signature O is computed by using the Viterbi algorithm (Ortega-Garcia et al., 2003a;

Rabiner, 1989).

4.6 Contribution: Signature matcher based on local con-

tour analysis

This matcher is based on features proposed for writer identification and verification

using images of handwriting documents (Bulacu and Schomaker, 2007), and has been
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Figure 4.19: Preprocessing stage performed in the signature matcher based on local contour analysis.
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developed jointly with Pecharroman-Balbas (2007). We have contributed by selecting

and adapting a number of features to be used with handwritten signatures (Gilperez

et al., 2008). The features implemented work at the analysis of the contour level. The

signature is seen as a texture described by some probability distributions computed

from the image and capturing the distinctive visual appearance of the samples. User

individuality is therefore encoded using probability distributions (PDF) extracted from

signature images. The term “feature” is used to denote such a complete PDF, so we

will obtain an entire vector of probabilities capturing the signature uniqueness.

4.6.1 Signature preprocessing

In the preprocessing stage, binarization and morphological closing operation on the

binary image for noise removal are first carried out as described in Section 4.4. Then

a connected component detection, using 8-connectivity, is carried out. In the last step,

internal and external contours of the connected components are extracted using the

Moore’s algorithm (Gonzalez and Woods, 2002). Beginning from a contour pixel of a

connected component, which is set as the starting pixel, this algorithm seeks a pixel

boundary around it following the meaning clockwise, and repeats this process until the

starting pixel is reached for the same position from which it was agreed to begin the

algorithm. The result is a sequence with the pixels coordinates of the boundary of

the component. This vectorial representation is very effective because it allows a rapid

extraction of many of the features used later. The whole preprocessing stage is shown

in Figure 4.19.

4.6.2 Feature extraction

Features are calculated from two representations of the signature extracted during the

preprocessing stage: the binary image without noise and the contours of the connected

components. The features used in this work are summarized in Table 4.2, including the

signature representation used by each one. The signature is shaped like a texture that

is described with probability distribution functions (PDFs). Probability distribution

functions used here are grouped in two different categories: direction PDFs (features

f1, f2, f3h, f3v) and length PDFs (features f5h, f5v). A graphical description of the

extraction of direction PDFs is depicted in Figure 4.20. To be consistent with the work

in which these features where proposed (Bulacu and Schomaker, 2007), we follow the

same nomenclature used in it.
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Feature Explanation Dimensions Source

f1 p(φ) Contour-direction PDF 12 contours

f2 p(φ1, φ2) Contour-hinge PDF 300 contours

f3h p(φ1, φ3)h Direction co-occurrence PDF, horizontal run 144 contours

f3v p(φ1, φ3)v Direction co-occurrence PDF, vertical run 144 contours

f5h p(rl)h Run-length on background PDF, horizontal run 60 binary image

f5v p(rl)v Run-length on background PDF, vertical run 60 binary image

Table 4.2: Features used in the signature matcher based on local contour
analysis.

Contour-Direction PDF (f1)

This directional distribution is computed directly using the contour representation,

with the additional advantage that the influence of the ink-trace width is eliminated.

The contour-direction distribution f1 is extracted by considering the orientation of

local contour fragments. A fragment is determined by two contour pixels (xk,yk) and

(xk+ǫ,yk+ǫ) taken a certain distance ǫ apart. The angle that the fragment makes with

the horizontal is computed using

φ = arctan(
yk+ǫ − yk

xk+ǫ − xk

) (4.1)

As the algorithm runs over the contour, the histogram of angles is built. This angle

histogram is then normalized to a probability distribution f1 which gives the proba-

bility of finding in the signature image a contour fragment oriented with each φ. The

angle φ resides in the first two quadrants because, without online information, we do

not know which inclination the writer signed with. The histogram is spanned in the

interval 0◦-180◦, and is divided in n = 12 sections (bins). Therefore, each section spans

15◦, which is a sufficiently detailed and robust description (Bulacu and Schomaker,

2007). We also set ǫ = 5. These settings will be used for all of the directional features

presented in this chapter.

Contour-Hinge PDF (f2)

In order to capture the curvature of the contour, as well as its orientation, the

“hinge” feature f2 is used. The main idea is to consider two contour fragments at-

tached at a common end pixel and compute the joint probability distribution of the

orientations φ1 and φ2 of the two sides. A joint density function is obtained, which

120



4.6 Contribution: Signature matcher based on local contour analysis

Contour direction (f1) Contour hinge (f2)

CAPACITIVE SENSOR

Horizontal direction co-occurrence (f3h)

Figure 4.20: Graphical description of the feature extraction. From left to
right: contour direction (f1), contour hinge (f2) and horizontal direction
co-occurrence (f3h).

quantifies the chance of finding two “hinged” contour fragments with angles φ1 and φ2,

respectively. It is spanned in the four quadrants (360◦) and there are 2n sections for

every side of the “contour-hinge”, but only non-redundant combinations are considered

(i.e. φ2 ≥ φ1). For n = 12, the resulting contour-hinge feature vector has 300 dimen-

sions (Bulacu and Schomaker, 2007).

Direction Co-Occurrence PDFs (f3h, f3v)

Based on the same idea of combining oriented contour fragments, the directional

co-occurrence is used. For this feature, the combination of contour-angles occurring at

the ends of run-lengths on the background are used, see Figure 4.20. Horizontal runs

along the rows of the image generate f3h and vertical runs along the columns generate

f3v. They are also joint density functions, spanned in the two first quadrants, and

divided into n2 sections. These features give a measure of a roundness of the written

characters and/or strokes.
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Run-Length PDFs (f5h, f5v)

These features are computed from the binary image of the signature taking into

consideration the pixels corresponding to the background. They capture the regions

enclosed inside the letters and strokes and also the empty spaces between them. The

probability distributions of horizontal and vertical lengths are used.

4.6.3 Feature matching

Each client of the system (enrolee) is represented by a PDF that is computed using

an enrolment set of K signatures. For each feature, the histogram of the K signatures

together is computed and then normalized to a probability distribution.

To compute the similarity between a claimed identity q and a given signature i, the

χ2 distance is used (Bulacu and Schomaker, 2007):

χ2
qi =

N∑

n=1

(pq[n] − pi[n])2

pq[n] + pi[n]
(4.2)

where p are entries in the PDF, n is the bin index, and N is the number of bins in the

PDF (the dimensionality).

We also perform experiments combining the different features. The final distance

in this case is computed as the mean value of the χ2 distances due to the individual

features, which are first normalized to be similarity scores in the [0, 1] range using the

tanh-estimators described by Jain et al. (2005):

s′ =
1

2

{
tanh

(
0.01

(
s − µs

σs

))
+ 1

}
(4.3)

where s is the raw similarity score, s′ denotes the normalized similarity score, and µs

and σs are respectively the estimated mean and standard deviation of the genuine score

distribution.

4.6.4 System development

The system performance for a posteriori user-dependent score normalization following

the experimental procedure of Section 4.3 is given in Table 4.3 (individual features) and

Table 4.4 (combination of features). DET curves for the individual features without

score normalization are plotted in Figure 4.21.
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4.6 Contribution: Signature matcher based on local contour analysis

SKILLED FORGERIES RANDOM FORGERIES
Direction PDFs Length PDFs Direction PDFs Length PDFs

f1 f2 f3h f3v f5h f5v f1 f2 f3h f3v f5h f5v
5 TR 12.71 10.18 11.40 12.31 30.33 31.78 3.31 2.18 3.09 3.21 22.18 28.03
10 TR 10.00 6.44 7.78 9.16 28.89 33.78 1.96 1.18 1.40 1.49 20.46 28.58

Table 4.3: System Performance in terms of EER (in %) of the individual

features with a posteriori user-dependent score normalization when using
K = 5 or 10 training signatures.

SKILLED FORGERIES
f3=f3h+f3v f5=f5h+f5v f1 & f5 f2 & f5 f3 & f5 f1 & f2 f1 & f3 f2 & f3

5 TR 10.82 26.91 14.78 13.91 12.36 10.49 10.44 9.96

10 TR 7.47 25.07 12.00 9.78 8.53 7.64 7.38 6.36

RANDOM FORGERIES
f3=f3h+f3v f5=f5h+f5v f1 & f5 f2 & f5 f3 & f5 f1 & f2 f1 & f3 f2 & f3

5 TR 2.64 21.33 4.69 4.95 3.81 2.49 2.47 2.16

10 TR 1.36 18.30 2.77 3.00 2.12 1.41 1.14 0.93

Table 4.4: System Performance in terms of EER (in %) of the combination of

features with a posteriori user-dependent score normalization when using
K = 5 or 10 training signatures. They are marked in bold the cases in which
there is a performance improvement with respect to the best individual
feature involved.

It is observed that the best individual feature is always the Contour-Hinge PDF f2,

independently of the number of signatures used for training and both for random and

skilled forgeries. This feature encodes simultaneously curvature and orientation of the

signature contours. It is remarkable that the other features using two angles (f3h, f3v)

perform worse than f2. Also worth noting, the feature using only one angle (f1) exhibits

comparable performance to f3h and f3v, even outperforming them in some regions of

the DET. It is interesting to point out the bad result obtained by the length PDFs

(f5h and f5v). This suggests that the length of the regions enclosed inside the letters

and strokes is not a good distinctive feature in offline signature verification (given a

preprocessing stage similar to ours).

We observe that there are several combination of features that result in performance

improvement with respect to the best individual feature involved (marked in bold in

Table 4.4). However, the best error rate attained by combining features (achieved

with the combination of f2 and f3) is similar to that obtained with the best individual

feature.
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Figure 4.21: Verification performance without score normalization (user-
independent decision thresholds).

4.7 Results and discussion

4.7.1 Legibility and type of signature

Table 4.5 shows the system performance based on name legibility for the three machine

experts. Regarding skilled forgeries, when comparing among legibility groups, we find

that the best results are always obtained for the legible case. The non legible case results

in no significant improvement or even worse performance. It could be expected that

legible signatures result in worse performance, since they are easier to imitate, because

imitators have some background knowledge of what they have to imitate. However, it

is observed that legible signatures provide better performance than non legible ones.

This may be due to the simplicity of most non-legible signatures. Also worth noting,

the group of medium legibility is always the worst performing one.
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4.7 Results and discussion

Skilled forgeries
TR sign expert Non legible Medium Legible Overall

global 24.91 26.49 21.58 23.78
5 local HMM 16.67 21.23 16.54 17.76

local contour 10.93 13.42 8.20 10.18

global 21.11 25.17 20.55 22.13
10 local HMM 16.67 20.00 10.61 14.44

local contour 7.04 11.58 4.21 6.44
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+13.74%

+38.50%

+13.74%

+79.81%

Random forgeries
TR sign expert Non legible Medium Legible Overall

global 8.41 10.58 9.94 9.79
5 local HMM 4.45 5.26 5.59 5.21

local contour 2.96 1.70 1.93 2.18

global 6.57 9.47 5.97 7.26
10 local HMM 1.51 2.28 3.27 2.74

local contour 2.34 0.49 1.05 1.18

Non legible Medium Legible
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−17.77%

−44.89% −58.48%

+30.44%

+19.34%+98.31%

Table 4.5: System performance based on name legibility in terms of EER.
Results are given in %. Grey dashed lines denote the overall performance
of each matcher in the whole dataset. For each matcher, it is also given the
relative gain/loss of performance with respect to the overall results.
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Skilled forgeries
Simple Complex Name + Name + Overall

TR sign expert flourish flourish simple flourish complex flourish

global 26.33 23.72 20.33 28.18 23.78
5 local HMM 25.67 13.85 21.57 12.58 17.76

local contour 26.33 5.26 10.38 9.02 10.18

global 20.00 21.12 22.32 22.41 22.13
10 local HMM 25.33 12.82 15.33 11.82 14.44

local contour 20.00 2.05 8.00 4.55 6.44
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Random forgeries
Simple Complex Name + Name + Overall

TR sign expert flourish flourish simple flourish complex flourish

global 4.14 10.06 7.24 14.74 9.79
5 local HMM 4.00 4.67 4.86 6.41 5.21

local contour 4.62 2.32 2.02 1.81 2.18

global 7.97 6.94 5.70 9.53 7.26
10 local HMM 0.03 2.08 1.71 4.84 2.74

local contour 5.51 0.37 0.83 0.90 1.18
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Table 4.6: System performance based on signature type in terms of EER.
Results are given in %. Grey dashed lines denote the overall performance
of each matcher in the whole dataset.
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4.7 Results and discussion

Regarding random forgeries, we observe that each matcher exhibits a different be-

havior:

• For the expert based on global information, the legible and non-legible cases result

in performance improvement over the medium legibility case, and the opposite

happens with the group of medium legibility.

• For the local HMM expert, performance is improved as signature legibility is

decreased.

• The opposite happens for the local expert based on contour features, resulting in

better performance as signature legibility increases.

System performance in relation to signature type is shown in Table 4.6. Regard-

ing skilled forgeries, we observed in Table 4.5 that non legible signatures result in no

significant improvement with either matcher compared to legible ones, or even in a

performance worsening. If we divide non legible signatures into “simple flourish” and

“complex flourish”, we observe that complex flourish signatures result in improved per-

formance. This could be because simple flourish signatures are easier to imitate than

complex flourish ones. It is also worth noting that signatures classified as “name +

simple flourish” result in improved performance with the global expert and few signa-

tures for enrolment, but worse performance is obtained with the local experts. The

opposite happens with the “name + complex flourish” ones. This could be because

local machine experts processes signature images locally, so they better deal with most

complex signatures such as the “name + complex flourish” case. In complex signatures,

there are regions of the signature image having various strokes crossing in several di-

rections. The global machine expert is not able to deal satisfactorily with this case,

since it processes the signature image as a whole.

Regarding random forgeries, we observe from Table 4.6 that signatures classified as

“name + complex flourish” always result in worse performance, except with the local

expert based on contour features. On the other hand, signatures classified as “name

+ simple flourish” result in improved performance with the three matchers. Also here,

similarly to what it is observed in the results based on name legibility, the two local

experts exhibit an opposite behavior.

4.7.2 Slant and variability measures

In order to evaluate the performance based on these two quality measures, a ranking

of signers is carried out. For the measure that computes the area where slants with
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Figure 4.22: System performance based on the Slant Measure. For each
matcher, it is also given the relative gain of performance with respect to
the overall results for the point x=4.5.

different directions intersects, the ranking is based on the average measure of the set

of enrolment signatures. For the measure that computes the intra-variability of a set

of signatures, the ranking is based on the intra-variability of the signatures of the

enrolment set. We depicted in Figure 4.13 the cumulative distribution function of

these two measures for all users of the database.

In Figure 4.22, we can see the verification performance in terms of EER as we

reject users with the largest area with no predominant slant direction (from right to

left in the x−axis). Results are provided for the three off-line signature matchers

studied in this Chapter. It is observed that, in general, the performance improves as

we consider signers with lowest Slant Measure (i.e. smaller area with no predominant

slant direction). This is particularly evident for the case of random forgeries. It is

also remarkable that higher relative improvements are obtained with the two matchers

based on local information. This may be because the Slant measure also works at local

level (i.e. it is based on analysis of individual pixels of the image).

Regarding the Variability measure, Table 4.7 shows the verification performance

results in relation to the intra-variability of the signatures of the enrolment set. Users
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4.7 Results and discussion

Skilled forgeries
TR sign expert I (low var) II (med) III (high) Overall

global 20.33 25.73 24.27 23.78
5 local HMM 16.13 18.07 19.2 17.76

local contour 8.13 11.33 11.53 10.18

global 22.67 20.13 23.20 22.13
10 local HMM 17.6 10.4 15.33 14.44

local contour 4.93 6.53 7.6 6.44
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Random forgeries
TR sign expert I (low var) II (med) III (high) Overall

global 8.05 9.85 11.46 9.79
5 local HMM 2.87 5.62 6.99 5.21

local contour 1.36 2.44 2.55 2.18

global 6.62 5.90 8.91 7.26
10 local HMM 1.82 2.58 3.36 2.74

local contour 1.64 0.82 1.17 1.18
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Table 4.7: System performance based on the Variability Measure in terms
of EER (results are given in %). Grey dashed lines denote the overall
performance of each matcher in the whole dataset. For each matcher, it is
also given the relative gain/loss of performance with respect to the overall
results.
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Figure 4.23: System performance based on the gray level variance across
signature strokes. Grey dashed lines denote the overall performance of
each matcher in the whole dataset.

are classified into three equal-sized disjoint groups, from I (low variability) to III (high

variability), resulting in 25 users per group. It is observed that:

• Performance is always worsened with a highly variable set of signatures (group

III), specially with few enrolment data.

• With few signatures for enrolment, the best performance is obtained with the

least variable set (group I), but allowing more signatures for enrolment, the best

performance is obtained in most cases for the group II.

An explanation of these results is as follows. Supposing high variability and few en-

rolment data, we are not able to build a reliable identity model, suffering lack of data

with which to characterize the signature style. As we increase the size of the enrolment

set, we are able to account for more variability. Nevertheless, very high variability is

a source of uncertainty and it is not desirable, as shown by the fact that signatures of

the group III always result in a worsened performance.
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Figure 4.24: System performance based on the number of pixels of the sig-
nature. Grey dashed lines denote the overall performance of each matcher
in the whole dataset.

4.7.3 Geometrical measures

Similarly as Section 4.7.2, we carry out a ranking of signers based on the three geomet-

rical measures studied. For each signer, we compute the average measures of the set of

enrolment signatures. We depicted in Figure 4.15 the cumulative distribution functions

of these three measures for all users of the database.

Figures 4.23 to 4.25 show the verification performance results in relation to the

geometrical measures. Users are classified into three equal-sized disjoint groups, from

I (low value) to III (high value), resulting in 25 users per group.

As a general rule, high gray level variance is desirable, as can be observed in Fig-

ure 4.23. The only exception is the global expert with 5 signatures for enrolment, which

shows the opposite trend (specially for random forgeries). Also for random forgeries,

as we increase the size of the enrolment set, the three matchers become more robust to

variations of this measure.

In Figure 4.24, we plot the results in relation to the number of pixels of the signature.

We observe that for the case of skilled forgeries, a higher number of pixels is desirable,
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Figure 4.25: System performance based on the size of the bounding box of
the signature. Grey dashed lines denote the overall performance of each
matcher in the whole dataset.

except for the global expert. If we consider this measure as an estimation of the

signature duration, we can conclude that longer signatures are in general more robust

to imitations. On ther other hand, for the case of random forgeries we observe that

each matcher exhibits a different behavior:

• For the expert based on global information, the behavior depends of the size of

the enrolment set.

• For the local HMM expert, performance is improved as signature duration is

decreased.

• The opposite happens for the local expert based on contour features, resulting in

better performance as signature duration is increased.

Finally, we plot in Figure 4.25 results in relation to the size of the bounding box

that contains the signature. For this measure, no consensus between the matchers is

found:
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4.8 Chapter summary and conclusions

• The global expert performs better in general as the size of the box is decreased.

The same behavior is observed for the local HMM expert, except with skilled

forgeries and few training signatures.

• Contrarily, the local expert based on contour features works better as the size

of the box is increased. Also, for random forgeries, this matcher shows high

robustness to variations of this measure.

4.8 Chapter summary and conclusions

The performance of three approaches for off-line signature recognition has been evalu-

ated in terms of several measures that are extracted from signature images. The three

matchers make use of different approaches that are based on global and local image

analysis. The following five measures have been studied in this chapter to predict the

performance of the system:

• Two manually assessed measures, signature legibility and signature type, aimed

at evaluating how the knowledge about letters, syllables or name instances may

help in the process of imitating a signature.

• One measure that computes the area of a signature where slants with different

directions intersect, which could be considered as a measure of complexity.

• One measure that computes the intra-variability of a given set of signatures with

the aim of estimating its stability.

• Three geometrical measures aimed at evaluating the variance of the pen pressure

during the process of signing, the signature duration and the signature area.

A number of experimental findings are obtained in this chapter. First, for skilled

forgeries, we find that the best performance is obtained with legible signatures. Also,

performance is always worsened with highly variable signatures, specially with few

enrolment data, or with low variance of the pen pressure. For the other measures,

different behavior is observed between the matchers.

This chapter presents novel contributions in the verification system based on contour

analysis, in the proposed measures intended to predict the performance of signature

systems, and in the study of their utility for three different matchers.
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Chapter 5

Quality-Based Processing and

Fusion in Multibiometrics

This chapter describes a quality-based fusion strategy developed in the frame-

work of this Thesis that has been submitted to the recent quality-based Evaluation

of the BioSecure Multimodal Evaluation Campaign (BMEC, 2007; Poh and Bourlai,

2007), with very good results (2nd position in terms of Half Total Error Rate out of 13

systems participating) (BMEC, 2007). It makes use of linear logistic regression fusion

(Brummer et al., 2007; Pigeon et al., 2000), a trained classification fusion approach,

in such a way that good calibration of the output score is encouraged. Calibration

means that output scores are mapped to log-likelihood-ratios (LLR). This allows to

efficiently combine scores originated from different biometric devices, as is the case of

the quality-based evaluation.

The aim of this evaluation was to compare several fusion algorithms when bio-

metric signals were originated from several face and fingerprint biometric devices in

mismatched conditions. Face still samples collected with two cameras of different res-

olution and fingerprint samples collected both with an optical and a thermal sensor

were used in the evaluation. Quality information of the biometric samples was also

provided with the aim of adapting the fusion algorithms to the different devices. These

samples were extracted from the recently acquired Biosecure Multimodal Database

(Alonso-Fernandez et al., 2008b), acquired in the framework of this Thesis.

In this chapter, we contribute with a quality-based multibiometric architecture that

is generalizable to biometric systems working with multiple sources of information (dif-

ferent modalities, matchers, acquisition devices, etc.). So far, incorporation of qual-
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ity measures has been done mostly by heuristically adapting the biometric system

(Kryszczuk, 2007). With the proposed architecture, newer developments and additional

modalities can be easily incorporated, while efficiently handling information from the

different sources. In our approach, quality is used to switch between different system

modules depending on the data source, and to consider only data of enough quality.

The proposed fusion scheme is compared in this chapter with a set of simple fusion

rules. The use of simple fusion rules is motivated by the fact that complex trained

fusion approaches do not clearly outperform simple fusion approaches, e.g. see Fierrez-

Aguilar et al. (2005c). We demonstrate in our experiments that the proposed system

outperforms the rest when coping with signals originated from heterogeneous biometric

sources, pointing out the effectiveness of the proposed approach. An additional overall

improvement of 25% is observed in the EER by incorporating a quality-based score

rejection scheme, showing the benefits of incorporating quality information in biometric

systems.

This chapter is structured as follows. We first survey the related works on multi-

biometric systems and the use of quality information in biometric systems. Also, the

concepts of calibration and linear logistic regression fusion are introduced. We then

describe the evaluation framework and the dataset used in our experiments. The pro-

posed fusion architecture is then presented, and comprehensive experimental results

are finally given.

Original contributions in this chapter include the definition of a quality-based multi-

biometric architecture that is generalizable to biometric systems working with multiple

sources of information; the use of quality information to estimate the input device used

in the acquisition of biometric data in order to switch between different processing

modules; and the use of a score-rejection scheme that only considers sources of enough

quality in the fusion with the objective of improving the overall performance.

This chapter is based on the publication Alonso-Fernandez et al. (2008b).

5.1 Calibration and fusion of biometric systems

5.1.1 Calibration of scores from a biometric system

A biometric verification system can be defined as a pattern recognition machine that,

by comparing two (or more) samples of input signals such as speech, face images, etc.,

is designed to recognize two different classes. These two classes are known as target

or client class, if both samples were originated by the same subject, and non-target or

impostor class, if both samples were not originated by the same subject. As a result
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of the comparison, the biometric system outputs a real number known as score. The

sense of this score is that the higher scores, the more support to the target hypothesis,

and vice-versa. However, if we consider a single isolated score from a biometric system,

it is in general not possible to determine which is the hypothesis the score supports

the most. For instance, if we get a single score of 5 from a biometric system, and if we

do not know the distributions of target or non-target scores from such system or any

threshold, we will not be able to classify the associated biometric sample in general.

Moreover, each biometric system usually outputs scores which are in a range that is

specific of the system. For instance, a particular system can output scores in the [0, 1]

range, whereas another system can output scores in the [−1, 1] range. Therefore, an

score value of 0 has different meaning depending on the system. Even if two systems

output scores in the same range by means e.g. of score normalization (Jain et al., 2005),

the same output value might does not favor the target or non-target hypotheses with

the same strength. In this context, outputs are dependent of the system and thus, the

acceptance/rejection decision also depends on the system.

These problems are addressed with the concept of calibrated score. A calibration

transformation may be trained from a set of target and non-target scores from a given

biometric system, obtained from a database of known individuals. Such calibration

algorithms have been recently explored in the field of speaker recogniton. As it can be

seen in works by Brummer et al. (2007); Brummer and du Preez (2006); Ramos (2007),

a calibration transformation reduces the classification cost if the score is used as the

logarithm of a likelihood ratio (log-likelihood-ratio, LLR):

scal ≃ log

(
p (s|ωi)

p (s|ωj)

)
(5.1)

where s represents the score of a biometric system and scal the calibrated score. Then,

a decision can be taken using the Bayes decision rule (Duda et al., 2004):

Assign s → ωi if
p(s|ωi)
p(s|ωj)

> τ, i 6= j and i, j = {0, 1} (5.2)

where p (s|ωi) /p (s|ωj) is a likelihood ratio and τ = P (ωj)/P (ωi) is a pre-determined

threshold that depends on the a priori probability of observing classes ωj and ωi
1.

The more accurate the calibration of scal, the lower the misclassification cost of the

biometric system following Equation 5.2. Moreover, for a given set of scores, it can

1Bayes’ rule as expressed here assumes that the cost of each type of misclassification error is the
same for all possible classes (Duda et al., 2004). Since this particularization has not been considered
in this Thesis, we will not introduce misclassification costs for clarity.

137



5. QUALITY-BASED PROCESSING AND FUSION IN
MULTIBIOMETRICS

be demonstrated that optimal calibration means that the Bayes classification cost is

achieved (Brummer and du Preez, 2006), which is known to be minimum for the given

score dataset from a biometric system (Duda et al., 2004).

Some advantages of calibrated scores are highlighted here:

• As calibrated scores can be used as LLR in a Bayesian framework, we can therefore

state that a calibrated score is meaningful by itself. This is because, in a Bayesian

context, a LLR of a biometric score means a degree of support of such score for a

given hypothesis. For instance, LLR= 5 means that the score supports the target

hypothesis with a strength of e5 vs. 1 with respect to the non-target hypothesis.

• The meaning of a LLR value is the same across different biometric systems. This

advantage allows to compare systems in the same probabilistic range.

• Under independence assumptions, different calibrated scores from different bio-

metric systems can be easily combined, since the joint LLR of independent scores

is the sum of their individual LLR (Duda et al., 2004). Thus, by summing cali-

brated scores coming from independent sources, we also obtain a fused calibrated

LLR.

This calibration transformation then solves the two previously commented prob-

lems. First, it map scores from a biometric system to a common domain. Second, it

allows the interpretation of scores of a biometric system as a degree of support. Note

that the decision minimum-cost threshold for a calibrated score only depends on the

prior probabilities (Equation 5.2), and therefore it may be changed if such probabilities

change and are known. In this sense, calibration can be viewed as a score normalization

process, where the scores are mapped to a probabilistic domain.

The act of designing and optimizing a calibration transformation is also known as

calibration (Brummer and du Preez, 2006), and several strategies can be used to train

such mapping (Brummer and du Preez, 2006; Ramos, 2007). Among them, logistic

regression have been successfully and recently used for voice biometrics (Brummer et al.,

2007; Brummer and du Preez, 2006; Gonzalez-Rodriguez and Ramos, 2007; Gonzalez-

Rodriguez et al., 2007; Pigeon et al., 2000) and for score fusion using side information

(Ferrer et al., 2008).

5.1.2 Linear logistic regression fusion

We present here a linear logistic regression training method in which the scores of

multiple sub-systems are fused together, primarily to improve the discriminating ability
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(measured by ROC or DET curves (Martin et al., 1997)), in such a way as to encourage

good calibration of the output scores. Given N matchers which output the scores

(s1j, s2j , ...sNj) for an input trial j, a linear fusion of these scores is:

fj = a0 + a1 · s1j + a2 · s2j + ... + aN · sNj (5.3)

The constant a0 does not contribute to the discriminating ability of the fusion,

but it can improve the calibration of the fused score. When these weights {a0, ..., aN}
are trained via logistic regression, the fused score fj tends to be a well-calibrated log-

likelihood-ratio (Brummer et al., 2007; Brummer and du Preez, 2006).

Let [sij] be an N × NT matrix of scores built from N component systems and NT

target trials, and let [rij ] be an N × NNT matrix of scores built from the same N

component systems with NNT non-target trials. We use a logistic regression objective

(Brummer et al., 2007; Pigeon et al., 2000) that is normalized with respect to the

proportion of target and non-target trials (NT and NNT , respectively), and weighted

with respect to a given prior probability P = P (target). The objective is stated in

terms of a cost C, which must be minimized :

C =
P

NT

NT∑

j=1

log
(
1 + e−fj−logitP

)
+

1 − P

NNT

NNT∑

j=1

log
(
1 + e−gj−logitP

)
(5.4)

where the fused target and non-target scores are respectively:

fj = a0 +
N∑

i=1
aisij

gj = a0 +
N∑

i=1
airij

(5.5)

and where:

logitP = log

(
P

1 − P

)
(5.6)

It can be demonstrated that minimizing the objective C with respect to {a0, ..., aN}
tends to give good calibration of the fused scores (Brummer et al., 2007; Brummer and

du Preez, 2006). In practice, it is observed that changing the value of P has a small

effect. The default of 0.5 is a good choice for a general application and it will be

used in this work. The optimization objective C is convex and therefore has a unique

global minimum. To find this minimum, a conjugate gradient algorithm can be used

(Brummer).

139



5. QUALITY-BASED PROCESSING AND FUSION IN
MULTIBIOMETRICS

Num. of match scores per subject
DATASETS Training set Evaluation set

(51 subjects) (156 subjects)
Session 1 Genuine 1 1

Impostor 103×4 126×4

Purpose Algorithm development User specific adaptation
Session 2 Genuine 2 2

Impostor 103×4 126×4

Purpose Algorithm development Test

Table 5.1: Experimental protocol.

5.2 Dataset and experimental protocol

As dataset for our experiments, we use the set of scores of the Access Control Sce-

nario Evaluation of the BioSecure Multimodal Evaluation Campaign (BioSecure, 2004;

BMEC, 2007). This evaluation campaign has been conducted during 2007 by the

BioSecure Network of Excellence (BioSecure, 2004), as a continuation of the acquisi-

tion campaign of the Biosecure Multimodal Database (Alonso-Fernandez et al., 2008b).

The aim of this evaluation was to compare the performance of multi-modal fusion al-

gorithms, assuming that the environment is relatively well controlled and the users are

supervised. We focus on the quality-based evaluation (Poh and Bourlai, 2007), whose

objective was to test the capability of a fusion algorithm to cope with query biometric

signals originated from heterogeneous biometric devices.

The Biosecure Multimodal Database has been collected by 11 European institutions

and it contains six biometric modalities (Alonso-Fernandez et al., 2008b): face, speech,

signature, fingerprint, hand and iris. Several devices under different conditions and

levels of supervision were used for the acquisition. In this work, we use a subset of 333

persons designed for the purpose of the Access Control Evaluation (Poh et al., 2007).

This subset was collected over two sessions, separated by about one month interval,

with two biometric samples per device and session. The first sample of session one was

considered as the template, whereas the remaining three samples were considered as

query data.

Among the 333 subjects of the database, 207 were considered “clients” for whom a

template was created: 51 “clients” for training (whose scores and identity labels were

provided to the participants to tune their algorithms) and 156 for evaluation) (whose

scores -mixed genuine and impostor claims- were provided to the participants to be

fused without identity labels, which were sequestered by the evaluation organizers to
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MODE DATA TYPE SENSOR CONTENTS
fnf1 Face still Digital camera (high res.) Frontal face images

fa1 Webcam (low resolution)
fo1, fo2, fo3 Fingerprint Optical (flat) 1 right thumb, 2 right index

ft1, ft2, ft3 Thermal (sweeping) 3 right middle finger

Table 5.2: Biometric traits and biometric devices considered for the experi-
ments.

MODALITY REF. SYSTEM QUALITY MEASURES
Omniperception SDK1 Face detection reliability, Brightness, Contrast, Focus,

Face still LDA-based face verifier Bits per pixel, Spatial resolution, Illumination, Uniform
(Martinez and Kak, 2001) Background, Background Brightness, Reflection, Glasses,

Rotation in plane, Rotation in Depth, Frontalness

Fingerprint NIST fingerpr3int system Texture richness based on local gradient
(Watson et al., 2004) (Chen et al., 2005)

Table 5.3: Reference systems and quality measures used in the experiments.

evaluate the competing algorithms). The remaining 126 subjects were considered an

external population of users who serve as “zero-effort impostors”, i.e. no template is

created for these users. The experimental protocol is summarized in Table 5.1. The

training impostor set of scores of Session 1 contains 103×4 samples per subject, meaning

that when the reference subject is considered a template, all the 4 samples of the half

of the remaining 206 subjects are considered impostors. The other half are used as

impostors in Session 2. This ensures that the impostors used in Sessions 1 and 2 are

not the same. Note that the evaluation impostor score sets contain the 126 subjects

set apart as zero-effort impostors. In this way, a fusion algorithm will not have already

“seen” the impostors during its training stage, avoiding systematic and optimistic bias

of performance. Prior to the Evaluation, the training set of scores (with both Sessions

1 and 2) was released to the participants to tune their algorithms. It was recommended

to use only Session 2 as training data, since Session 1 may be optimistically biased due

to the use of template and query data acquired on the same session. In this work, we

follow this recommendation, using only Session 2 of the training set for training our

algorithms. Session 1 of the evaluation set is intended for user-adapted fusion (Fierrez-

Aguilar et al., 2005e), whereas Session 2 is for testing purposes. The work reported

here is not user-adaptive and therefore, it will only be run on Session 2 of the evaluation

set.

The Access Control Evaluation only considered face and fingerprint modalities (Poh

et al., 2007), see Table 5.2. Several reference systems and quality measures were used

141



5. QUALITY-BASED PROCESSING AND FUSION IN
MULTIBIOMETRICS

DATA FORMAT - TRAINING SET
<claimed ID> <true ID>

<fnf1 score> <quality measures of template of fnf1> <quality measures of query of fnf1>

<fo1 score> <quality measures of template of fo1> <quality measures of query of fo1>

<fo2 score> <quality measures of template of fo2> <quality measures of query of fo2>

<fo3 score> <quality measures of template of fo3> <quality measures of query of fo3>

<xfa1 score> <quality measures of template of xfa1> <quality measures of query of xfa1>

<xft1 score> <quality measures of template of xft1> <quality measures of query of xft1>

<xft2 score> <quality measures of template of xft2> <quality measures of query of xft2>

<xft3 score> <quality measures of template of xft3> <quality measures of query of xft3>

DATA FORMAT - EVALUATION SET
<claimed ID>

<fnf1 |xfa1 score>
<quality measures of template of fnf1 |xfa1> <quality measures of query of fnf1 |xfa1>

<fo1 |xft1 score>
<quality measures of template of fo1 |xft1> <quality measures of query of fo1 |xft1>

<fo2 |xft2 score>
<quality measures of template of fo2 |xft2> <quality measures of query of fo2 |xft2>

<fo3 |xft3 score>
<quality measures of template of fo3 |xft3> <quality measures of query of fo3 |xft3>

MIXTURE MODALITIES FACE SENSOR FINGERPRINT SENSOR
1 (fnf1/fo1/fo2/fo3 ) High resolution Flat acquisition

2 (fnf1/xft1/xft2/xft3 ) High resolution Sweep acquisition

3 (xfa1/fo1/fo2/fo3 ) Low resolution Flat acquisition

4 (xfa1/xft1/xft2/xft3 ) Low resolution Sweep acquisition

Table 5.4: Data format and possible mixtures for each access (the query
sensors are specified, all templates acquired with the high resolution face
camera and the flat fingerprint sensor).
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Canon EOS 30D Digital camera

Photo jpg 3504x2336 pixels

Philips SPC900NC Webcam
Photo bmp 640x480 pixels

Biometrika FX2000

Optical fingerprint sensor

bmp 296x560 pixels, 569 dpi

Atmel Yubee

Thermal fingerprint sensor

bmp 400x500 pixels, 500 dpi

Figure 5.1: Modalities considered in the Access Control Evaluation. Top row:
hardware devices and acquisition samples for the face modality (left: low
resolution webcam, right: high resolution digital camera). Bottom row:
hardware devices and acquisition samples for the fingerprint modality (left:
optical sensor with flat positioning of the finger, right: thermal sensor with
finger sweeping).

with the biometric modalities in order to compute the scores for the evaluation, which

are summarized in Table 5.3. Low and high quality still frontal face images were col-

lected with two different cameras (denoted as fa1 and fnf1, respectively). The face

reference system used is an LDA-based face verifier (Martinez and Kak, 2001), and the

14 face quality measures indicated in Table 5.3 were computed using the Omnipercep-

tion SDK. The fingerprint data was collected with an optical and a thermal sensor,

denoted as fo{n} and ft{n} respectively, with n = {1=thumb, 2=index, 3=middle}
fingers of the right hand. The reference system used is the NIST fingerprint system

(Watson et al., 2004), whereas the quality measure is based on averaging local gradients

(Chen et al., 2005). In Figure 5.1, the biometric sensors as well as acquisition samples

of the modalities used in the evaluation are shown.

The set of scores provided is a text file, with each line representing an access re-

quest. For the quality-based evaluation, each line had the structure shown in Table 5.4.

Mode xfa1 is the mismatched counterpart of fnf1, i.e. the template is captured using
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Figure 5.2: Performance in terms or EER of the different modalities defined
in Table 5.2 in the training and evaluation sets defined in Table 5.1.

the high resolution camera and the query image is captured using a webcam (low res-

olution). Similarly, xft1 (xft2, xft3 ) is the mismatched counterpart of fo1 (fo2, fo3 ),

i.e. the template is captured using the fingerprint optical sensor (flat positioning of the

finger) and the query image is captured using the thermal sensor (sweeping the finger).

Notation “|” means “either ... or”, so the two streams were mixed during the evaluation

and the fusion algorithm had to determine from which device the query was extracted.

The mixture could be one of the combinations shown at the bottom of Table 5.4 (for a

given access all fingerprints were acquired with the same device). The performance of

the different modalities on the training and evaluation sets are shown in Figure 5.2.

It should be noted that there were missing data in the sets of scores and quality

measures due to the fact that some matchings or quality estimates could not be com-

puted by the algorithms used in the Evaluation. It is not the target of this chapter to

study the effects of and how to deal with missing data in multi-biometrics. Therefore,

prior to the experiments, we have corrected the missing values of the training set as

follows. When a genuine (impostor) score of an specific sensor is missing, its value is

set to the mean value of the remaining valid genuine (impostor) scores over the training

set. Similarly, when a quality measure of an specific sensor is missing, its value is set

to the mean value of the remaining valid measures. For the evaluation set, since it

is not known in advance if we are dealing with a genuine or an impostor access, the

missing score or quality measure will not be taken into account in the fusion process,

as explained later.
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5.3 Contribution: System architecture with quality-based

conditional processing

Following the nomenclature presented in Sections 1.2 and 1.3, the system proposed in

this chapter uses a density-based fusion method in which output scores of the indi-

vidual matchers are first mapped to log-likelihood-ratios by linear logistic regression

classification, prior to the fusion stage. This approach allows to combine scores from

different sources, such as multiple biometric modalities, multiple matchers or devices

from the same modality, etc. Quality information is incorporated in two stages: in the

score mapping stage, by estimating the device used in each access in order to switch

between different linear logistic regression classifier, and in the fusion stage by rejecting

scores from low quality biometric samples.

For our fusion experiments, we have used the tools for Linear Logistic Regression

(LLR) included in the toolkit FoCal (Brummer). The architecture of the proposed

fusion mechanism is shown in Figure 5.3. For each access, we compute one calibrated

face score sface and one calibrated fingerprint score sfinger which combines the three

fingerprint scores provided (one from each finger: thumb, index, and middle of the right

hand). Calibrated scores may be viewed as log-likelihood ratios. Therefore, assuming

independence between them (since sface and sfinger are computed from different bio-

metric traits), their sum will tend to be a log-likelihood ratio (Brummer and du Preez,

2006; Duda et al., 2004):

sfused = sface + sfinger (5.7)

Quality information is used in two stages of the system proposed in Figure 5.3:

i) classification stage, using different score normalization functions depending on the

device used for query acquisition, which is estimated from quality signals; and ii) fusion

stage, discarding scores which come from low quality sources. These two stages are

further detailed and evaluated in the following sections, in which they are compared to

a set of common fixed fusion rules: arithmetic mean, minimum and maximum (Kittler

et al., 1998). For these fusion experiments, matching scores are first normalized to be

similarity scores in the [0, 1] range using the tanh-estimators described by Jain et al.

(2005):

s′ =
1

2

{
tanh

(
0.01

(
s − µs

σs

))
+ 1

}
(5.8)

where s is the raw similarity score, s′ denotes the normalized similarity score, and µs

146



5.4 Results

and σs are respectively the estimated mean and standard deviation of the genuine score

distribution. Similarly to the architecture proposed in Figure 5.3, face and fingerprint

scores are normalized separately and subsequently fused.

In the experiments reported in this chapter, we follow the same benchmarking pro-

cedure of the BioSecure Multimodal Evaluation Campaign (see Section 5.2): training

of the fusion scheme (fnf1 and xfa1 calibration functions, and fo{n}/xft{n} fusion and

calibration functions in Figure 5.3, with n = {1, 2, 3}) is carried out only on the Session

2 training set of scores, whereas testing and performance comparison is then done on

the Session 2 evaluation set of scores. We cope with missing values of the evaluation

set as follows. When a fingerprint score of an access is missing, its value is set to the

mean value of the remaining valid scores prior to the fusion (the same applies to the

quality values). If an entire modality is missing, it is not used in the fusion. If both

modalities are missing, the fused score is set to the threshold value at the EER point

on the training set. This was the procedure followed in our submission to the quality-

based evaluation of Biosecure, where the rejection of an access was not allowed (Poh

and Bourlai, 2007). To be consistent with the evaluation, this procedure is also used

in the experiments reported in this chapter, unless indicated.

5.4 Results

5.4.1 Estimation of the input device from quality measures

According to the protocol of the quality-based evaluation (Poh and Bourlai, 2007),

no information was given regarding the device used for query acquisition during the

evaluation. In this scenario, we were interested in exploring the potential benefits of

conditional processing based on a prediction of the input device. For this purpose,

we used the quality measures provided together with the training scores, and assumed

that:

• if the template and the query were from the same device (i.e. fnf1, fo1, fo2, fo3 ),

both images would have similar quality values and they would be high,

• if the template and the query were from different devices (i.e. xfa1, xft1, xft2,

xft3 ), the quality value of the template would be higher than the quality value of

the query, and the quality value of the query would be low.

We estimated the device separately for face and fingerprint modalities. For that

purpose, we used a quadratic discriminant function with multivariate normal densities
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TRAINING SET EVALUATION SET
Face Error Error Error Error Error Error

feature fnf1+xfa1 fnf1 xfa1 fnf1+xfa1 fnf1 xfa1
8 0.20% 0.04% 0.37% 12.15% 4.43% 17.59%

6-8 0.20% 0.04% 0.37% 12.15% 4.14% 17.79%

8-9 0.20% 0.04% 0.37% 13.12% 4.14% 19.44%

6-8-9 0.08% 0.04% 0.12% 12.76% 4.14% 18.82%

TRAINING SET EVALUATION SET
Fingerprint Error Error Error Error Error Error

feature fo+xft fo xft fo+xft fo xft
2 14.92% 21.81% 8.03% 20.00% 29.26% 10.73%

1-2 16.68% 22.89% 10.47% 21.69% 28.86% 14.53%

2-3-6 15.75% 22.08% 9.41% 20.76% 21.69% 12.82%

Table 5.5: Quality feature combination for the estimation of the device used
for the query acquisition.

for each class (Duda et al., 2004). For the face modality, we used the 14 quality measures

of the query image (see Table 5.3). For the fingerprint modality, we derived the following

8 parameters from the quality of the templates (Qti) and queries (Qqi) of the three

scores corresponding to each access (i = 1, 2, 3): 1) Number of fingerprint scores such

as Qti > Qqi, 2) max(Qqi), 3) max(|Qti − Qqi|), 4) min(Qqi), 5) min(|Qti − Qqi|), 6)

mean(Qqi), 7) mean(|Qti − Qqi|), and 8) max(Qti − Qqi).

We tested all the combinations of one, two and three quality features in order to

determine the device used for the query acquisition. Results of the best cases are shown

in Table 5.5. For the face modality, a remarkably low error rate is obtained using the

training set, even with only one parameter. However, this is not true for the evaluation

set. This can be observed in Figure 5.4, where the distribution of several face quality

features are depicted for both data sets. This could be due to the small size of the

data set provided for training (51 × 103 × 4 = 21012 impostor scores but only 51 ×
2 = 102 genuine scores, according to the figures of Table 5.1). On the other hand, we

observe high error rates in the estimation for the fingerprint modality in both data sets.

Interestingly enough, the estimation fails mostly with the optical sensor.

Based on the results of the estimation on the training set, we proposed to train

a score normalization function independently for each face modality (fnf1 and xfa1 ),

and a unique fusion function for both fingerprint modalities (fo and xft), as shown

in Figure 5.3 (Alonso-Fernandez et al., 2008b). This was the approach submitted by

our institution to the quality-based evaluation of the Biosecure Multimodal Evaluation

Campaign, but using the MAX rule of the two calibrated scores instead of the SUM

148



5
.4

R
e
su

lts

(a) Training set

(b) Evaluation set

Figure 5.4: Face quality features for query device estimation.
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Figure 5.5: Verification results of the proposed log-likelihood fusion (Loglik.)
together with simple fusion rules used for comparison (Loglik. SUM is
further studied in the present chapter, Loglik. MAX was the approach
submitted by the authors to the quality-based Biosecure evaluation).

150

ChapterApplication/Figures/EVAL_Q_BASED_7_DET_TIFS.eps
ChapterApplication/Figures/DET_TIFS.eps
ChapterApplication/Figures/EVAL_Q_BASED_7_DET_TIFS_psm.eps
ChapterApplication/Figures/DET_TIFS_psm.eps
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rule used in this chapter. The submitted approach was ranked 2nd in terms of Half Total

Error Rate (HTER) out of 13 participants (BMEC, 2007). Results of both approaches

are shown in Figure 5.5a, together with the simple fusion rules used for comparison.

As it can be observed in Table 5.5, the device estimation did not perform well on the

evaluation set, so with the aim of evaluating the effects of such a bad device estimation,

we also depict in Figure 5.5b results considering the actual device used in each access,

training in this case a modality-specific score normalization function based on linear

logistic regression. Although that was not the protocol in the Biosecure evaluation, it

is reasonable to assume that the specific sensor used in an operational environment is

known.

As can be observed in Figure 5.5a, although the proposed approach based on log-

likelihood fusion results in worse EER value, it outperforms our submission to the

evaluation (which was also based on log-likelihood but using MAX instead of SUM

fusion) in most regions of the DET curve. We also observe that the performance of the

proposed fusion scheme is better than the performance of all simple fusion rules. Only

the arithmetic mean rule result in similar performance on the evaluation set for low

FRR values, being this difference higher when knowing the actual device used in each

access (Figure 5.5b).

Comparing Figure 5.5b to Figure 5.5a, we can also observe the decrease in perfor-

mance when using device estimation in comparison to knowing the actual device used

in each access.

5.4.2 Sensor interoperability

We now evaluate the capability of the proposed log-likelihood fusion algorithm to cope

with query biometric signals originated from heterogeneous biometric devices by re-

porting the performance on the different mixtures of Table 5.4. We report in Table 5.6

the performance of the four possible combinations for an access using the proposed log-

likelihood sum fusion rule sfused and the best simple fusion rule (the arithmetic mean).

DET curves are also plotted in Figure 5.6. It can be observed that for the mixtures

involving only the optical sensor (mixtures 1 and 3), there are not big differences in

performance between the two fusion schemes. On the other hand, for the mixtures in-

volving mismatched fingerprint devices (mixtures 2 and 4), the proposed fusion scheme

outperforms the simple fusion rule. This is specially evident for the mixture 2, which

does not involve mismatched face devices (only the high resolution camera). We can

also see that the proposed scheme performs best in overall terms, i.e. when pooling all

the mixtures.
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With device estimation With correct device model
M. Modalities loglik SUM Arithm. mean loglik SUM Arithm. mean
1 fnf1/fo1/fo2/fo3 2.88% (-50.30%) 1.64% (-71.70%) 1.55% (-73.25%) 1.61% (-72.22%)

2 fnf1/xft1/xft2/xft3 6.69% (-16.49%) 11.18% (+39.56%) 6.97% (-12.99%) 12.38% (+54.54%)

3 xfa1/fo1/fo2/fo3 2.55% (-56.00%) 2.26% (-61.00%) 1.91% (-67.04%) 1.62% (-72.05%)

4 xfa1/xft1/xft2/xft3 9.24% (-29.81%) 11.35% (-13.79%) 9.26% (-29.66%) 12.05% (-8.47%)
ALL 7.02% 7.57% 5.49% 9.63%

Table 5.6: Verification results of the fusion in terms of EER (%) for the four
different mixtures defined in Table 5.4 on the evaluation set. The relative
EER increase with respect to the best modality involved (see Figure 5.2) is
also given in brackets.

It is also worth noting that the best mixtures (mixtures 1 and 3) are the ones

that do not use mismatched fingerprint devices and they also result in the highest

relative improvement with respect to the best individual modality involved, as observed

in Table 5.6. The mixture involving both mismatched fingerprint and face devices

(mixture 4) performs always the worst. However, it should be noted that about a 30%

of improvement is obtained in terms of EER for this mixture when fusing, as compared

to the best single modality.
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Figure 5.6: Verification results of the fusion for the different mixtures defined
in Table 5.4.
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(a) Fingerprint. Left: template and query with flat acquisition. Right: template and query with
flat and sweep acquisition, respectively.

Figure 5.7: Verification performance in terms of EER for the fingerprint
modality as scores with the lowest quality value are discarded.

5.4.3 Quality-dependent multimodal fusion

There is now international consensus in industry (Benini and et al, 2006), academia

(Chen et al., 2005) and government (Tabassi et al., 2004) that a measure of a biometric

sample’s quality should be related to its recognition performance. Broadly, a sample

should be of good quality if it is suitable for automated matching. Based on this con-

cept, sample quality can be formalized as a scalar quantity that is related monotonically

to the performance of biometric matchers (Grother and Tabassi, 2007). Based on this,

an operational approach to incorporate quality information in biometric systems is to

reject low quality samples, as done in several studies (Alonso-Fernandez et al., 2007c,

2008). This policy implies to increase the inconvenience to users whose samples are

rejected by the system who are requested to be recaptured, or even to make a biomet-

ric system unsuitable to certain individuals whose data is not consistently of enough

quality. To cope with this, multibiometric systems use multiple sources of information

(Ross et al., 2006), thus alleviating the problem of asking an individual to be recaptured

when particular samples are of low quality (Fierrez-Aguilar et al., 2005e). Similarly,

users having a trait not suitable to be used (e.g. damaged fingers) still can use the

other available information for recognition.

In this work, we have tested this quality-based modality rejection by not considering

in the fusion the scores having a quality value lower than a predefined threshold. The

quality value of a matching score is defined as min(Qe , Qt), where Qe and Qt are the

qualities of the enrolled and input biometric samples respectively corresponding to the
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(b) Face: template and query with high and low resolution cameras, respectively.

Figure 5.8: Verification performance in terms of EER for the face modality as scores with the lowest quality
value are discarded. Results are shown using the quality features that result in the highest improvement of
the EER.
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EVALUATION SET

Modality
discarded feature thres. mixture 1 mixture 2 mixture 3 mixture 4 ALL

6 75 1.59% 5.73% - - 5.41%
Face (+2.58%) (-17.79%) (-1.45%)

fnf1 2 20 1.56% 6.11% - - 5.37%
(+0.65%) (-12.34%) (-2.19%)

4 30 1.57% 6.39% - - 5.44%
(+1.29%) (-8.32%) (-0.91%)

1 80 - - 1.33% 8.29% 5.12%
Face (-30.37%) (-10.48%) (-6.74%)

xfa1 7 75 - - 1.37% 9.90% 5.52%
(-28.27%) (+6.91%) (+0.55%)

6 65 - - 1.49% 9.24% 5.26%
(-21.99%) (-0.22%) (-4.19%)

Fing. fo - 0.35 1.51% - 1.40% - 5.57%
(-2.58%) (-26.70%) (+1.46%)

Fing. xft - 0.35 - 6.77% - 11.15% 5.91%
(-2.87%) (+20.41%) (+7.65%)

Table 5.7: Effects on the performance of the proposed log-likelihood sum fusion on the different mixtures
defined in Table 5.4 in terms of EER as scores with quality value lower than the predefined thresholds are
not considered in the fusion. Results are shown by either discarding face or fingerprint scores, together with
the resulting relative EER increase in brackets (reference results without quality-based score rejection are
shown in Table 5.6, fifth column). Threshold values are selected on the basis of Figures 5.7 and 5.8.
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matching, so the worse of the two biometric samples drives the score (Grother and

Tabassi, 2007). For a given access (consisting of a face sample and 3 fingerprints, see

Figure 5.3), fingerprint scores whose quality is lower than the threshold are replaced

with the fingerprint score having the maximum quality value. If the three fingerprint

scores of an access have their quality lower than the threshold, then the fingerprint

modality is entirely discarded. In order to set the “optimum” quality threshold, we

used the verification performance of the fingerprint and face modalities as scores with

the lowest quality value are discarded, as shown in Figures 5.7 and 5.8, respectively.

Thresholds are set for each modality by choosing the value that minimizes the EER on

the training set (indicated in Figures 5.7 and 5.8 as vertical lines). Except for the xft

fingerprint modality (template and query with flat and sweep acquisition, respectively),

an EER reduction is also observed on the evaluation set for the selected thresholds.

Once the optimum thresholds are selected, we evaluate the effects on the perfor-

mance of the proposed log-likelihood sum fusion on the mixtures defined in Table 5.1

by separately discarding face or fingerprint scores. The results are shown in Table 5.7.

It is observed in all cases an EER decrease (or at least, no significant EER increase)

except when discarding scores of the xft modality. This is consistent with the results

reported on Figure 5.7, where no reduction on the EER was observed on the evalua-

tion set for the selected quality threshold. Based on these results, no threshold will be

subsequently applied to the xft modality.

Finally, we jointly apply the score quality-based rejection in all the modalities using

the optimum thresholds selected. To be consistent with the constraints of the BioSecure

Multimodal Evaluation Campaign (Poh and Bourlai, 2007), where no access can be

rejected, if all the quality measures of an access are lower than the thresholds, then

the resulting fused score is set to 0. In the proposed log-likelihood fusion strategy,

this means that there is the same likelihood if signals are assumed to be originated or

not by the given subject. However, we also report results discarding these accesses of

the computation of the error rates to show the benefits of this policy. In Figure 5.9,

we show the number of accesses per modality that do not comply with the quality

requirements, showing that the fusion allows to recover a significant number of them.

Verification results of the fusion with the proposed quality-based rejection scheme are

shown in Table 5.8 and Figures 5.10 and 5.11.
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Figure 5.9: Incorporation of quality information in the fusion stage. Re-
sults show the number of accesses per modality with quality value lower
than the predefined thresholds. It can be observed that the fusion reduces
significantly the number of rejected accesses.

Quality+
Mixture Modalities No quality Quality rejection

1 (fnf1/fo1/fo2/fo3) 1.55% 1.56% (-0.65%) 1.28% (-17.42%)

2 (fnf1/xft1/xft2/xft3) 6.97% 5.73% (-17.79%) 5.45% (-21.81%)

3 (xfa1/fo1/fo2/fo3) 1.91% 1.30% (-31.94%) 0.96% (-49.74%)

4 (xfa1/xft1/xft2/xft3) 9.26% 8.29% (-10.48%) 7.48% (-19.22%)
ALL 5.49% 4.45% (-18.94%) 4.17% (-24.04%)

Table 5.8: Verification results of the fusion on the mixtures defined in Ta-
ble 5.2 in terms of EER (%) for the evaluation set incorporating quality
information in the fusion stage (without device estimation). The relative
EER increase as a result of quality incorporation is also shown (in brackets).

It is remarkable that even keeping invalid accesses in the fusion, a performance im-

provement is obtained (see Figure 5.10, curves named “quality”). Additional improve-

ment results from discarding these accesses (curves named “quality and rejection”).

It is also observed from Table 5.8 that the highest improvement is obtained for the

mixture incorporating quality-based rejection both on the fingerprint and face modal-

ities (the mixture 3). Worth noting, the mixture involved both mismatched face and

fingerprint devices (the mixture 4) also results in a considerable improvement. The

mixture having the smallest improvement is the one involving no mismatched devices

(the mixture 1).
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Figure 5.10: Verification results of the proposed fusion incorporating quality
information in the fusion stage (without device estimation).
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Figure 5.11: Verification results of the proposed fusion for the different mix-
tures defined in Table 5.2 incorporating quality information in the fusion
stage (without device estimation).
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5.5 Chapter summary and conclusions

As biometric technology is increasingly deployed, it will be a common situation to

replace parts of operational systems with newer designs and/or to operate with infor-

mation from different sources (Poh et al., 2007). The recent quality-based evaluation

of the BioSecure Multimodal Evaluation Campaign (BMEC, 2007; Poh and Bourlai,

2007) was aimed to compare the performance of different multi-modal biometric fusion

architectures and algorithms when biometric signals are originated from heterogeneous

face and fingerprint biometric devices in mismatched conditions. This evaluation op-

erated at the matching score level, providing participants with different sets of scores

which were obtained using several reference systems. Together with the scores, quality

information of the associated biometric signals was also provided.

In this chapter we have described a fusion strategy submitted to this quality-based

evaluation, developed in the framework of this Thesis (Alonso-Fernandez et al., 2008b),

which obtained very good results (2nd position in terms of Half Total Error Rate out

of 13 participants (BMEC, 2007)). In our approach, output scores of the individual

matchers are first mapped to log-likelihood-ratios by linear logistic regression, prior to

the fusion stage. The proposed strategy allows to efficiently combine scores originated

from different biometric sources (modalities, matchers, devices, etc.) since they are

in a comparable domain, and it is generalizable to newer developments or additional

modalities.

Quality-based conditional processing is carried out in two stages of the proposed

strategy: by estimating the device used in each access in order to switch between

different linear logistic regression modules, and by rejecting scores from low quality

biometric samples. Worth noting, a considerable performance improvement has been

obtained when applying the quality-based score rejection.

The proposed fusion approach is also able to cope easily with missing values of any

modality. In the Biosecure quality-based evaluation, the robustness of the submitted

algorithms against missing values was also evaluated, although it has not been studied

in this chapter. The proposed fusion scheme also obtained remarkable results (BMEC,

2007), being the first in terms of HTER when the proportion of missing data was

increased (i.e. higher than 20%).

This chapter presents novel contributions in the definition of a quality-based multi-

biometric architecture, the use of quality information to estimate the input device used

in the acquisition of biometric data, and the use of a score-rejection scheme that only

considers sources of enough quality in the fusion.
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Chapter 6

Conclusions and Future Work

This PhD Thesis has studied the biometric sample quality assessment problem. Af-

ter a summary of previous work related to this problem, it is explored in two particular

traits: fingerprints and signature images. In anatomical traits like fingerprint, we can

objectively define what quality is. But it is harder to do so in behavioral traits like

signature, where proposed features for quality assessment are related to how a signer

decides to sign. Several quality assessment methods are studied and compared for the

two mentioned traits. Also, the incorporation of quality information in multibiometric

systems is explored, showing its benefits.

6.1 Conclusions

Chapter 1 introduced the topic of biometric systems, biometric modalities, the motiva-

tion of the Thesis, and the contributions originated from this PhD Thesis. Chapter 2

summarized related works and detailed the motivations for this Thesis based on these

previous works.

Chapter 3 studied the problem of quality assessment of fingerprint images. This

chapter provided a taxonomy of existing approaches for fingerprint image quality as-

sessment. It also compared a set of representative fingerprint quality measures by

studying both their correlation and their utility. The impact of image quality in the

performance of a minutiae- and a ridge-based matcher was evaluated with a multi-

session database acquired with three sensors of different technology. High correlation

was observed between quality measures in most cases, with some differences depend-

ing on the sensor used. Regarding the utility, for the approach based on minutiae the

highest performance improvement for good quality was obtained in the False Rejection
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Rate, whereas for the ridge-based approach the highest improvement was observed in

the False Acceptance Rate.

Chapter 4 studied the problem of quality assessment of signature images. Several

measures to predict the performance of signature systems were proposed as contribu-

tion. They were aimed to predict features like signature legibility, complexity, stability,

duration, etc. Also, one verification system based on local contour of signatures was

presented. Among the most remarkable findings of this chapter, we have found that for

skilled forgeries, the best performance is obtained with legible signatures. Also, perfor-

mance is worsened with highly variable signatures, specially with few enrolment data,

or with low variance of the pen pressure. For the other measures, different behavior

was observed between the three matchers used.

Chapter 5 finally conducted a study of system adaptation to the quality of biometric

systems. We have contributed with a new quality-based conditional-processing multi-

biometric architecture that is generalizable to biometric systems working with multi-

ple sources of information. In the proposed approach, output scores of the individual

sources are first mapped to log-likelihood-ratios, allowing an efficient combination since

they are in a comparable domain. Quality is then used to switch between different sys-

tem modules depending on the data source, and to consider only data of enough quality.

The effectiveness to cope with signals originated from heterogeneous biometric sources

was also demonstrated by the proposed approach in an standard benchmark test.

To summarize, the main results and contributions obtained from this Thesis are:

• The novel strategies for signature quality assessment and performance prediction.

• The novel quality-based conditional-processing multibiometric architecture aimed

at combining biometric signals originated from heterogeneous sources.

• The individual system developed for off-line signature verification using local

contour information of the signature.

• The multimodal biometric data acquired, which will be released for research pur-

poses in the near future.

• The experimental evaluation of fingerprint and signature quality measures using

different biometric sensors and matchers.
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6.2 Future work

Several research directions arise from the work proposed in this Ph.D. Thesis. We

enumerate here some of them that we consider remarkable:

Application of the proposed evaluation framework to other biometric traits.

The evaluation framework used in this Ph.D. Thesis (Grother and Tabassi, 2007)

is applicable to any biometric trait and it is a clear future area of research. Apart

from the two traits considered in this Ph.D. Thesis (fingerprint and signature),

biometric algorithms have been also proposed for iris (Chen et al., 2006a; Kalka

et al., 2005), voice (Garcia-Romero et al., 2006) and face (Kryszczuk and Dryga-

jlo, 2007). However, prior work on quality evaluation and sample quality analysis

is limited. Biometric quality assessment is a current research challenge and it

is not been until recent years when it has received specific attention from the

research community (Benini and et al, 2006; BQW, 2007; Youmaran and Adler,

2006).

Combination of different approaches for quality estimation. Experiments have

shown that there are quality measures better suited to specific situations (sensor

technology, matching algorithm, etc.). Remarkable differences between quality

measures are found in terms of behavior. Therefore, adaptive quality fusion

methods that exploit these differences could improve the process of assessing the

quality of biometric signals and therefore, the overall performance of the system,

e.g. Fierrez-Aguilar et al. (2006); Fronthaler et al. (2008). This research line will

be explored in the future.

Proposal of new quality measures. Many quality assessment algorithms have been

developed, mainly for fingerprint images (Alonso-Fernandez et al., 2007c). Other

measures have also been recently proposed for iris, voice, face and signature.

However, there is much research that still can be done in this field with the pro-

posal of new quality measures to other biometric traits. Efforts are currently

going towards an harmonized and universal interpretation of quality measures by

defining the key factors that need to be assessed in each biometric trait.

Incorporation of quality measures in biometric systems. Some of the steps of

the recognition system can be adjusted based on the estimated quality in order

to improve the overall performance. There are recent works following this di-

rection (Baker and Maurer, 2005; Chan et al., 2006; Fierrez-Aguilar et al., 2006;
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Nandakumar et al., 2006), in which quality measures are used to dynamically as-

signing weights to the outputs of individual matchers based on the quality of the

samples. Other approaches (Chen et al., 2005; Hong et al., 1998; Shi et al., 2004)

exploit the signal quality in different steps of the recognition system in order to

improve the feature extraction process.

Study of quality in new biometric scenarios. Chapter 5 of this Thesis has ad-

dressed the problem of biometric device replacement and the matching of bio-

metric samples originated from different devices. These are common operational

situations that will appear as biometric technology is deployed (Poh et al., 2007).

Other problems that could be a source of future work in this area are: impact

of environmental variations in new applications requiring personal identification

(over the Internet, with mobile platforms in indoor/outdoor environments, etc.),

evaluation of new multibiometric scenarios (e.g. ePassport using face, fingerprint

and iris), etc.

Use of “biometric information” to assess sample quality. Youmaran and Adler

(2006) have developed an approach that measures the information content of bio-

metric data from an information theoretic point of view. Intuitively, degradations

to a biometric sample will reduce the amount of identifiable information available.

They develop a mathematical framework to measure biometric information for a

given system and set of biometric features using the concept of entropy (Duda

et al., 2004). Quantifying the biometric information in different systems individ-

ually also would allow to evaluate the potential gain from fusing them. There are

other efforts related to this issue specifically focused on certain biometric traits,

as Daugman (2003); Kholmatov and Yanikoglu (2008).

Effects of time variability in the quality of acquired signals and the implementation

of template selection and update techniques. As biometric data is subject

to natural variations across time, multiple templates that best represent this

variability should be stored in the database. Also, stored templates should be

updated with new acquisitions by replacing them with better quality samples

captured subsequently. There are initial techniques following this direction (Ko

and Krishnan, 2004; Uludag et al., 2004).
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Chapter 7

Resumen Extendido de la Tesis

Calidad de muestras biométricas y su

aplicación en sistemas de autenticación

multimodal

Se denomina reconocimiento biométrico al proceso que permite determinar la identi-

dad de un individuo de forma automática mediante el uso de caracteŕısticas personales

de tipo conductual y/o anatómico, como las huellas, la cara, el iris, la voz, la firma,

etc. (Jain et al., 2006). El análisis cient́ıfico de evidencias biométricas lleva usándose

en el ámbito forense (judicial, policial y pericial) desde hace más de un siglo. Pero en

los últimos años, con el desarrollo de la sociedad de la información y con un mundo

cada vez más interconectado y globalizado, la demanda de aplicaciones que permitan

la identificación de individuos de modo automático ha crecido enormemente. Es en

este contexto donde el reconocimiento biométrico ha experimentado una investigación

y desarrollo considerable.

Aunque el reconocimiento automático de personas se lleva estudiando más de treinta

años (Atal, 1976; Kanade, 1973), hasta la última década no se ha establecido como un

campo de investigación espećıfico, con múltiples libros de referencia (Bolle et al., 2004;

Jain et al., 1999, 2008; Li and Jain, 2004; Maltoni et al., 2003; Nanavati et al., 2002;

Ratha and Bolle, 2004; Ross et al., 2006; Wayman et al., 2005; Zhang, 2002), con-

ferencias espećıficas en el tema (AVBPA, 2005; BTAS, 2007; ICB, 2007; ICBA, 2004;

165



7. RESUMEN EXTENDIDO DE LA TESIS

SPIE-BTHI, 2008), proyectos internacionales (BioSec, 2004; BioSecure, 2004; COST-

2101, 2006; COST-275, 2003), esfuerzos de estandarización (BioAPI, 1998; CBEFF,

2001; INCITS M1, 2007; ISO/IEC JTC1 SC37, 2002) y el desarrollo de evaluaciones

y pruebas comparativas (BMEC, 2007; FpVTE, 2003; FRVT, 2006; FVC2006, 2006;

ICE, 2006; Mansfield and Wayman, 2002; NIST SRE, 2006; SVC, 2004; Wayman et al.,

2005). También ha habido un creciente interés institucional de gobiernos (DoD, 2007),

industria (IBG, 2007), organismos de investigación (NIST-ITL, 2007) aśı como el es-

tablecimiento de consorcios internacionales espećıficamente dedicados a la biometŕıa

(BC, 2005; EBF, 2003).

Pero pese a la madurez de este campo de investigación, el reconocimiento biométrico

sigue siendo un área muy activa de investigación, con numerosos problemas prácticos

aún por solucionar (Jain et al., 2004a). Estos problemas prácticos han hecho que, pese

al interés de las aplicaciones biométricas, la introducción en el mercado de estas nuevas

tecnoloǵıas sea más lenta de lo esperado.

Esta tesis se centra en el análisis de calidad de muestras biométricas, aśı como su

aplicación en sistemas multimodales. En particular, se explora el problema en dos

rasgos: huella y firma “offline”. Al contrario que una imagen de huella, donde se

puede definir su calidad de manera más o menos objetiva, en el caso de rasgos de

comportamiento como la firma no es sencillo hallar una definición de calidad.

7.1 Introducción

El paradigma de la autenticación biométrica. El reconocimiento de personas

se ha realizado históricamente asociando identidad y “algo que la persona posee” (por

ejemplo, una llave o una tarjeta, que puede ser robado, perdido o duplicado), o bien

“algo que la persona sabe” (por ejemplo, una palabra-clave o un PIN, que puede ser

olvidado o revelado). El reconocimiento biométrico añade a este paradigma una nueva

dimensión, asociando persona e identidad personal mediante “algo que la persona es (o

produce)”. “Algo que la persona es” nos indica una caracteŕıstica fisiológica asociada de

forma inherente a la persona, mientras que “algo que la persona produce” nos indica una

aptitud o acto previamente entrenado que la persona realiza como patrón de conducta.

Sistemas biométricos. El reconocimiento biométrico es un término genérico para

denominar a los dos modos de funcionamiento de los sistemas biométricos. De forma

más precisa, se denomina identificación biométrica a la tarea que pretende asociar una

muestra biométrica a uno de los N patrones o modelos disponibles del conjunto cono-
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cido de individuos registrados. Por este motivo, a esta tarea también se la conoce como

comparación uno-contra-muchos o uno-contra-N . La salida de los sistemas que funcio-

nan bajo este modo suele ser una lista ordenada de candidatos, estando ligado el criterio

de ordenación al grado de similitud entre muestra de prueba y patrón registrado. Por el

contrario, la verificación (o autenticación) biométrica es la tarea que pretende decidir

si una determinada muestra de entrada coincide o no con un usuario espećıfico (denom-

inado usuario “solicitado”, o “pretendido”). Esta tarea es conocida como problema

uno-contra-uno, y la salida será una decisión binaria (aceptado/rechazado) basada en

la comparación del grado de similitud (en forma de puntuación o score entre la muestra

de entrada y el modelo de usuario pretendido) respecto a un determinado umbral de

decisión. En esta Tesis nos centramos en el modo de verificación, cuyas dos etapas,

registro (enrollment) y verificación (verification), se muestran esquemáticamente en la

Figura 1.1.

El objetivo en la verificación biométrica es decidir entre dos clases, cliente o im-

postor. Dependiendo del rasgo biométrico que se trate, los impostores pueden conocer

y utilizar información del rasgo imitado para facilitar el acceso, por ejemplo, la forma

de la firma en el caso de verificación de firma escrita. Por ello se suelen considerar

dos tipos de impostores: 1) impostores casuales (que producen falsificaciones aleato-

rias), cuando no se conoce información del rasgo imitado, y 2) impostores reales (que

producen falsificaciones entrenadas), cuando se conoce y utiliza información del rasgo

imitado.

Modalidades biométricas. Hay una serie de modalidades fisiológicas que pueden

ser consideradas como tecnológicamente “maduras”, a saber, la huella dactilar, el iris,

la cara, la geometŕıa de los dedos y/o la mano, o la huella palmar. En relación con las

modalidades conductuales, rasgos como la voz, la escritura y la firma manuscrita, o el

modo de andar (marcha), son modalidades objeto de grandes esfuerzos de investigación.

La Figura 1.2 muestra algunos ejemplos de rasgos biométricos (Jain et al., 2006). En

teoŕıa, cualquier caracteŕıstica humana puede ser considerada como un rasgo biométrico

siempre que satisfaga las siguientes propiedades:

• universal, que indica que toda persona debe poseer dicho rasgo;

• distintivo, que se refiere a que dicho rasgo debe ser lo suficientemente diferente

para diferentes personas;

• permanente, que indica que dicho rasgo debe poseer una representación que se

mantenga a lo largo del tiempo;
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• mensurable, que se refiere a la habilidad de medir dicho rasgo cuantitativamente.

Otras propiedades deseables de cara al uso de rasgos biométricos en sistemas de

autenticación incluyen:

• rendimiento, que se refiere a la eficiencia, precisión, velocidad, robustez, y uso de

recursos de las implementaciones prácticas basadas en dicho rasgo;

• aceptabilidad, que indica el grado en el que la gente está dispuesta a usar dicho

rasgo y en qué términos;

• seguridad, que se refiere a la dificultad de burlar un sistema basado en dicho rasgo

con métodos fraudulentos;

• manejo de excepciones, referido a la capacidad de completar el reconocimiento

de modo manual en el caso de que ciertas personas no sean capaces o no puedan

usar alguna modalidad biométrica;

• coste, referido al coste económico del sistema para su uso normal.

Si se analiza el estado del arte de los sistemas basados en diferentes rasgos biométricos,

podremos observar que no existe ningún rasgo individual que maximice todas las

propiedades indicadas. Algunos rasgos biométricos son altamente distintivos pero son

dif́ıcilmente mensurables (p.ej., el iris, con dispositivos caros y dif́ıciles de utilizar),

mientras que otros se adquieren fácilmente pero no son tan distintivos (p.ej., la cara).

No obstante, cuando se consideran varios rasgos simultáneamente, prácticamente todas

las propiedades se satisfacen ampliamente, hecho que pretenden explotar los sistemas

multibiométricos.

Sistemas biométricos multimodales. En dichos sistemas se utilizan varios rasgos

biométricos simultáneamente con objeto de compensar las limitaciones de rasgos indi-

viduales (Ross et al., 2006). Como resultado, las tasas de error en verificación suelen

disminuir, el sistema resultante es más robusto frente a fallos de los sistemas individ-

uales y frente a ataques externos, y el número de casos donde el sistema no es capaz de

dar una respuesta se reduce (p.ej., debido a la mala calidad de una muestra biométrica

de uno de los rasgos individuales).

A grandes rasgos, se pueden definir dos niveles de fusión: fusión antes de la com-

paración, y fusión después de la comparación. Fusión antes de la comparación incluye

fusión a nivel de sensor y fusión a nivel de caracteŕısticas, mientras que después de la
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comparación tenemos a nivel de puntuaciones y a nivel de decisión. Esta clasificación

se basa en el hecho de que tras la comparación, la cantidad de información disponible

para fusionar se reduce enormemente.

Entre todos estos tipos de fusión, la mayoŕıa de estrategias para la combinación de

rasgos biométricos existentes en la literatura se basan en la fusión de las puntuaciones

o medidas de similitud proporcionadas por los sistemas individuales, por la mayor

facilidad de acceso a las mismas (Fierrez-Aguilar, 2006; Ross et al., 2006). Como

resultado de esta fusión, tenemos una nueva puntuación o medida de similitud, que

será lo que usemos para el reconocimiento. A su vez, los métodos de fusión a nivel de

puntuación se clasifican en tres categoŕıas: métodos basados en densidades, métodos

basados en transformaciones y métodos basados en clasificadores (Ross et al., 2006).

En los métodos basados en densidades, las funciones de densidad conjunta p (s|ω0)

y p (s|ω1) correspondientes a las clases “usuario genuino” (ω0) e “impostor” (ω1) se

estiman para un vector de puntuaciones dado s = [s1, s2, · · · , sR], donde R es el número

de comparadores. A continuacion, se aplica la regla de decisión de Bayes (Duda et al.,

2004):

Asignar s → ωi si
p(s|ωi)
p(s|ωj)

> τ, i 6= j y i, j = {0, 1} (7.1)

donde p (s|ωi) /p (s|ωj) es un cociente de verosimilitud y τ = P (ωj)/P (ωi) es un umbral

predeterminado que depende de las probabilidades a priori de observar las clases ωj and

ωi
1. La estimación de la densidad p (s|ωi) se hace usando un conjunto de entrenamiento

de vectores de medidas de similitud mediante técnicas paramétricas o no paramétricas.

En la literatura se han propuesto varias estrategias siguiendo estos métodos (Dass

et al., 2005; Kittler et al., 1998; Ross et al., 2006). Para estimar de modo preciso las

funciones de densidad, normalmente se necesita un conjunto grande de muestras de

entrenamiento, sobre todo si la dimensionalidad del vector s es alta.

En los métodos basados en transformaciones, las puntuaciones se combinan directa-

mente mediante operadores sencillos como la suma, la regla del máximo, etc. (Kittler

et al., 1998). En este caso, normalmente es necesario un proceso de normalización que

transforme las distintas puntuaciones a un rango común (Jain et al., 2005).

Los métodos basados en clasificadores utilizan las puntuaciones de los diferentes

comparadores como entrada de un clasificador entrenado (Duda et al., 2004) para de-

1La regla de Bayes, tal como se expresa aqúı, asume que el coste de cada error de clasificación es
el mismo para todas las clases posibles (Duda et al., 2004). Puesto que esta particularización no se
considera en esta Tesis, no introducimos aqúı términos de coste de errores de clasificación por claridad.
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terminar directamente la clase (usuario genuino o impostor), en lugar de devolver otra

puntuación. En este caso, las puntuaciones normalmente no es necesario transformarlas

a un rango común antes de la clasificación, aunque śı será necesario un conjunto grande

de muestras de entrenamiento para el clasificador. En la literatura biométrica se han

propuesto múltiples clasificadores para la combinación de puntuaciones: redes hyper

BF (Brunelli and Falavigna, 1995), k-vecino más cercano (Verlinde and Chollet, 1999),

árboles de decisión (Ben-Yacoub et al., 1999; Ross and Jain, 2003; Verlinde and Chollet,

1999), regresión loǵıstica lineal (Verlinde and Chollet, 1999), k-media and fuzzy clus-

tering (Chatzis et al., 1999), Máquinas de Vector Soporte (SVM) (Ben-Yacoub et al.,

1999; Fierrez-Aguilar et al., 2005a,e; Garcia-Romero et al., 2003), perceptrones mul-

ticapa (Ben-Yacoub et al., 1999), discriminantes de Fisher (Ben-Yacoub et al., 1999;

Wang et al., 2003), clasificadores Bayesianos (Ben-Yacoub et al., 1999; Bigun et al.,

1997) y redes neuronales (Wang et al., 2003).

Calidad en sistemas biométricos. Existen múltiples algoritmos de medida de cal-

idad principalmente para huellas (Alonso-Fernandez et al., 2007c) y más recientemente

para iris (Chen et al., 2006a; Kalka et al., 2005), voz, (Garcia-Romero et al., 2006;

Richiardi and Drygajlo, 2008; Richiardi et al., 2007), cara (Kryszczuk and Drygajlo,

2007) y firma (Alonso-Fernandez et al., 2007a; Muller and Henniger, 2007). Muchos

de estos trabajos demuestran que la calidad influye decisivamente en el rendimiento de

los sistemas. Es por ello que el análisis de calidad en biometŕıa es un área actual de

intensa actividad investigadora (BQW, 2007; Grother and Tabassi, 2007). También hay

importantes esfuerzos encaminados a estandarizar la información de calidad biométrica

aśı como su incorporación a estructuras de datos existentes (Benini, 2007; Benini and

et al, 2003, 2006).

Los roles de la calidad en sistemas biométricos son múltiples (Benini, 2007; Grother

and Tabassi, 2007):

• como herramienta de monitorización y estad́ıstica para detectar fuentes de datos

erróneos (Ko and Krishnan, 2004);

• como herramienta para recapturar muestras a la entrada hasta cumplir un mı́nimo

de calidad;

• como mecanismo de ajuste de partes del sistema según la calidad de las señales

capturadas (procesado de calidad condicional).

Este último rol ha sido fuente de numerosos trabajos recientes para sistemas monomodales

(Alonso-Fernandez et al., 2007c, 2008; Chen et al., 2005, 2006a; Fronthaler et al., 2008;
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Grother et al., 2005; Kang et al., 2003; Sickler and Elliott, 2005). La incorporación de

calidad en mecanismos de fusión multimodal también está siendo un área de trabajo

importante (Fierrez-Aguilar et al., 2006, 2005e; Fronthaler et al., 2008; Garcia-Romero

et al., 2006; Kryszczuk and Drygajlo, 2008; Nandakumar et al., 2006; Poh et al., 2007).

Tipos de errores en verificación. El modo de verificación puede ser consider-

ado como una tarea de detección, comportando un compromiso entre dos tipos de

errores: 1) Falso Rechazo (FR), que se produce cuando un usuario auténtico (lo que se

conoce también por usuario genuino o cliente) es rechazado por el sistema, y 2) Falsa

Aceptación (FA), que sucede cuando un impostor es aceptado por el sistema como si

fuera un usuario auténtico. Estos dos tipos de errores tienen relación inversa entre

śı, pudiéndose obtener diversos puntos de funcionamiento del sistema en función del

umbral de decisión elegido. El punto de trabajo en cada caso dependerá de cada apli-

cación en particular. Por esta razón la caracterización de los sistemas biométricos se

realiza mediante las curvas completas que relacionan ambos tipos de error. Por esta

razón también, en el caso de caracterizar el rendimiento de un sistema de verificación

con tasas numéricas, se suele optar bien por un par (FA,FR) o por el punto en donde

coinciden ambas tasas, esto es, el punto de igual error (Equal Error Rate –EER).

Representación del funcionamiento en verificación. Tradicionalmente se han

venido usando para representar el rendimiento de los sistemas biométricos en modo de

verificación las curvas ROC (Receiver - o Relative- Operating Characteristic), en las que

se representa la probabilidad de FA frente a la probabilidad de FR para los diferentes

puntos de trabajo (esto es, umbrales de decisión) del sistema. En las curvas ROC,

la zona de interés se concentra en la esquina inferior izquierda de la gráfica, que se

corresponde con la zona en la que los dos tipos de error se minimizan conjuntamente.

El problema de este tipo de representación ocurre cuando los sistemas producen bajas

tasas de error, puesto que, en estos casos, las curvas que describen los sistemas tienden

a concentrase, impidiéndose de esta forma una visualización comparativa clara de sis-

temas competitivos. Con el objeto de solventar este problema, más recientemente, se

han propuesto las denominadas curvas DET (Detection Error Tradeoff ) (Martin et al.,

1997), que representan también los dos tipos de error pero aplicando una transfor-

mación de ejes. Dicha escala produce un efecto de separación de las gráficas de sistema

que en las ROC se concentraban en la esquina inferior izquierda, y además consigue

que dichas curvas tiendan a ser ĺıneas rectas para distribuciones de puntuaciones Gaus-

sianas, haciendo aśı que las comparaciones entre sistemas competitivos sean directas y
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sencillas. En la Figura 1.3 se muestra una comparación entre curvas ROC y DET de

dos sistemas hipotéticos de verificación A y B.

Motivación para la Tesis. Según hemos mencionado, el rendimiento de sistemas

biométricos se ve fuertemente afectado por la calidad de las señales biométricas. Esta

tesis se centra en este problema aśı como en su aplicación a sistemas multibiométricos.

Más particularmente, se basa en las siguientes observaciones de la literatura:

• El trabajo previo en evaluación de calidad biométrica es relativamente limitado

(Grother and Tabassi, 2007). La comunidad investigadora se ha venido cen-

trando principalmente en el desarrollo de sistemas reconocedores, perfeccionando

los mecanismos de extracción de caracteŕısticas biométricas y de reconocimiento.

Igualmente, aunque hay múltiples algoritmos de medida de calidad biométrica, to-

dos han sido evaluados individualmente y bajo marcos de evaluación heterogéneos.

Solo recientemente se ha formalizado el concepto de calidad en biometŕıa y se han

propuesto marcos comparativos para su evaluación (Grother and Tabassi, 2007;

Youmaran and Adler, 2006).

• Para el caso de las huellas dactilares, se ha observado que los dos mecanismos

de reconocimiento por excelencia (minucias y texturas) no sufren de la misma

manera los efectos de la calidad (Fierrez-Aguilar et al., 2006). Algunos estudios

también se han enfocado al tipo de sensor utilizado (Grother et al., 2005; Kang

et al., 2003; Sickler and Elliott, 2005). Estos resultados no obstante, han sido

llevados a cabo en marcos limitados, sin efectuar pruebas comparativas extensas

entre varios algoritmos de calidad y/o diferentes tecnoloǵıas de sensores de huella.

• En rasgos de comportamiento como la firma, es dif́ıcil definir el concepto de

calidad. Algunos estudios proponen la complejidad o la variabilidad de la firma

(Allgrove and Fairhurst, 2000; Fierrez-Aguilar et al., 2005d) aśı como otras carac-

teŕısticas locales (Muller and Henniger, 2007). También hay trabajos relacionados

con la voz (Garcia-Romero et al., 2006). No obstante, el análisis de calidad en

rasgos de comportamiento es aún muy limitado.

• Una fuente de problemas adicionales es cuando el sensor de captura se cambia

por otro (Poh et al., 2007), o cuando las muestras a comparar provienen de difer-

entes sensores y/o algoritmos extractores de caracteŕısticas (Grother et al., 2005).

Estos problemas de interoperabilidad, que normalmente reducen sustancialmente

el rendimiento (Alonso-Fernandez et al., 2005c, 2006c; Grother et al., 2005; Ross
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and Jain, 2004), no han sido espećıficamente tratados. Por desgracia, a medida

que las aplicaciones biométricas se vaya extendiendo, será bastante común cam-

biar el sensor por diseños más recientes (o cuando se rompa o deteriore), aśı como

intercambiar información con otros sistemas desarrollados por otras compañ́ıas

(Poh et al., 2007).

• La incorporación de medidas de calidad en sistemas multibiométricos es otro reto

actual (BMEC, 2007; BQW, 2007). Se ha demostrado que estos sistemas son más

robustos a variaciones en la calidad (Fierrez-Aguilar et al., 2006; Nandakumar

et al., 2006) y puede ser una fuente adicional de mejora (BQW, 2007; Fierrez-

Aguilar et al., 2005e; Grother and Tabassi, 2007). Algunas estrategias que se

proponen consisten en combinar de modo adaptativo las salidas de los diferentes

comparadores en función de la calidad de las muestras de entrada (fusión de-

pendiente de calidad) o en modificar las etapas de procesamiento del sistema

(procesado dependiente de la calidad) (Chen et al., 2005).

La Tesis. En esta Tesis se evalúa en primer lugar el impacto de la calidad de las

señales biométricas en el rendimiento del sistema bajo un marco comparativo. Dicho

estudio se lleva a cabo para dos rasgos particulares: huella y firma. También se lleva

a cabo un estudio práctico de adaptación de sistemas multibiométricos a la calidad de

las señales. Dentro de este objetivo, se propone una arquitectura de sistema generaliz-

able a cualquier sistema biométrico que trabaje con diferentes fuentes de información

heterogéneas.

La Disertación. En primer lugar se introducen los sistemas biométricos y multi-

biométricos, la evaluación del rendimiento de sistemas biométricos, la motivación de la

Tesis, una expresión breve de la Tesis, la organización de la Disertación, y las contribu-

ciones de investigación relacionadas con la Tesis.

Después se hace un análisis extenso del estado del arte en calidad biométrica, abor-

dando los distintos factores que pueden afectar la calidad, cómo asegurar buena calidad

de señal, o cuales son los roles de la misma en un sistema biométrico.

La parte experimental de la Disertación comienza con el estudio de la calidad en

imágenes de firma. Se contribuye con una taxonomı́a de medidas de calidad existentes

y se lleva a cabo un estudio comparativo de un conjunto representativo de medidas de

calidad seleccionadas.

En el caso de verificación basada en firma, se proponen varias caracteŕısticas en-

focadas a medir la calidad y a predecir el comportamiento de los sistemas de re-
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conocimiento. En esta parte, se introduce un nuevo sistema de verificación basado

en caracteŕısticas del contorno de la firma.

Finalmente, se lleva a cabo un estudio de la adaptación de un sistema multi-

biométrico a la calidad de las señales biométricas. Se propone una arquitectura de

procesado condicional basado en calidad que es capaz de integrar señales biométricas

procedentes de diferentes fuentes. La calidad en este caso se utiliza para conmutar

entre diferentes etapas del sistema aśı como para no incluir en la combinación señales

que no cumplan con una mı́nima calidad.

La dependencia entre caṕıtulos se ilustra en la Figure 1.4. Nótese que los caṕıtulos

experimentales, que están sombreados en la Figure 1.4, contienen referencias a los

métodos utilizados de caṕıtulos anteriores. De esta manera, y asumiendo conocimientos

generales en sistemas biométricos (Jain et al., 2008) y fusión multimodal (Ross et al.,

2006) los caṕıtulos experimentales se pueden leer independientemente. También seŕıa

deseable el conocimiento de técnicas generales de reconocimiento de patrones (Duda

et al., 2004; Theodoridis and Koutroumbas, 2003) y de procesado de imagen (Gonzalez

and Woods, 2002).

Contribuciones de la Tesis. Las contribuciones de la Tesis se pueden clasificar como

sigue a continuación (nótese que algunas publicaciones se repiten en puntos diferentes

de la lista):

• Revisiones del estado del arte. Taxonomı́a de medidas de calidad de huella

(Alonso-Fernandez et al., 2007c, 2005b). Estado del arte en verificación de huella

(Alonso-Fernandez et al., 2008a).

• Métodos originales. Métodos para medida de calidad y predicción del rendimiento

con firmas off-line (Alonso-Fernandez et al., 2007a,b). Métodos para verificación

multimodal basada en calidad con diferentes fuentes de información (Alonso-

Fernandez et al., 2008b).

• Nuevos sistemas biométricos. Nuevo sistema de verificación de firma off-

line basado en caracteŕısticas del contorno de la firma (Gilperez et al., 2008),

desarrollado conjuntamente con Pecharroman-Balbas (2007).

• Nuevos estudios experimentales. Evaluación comparativa de medidas de cal-

idad de huella en función del sensor utilizado y del tipo de comparador (Alonso-

Fernandez et al., 2007c, 2008; Fierrez-Aguilar et al., 2005b). Estudio del im-

pacto de la legibilidad y del tipo de firma en sistemas de verificación de firma
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off-line (Alonso-Fernandez et al., 2007b). Estudio del rendimiento de sistemas

de verificación de firma off-line en función de nuevas medidas calidad propues-

tas (Alonso-Fernandez et al., 2007a). Estudio de la combinación de diferentes

caracteŕısticas del contorno de la firma para verificación (Gilperez et al., 2008).

Estudio de la adaptación de sistemas a la calidad de señales biométricas proce-

dentes de diferentes fuentes, incluyendo fusión y procesado adaptado a la calidad

(Alonso-Fernandez et al., 2008b).

• Nuevos datos biométricos. Una nueva base de datos biométricos ha sido

adquirida en el marco de trabajo de la Tesis incluyendo cara, voz, firma, huella,

mano e iris de más de 650 individuos (Alonso-Fernandez et al., 2008b). Dicha base

de datos es única en el sentido de que incluye tres nuevos escenarios simultáneos

(Internet, PC en entorno oficina, y dispositivos móviles en entornos exteriores).

Parte de esta base de datos se usa en los experimentos del Caṕıtulo 5.

Otras contribuciones relacionadas con la Tesis no incluidas en el presente volumen

incluyen:

• Revisiones del estado del arte. Estado del arte en firma manuscrita (Garcia-

Salicetti et al., 2008). Estado del arte en bases de datos y evaluaciones de firma

y huella (Alonso-Fernandez and Fierrez, 2008; Garcia-Salicetti et al., 2008). Re-

visión de aplicaciones biométricas (Alonso Fernandez et al., 2008).

• Nuevos sistemas biométricos. Sistema de reconocimiento de iris basado en carac-

teŕısticas de Gabor, desarrollado conjuntamente con Tome-Gonzalez (2008).

• Nuevas aplicaciones biométricas. Uso del reconocimiento de firma en dispositivos

portátiles tipo Table PC y PDA (Alonso-Fernandez et al., 2005a, 2006a; Martinez-

Diaz et al., 2007).

• Métodos originales. Esquema adaptativo de fusión multialgoritmo de huella

basado en calidad (Fronthaler et al., 2008). Mecanismo de normalización de

score dependiente de usuario en función de la calidad (Alonso-Fernandez et al.,

2006b).

• Nuevos datos biométricos. Una nueva base de datos de firma dinámica de 53

sujetos capturada con Tablet PC (?) (Alonso-Fernandez et al., 2005a). Una

nueva base de datos incluyendo voz, iris, cara, firma, huella, mano y tecleo de

400 sujetos en 4 sesiones capturada en el marco del proyecto nacional BiosecurID

(Galbally et al., 2007).

175



7. RESUMEN EXTENDIDO DE LA TESIS

• Nuevos estudios experimentales. Verificación multialgoritmo de huella y firma

(Alonso-Fernandez et al., 2008a, 2007d; Garcia-Salicetti et al., 2007, 2008). Es-

tudio de la capacidad discriminativa de medidas de calidad de huella (Alonso-

Fernandez et al., 2005b, 2007e, 2008). Estudio de ataques a sistemas de huella

(Galbally-Herrero et al., 2006; Martinez-Diaz et al., 2006) e iris (Ruiz-Albacete

et al., 2008). Estudio de interoperabilidad y fusión de sensores de huella y firma

(Alonso-Fernandez et al., 2005c, 2006c). Estudio del efecto de la calidad en

el rendimiento de los usuarios individuales en huella (Alonso-Fernandez et al.,

2006b).

• Nuevas aplicaciones biométricas. Uso de verificación de firma dinámica en Tablet

PC y PDA (Alonso-Fernandez et al., 2005a, 2006a; Martinez-Diaz et al., 2007).

7.2 Medidas de calidad en sistemas biométricos

Hasta fechas recientes, no hab́ıa consenso acerca de qué es calidad de una muestra

biométrica. A grandes rasgos, podemos decir que una muestra es de buena calidad

si es adecuada para el reconocimiento. Más formalmente (Benini and et al, 2006) se

han establecido tres puntos de vista diferentes, mostrados en la Figura 2.1: i) carácter,

referido a la calidad inherente al rasgo en términos de si es adecuado de por śı para

el reconocimiento (por ejemplo, un dedo quemado no lo seŕıa); ii) fidelidad, referido

al grado de similitud entre la muestra capturada y el rasgo original, atribuible a las

distintas fases de procesado del sistema; y iii) utilidad, referido al impacto de la muestra

en el rendimiento del sistema. El carácter de la fuente y la fidelity de la muestra

procesada contribuyen a la utilidad de dicha muestra. Generalmente se acepta que

la utilidad es la propiedad mas importante, a la que deben orientarse las medidas de

calidad , por tanto, una muestra a la que se la asigna una calidad alta necesariamente

debeŕıa conducir a una mejor identificación. No obstante, hay que considerar que no

todos los sistemas o algoritmos se comportan igual ni se ven afectados por los mismos

factores, de modo que una medida de calidad suele estar ligada a un algoritmo o a un

grupo de algoritmos particulares.

Existen múltiples factores que pueden afectar a la calidad, resumidos en la Figura 2.2.

Distinguimos entre cuatro tipos principales:

• Factores ligados únicamente al usuario, entre los cuales tenemos los anatómicos y

los de comportamiento (Tablas 2.2 y 2.3). Suelen ser los más dif́ıciles de controlar

y/o evitar (a veces incluso son inevitables).
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• Factores ligados a la interacción usuario-sensor, entre los cuales se distinguen los

de entorno y los de operación (Tablas 2.4 and 2.5). Son más fáciles de controlar

que los anteriores, aunque siguen implicando al usuario y por ello no siempre es

posible o recomendable. Podremos tener control sobre estos factores en tanto en

cuanto controlemos el entorno o la operación de captura del rasgo biométrico.

• Factores ligados al sensor utilizado en la captura.

• Factores ligados al sistema de procesado y reconocimiento.

El primer tipo de factores mencionado tiene impacto en lo que hemos llamado

carácter de una muestra biométrica, mientras que el resto afectan a la fidelidad.

Conocidos los factores que afectan a la calidad de señales biométricas, se definen una

serie de medidas que podemos aplicar para asegurar una buena calidad de las mismas

(las cuales se resumen en la Figura 2.3):

• Actuación en el punto de captura: supervisión, sensor adecuado, interacción ade-

cuada del usuario, entorno apropiado, mantenimiento del puesto de captura, etc.

• Actuación en el propio sistema de reconocimiento: incluir algoritmos de tratamiento

de calidad adecuados, incluir herramientas de monitorización de calidad, etc.

• Actuación mediante el propio algoritmo de medida de calidad: cálculo en tiempo

real, fiabilidad, posibilidad de recaptura de muestras, etc.

En todo el proceso de aseguramiento de calidad es muy importante la adhesión

a los estándares existentes, obteniendo aśı gran flexibilidad, modularidad y rápida

adaptación a cambios tecnológicos y nuevos avances.

Para la evaluación de medidas de calidad, se han propuesto recientemente difer-

entes mecanismos para medir la utilidad (Grother and Tabassi, 2007) y la fidelidad

(Youmaran and Adler, 2006) de las muestras. En esta Tesis, nos centraremos en la util-

idad. El primer mecanismo consiste en dividir las muestras en L niveles de acuerdo con

su calidad y calcular L curvas DET ordenadas. Otro mecanismo, el utilizado en esta

Tesis, consiste en pintar las llamadas curvas de error-vs-rechazo. Esta curva modela

el caso donde se rechazan las muestras de menor calidad con el objetivo de mejorar el

rendimiento. Un buen algoritmo de calidad debeŕıa mejorar su rendimiento a medida

que se rechazan las peores muestras.

Los roles de la calidad en sistemas biométricos son múltiples (Benini, 2007; Grother

and Tabassi, 2007; Ko and Krishnan, 2004), los cuales se detallan en la Figura 2.6:
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• Como mecanismo de recaptura hasta obtener una muestra que satisfaga una

mı́nima calidad.

• Como mecanismo de invocación de intervención humana, en caso de que no sea

posible obtener una muestra de un usuario con calidad suficiente.

• Para procesado, comparación de modelos y/o fusión de sistemas dependiente

de calidad, modificando adecuadamente las etapas del sistema en función de la

misma.

• Para actualización de las plantillas de registro de los usuarios con nuevas plantillas

de mejor calidad.

• Como herramienta de monitorización y estad́ıstica para detectar fuentes de datos

erróneos.

Por último, destacar los esfuerzos estandarizadores que se están llevando a cabo

recientemente para la incorporación de medidas de calidad a las estructuras de datos

biométricos existentes (Benini, 2007; Benini and et al, 2006).

7.3 Análisis de calidad en imágenes de huella

Este primer caṕıtulo experimental se basa en las publicaciones Alonso-Fernandez et al.

(2008a, 2007c, 2005b, 2008); Fierrez-Aguilar et al. (2005b).

El objetivo es comparar varias medidas de calidad representativas mediante el es-

tudio de su correlación y de su utilidad. Se evalúa su impacto en el rendimiento de los

dos algoritmos más utilizados en reconocimiento de huella: minucias y texturas.

Medidas de calidad en huella. La calidad en huella puede definirse como la clari-

dad de sus crestas y valles, aśı como la “extractabilidad” de las caracteŕısticas usadas

para el reconocimiento (Chen et al., 2005). En huellas de buena calidad, las crestas

y los valles fluyen de modo suave, siguiendo una dirección que localmente se puede

considerar constante (Hong et al., 1998).

Son múltiples los factores que espećıficamente contribuyen a degradar la calidad

de las huellas, dando lugar a múltiples perturbaciones (algunos ejemplos se muestran

el la Figura 3.14): bajo solapamiento entre distintas adquisiciones, rotación, desplaza-

miento, huella incompleta, baja definición, ruido de capturas previas, distorsión, etc.

Para detectar los distintos factores de baja calidad, los algoritmos existentes analizan
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las siguientes propiedades de las huellas: direccionalidad o “fuerza” de las crestas, con-

tinuidad de las mismas, claridad, integridad de las estructura cresta-valle, o rendimiento

estimado al usar dicha muestra. Para ello, se utilizan múltiples fuentes de información:

ángulo local a partir del campo de orientación, filtros de Gabor, intensidad de gris

de los ṕıxeles, espectro de potencia, o clasificadores. El análisis de calidad puede ser

local (dividiendo la imagen en bloques solapados o no), global (analizando la imagen

en conjunto), o a partir de clasificadores.

Sistemas y base de datos utilizada. En el estudio de este caṕıtulo se utiliza un

comparador de minucias desarrollado por en NIST americano (Watson et al., 2004),

de libre obtención, y un comparador basado en texturas desarrollado por el Grupo

de Reconocimiento Biométrico - ATVS (Fierrez-Aguilar et al., 2005b). La base de

datos utilizada es el corpus BioSec baseline (Fierrez et al., 2007), que incluye 19, 200

imagenes de huella de 200 individuos capturados en 2 sesiones y con 3 sensores de

diferente tecnoloǵıa, mostrados en la Figura 3.28: un sensor de tipo capacitivo, un

sensor de tipo térmico y un sensor de tipo óptico. Estas tres tecnoloǵıas de sensores

son las más utilizadas en la actualidad.

Resultados. Para los experimentos de este caṕıtulo, se ha seleccionado un grupo de

medidas de calidad representativo de las distintas fuentes de información mencionadas.

En concreto, se ha elegido una medida que hace uso de información de dirección, otra

de intensidad de gris, otra del espectro de potencia y otra basada en clasificadores.

Se ha observado que en general existe una correlación entre las medidas de calidad

estudiadas (ver Figura 3.31), aunque se observan algunas diferencias en función del

sensor, sugiriendo que su funcionamiento es diferente en cada uno de los mismos. En

cuanto a la utilidad de las medidas (ver Figuras 3.32- 3.35, se observa que para el

comparador basado en minucias, el mayor incremento en el rendimiento cuando se

rechazan muestras de baja calidad se obtiene para el Falso Rechazo (Figura 3.34).

Esto se debe a que se observa una clara correlación entre las medidas de similitud

de usuarios genuinos y su calidad (Figura 3.32), no siendo aśı para las medidas de

similitud de impostores. Por otro lado, para el comparador basado en texturas, la

mayor mejora se observa en la Falsa Aceptación (Figura 3.35), debido a que en este

caso la mayor correlación se observa entre las medidas de similitud de imposores y su

calidad (Figura 3.33).
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7.4 Análisis de calidad en imágenes de firma

Este segundo caṕıtulo experimental se basa en las publicaciones Alonso-Fernandez et al.

(2007a,b); Gilperez et al. (2008).

El objetivo es presentar nuevas medidas para la predicción del rendimiento de sis-

temas de verificación de firma off-line. La utilidad de las medidas propuestas se evalúa

en tres algoritmos de reconocimiento, uno de los cuales basado en caracteŕısticas locales

de contorno es una contribución en esta Tesis.

Medidas de calidad en firma. Si bien en imágenes de huella podemos definir de

modo objetivo la calidad a partir de la estructura de crestas, en rasgos de compor-

tamiento tales como la firma resulta más complicado. Algunos estudios proponen le

estabilidad o la complejidad como parámetros para medir la calidad (Allgrove and

Fairhurst, 2000; Brault and Plamondon, 1993; Muller and Henniger, 2007). No ob-

stante, estos son factores que dependen totalmente de cómo el usuario decide firmar,

por lo que si rechazamos una firma en función de ellos, es posible que la siguiente vuelva

a “sufrirlos”. En este caso la estrategia deberá ser, una vez extráıdos los parámetros

de calidad, adaptar el sistema acorde a ellos.

En este caṕıtulo se presentan varias medidas encaminadas a predecir el compor-

tamiento de un sistema de firma a partir de imágenes off-line:

• Dos medidas, legibilidad y tipo de firma, que se extraen de modo manual (ver

Figuras 4.7 y 4.8). El objetivo aqúı es valorar si el hecho de que las firmas posean

letras legibles, rúbricas sencillas o complejas, etc. puede afectar al rendimiento

del sistema. El hecho de asignar estas medidas de modo manual es factible en un

entorno de firma off-line, donde la captura se lleva a cabo con un escáner o una

cámara.

• Una medida que calcula automáticamente el área de la imagen donde hay varios

trazos cruzándose, y por tanto donde no existe una dirección o trazo predominante

para el análisis (ver Figura 4.9). Esta medida podŕıa considerarse como una

medida de complejidad.

• Una medida que calcula la variabilidad de un conjunto dado de firmas, con el

objetivo de medir su estabilidad.

• Tres medidas geométricas a partir de las cuales se calcula la varianza de la presión

ejercida con el lápiz al firmar, la duración de la firma, y su área.
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Sistemas y base de datos utilizada. En este caṕıtulo se utilizan tres sistemas

de verificación. El primero de ellos se basa en análisis global de la imagen y en un

clasificador de mı́nima distancia (Fierrez-Aguilar et al., 2004; Lee and Lizarraga, 1996).

El segundo, se basa en análisis local de la imagen y en un comparador basado en Modelos

Ocultos de Markov (Fierrez-Aguilar et al., 2004; Justino et al., 2001; Lee and Lizarraga,

1996). El tercero está basado en análisis local del contorno de la firma (Bulacu and

Schomaker, 2007), desarrollado en el marco de esta Tesis conjuntamente con Gilperez

et al. (2008).

La base de datos utilizada es un subcorpus de la base de datos bimodal MCYT

(Ortega-Garcia et al., 2003b), que incluye imágenes de huella dactilar y firma escrita

de 330 individuos. La información dinámica de las firmas escritas fue capturada con

una tableta digitalizadora Wacom Intuos A6 haciendo uso de un boĺıgrafo especial

con tinta sobre papel común. Este procedimiento permitió capturar por un lado la

información dinámica, en forma de trayectorias, presión y ángulos de inclinación del

boĺıgrafo respecto al tiempo (ver Figura 4.1); y por el otro lado la información estática

impresa en las hojas, que posteriormente fue digitalizada a 600 puntos por pulgada

para un conjunto total de 2250 firmas de 75 individuos. Cada firma fue escrita en

una rejilla de tamaño 3.75 cm × 1.75 cm (ancho × alto). En el conjunto de firmas

digitalizadas, cada usuario posee 15 firmas auténticas y 15 falsificaciones realizadas por

otros usuarios.

Resultados. De los resultados experimentales extraemos que con imitadores entrena-

dos, se obtiene mejor rendimiento usando firmas legibles, a pesar de que cabŕıa esperar

que este tipo de firmas son más fáciles de imitar. En cuanto a la legibilidad para el caso

de imitadores casuales, se obtiene un comportamiento diferente para cada comparador,

mostrando una fuente útil de complementariedad entre ellos que puede ser explotada.

Otro resultado destacable en este apartado concerniente a la medida de variabilidad

propuesta es que el rendimiento cae considerablemente con conjuntos de firmas muy

variables, especialmente si se usan pocas firmas de entrenamiento.

Finalmente, para las medidas geométrica propuestas, algunas conclusiones son que:

en general es mejor alta varianza en la presión ejercida con el lápiz al firmar, y que las

firmas de mayor duración son por lo general más resistentes a imitadores entrenados.
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7.5 Procesado y fusión multibiométrica dependiente de

calidad

Este último caṕıtulo experimental se basa en la publicación Alonso-Fernandez et al.

(2008b).

El objetivo es analizar el efecto de combinar señales procedentes de distintos sensores

biométricos para una misma modalidad. Se propone una arquitectura de procesado

condicional donde la calidad se utiliza para conmutar entre diferentes etapas del sistema,

aśı como para no incluir en la combinación señales que no cumplan con una mı́nima

calidad. El sistema aqúı descrito se utilizó para participar en la Evaluación Multimodal

BioSecure (BMEC, 2007; Poh and Bourlai, 2007), con muy buenos resultados (segunda

posición en términos de Tasa Media de Error Total entre trece participantes).

Calibración y fusión en sistemas biométricos. En el sistema propuesto, se hace

uso de fusión basada en regresión loǵıstica lineal (Brummer et al., 2007; Pigeon et al.,

2000), de manera que las medidas de similitud a la salida estén calibradas. Calibradas

quiere decir que han sido convertidas al logaritmo del cociente de verosimilitudes (LLR),

de tal modo que la medida representa un grado de apoyo con sentido probabiĺıstico a

las hipótesis de aceptación o rechazo del individuo. Aśı, se puede combinar de modo

fácil y eficiente las medidas de similitud proporcionadas por diferentes fuentes.

Sistemas y base de datos utilizada. Como base de datos en este caṕıtulo, se usa

el conjunto de medidas de similitud empleado en la Evaluación Multimodal BioSecure,

llevada a cabo en 2007 (BMEC, 2007; Poh and Bourlai, 2007). Las medidas de simili-

tud que incluye proceden de comparaciones con imágenes de cara y de huella extráıdas

de la base de datos BioSecure, capturada en el marco de esta Tesis (Alonso-Fernandez

et al., 2008b). Las imágenes de cara se capturaron con dos cámaras de diferente res-

olución, y las de huella con un sensor óptico y uno térmico (los sensores junto con

ejemplos de muestras capturadas se muestran en la Figura 5.1). Se considera también

el caso de comparar imágenes de un sensor con imágenes capturadas con el otro. Junto

con las medidas de similitud, se proporcionan una serie de medidas de calidad de las

imágenes. Para las comparaciones, se utilizaron sistemas estándar de reconocimiento

(Martinez and Kak, 2001; Watson et al., 2004). Se consideran dos conjuntos de medidas

de similitud diferentes, uno de desarrollo (proporcionado a los participantes antes de

la evaluación) y uno de prueba (utilizado para la evaluación y hecho público tras la

misma).
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Estimación del sensor usando medidas de calidad. De acuerdo con el protocolo

de la Evaluación Multimodal BioSecure, no se proporciona información referente al

sensor utilizado en las capturas, por lo que es necesario estimarlo. Para ello, en el

sistema propuesto, se hace uso de una función discriminante cuadrática con densidades

normales multivariable (Duda et al., 2004). Los parámetros que modelan las densidades

son las medidas de calidad proporcionadas, o parámetros derivados directamente de

ellas.

Se observa en los resultados la estimación del sensor de cara funciona correctamente

en el conjunto de desarrollo, no confirmado en el conjunto de prueba, lo cual podŕıa

deberse al tamaño pequeño del conjunto de desarrollo proporcionado. Por otro lado, el

sensor de huella no es posible estimarlo de modo fiable con este mecanismo en ninguno

de los conjuntos de datos.

Interoperabilidad de sensores. Se estudia en este apartado la capacidad del sis-

tema propuesto para combinar señales de diferentes fuentes biométricas. Para ello, se

analizan las diferentes combinaciones disponibles del uso de sensores en cada modalidad

(4 en total). Se compara asimismo con un conjunto de reglas sencillas de fusión. Los

resultados de este estudio se muestran en la Tabla 5.6 y en la Figura 5.6. Se observa

que cuando se comparan imágenes de un sensor con imágenes capturadas con el otro, el

sistema propuesto funciona considerablemente mejor que las reglas sencillas de fusión.

Asimismo, el rendimiento global del sistema también es sustancialmente mejor.

Fusión dependiente de calidad. Por último, en este apartado, se analiza el caso de

rechazar muestras de baja calidad, de manera que en la fusión se consideren solamente

las de buena calidad disponibles. Los resultados de este estudio se muestran en la

Tabla 5.8 y en las Figuras 5.10 y 5.11.

Se observa que el rendimiento del sistema mejora considerablemente al incorporar

esta poĺıtica de rechazo (hasta un 24%). Una ventaja añadida muy importante es que

en un número considerable de accesos donde uno de los rasgos (huella o cara) es de

baja calidad, aún es posible utilizar el otro.

7.6 Ĺıneas de Trabajo Futuro

Se proponen las siguientes ĺıneas de trabajo futuro relacionadas con el trabajo desar-

rollado en esta Tesis:

• Aplicación del estudio realizado a otros rasgos biométricos. Se han

183



7. RESUMEN EXTENDIDO DE LA TESIS

propuesto en la literatura medidas de calidad para otros rasgos aparte de los

considerados en esta Tesis: iris (Chen et al., 2006a; Kalka et al., 2005), voz

(Garcia-Romero et al., 2006) y cara (Kryszczuk and Drygajlo, 2007). Una vez

obtenido un consenso acerca de qué es la calidad y cómo evaluarla (Benini and

et al, 2006; BQW, 2007; Youmaran and Adler, 2006), un trabajo futuro es llevarlo

a cabo para todos estos rasgos.

• Combinación de varias medidas de calidad, una vez que se ha observado

que algunas se comportan de manera diferente en función de varios factores,

explotando dichas diferencias, e.g. Fierrez-Aguilar et al. (2006); Fronthaler et al.

(2008).

• Propuesta de nuevas medidas de calidad que complementen a las existentes

o en rasgos donde apenas se ha trabajado este tema.

• Incorporación de medidas de calidad en sistemas biométricos. Análisis

del ajuste de etapas del sistema (Chen et al., 2005; Hong et al., 1998; Shi et al.,

2004) o de mecanismos de fusión como el propuesto aqúı (Baker and Maurer,

2005; Chan et al., 2006; Fierrez-Aguilar et al., 2006; Nandakumar et al., 2006).

• Efecto de la calidad en nuevos escenarios, como resultado de nuevas necesi-

dades que se van planteando con el desarrollo de la biometŕıa: sustitución de sen-

sores, comparación de muestras procedentes de distintas fuentes, reconocimiento

con sensores móviles personales, etc.

• Análisis de calidad desde el punto de vista de teoŕıa de la información.

Existen algunos esfuerzos encaminados a relacionar la calidad de muestras biométricas

con la cantidad de información discriminativa contenida en la misma (Daugman,

2003; Kholmatov and Yanikoglu, 2008; Youmaran and Adler, 2006), la cual con-

stituye un área interesante de trabajo futuro.

• Efecto del paso del tiempo en la calidad de las señales capturadas aśı como

desarrollar mecanismos de selección y actualización de plantillas siguiendo

criterios de calidad. Algunos trabajos iniciales son Ko and Krishnan (2004);

Uludag et al. (2004).
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