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Abstract—Signal-quality awareness has been found to increase recog-
nition rates and to support decisions in multisensor environments
significantly. Nevertheless, automatic quality assessment is still an open
issue. Here, we study the orientation tensor of fingerprint images to
quantify signal impairments, such as noise, lack of structure, blur, with the
help of symmetry descriptors. A strongly reduced reference is especially
favorable in biometrics, but less information is not sufficient for the
approach. This is also supported by numerous experiments involving a
simpler quality estimator, a trained method (NFIQ), as well as the human
perception of fingerprint quality on several public databases. Furthermore,
quality measurements are extensively reused to adapt fusion parameters
in a monomodal multialgorithm fingerprint recognition environment.
In this study, several trained and nontrained score-level fusion schemes
are investigated. A Bayes-based strategy for incorporating experts’ past
performances and current quality conditions, a novel cascaded scheme
for computational efficiency, besides simple fusion rules, is presented. The
quantitative results favor quality awareness under all aspects, boosting
recognition rates and fusing differently skilled experts efficiently as well as
effectively (by training).

Index Terms—Adaptive fusion, Bayesian statistics, cascaded fusion,
fingerprint, monomodal fusion, quality assessment, structure tensor,
symmetry features, training.

I. INTRODUCTION

UTOMATIC assessment of image quality by a machine expert
Ais challenging, but useful for a number of tasks: monitoring and
adjusting image quality, optimizing algorithms and parameter set-
tings, or benchmarking image-processing systems [1]. Image-quality
assessment methods can be divided into full/reduced/no-reference
approaches, depending on how much prior information is available on
how a perfect candidate image should look like. Here, we study quality
assessment of the second kind, where images come from a specific
application. General quality metrics originally suggested in image
compression studies exist [2] (e.g., mean square error (MSE) or peak
signal-to-noise ratio (PSNR)). These earlier approaches are excluded
here because of their notorious poor performance in recognition
applications, which do not have the same objectives as compression
applications.
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In this study, symmetry features [3] are exploited in a local model
for generic image quality, applied to fingerprints. We are forced to use
models when trying to estimate the quality of biometric images, since
a high-quality reference image of the same individual is usually not
available (i.e., the link to the individual is not established in advance,
for example, by identification). Once available, the benefits of having
an automatic image-quality estimate include the following: 1) Assuring
quality for all acquired samples and stored templates [4]; 2) adjusting
multimodal fusion schemes depending on the quality of the presented
samples (e.g., face and fingerprint) [5], [6]; and 3) taking into account
the local quality when matching samples [7], [8]. As a result of recent
fingerprint verification competitions involving particularly low-quality
impressions, even state-of-the-art systems’ performance decreases re-
markably [9]. Recent advances in fingerprint-quality assessment in-
clude [8], [4], [10], and [11]. A taxonomy of fingerprint-quality assess-
ment methods is given in [12]. The novelties of the presented approach
will be listed further below.

We are combining fingerprint recognition systems at score level, and
refer to it as multialgorithm fusion (in contrast to multimodal fusion).
To avoid confusion, we will use “system” or “expert” to address a fin-
gerprint matcher, whereas we refer to a quality assessment method as
“method” or “approach.” Considering fusion within a modality, in par-
ticular, fingerprint recognition [13], [14] showed that combining sys-
tems with heterogeneous matching strategies is most desirable, leading
to recognition rates that are even higher than when combining the best
systems relying on common features. When trying to fuse several ex-
perts with unknown skills and matching strategies, some sort of training
is advisable to improve the combined performance [15], [16]. The ac-
curacy can be increased even more, if the trained fusion scheme is adap-
tive as well, meaning that it takes into account current signal conditions
trial by trial. This was also confirmed in [5], although unlike here, for a
multimodal configuration and employing quality estimates by humans.
In [17], the additional information through automatic quality labels was
exploited to weight experts, because their individual weaknesses were
known a priori. Recent studies of fixed and trained fusion strategies
include [18] and [19].

This paper improves the state of the art as follows.

* The proposed quality estimation method achieves a continuous
modeling of the reference structure. Applied to fingerprints, the
benefit is that no misinterpretation of singularities occurs.

* The proposed cascaded fusion scheme is original and saves com-
putation time.

* A trained Bayesian scheme is proven to systematically increase
recognition rates of differently skilled experts in quality-adaptive
monomodal fusion.

We report quantitative and comparative experimental results of our
quality assessment with respect to two existing automatic fingerprint-
quality estimation methods [4], [11], and a set of manually assigned
quality labels [20], [21]. The QMCYT database and two databases of
the FVC2004 [9] were employed in this evaluation. Additionally, three
fingerprint recognition systems [4], [7], [20] are used to 1) benchmark
the quality labels and 2) carry out the quality-adaptive multialgorithm
fusion.

II. QUALITY ESTIMATION

In the first part of this section, a more general description of the
suggested automatic quality assessment method is given. The ideas are

1556-6013/$25.00 © 2008 IEEE
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Fig. 1. Patterns with orientation description z = exp(in¢): Straight lines for n = 0 (linear symmetry); parabolic curves and line endings for n = %1 (parabolic

symmetry); stars, circles, and spirals for n = 2 (circular symmetry).

then adapted to fingerprint-quality estimation. Its applicability to other
biometric modalities was indicated by means of face images in [22].

A. Quality Assessment Features

The orientation tensor holds edge and texture information, which is
exploited in this study to assess the quality of an image. We wish to
determine whether this information is structured and generic in some
sense [i.e., to distinguish noisy content from relevant nontrivial struc-
tures) (Fig. 1)]. The latter are among others essential for many recog-
nition algorithms, representing the individuality of a biometric signal,
but also have significance in low-level human vision models enabling
object recognition and tracking [23]. Our method decomposes the ori-
entation tensor of an image into symmetry representations, where the
included symmetries are related to the particular definition of quality
and encode the a priori content knowledge about the application (e.g.,
fingerprints and face images). The resulting quality metric mirrors how
well a test image comprises the expected symmetries.

The orientation tensor is given by the equation

2= (D.f+iDyf)* (1

where D f and D, f denote the partial derivatives of the image with
respect to the = and y axes. The squared complex notation directly en-
codes the double angle representation [3]. For the computation of the
derivatives, separable Gaussians with a small standard deviation o are
used. Next, the orientation tensor is decomposed into symmetry fea-
tures of order n, where the nth symmetry is given by exp (in¢ + «)
[3], [23]-[25] representing the argument of (1). The corresponding pat-
terns are shown in Fig. 1 (e.g., straight lines for n = 0, parabolic
curves, and line endings for n = =£1). Higher orders include circular,
spiral, and star patterns. In Fig. 1, the so-called class member «, which
represents the global orientation of the pattern, is zero. Filters modeling
these symmetry descriptions can be obtained by

ho = (z+iy)" - g, for
ho = (& — i)™ g, for

n>0
n <0

(2a)
(2b)

where g denotes a 2-D Gaussian with standard deviation o= in the x
and y direction. These features are algebraic invariants of physical op-
erations [e.g., translation, rotation, and zooming (locally)]. For a more
detailed review of symmetry filters and the symmetry derivatives of
Gaussians, we refer to [3]. Decomposing an image into certain sym-
metries involves calculating (z, &, ), where (-, -} denotes the 2-D scalar
product, yielding complex responses s, = ¢ - exp (¢«), with ¢ repre-
senting the certainty of occurrence and « (class member) encodes the
direction of symmetry n (for n # 2). Normalized filter responses are
obtained by calculating

b = A Tn) 3

(Iz], ho)

where the nominator is the total energy of the symmetry (all possible
orders) [3]. In this way, { s }nen describe the symmetry properties of
an image in terms of |V | orders. The definition of quality for a specific
application determines the expected orders (V) and scales (¢ ) used for
the reference model. Furthermore, we demand {s,, } to be well sepa-
rated over the image plane, in which we look for a high and dominant
symmetry at each point. Equation (4) denotes an inhibition scheme [23]

sn=sa- [[ (1=IstD) )

k EN\n

where £ refers to the remaining applied orders, to sharpen the spatial
extension of filter responses, and I is a label that stands for inhibition.
Consequently, a high certainty of one symmetry type requires a reduc-
tion of the other types. We calculate the covariance among {|s!|} in
blocks of size bx b in order to test whether the filter responses have been
mutually exclusive. A large negative covariance supports that this is the
case, and the neighborhood behaves as a high-quality local image. On
the other hand, positive covariance implies the co-occurrence of mutu-
ally exclusive symmetry types in the vicinity of a point, which is an in-
dication of noise or blur. We incorporate this information by weighting
the symmetry certainty. We sum {|s%,|} over n at each pixel, resulting
in a total symmetry image

s = Z |,s£,| 5)

neN

Image s is further averaged within blocks (tiles) of size b x b, yielding
5 (we use - to denote block-wise operating variables). The quality mea-
sure g for each block is then computed as follows:

g=m(7)-3 6)

where 7 denotes the block-wise correlation coefficient, and m is a
monotonically decreasing function, so that m : [—1, 1] — [0, 1]. The
quantity 7 is calculated as an average of the correlation coefficients
among {|s5|}.en, that is, between any two involved orders 7% ;, as
defined by

Cov (|sk], |s}
Frg = OV (|5I.|/|5l|) . %)

Var(|s}|) Var(si])

Note that 7 ; = 7, and that in case of employing only two or-
ders for the decomposition (e.g., N = {0,1}, 7 is equal to 7o1).
An overall quality metric is established by averaging ¢ over the “in-
teresting” blocks 7, which are represented by blocks where 5 > 7,
thus having a minimum total symmetry response. The proposed tech-
nique is implemented and tested by means of automatic fingerprint
image-quality estimation.
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B. Fingerprint-Quality Estimation

By human opinion, the quality of a fingerprint image is usually ex-
pressed in terms of the clarity of ridge and valley structures, as well as
the extractability of certain points (minutiae, singular points) [8]. In our
approach, we concentrate on medium-to-global-scale features of a fin-
gerprint, represented by the orientation, singular points, scratches, and
low-contrast areas. The purpose is to identify and grade “bad” blocks,
so that any subsequent analysis of the fingerprint is alleviated. It is, for
example, a main problem for minutiae detection methods to distinguish
genuine minutia points from similar patterns stemming from scratches.
However, in our approach, these neighborhoods will already be marked
because we act on a higher level and shall detect only the scratches.
Another important point is to include both highly and lowly curved
structures in the quality definition, because otherwise it cannot model
the global ridge-valley flow. We employ large filters for two symmetry
types n = 0 and n = 1. The former is known to model the typical
ridge-valley flow well, whereas the latter has been shown to model the
flow about the singular regions of a fingerprint (compare Fig. 1) [7],
[26]. Intuitively, features of order |n| > 1 are not considered mean-
ingful here. Now, in noisy, low-contrast regions both symmetries are
present which contradicts our quality definition (positive correlation).
Likewise, both symmetries are low along a scratch. In singular regions,
parabolic symmetry (n = 1) dominates clearly while linear symmetry
(n = 0) does so in the remaining area. Given a reasonably good quality
fingerprint, this yields alternating, very high and low symmetries, and
a negative correlation, fitting our quality definition. Only three scalar
products are needed with the orientation tensor {z, ko), {|z|, ho), and
(2, h1). Implemented by means of 1-D convolutions with Gaussian
(derivative) filters on initially downsized images, the approach is also
fast. More precisely, the space and time complexity is O(w?-n), where
w and n are the largest image dimension and the length of the 1-D filter,
respectively. The linear function 3 (1 — 7) is employed for m in (6).
The used value for block size b is eight pixels, the symmetry features
use a o2 of 3. For the construction of the orientation tensor, a o1 of 0.6
is employed. These values were chosen in an optimization search, and
small variations will not affect the functionality of the method.

Fig. 2 depicts decompositions of two example fingerprints of the
QMCYT database into s}, (linear symmetry) and s} (parabolic sym-
metry). The final column shows the combined symmetry s, in which
bright areas indicate well-defined ridge-valley structure in both low
and high curvature regions. The quality of the first fingerprint is rather
high, apart from some scars. The latter can be traced through the de-
composition. In the second row in Fig. 2, we show an impression that
suggests dry skin conditions, which affect the quality. Also in this case,
clear fingerprint structure results in bright areas in the respective sym-
metry and in s, whereas structural absence is reflected by the darker
regions. The tiled images representing the block-wise variables for the
example fingerprints are displayed in Fig. 3. The block-wise average
of s is represented by 5 in the first column. Fingerprint segmentation
is done implicitly via 7, as shown in the second pair of images. In the
third column, we observe that the covariance is negative in reasonably
good-quality regions, whereas it is positive in noisy and low-contrast
regions (i.e., it detects scratches and imperfections). This separation is
not so apparent when considering 5 only. The final block-wise quality
g is depicted by the last pair of images.

Previous methods for (local) fingerprint-quality assessment have
been exploiting the spatial coherence of the ridge flow only, by essen-
tially determining or approximating so [12]. Additionally, the latter
has commonly been partitioned into blocks so. Inspecting Fig. 4 re-
veals that this strategy may not be enough, because important regions,
such as singular points (e.g., core, delta) are per definition incoherent
to the ridge flow, and their strong presence therefore automatically
impairs the estimated quality. Focusing on the second row, we see how

. u
Fig. 2. Decomposition of sample fingerprints. C1: Original fingerprint. C2:

linear symmetry magnitude |s}|. C3: parabolic symmetry magnitude |s}|. C4:
“total symmetry” (summed magnitudes) contains relevant portions |s|.

Fig. 3. Fingerprint-quality estimation. C1: Block-wise averaged total sym-
metry 5. C2: Thresholded total symmetry ¢. C3: Correlation coefficient between
the parabolic and linear symmetry 7. C4: Tiled quality measure ().

Fig. 4. Tllustrating the difference 5, (b) and 7 (c): Here we can see that the
singular points are misinterpreted in terms of quality when just averaging .

severely the single core and two delta points distort the quality map
$0. Note the different shape of the singular point regions not leading
to different results for ¢, though. This is due to the & -filter’s response
to both prominent singular point types “core” (n = 1) and “delta”
(n = —1), because the former is implicitly contained in subpatterns
of the latter. Therefore, when estimating an overall quality metric by
averaging the quality map, ¢ is expected to be more suitable than ;.
Quantitative results with comparisons will be presented further. To
our best knowledge, there is no other reported method that measures
the quality of a typical and high curvature ridge-valley structure.

III. FUSION

In this section, we will derive different multialgorithm fusion
schemes. The quality-adaptive strategies weight several recognition
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Fig. 5. Multialgorithm system model: Schematics including all components of the proposed Bayesian supervisor. All experts deliver a certainty in addition to

their score, which is estimated as the image quality here.

experts according to their confidence measures. This is done in a con-
tinuous way in a Bayes-based training fusion (Section III-A), and in a
more aggressive fashion in a cascaded type of fusion (Section III-B).
Confidence measures are modeled by the fingerprints’ overall quality
in both cases. A listing of simple (nonadaptive) fusion schemes closes
the section.

A. Bayesian Supervisor

This section is devoted to an adaptive fusion scheme using Bayes
theory [27]. For a more profound description of the employed model,
we refer to [15]. Its probabilistic background is further detailed in [28]
and [29]. As indicated in Fig. 5, we combine independent fingerprint
recognition systems yielding a monomodal multialgorithm environ-
ment. An input fingerprint is referred to as a shot. For every shot, we
have several different experts’ opinions delivered to the Bayesian su-
pervisor. The following notation is used when describing the statistical
model and the supervisor within this paper:

i index of the experts¢ € 1...m;

J index of shots j € 1...n,n + 1;

Tij authenticity score computed by expert ¢ based on shot j;
Sij variance of ;; (estimated by expert 7);

Yy true authenticity score of shot j;

Zij error (misidentification) score of an expert z;; = y; — x;;.

The true authenticity score y; can only take two numerical values,
namely “True” or “False.” So if the values of x;; are between 0 and
1, the values of y; are chosen to be 0 and 1, respectively. The training
of the supervisor is performed on the shots j € 1...n, where x;; and
y; are known. When the supervisor is operational, we consider the shot
j = n+ 1 asatest shot. In this case only, x; »+1 is known and the task
of the supervisor is to estimate y; 4. It is assumed that the single
experts and the supervisor are trained on different sets. Note that the
experts provide a quality estimate in addition to each score which is
modeled to be inversely proportional to s;;. This variance is then used
by the supervisor for evaluation.

1) Statistical Model: The employed adaptive fusion strategy uses
Bayesian statistics and assumes the errors of the single experts to
be normally distributed (i.e., z;; is considered to be a sample of the
random variable Z;; ~ N (b;, (T;'“)]')). This does not strictly hold for
common audio- and video-based biometric machine experts [15].
Nevertheless, it was shown that this problem can be addressed by
considering client and impostor distributions separately. Thus, the

following two supervisors representing the expert opinions y; = 1
and y; = 0 are constructed:

C={wij,sijlyy=1land1 < j < n} (8)
7= {:J;,-j,si]-|yj =0and1 §J § 'IL}. (9)

The two supervisors will be referred to as client supervisor and im-
postor supervisor, respectively.

The task of the client supervisor is to estimate the expected true
authenticity score y; based on its knowledge of client data (i.e.,
computing M = FE[Y,41|C, i nt1]). The prime notation is used
to distinguish the three different supervisor states. No prime means
training, one denotes calibration, and two indicate the authentication
(operational) phase. The impostor supervisor estimates y; by com-
puting J[i" = E[}fn+1 |I, »ri,n+l]-

The supervisor, which comes closer to the ideal case (1 for the client
supervisor, O for the impostor supervisor), is considered as the final
conciliated overall score M"

' {Mg, if |1 — MY —0— MY <0

10
MY, otherwise. o)

2) Supervisor: Having the experts scores and the quality estimates,
the Bayesian supervisor can be summarized as follows.
1) Training phase: In case of the client supervisor, the bias parame-
ters for all experts are estimated as follows:

X

S

q
¥
—_

Me;, = 9 and Vo, = —=———— (11)
Z.i a%j Z] o-TQj

here, j is the index of the training set C. The variances o; are
calculated by &fj = s;; - aeq, Where

(CE-E2)E))

ne — 3

aci = (12)
where n¢ denotes the number of shots in C. If one or more ex-
perts do not provide any quality estimates, s;; is set to 1. The bias
parameters M7; and Vz; for the impostor supervisor can be esti-
mated similarly.

2) Operational phase: At this stage, authentication on “live” data is
performed (i.e., the time instant is n+1 and the trained supervisors
can access the expert opinions ;, ,+1 but not the true authenticity
score ¥n+1). In a first step, the client and impostor supervisors
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have to be calibrated regarding to their past performance. In case
of the client supervisor, this calibration is denoted by

[\féi =Tint1 + Me; and V'éi = Sin+1-Qci+ Vei. (13)

Having the calibrated experts, they are combined as follows:
$m M,
=1 Véi

1"
J’VIC = <n 1 -
§ Np— 7

=1 Ve,

(14)

The computations for the impostor case (M, V, and M) follow
the same pattern. The final supervisor decision is made according
to (10).

3) Quality Adaptive Strategy: As indicated in Fig. 5, each expert
provides a score x;; and a quality estimate ¢;; for every single authen-
tication assessment. The quality measure is not an estimation of the
general reliability of the expert itself. It is considered to be a certainty
measure for the current score based on the quality of the input shot.
So we propose to calculate s;; using the qualitative knowledge of the
experts on the input biometric data they assess. Section II details our
approach to extract such a quality estimate from a shot. In the second
part of (13), the trained supervisor adapts the weights of the experts
employing the input signal quality. We define quality index ¢;; of the
score x;; as follows:

¢ij = min(Qij, Qi claim) (15)
where (Q;; is the quality estimate produced by expert ¢ in shot j and
(i c1aim is the average quality of the biometric samples used by expert
i for modeling the claimed identity. All quality values are in the range
[0, ¢max] Where gmax > 1. In this scale, O is the poorest quality, 1
is considered as normal quality, and ¢max corresponds to the highest
quality. The final variance parameter s,; of the score x;; is obtained
by

1

- (16)
]

Sij =

=

Training is the key point of the Bayes-based fusion approach. The bi-
ases Mc; /Mz; and Ve, /Vz; of expert i evaluated during training are
used to weight the experts’ scores in the joint accept/reject decision.
This is done in nonadaptive fusion without considering any experts’
confidences into their scores. In adaptive fusion, these confidences are
included with s;; # 1 to the effect that low confidence in its score for
the current claim decreases the expert’s say in the joint decision. Since
the confidences are modeled by signal qualities, a dependency between
quality and the expert’s recognition performance has been estimated
during training. This is exploited in the operational phase to continu-
ously shift decision power among experts. The usage of the procedure
described before in multialgorithm fusion as well as with automatically
derived quality signals is novel.

B. Cascaded Fusion

One can argue that the computation time is problematic if several
systems have to be executed for every single match (i.e., for identifi-
cation within a large database, for example, US-Visit). A reasonable
way to address this issue is to dynamically include further experts if
a single one cannot come up with a clear decision. In such a configu-
ration, a minimal number of experts is active most of the time, while
still getting the benefits of fusion (improved recognition rates). This is
also visualized in Fig. 6, where we see a series of systems—primary,
secondary, etc. systems in the following—triggered by certainty thresh-
olds, meaning that system ¢ is utilized if and only if ¢;—; is below a cer-

Recognition | X1
System 1

Identity Claim

Recognition X2
System 2

= [
e

Recognition Xm
System m

Fig. 6. Cascaded fusion: Experts are triggered on demand and combined only
under uncertainty (here: bad quality).

tain threshold. Afterwards, all available scores x; are fused according
to a fusion rule f, which can be chosen simple. This configuration is in-
spired by cascaded classifiers [30] (i.e., degenerate decision trees [31]).
Using scores themselves as certainty thresholds is not recommendable
since they are naturally low in most of the cases for identification, and
they might be wrong as well. In contrast, image quality is practicable,
since the probability of a false acceptance or rejection is higher if the
quality of the involved impressions is lower, while fusion should essen-
tially oppose this fact. The image quality used as certainty threshold is
relatively independent of the single experts, such that ¢; can be short-
ened to ¢ (compare Fig. 6). So the number of experts included into the
current decision is determined by a single certainty. A trickier question
is how to decide on the “trigger” thresholds 7y, ..., T, —1. Intuitively,
one chooses 71 > T; > T,—1, since more experts shall be utilized
with decreasing signal quality. We suggest setting 7; to half the ex-
pected best fingerprint quality, 7 to half of the remaining quality in-
terval, etc., such that 7; = 0.5 - 7;,_. Assuming a uniform distribution
of the fingerprints’ quality, the number of expert executions for m cas-
caded systems is expected tobe Y .~ ! é\—z ,where NV is the total number
of trials (the primary system has to be executed NV times). This yields
# - 100 percent expert executions. As to the expected error rate,
we cannot easily derive a similar prediction, because it depends on the
employed fusion rule as well as on the ordering of systems. Being an
initial study of the novel fusion scheme, we do not formalize this here.
However, no loss of recognition accuracy should be possible for certain
thresholds, and reasonable loss is expected for the ones already sug-
gested. While this is a guideline, we will reflect its applicability when
we find optimal thresholds by a systematic search in the next section.
It would be further desirable if the quality assessment method and the
primary system shared computational steps to save resources.

C. Simple Schemes

Past experiments indicated that combining systems in simple ways
could already lead to relatively good results. Such fusion schemes in-
clude, for example, SUM and MAX rules, meaning that the average,
respectively, of the maximum of all experts’ scores is taken as the final
score. Since they are nonadaptive, we also refer to them as global MAX,
global SUM, etc. It has been claimed in several studies that simple
schemes are not clearly outperformed by trained (nonadaptive) strate-
gies, for example, support vector machines, in neither monomodal fu-
sion [14] nor multimodal fusion [18]. Simple, yet adaptive schemes
have been successfully applied in quality-based multialgorithm fusion
[17]. In our study, only nonadaptive simple schemes are used to facil-
itate comparison.

IV. EXPERIMENTS

An approach to measure the impact of signal quality on the recogni-
tion performance is to divide the database into several quality groups
and to run recognition tests within them. Inversely, given a correct
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Fig. 7. EER for systems A, B, and C (from left to right) within quality groups I-V from the QMCYT database. The partitions are established by means of different

quality assessment methods (see legend).

quality division, one expects monotonously decreasing error rates for
groups of increasing quality. To benchmark the proposed quality as-
sessment method, we compare it to 1) human grading; 2) National In-
stitute of Standards and Technology Fingerprint Image Quality (NFIQ)
[4]; and 3) the local orientation quality score (LOQ) [11]. The latter
analyses a fingerprint’s quality in blocks by computing the average ab-
solute difference in orientation angle between the surrounding blocks.
A smooth change in orientation is interpreted as high quality. It is there-
fore clear that singular points, where the orientation changes per defi-
nition abruptly, are downgraded, which is unfavorable as elaborated in
Section II-B. NFIQ is an intensely trained quality assessment method,
which is part of NIST FIS2! [32]. The NFIQ implementation is based
on 5244 impressions for training.

In this study, all experiments are conducted on the QMCYT finger-
print database [21], and some on two databases employed in FVC2004
[9]. The former defines 75 x 10 fingerprints X 12 impressions, whereas
the latter contain 100 fingerprints X 8 impressions per database. For
each impression in the QMCYT database, a manually annotated quality
label is available [21]. We employ a recently developed fingerprint
recognition system [7], called system A in the following to validate
the quality estimates. To investigate feature independency, we also em-
ploy the NIST FIS2—referred to as system B—in a similar test. Note
that system B is entirely minutiae based whereas system A exploits both
minutia and texture features for fingerprint alignment and matching, re-
spectively. As a third expert, system C represents a nonminutia-based
recognition system utilizing Gabor features, as described in [20]. The
750 fingerprints of the QMCYT database are split into five equally
sized partitions of increasing quality. The criterion for a fingerprint to
be part of a certain group I-V is the average quality index for its gen-
uine trials (impressions). The latter are chosen to be 150 X 9 per group,
while 150 x 74 impostor trials are performed, considering fingers of
the same type only as impostors (one impression). We show the EER of
system A, B, and C for all quality groups, which have been established
according to the different quality assessment methods (see Fig. 7). Ac-
cording to the EER curves, we can observe that the proposed method
shows most similar behavior to the manual estimates (human opinion).
It is worth mentioning that the grading by the proposed method and
LOQ is continuous in [0. . .1], whereas it is discrete for NFIQ and the
human opinion being in [1...5] and [0. . .9], respectively. The latter
two output ranges are normalized into [0. . .1]. The same experiment is
repeated for databases DB2 and DB3 employed in FVC2004. The 100
fingerprints of each database are split into partitions following the rules
from before. For each database and per quality group, 20 x 28 genuine
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Fig. 8. EER for systems A and B (from left to right) within quality groups I-V
from DB2 (top row) and DB3 (bottom row) of FVC2004. Two automatic quality
assessment methods are used to establish the partitions (see legend).

trials and 20 X 99 impostor trials are performed. We show the EER of
systems A and B for all quality groups in the top row (DB2) and bottom
row (DB3) in Fig. 8. System C and LOQ are left out due to the unde-
sirable findings in the previous experiment. When looking at Fig. 8,
we can observe a generally higher EER level and variance. The correct
estimation of the different quality categories has more of an impact
on recognition rates (compare Fig. 7) due to the increased difficulty of
the FVC2004 databases. The severe image-quality impairments were
obviously detected well by both quality estimators. In particular, the
proposed method leads to monotonically decreasing EER curves for
all involved recognition systems and databases. This strengthens our
claim that including all fingerprint regions in the assessment yields the
most reliable quality labels. Furthermore, the results confirm the use-
fulness of the employed symmetry features and their energy-indepen-
dent usage in our algorithm (using normalized filter answers), without
especially adapting it to the different databases. In Table I, we state the
EER for each recognition system (A, B, and C) over the whole QMCYT
database (i.e., when the quality division is dissolved again).

In the remaining parts of this section, the three systems A-C are com-
bined (at least two experts at a time) using the fusion schemes explained
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TABLE I

EER OF SINGLE EXPERTS AND SIMPLE FUSION SCHEMES (MAX/SUM)

A B C AB AC B,(C, ABC
EER % 122 19 637 SUM | 1.06 122 136 1.56
MAX | 0.75 084 1.16 1.16

Simple schemes vs. cascaded fusion
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in Section III. A jackknife (leave-one-out) strategy is employed when-
ever training is involved, meaning that the training set consists of all
users but one (who, together with the impostors, forms the test set),
and all users are tested on some point, giving an averaged EER rate. A
number of four impressions is used for client and impostor supervisor
training, whereas 9, respectively, 74 impressions not belonging to the
training set are being tested. Note that each fingerprint is effectively
treated as a user and that we take impostors of the same finger type
only. When employing nontrained fusion schemes, the test set com-
prises all users at once, giving 750 x 9 genuine and 750 x 74 impostor
trials again.

The performance (EER) of expert combinations using simple, non-
adaptive schemes is given in Table I. We can observe that combinations
involving the best expert (system A) deliver the best results, actually
outperforming the best expert almost every time. In this test, fusion ap-
plying the MAX rule is superior to using SUM, although the former
was favored by shifting the experts to a common operating point. The
overall best result using simple schemes involves the first two systems
and enables a drop in EER of &~ 38% with respect to the best expert’s
performance in isolation. It is worth noting that combining all three ex-
perts can worsen the joint performance in comparison to selecting only
two of them (which need not even be the leading ones). This lies with
“simply” fusing experts, which are severely differently skilled, without
training.

The left-hand side in Fig. 9 shows the performance of cascaded fu-
sion of systems A and B as a function of certainty 7, chosen as the
thresholded quality index. Manual quality estimates are taken in case
of the dotted gray line to illustrate a best case, while estimates by our
method are considered along the path of the dotted black line. Recog-
nition performance of the single systems, furthermore fused by simple
schemes—independent of quality though—are indicated as well, with
the MAX rule giving the best result (EER of 0.75%, compare Table I).
Employing a cascade with systems A and B as the primary and sec-
ondary system, respectively, the 0.75% line is approached from above
with a small remainder, considering higher and higher trigger thresh-
olds (image quality). A first minimum, with a difference in EER of
0/0.11% when employing manual/automatic quality indices, respec-
tively, is reached at the threshold marked by the leftmost arrow. The
big difference is that in = 84% of all trials, only system A is uti-
lized at this threshold, its “efficiency impact” being marked by the
corresponding uppermost arrow to the right in Fig. 9. As illustrated,
we (almost) maintain the best error rate for simple fusion of the two
systems, but actually need to run system B every sixth time only. An-
other interesting “operating point” is indicated by the second arrow in
the left-hand part of Fig. 9, at which the minimum is reached (EER
of 0.75%) while both systems are utilized only half of the time. For
these experiments, the MAX rule was employed as a cascaded fusion
function f. The suggested ad-hoc threshold according to Section III-B
would be 0.5. Looking at Fig. 9, it lies in between the previously men-
tioned “operating points,” and leads to an EER of 0.75/0.8%. The ef-
ficiency at this point is measured to be approximately 72%, which is
even above the theoretical value of 50%.

For the Bayesian-based fusion scheme, indices derived from a
quality assessment method are assigned to either one of the systems
A-C. This is because we wish to quantify the impact of the image
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lines.

Bayesian Supervisor Fusion

0.25 [ no quality .
[CINFIQ
02 [Tour quality ]
[ Tmanual quality

qA-B

gA-B-C
Experts utilized (Systems)

Fig. 10. Best combinations for the Bayesian supervisor fusion. The quality in-
dices were used to weight system A only (therefore qA).

quality on the Bayesian supervisor fusion coupled with a certain
expert’s ability. The remaining two experts are assigned a quality of
1 (normal) for each trial. The best results in terms of EER are shown
in Fig. 10. It turned out that system A was most suitable to attach
certainties based on image quality, which is indicated by qA instead
of A in Fig. 10. Worth noting, we can observe a drop in EER of
& 97/95% when adaptively fusing all experts (qA-B-C) compared to
system A in isolation. Adaptive fusion is able to significantly increase
recognition performance independently of the quality assessment
method employed, while the improvement using three experts com-
pared to two is relatively small. Nevertheless, including system C in
the nonadaptive Bayesian supervisor fusion (darkest bars in Fig. 10)
leads to an EER drop by =~ 35%. This improvement is remarkably
better than in case of the simple fusion schemes where the EER even
increases when systems A and B are complemented by system C. This
is obviously another effect of training. Previous work has shown that
the training of these supervisors is satisfied relatively soon (20 out of
75 users [5]).

Note that both training and nontraining supervisors are important
to different applications as demands on computational efficiencies
versus/and decision performance vary. However, in both cases, the
automatic quality estimates delivered significant benefits as the ex-
periments indicate. While there have been some studies on how to
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incorporate quality into training supervisors, the corresponding strate-
gies were largely unstudied for nontraining schemes. The cascade
strategy presented before intends to contribute to the latter.

V. CONCLUSION

We showed how a priori content knowledge can be encoded and
used in quality estimation. The decomposition of the structure tensor
by symmetry features was analyzed for this purpose. Applied to finger-
prints, the practical benefit is avoidance of training and adjustment ef-
forts. The experiments show that all fingerprint regions must be treated
equally in quality assessment. The proposed method competes well
with another, yet heavily trained automatic method (NFIQ) on several
databases (verified by the correct quality group division). When ex-
ploited to adapt fusion parameters, the levels of agreement studies be-
tween human and machine quality assessments have not been reported
before, to the best of our knowledge.

We elaborated on the benefits of adapting multialgorithm fusion
schemes as a reaction to the signal quality. Experiments with simple
schemes (0.75% EER using MAX rule) showed that careless fusion
can also increase the EER. As for adaptive fusion, we introduced
a nontrained cascaded scheme to dynamically switch on experts in
case of uncertainty (low quality), assuming time is the most limited
resource. We experimented on two experts in this case, and we could
approach the best possible EER, for example, up to a remainder of
0.11% with the help of our automatic quality indices while saving to
run the second expert five out of six times. It is also shown for the first
time that under certain quality conditions, fusion is expendable. To
point out another aspect of multialgorithm fusion, we implemented
Bayes-based supervisors for continuous fusion. Taking advantage of
training and additionally the quality estimates of the proposed method,
(absolute) EERs of 0.17% and 0.07% were achieved, respectively.
This was proven by an experiment where quality adaptive fusion and
training yield the best recognition rates when combining differently
skilled experts.
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