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In this paper, we present the main results of the BioSecure Signature Evaluation Campaign (BSEC’2009).

The objective of BSEC’2009 was to evaluate different online signature algorithms on two tasks: the first

one aims at studying the influence of acquisition conditions (digitizing tablet or PDA) on systems’

performance; the second one aims at studying the impact of information content in signatures on

systems’ performance. In BSEC’2009, the two BioSecure Data Sets DS2 and DS3 are used for tests, both

containing data of the same 382 people, acquired respectively on a digitizing tablet and on a PDA. The

results of the 12 systems involved in this evaluation campaign are reported and analyzed in detail in

this paper. Experimental results reveal a 2.2% EER for skilled forgeries and a 0.51% EER for random

forgeries on DS2; and a 4.97% EER for skilled forgeries and a 0.55% EER for random forgeries on DS3.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

For the last twenty years, most of the works carried out in the
framework of handwritten signature verification are focused on
the development and the implementation of new algorithms for
online signature recognition. Such works aim at improving the
performance of automatic identity verification systems based on
the online handwritten signature modality.

However, even though verification systems in the literature
are evaluated using publicly available databases in recent years, it
is still difficult to compare the performance of such verification
systems because of the differences in experimental conditions. To
overcome this issue, it is important for the scientific community
to conduct signature evaluation campaigns allowing an objective
comparison of the algorithms with respect to each other and to
ll rights reserved.

. Houmani).
standard approaches of the state-of-the-art, using the same
databases and evaluation protocols.

In the past, only a few public evaluations have been organized
for comparing advances in online signature verification. These
include the first Signature Verification Competition (SVC) held on
2004 [18], the Signature Competition of the BioSecure Multimodal
Evaluation Campaign (BMEC), held on 2007 [19], and more recently
the ICDAR Signature Verification Competition, held in 2009 [20].

SVC’2004 [18] was carried out on a database of very limited size
(60 people, only one session), mixing signatures of different cultural
origins, captured on a digitizing tablet. The signatures in this database
were not ‘‘true’’ signatures; indeed, the subjects were advised not to
use their real signatures for privacy reasons. SVC’2004 was divided
into two tasks, depending on the input features available: in Task 1,
only the pen coordinates and the sample time stamps were available;
in Task 2, the pen pressure and pen inclination angles (azimuth and
altitude) were also available. For both tasks, the Dynamic Time
Warping-based system submitted by Sabanci University [7] obtained
the best Equal Error Rate (EER) when tested on skilled forgeries
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1 Part of the BioSecure Signature Data Sets DS2 and DS3 are publicly available

on the website of BioSecure Association [22].
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(EER¼2.84% in Task 1 and EER¼2.89% in Task 2). In second position,
we distinguished the HMM-based systems with an EER around 6% in
Task 1 and 5% in Task 2, when tested on skilled forgeries. On random
forgeries, the HMM-based system submitted by Universidad Auton-

oma de Madrid [13] was the best system, with an EER of 2.12% in Task
1 and of 1.70% in Task 2.

The BMEC’2007 Signature Competition [19] was carried out in
the framework of the BioSecure Network of Excellence [22,26]. It
was the first signature verification evaluation on signatures cap-
tured on a mobile platform (Personal Digital Assistant, PDA) [19].
The aim of this competition was to compare the performance of
different verification systems in mobile conditions, on the large
BioSecure Data Set 3 (DS3) (430 people, 2 sessions) [19,22,26]. In
this evaluation, we noticed that the model-based systems out-
performed those based on distance approaches [19]. Indeed, the
Gaussian Mixture Model-based system submitted by EPFL [19]
obtained the best performance, when tested on both skilled and
random forgeries (EER¼13.43% and EER¼4.03%, respectively). This
winning system was followed by the HMM-based Reference System
of Telecom SudParis [17,27,30], with an EER of 15.36% for skilled
forgeries and of 4.88% for random forgeries.

The ICDAR’2009 Signature Verification Competition [20] was
held in 2009, in the framework of the 10th International Conference
on Document Analysis and Recognition (ICDAR’2009). This compe-
tition was carried out on the Netherlands Forensic Institute (NFI)
signature database (100 people), containing both offline dataset and
its corresponding online dataset acquired on a digitizing tablet. This
competition was the first signature verification evaluation on off-
line signatures and also the first competition where offline and
online signatures were combined [20]. Moreover, the competition
aimed at combining expert forensic judgments with the perfor-
mance of automatic verification systems by testing systems on a
forensic-like dataset. For the online task, the best result was
obtained by Parascript, LLC with an EER of 2.85%. For the offline
task, the best result was obtained by Centre for Mathematical

Morphology with an EER of 9.15%. The only system which combined
both offline and online data was that of Universidad Autonoma de

Madrid, which obtained an EER of 8.17% [20]. No information was
given on the classifiers used by the submitted systems.

At the same time as ICDAR’2009 Signature Competition [20], a
new evaluation campaign was organized in 2009, namely the
BioSecure Signature Evaluation Campaign (BSEC’2009) [23],
which was held in conjunction with the International Conference
on Biometrics (ICB’2009) [21], and which is the subject of the
present paper. This competition was divided into three tasks and
was focused on the evaluation of online signature verification
systems following new benchmarking frameworks. In the pre-
vious signature competitions, signatures were acquired with a
single sensor in each competition: a digitizing tablet at SVC’2004
[18] and ICDAR’2009 [20], and a PDA at BMEC’2007 [19]. In
contrast, BSEC’2009 was performed on the two existing largest
databases containing the same persons, acquired with two dif-
ferent sorts of sensors, namely a digitizer (BioSecure Signature
Corpus DS2) and a PDA touch screen (BioSecure Signature Corpus
DS3) [22,26]. The DS3 corpus is indeed the first on-line signature
multi-session database acquired in a mobile scenario, while the
DS2 corpus was collected on a fixed platform, from the same
subjects. BSEC’2009 [23] aimed at measuring the real impact of a
mobile platform on algorithms’ performance on these two data-
bases. This first objective was studied in Task 1 of BSEC’2009.

The second objective of BSEC’2009 [23], studied in Task 2, was
to analyze the impact of time variability on systems’ performance
and to assess the relative pertinence over time of the different
time functions captured by the sensor [23]. It is worth noticing
that there are very few works in the literature studying the
impact of time variability of signatures on systems’ performance.
The two BioSecure databases DS2 and DS3 [22,26] are well suited
to this study as they were collected in two sessions separated in
time by several weeks.

Finally, a biometric system’s performance is measured, in
general, globally on all the available data in a database, in terms
of the two types of errors that a biometric system can make,
namely False Rejections and False Acceptances. This is the case of
all previous signature evaluation campaigns [18,19,20]. However,
it is obvious that some persons possess a signature that is easier
to recognize than others. This can be related to the complexity
and the stability of their signatures. Therefore, to have a better
insight on the behavior of a classifier, it is wise to split the
database in subsets, according to a criterion related to the
difficulty of recognizing an individual. Therefore, the third objec-
tive of BSEC’2009 [23], studied in Task 3, was to evaluate the
performance of different algorithms depending on the informa-
tion content in the signatures, thanks to a protocol categorizing
the data of both DS2 and DS3 in subsets [23]. To this end, we
exploited the notion of Personal Entropy, introduced in [24,25] to
categorize people depending on the quality of their signatures.
Systems’ performance was also measured globally on the com-
plete databases for comparison purposes.

In this paper, we present the BioSecure Signature Evaluation
Campaign BSEC’2009. As the participants did not use all combina-
tion of features in order to study the impact of time functions on
systems’ performance, we cannot report the results of Task 2 and
we only present in this paper the results of the two major tasks,
those relying on the quality of signatures. More precisely, we
present the results of Task 1 studying the impact of mobile
conditions, and the results of Task 3 studying the impact of
information content of signatures on performance assessment.
Table 1 provides a summary for BSEC’2009 and highlights the
differences of this competition with respect to previous ones
(SVC’2004, BMEC’2007 and ICDAR’2009) in terms of datasets used,
the different tasks considered, the number of participants, and the
best performance achieved.

This paper is organized as follows: Section 2 presents the two
BioSecure Signature Data Sets DS2 and DS3 used for this evalua-
tion. Section 3 describes the calculation of the Personal Entropy
measure associated to a given person by means of a Writer-HMM,
and how it can be used to automatically generate writer cate-
gories through a hierarchical clustering procedure. Section 4
describes the evaluation protocol and the two main tasks of
BSEC’2009: Task 1 and Task 3. In Section 5, we give a brief
description of the 12 submitted systems. Section 6 presents the
most pertinent experimental results of Task 1 and Task 3. Finally,
conclusions are stated in Section 7.
2. BioSecure signature datasets

Two datasets were used in this competition [22]. These
datasets were acquired in several sites in Europe, in the frame-
work of BioSecure Network of Excellence [22,26]: DS2 was
acquired on a digitizing tablet, and DS3 was acquired on a mobile
platform (PDA).1

For this evaluation, two development datasets of 50 people
from respectively BioSecure DS2 and DS3 have been distributed to
the participants. Note that for such datasets, the donors provided
their own genuine signatures (not fake signatures as in SVC’2004
[18]), and the 50 people are the same in the two development
datasets [23]. Besides, two other datasets containing signatures of



Table 1
Summary of the four signature competitions.

Competitions SVC’2004 BME’C 2007 ICDAR’2009 BSEC’2009

Development
dataset

40 people (donors did not use

their real signatures)

BioSecure DS3 of 50 people,

2 sessions.

NISDCC dataset of 12 people,

containing both offline and

online signatures.

BioSecure DS2 and DS3 of 50 people,

2 sessions.

Test dataset 60 people of different cultural

origins, one session.

BioSecure DS3 of 430 people,

2 sessions.

Netherlands Forensic Institute

dataset of 100 people,

containing offline and online

signatures.

BioSecure DS2 and DS3 of 382 people,

2 sessions.

Data acquisition Digitizing tablet Personal Digital Assistant

(PDA)

Digitizing tablet for the online

dataset

Digitizing tablet for DS2, and PDA for DS3

Tasks Task 1: performance

considering only pen

coordinates and the sample

time stamps.

Task: performance depending

on the type of forgeries

(random, skilled and synthetic

imitations).

Task 1: performance of online

systems on skilled forgeries.

Task 1: impact of mobile conditions on

systems’ performance on both DS2 and DS3,

considering only pen coordinates and the

sample time stamps.

Task 2: performance

considering pen coordinates,

pen pressure and pen

inclination angles.

Task 2: Performance of offline

systems on skilled forgeries.

Task 2: impact of time variability on systems’

performance on DS2 dataset, considering

coordinates, pen pressure and pen

inclination angles.

Task 3: impact of signature information

content on systems’ performance on DS2.

Participants Task 1: 15 teams and 15

systems

6 teams and 11 systems Task 1: 12 teams and 15 online

systems

Task 1 and Task 3: 8 teams and 12 systems

Task 2: 12 teams and 12

systems

Task 2: 7 teams and 8 offline

systems

Task 2: 10 teams and 14 systems

Best performance
on skilled
forgeries

Task 1: EER¼2.84% EER¼13.43% Task 1: EER¼2.85% Task 1

On DS2: EER¼2.20%

On DS3: EER¼4.97%

Task 2

Without variability: On DS2: EER¼1.71%

Task 2: EER¼2.89% Task 2: EER¼9.15%

With variability: On DS2: EER¼3.48%

Task 3: EER¼1.38%

Best performance
on random
forgeries

Task 1: EER¼2.12% EER¼4.03% / Task 1

On DS2: EER¼0.51%

On DS3: EER¼0.55%

Task 2

Task 2: EER¼1.70%

Without variability

On DS2: EER¼0.42%

With variability

On DS2: EER¼1.37%

Task 3: EER¼0.27%
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382 people from respectively BioSecure DS2 and DS3 were used
by the organizer to test the submitted systems, and they were
being kept sequestered.

The two test sets contain the same 382 people in order to
measure the real impact of mobility acquisition conditions on
algorithms performance [23]. In the following, these two test sets
are denoted as DS2-382 and DS3-382.

2.1. BioSecure signature data set 2 DS2

BioSecure Data Set 2 (DS2) [22,26] contains signatures acquired
in a PC-based, offline, supervised scenario with a digitizing tablet
WACOM INTUOS 3 A6. The pen tablet resolution is 5080 lines per
inch and the precision is 0.25 mm. The maximum detection height
is 13 mm and the capture area is 270 mm (width)�216 mm
(height). Signatures are captured on paper using an inking pen. At
each sampled point of the signature, the digitizer captures, at
100 Hz sampling rate, the pen coordinates, pen pressure (1024
pressure levels) and pen inclination angles (azimuth and altitude
angles of the pen with respect to the tablet) [22,26].

Two sessions were acquired spaced off around two weeks,
each containing 15 genuine signatures and 10 skilled forgeries
acquired by each donor as follows: the donor was asked to
perform, alternatively, three times 5 genuine signatures and 10
forgeries. More precisely, at each session, each subject is asked to
imitate 5 times, the signature of two other persons. No special
interface has been provided to the subject for helping him/her
recovering the dynamic of the signature that he/she has to forge.

2.2. BioSecure signature data set 3 DS3

BioSecure Data Set 3 (DS3) [22,26] contains signatures
acquired on the PDA HP iPAQ hx2790, at the frequency of
100 Hz and with a touch screen resolution of 1280n960 pixels.
Three time functions are captured from the PDA: x and y

coordinates and the time elapsed between the acquisition of
two successive points. The user signed while standing and had
to keep the PDA in his or her hand.

Two sessions were acquired spaced by around 5 weeks, each
containing 15 genuine signatures. The subject was asked to
perform, in each session, 15 genuine signatures and 10 forgeries
(5 imitations for each of two other persons). In order to imitate
the dynamics of the signature, the forger visualized on the PDA
screen the writing sequence of the signature he/she had to forge
and could sign on the image of such signature in order to obtain a
better quality forgery, both from the point of view of the
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dynamics and of the shape of the signature. Due to the low
resolution of the PDA, some coordinates are missing. To overcome
this problem, the organizer performed a spatial interpolation
between consecutive points.
3. Entropy-based quality measure

In this section, we will briefly recall the main steps of our
novel entropy computation presented in detail in [24,25].

3.1. Measuring Personal Entropy with a Hidden Markov Model

The entropy of a random variable depends on its probability
density function [28]. Thus, a good estimation of this probability
density is important. As there are local dependencies in the
dynamics of the hand-drawn signature, a local paradigm for
density estimation seems to be natural. To this end, we model
each writer’ signature thanks to a Hidden Markov Model (HMM)
[29] trained on a set of K genuine signatures of such a writer.
Then, we consider each signature as a succession of portions,
generated by its segmentation via the Viterbi Algorithm [29],
according to the Writer-HMM. Then we consider each point (x,y)
in a given stationary portion Si of the signature as the outcome of
one random variable Zi, which follows a given probability mass
function p(z)¼Pr(Zi¼z) where z belongs to the Alphabet A of
ordered pairs (x,y). The entropy [28] of such a portion is then
computed as follows:

HSi
ðZiÞ ¼�

X
zA Si

pðzÞlog2ðpðzÞÞ ð1Þ

The estimation of the local probability distribution functions is
carried out by considering all sample points belonging to each
portion across the K instances of the writer’s signatures [25].
Then, the entropy of a genuine signature sample ‘‘sig’’ is com-
puted by averaging the local entropy values HSi

ðZiÞ on all of its
portions Si, normalized by the signing time of such signature
sample:

HsigðZÞ ¼
1

NnT

XN

i ¼ 1

HSi
ðZiÞ ð2Þ

where T is the length of the signature sample and N the number of
portions generated by the Writer-HMM. We thus retrieve an
entropy measure expressed in bits per second [25]. Note that the
signing time normalization allows comparing users between
them in terms of entropy; indeed, without such normalization,
due to the great difference in length between signatures of
different persons, entropy tends to be higher on longer signatures.

Finally, averaging this measure across the K genuine signatures
being considered allows the Personal Entropy [25] to be
Fig. 1. Examples of signatures from DS2 database of (a) High, (b) Mediu
computed:

H ¼
1

K

XK

sig ¼ 1

HsigðZÞ ð3Þ

Note that Personal Entropy, quantified for each writer, mea-
sures on a set of genuine signatures the ‘‘uncertainty’’ or ‘‘degree
of disorder’’ of the writer’s signature. Indeed, the local probability
density functions are estimated by an HMM on a set of genuine
signatures [25]. Therefore, our entropy measure quantifies dis-
order or uncertainty locally and thus, inversely, information
content: high information content means low entropy and thus
a low degree of disorder.

3.2. Personal Entropy-based writer categories

We performed on the two BioSecure evaluation datasets DS2
and DS3 containing the same 382 people, a hierarchical clustering
procedure on their writer’s Personal Entropy values. Three writer
categories were this way automatically generated. Fig. 1 shows
examples of some signatures from DS2 in the three Entropy-based
categories. Note that we displayed signatures whose owners
authorized their publication.

We notice visually that the first category of signatures (Fig. 1a),
those having the Highest Personal Entropy values, contains short,
simply drawn and not legible signatures, often with the shape of a
simple flourish. At the opposite, signatures in the third category
(Fig. 1c), those of Lowest Personal Entropy values, are the longest
and their appearance is rather that of handwriting, some are even
legible. In between, we notice that signatures with Medium Personal
Entropy (second category, Fig. 1b) are longer and sometimes become
legible, often showing the aspect of a complex flourish.
4. Description of the main tasks of BSEC’2009

As mentioned at the end of Section 1, we remind that, in this
paper, we present only the two tasks related to the evaluation of
algorithms depending on the quality of signatures: Task 1 and
Task 3, which are described in detail in this section.

TASK 1: goal is to study the impact of mobility acquisition
conditions on algorithms’ performance.

Only pen coordinates are considered in this task. Participants
used the Development Data Set DS2, containing data of 50
people.

Evaluation protocol: The submitted systems in this task are
tested by the organizer on the whole DS2-382 and DS3-382
datasets to study the impact of the mobile platform on systems’
performance.
m and (c) Low Personal Entropy (with authorization of the writers).
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TASK 3: goal is to study the impact of information content in
signatures on algorithms’ performance.

Evaluation protocol: All the submitted systems in Task 1 are
now tested on DS2-382, on different writer categories depending
on the quality of their signatures. Writer categories are generated
on DS2-382 using a hierarchical clustering on the 382 Personal
Entropy values. Note that this quality measure was not available
to participants; it was only used by the organizer, Telecom

SudParis, in the test phase.
For both tasks, performance assessment was carried out on

DS2-382 and DS3-382 according to the following Generic Proto-
col: for each enrolled person, 5 genuine signatures of Session
1 are used as reference signatures. Tests are carried out on the
remaining 10 genuine signatures of Session 1, on 10 skilled
forgeries of Session 1, and on 15 random forgeries.

5. Description of the submitted systems

This evaluation campaign involves 11 submissions from 8 sites.
A Reference System, which was developed by Telecom SudParis, is
also considered for comparison purpose [17,27,30]. A complete
list of the systems is shown in Table 2. We also give in Table 3 a
brief description of the systems submitted for Task 1 and Task 3.

6. Experimental results

Performance assessment was evaluated in terms of the two
types of errors, namely False Acceptance Rate (FAR) and False
Rejection Rate (FRR). The results are reported in terms of the DET-
Curves [31] and the Equal Error Rate functioning point (EER).

To get an idea about the confidence interval (CI) at 95% at the
Equal Error Rate functioning point (EER), we used a parametric
function [32] in order to calculate the error rate FRR (t) (or FAR
(t)), at the threshold tEER, at which the EER occurs. The confidence
interval is thus computed as follows:

CI¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FRRðtEERÞð1�FRRðtEERÞÞ

Number of authentic matching scores

s
ð4Þ

We found that for all experiments the confidence interval is
lower than 0.01.

6.1. Results of task 1: impact of mobile acquisition conditions on

systems’ performance

In order to study the impact of mobile acquisition conditions
on systems’ performance, the 11 submitted systems and the
Reference System were tuned using the Development Data Set
DS2, which contains data of 50 people, then tested on DS2-382
and DS3-382 datasets containing the same 382 people, following
the Generic Protocol (see Section 4).
Table 2
List of participants.

ID Affiliation

Ref Telecom SudParis, France

ASU Ain Shams University, Egypt

SKU Seikei University, Japan

SU Sabanci University, Turkey

Scientific and Technological Research

Council of Turkey (TUBITAK-UEKAE)

UAM-DTWr DTWs,HMM, GLO, FUS Universidad Autonoma de Madrid, Spain

UPM1 Escola Universitaria Politecnica de Mata

UPM2
VDU Universidad de Valladolid, Spain
The experimental results of each system obtained on DS2-382
and DS3-382 are shown respectively by the DET-Curves in
Figs. 2 and 3, with both skilled and random forgeries. Equal Error
Rate functioning point values associated to the submitted systems
are reported in Table 4.

When we compare the obtained results on DS2-382 and DS3-
382, we observe that systems’ performance on DS2-382 is globally
better than on DS3-382, which is acquired on a mobile platform.
Indeed, we notice in Table 4 that with skilled forgeries, the
performance on DS3-382 is degraded roughly by a factor 2 at the
EER. With random forgeries, the degradation is less significant.

It is also observed, as expected, that all the submitted systems,
except the ‘‘UAM-HMM system’’, detect more easily random
forgeries than skilled forgeries. This is also observed on the
DET-Curves in Figs. 2 and 3: indeed, with random forgeries, at a
False Rejection Rate (FRR) equals to 0%, the False Acceptance Rate
(FAR) of the majority of systems is lower than 30%; while on
skilled forgeries the FAR is higher than 40%.

Performance degradation on DS3-382 can be explained by two
factors. The first factor is related to the quality degradation of
signatures acquired on a mobile platform: signature realizations
in mobile conditions always display distortions and alterations
compared to their realizations on a stable writing surface (digitiz-
ing tablet) with an inking pen. Actually, in the mobile acquisition
of DS3, the writer signed while standing and holding the PDA
(see Section 2.2). The second factor is related to the forgery
acquisition protocol of DS3, which is better suited to capture good
quality forgeries. Indeed, a specific acquisition interface was
exploited providing to the impostor both static and dynamic
information about the target signature (as mentioned in Section
2.2). This clearly appears on the FAR’s behavior in Fig. 2 (on DS2)
compared to Fig. 3 (on DS3): the FAR reach much higher values
on DS3 compared to DS2 (at FRR¼0%). Nevertheless, in case
of random forgeries, performance degradation is due exclus-
ively to the quality degradation of genuine signatures: indeed,
random forgeries are very ‘‘far’’ from the target genuine signa-
tures for both DS2 and DS3 datasets. This explains what we
previously observed: performance degradation on DS3-382 with
random forgeries is less important compared to that with skilled
forgeries.

Now, when we compare the submitted systems between them,
we notice that on skilled forgeries, the best performance on DS2 is
obtained with the ‘‘VDU system’’, with an EER of 2.20%, closely
followed by the ‘‘UAM-FUS system’’ with an EER of 2.22%; while on
DS3 (mobile platform), the best performance is obtained with the
‘‘SU system’’, with an EER of 4.97%. When comparing these three
systems between them, we observe that although the ‘‘SU
system’’ comes in the 4th position with an EER of 2.97% when
tested on DS2 with skilled forgeries (see Table 4), it appears as the
most resistant to the changes of the acquisition conditions, as
its associated EER degrades on skilled forgeries by a factor 1.67
from DS2 to DS3; while for the ‘‘UAM-FUS system’’ and the ‘‘VDU
Participants

Reference System

M.I. Khalil, M. Mostafa, H. Abbas

D. Muramatsu

B. Yanikoglu

A. Kholmatov

M. Martinez-Diaz, J. Fierrez, J. Ortega-Garcia

ro, Spain J. Roure Alcobé

J. Fabregas, M. Faundez-Zany

J. M. Pascual-Gaspar, V. Cardeñoso-Payo, C. Vivaracho-Pascual



Table 3
Description of the systems.

Approach classifier ID System description

Distance-based systems DTW distance SU – Local features: relative offsets of pen coordinates.

– Score computation: distance to template signature (most central reference signature)

normalized by the corresponding mean value of the reference set [7].

UAM-DTWr – 27 local features [14].

– Feature selection via Sequential Forward Floating Selection (SFFS). Optimization criterion:

EER against random forgeries.

– Score computation: min and mean distance of the test to the reference signatures for DS3

and DS2 respectively [7].

UAM-DTWs – 27 local features [14].

– Feature selection via SFFS. Optimization criterion: EER against skilled forgeries.

– Score computation: as for SU system [7,15].

VDU – Local features: time derivative of pen coordinates.

– DTW normalization requiring 2 score distributions [8,9]: one obtained from the training

signatures, the other derived from a cohort of casual impostors, selected from MCYT-100

[10].

ASU – Local features: speed and curvature changes.

– Score based on the average min and the average max distances computed on the reference

set. Final binarized score obtained by score comparison to a fixed threshold (get on DS2)

[5,6].

SKU – Local features: coordinates, pen direction and velocity.

– Score computation based on a fusion model generated by combining many perceptrons,

relying on the reference set, using Adaboost algorithm [4].

Mahalanobis distance UAM-GLO – 100 global features. - Score computation: Mahalanobis distance [11,12].

Euclidean distance UPM1 – 16 local features extracted from pen coordinates.

– Comparison of signatures on portion level. - Score computation based on ratio of mean and

standard deviation of features [1].

Statistical-based
systems

HMM UAM-HMM – 27 local features [14].

– Feature selection via SFFS. Optimization criterion: EER against skilled forgeries.

– Likelihood score computation [13].

Ref – 25 local features.

– Score computation based on the fusion of likelihood score and segmentation score generated

by Viterbi algorithm [17,27,30].

Biometric dispersion
match

UPM2 – Features: one dimensional discrete cosine transform [2,3].

– Feature selection via LDA.

Fusion-based systems Fusion of the 4 UAM
systems: GLO, HMM,
DTWs, DTWr

UAM-FUS – Weighted sum of the 4 UAM systems [16].

– Optimal sum coefficients computed using logistic regression.
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system’’, the EER degrades on DS3 respectively by a factor
2.46 and 3.

On random forgeries, the ‘‘UAM-DTWr system’’ is the best in terms
of performance on both datasets and its performance remains stable
independently of the acquisition sensor (PDA or digitizing tablet).
Indeed, for both DS2 and DS3, the ‘‘UAM-DTWr system’’ obtained an
EER of 0.5% on random forgeries. However, we should note that this
system has been specially tuned for random forgeries, as mentioned
on Table 3 in Section 5; and hence it is biased. Close to this winning
system, we distinguish the ‘‘UAM-FUS system’’ that is based on the
score weighted sum fusion of the four UAM systems (UAM-DTWs,

UAM-DTWr, UAM-HMM, UAM-GLO), and which reached an EER of
0.6% on random forgeries.

Furthermore, regarding the system based on a distance
approach with global features, namely ‘‘UAM-GLO’’, the results
show that it gives worse performance in comparison to the other
distance-based systems using local feature extraction, and even
though it exploits 100 global features.

Finally, we notice that on DS2 for both types of forgeries, the
worst performance is obtained with the ‘‘UAM-HMM system’’. This
result is a priory surprising and unexpected, because HMM-based
systems have always shown good results in the literature [18,19,30],
as also observed in this evaluation by the results of the Reference

System based on Hidden Markov Models. This surprising result may
be due to an implementation error or to the fact that this system has
not been well tuned. On the other hand, we observe that the worst
performance on DS3 is obtained by the ‘‘ASU system’’. Indeed, the
performance of the ‘‘ASU system’’ is degraded significantly when
tested on DS3, roughly by a factor 10 (see Table 4). This can be
explained by the fact that this system uses the same decision
threshold for DS2 and DS3 in order to get the final binarized score
(refer to Table 3). This threshold obtained experimentally on DS2 is



Fig. 2. DET-Curves on DS2-382 with: (a) skilled forgeries and (b) random forgeries.

Table 4
Equal Error Rates (EERs) of the submitted systems of Task 1, on DS2-382 and DS3-382 datasets, with skilled and random forgeries.

12 Systems DS2-382 DS3-382

EER on skilled
forgeries (%)

EER on random
forgeries (%)

EER on skilled
forgeries (%)

EER on random
forgeries (%)

UMP1 4.89 2.32 7.38 1.86

UPM2 4.39 1.86 8.19 2.04

SKU 2.88 1.57 7.87 1.29

ASU 3.82 2.66 31.57 30.64

VDU 2.20 0.97 6.59 1.67

SU 2.97 2.22 4.97 4.31

UAM-
DTWra

4.15 0.51 12.17 0.55

UAM-DTWs 2.88 1.46 5.77 1.54

UAM-HMM 19.17 24.24 25.81 21.34

UAM-GLO 6.70 3.34 13.16 4.73

UAM-FUS 2.22 0.62 5.47 0.66

Ref 4.47 1.74 11.27 4.8

a We recall that the ‘‘UAM-DTWr’’ system was especially tuned on random forgeries.

Fig. 3. DET-Curves on DS3-382 with: (a) skilled forgeries and (b) random forgeries.
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not adequate for DS3, as signatures of DS2 and DS3 have different
characteristics as they are acquired on different sensors.
Table 5
Equal Error Rates (EERs) of the submitted systems on each category of writers of

DS2-382 with skilled forgeries.

12 Systems DS2-382—Skilled forgeries

EER on High Entropy
category (%)

EER on Low Entropy
category (%)

EER
ratio

UMP1 6.58 4.57 1.44

UPM2 6.50 3.98 1.63

SKU 4.08 2.90 1.41

ASU 5.67 3.11 1.82

VDU 3.58 1.69 2.12

SU 4.00 2.90 1.38

UAM-DTWr 7.83 2.90 2.70

UAM-DTWs 4.17 2.43 1.71

UAM-HMM 9.91 21.32 N/A

UAM-GLO 9.00 6.76 1.33

UAM-FUS 4.17 1.48 2.81

Ref 6.00 3.81 1.57
6.2. Results of task 3: impact of information content of signatures on

performance

In order to study the impact of information content of signatures
on algorithms’ performance, all systems submitted in Task 1 are
now tested on DS2-382 on different categories of writers depending
on the quality of their signatures, which is measured using our
Personal Entropy measure [24,25], defined in Section 3.

For this evaluation campaign, we consider only the two extreme
Entropy-based categories, namely the High Personal Entropy cate-
gory and the Low Personal Entropy category. The first one corre-
sponds to signatures of low quality in terms of verification purposes,
and contains signatures of 60 people (among the 382 people). The
second category corresponds to signatures of high quality and
contains signatures of 161 people (among the 382 people).

The experimental results obtained on DS2-382 on these two
extreme categories, are shown by the DET-Curves in Fig. 4
considering in this task skilled forgeries. We report in Table 5
the Equal Error Rate (EER) values and the EER ratio values of the
two extreme categories. Note that the confidence interval at 95%
at the Equal Error Rate functioning point is lower than 0.01.

We first observe that there is a significant difference in classifiers’
performance between the two extreme categories: except for ‘‘UAM-

HMM’’, all systems give the best performance on writers belonging to
the category of Low Personal Entropy, containing the longest, most
complex and most stable signatures (see Table 5). These results are
coherent with those presented in [24,25], where two basic classifiers
were evaluated on each Entropy-based category, namely a Hidden
Markov Model and a Dynamic Time Warping classifiers.

Moreover, when we compare the DET-Curves in Fig. 4a to those
in Fig. 4b, we notice that for nearly all the submitted systems, at
FRR¼0%, FARs are much lower considering the Lowest Entropy
category (Fig. 4b): indeed, for the majority of the submitted
systems, FAR does not exceed 30% when considering the Lowest
Entropy category (Fig. 4b), while it is always more than 40% when
Fig. 4. DET-Curves with skilled forgeries on each writer category of D
considering the Highest Entropy category (Fig. 4a). In the same way,
we observe that the FRRs are low for the Lowest Entropy category:
for FAR¼1%, the FRR of the majority of systems does not exceed
20% for the Lowest Entropy category (Fig. 4b), while it reaches 40%
for the Highest Entropy category (Fig. 4a).

When we compare the submitted systems between them, we
first notice that the systems’ ranking changes according to the
category of Personal Entropy used for test. Table 5 shows that the
best system in terms of performance on High Entropy category is the
‘‘VDU system’’ with an EER¼3.58%, followed by the ‘‘SU system’’ with
an EER of 4%. On the Lowest Entropy category, the best performance
are obtained by the ‘‘UAM-FUS system’’ with an EER¼1.48%, closely
followed by the ‘‘VDU system’’ with an EER¼1.69%. Note that these
two systems are those leading to the best performance on the whole
DS2-382 dataset with skilled forgeries in Task 1 (see Table 4).

Moreover, similarly to what we observed in Task 1, ‘‘UAM-

HMM’’ system is still the worst system in terms of performance in
each category, and its relative behavior between the two writer
S2-382: (a) High Entropy category and (b) Low Entropy category.
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categories is conflicting with what we found with the other
systems and with the previous results of [24,25].

In regard to the EER ratio values reported in Table 5, we notice
that some systems are more robust than others to the quality
degradation of signatures. Note that the EER ratio value cannot be
used alone and should be related to the performance values on
each entropy category. Indeed, in spite of the high EER ratio
between the two extreme categories with the ‘‘VDU system’’, this
system is considered a good one in terms of performance when
tested on each writer category separately.

Finally, in comparison to global performance obtained on skilled
forgeries in Task 1, we notice that the ranking of the systems changes
when performance are measured globally on the whole database or
on each writer category. These interesting results are an essential
point for further evaluations: some systems may indeed be more
robust than other on one given type of signature, or more robust to
quality degradation. At last, in comparison to the obtained results in
Task 1 (see Table 4), we notice that the performance obtained on the
whole DS2-382 is generally in between those obtained on the Lowest
and the Highest Entropy categories in Task 3 (see Table 5).
7. Conclusion

In this paper, we presented the most recent online signature
competition, namely the BioSecure Signature Evaluation Cam-
paign BSEC’2009. This competition was focused on the evaluation
of online signature algorithms depending on the quality of
signatures available on the two BioSecure Data Sets DS2 and
DS3 containing the same 382 writers, acquired respectively on a
fixed platform and on a mobile one. In this paper, two tasks
defined in BSEC’2009 were presented: Task 1, which aims at
studying the impact of acquisition conditions on algorithms’
performance; and Task 3, which aims at studying the impact of
information content in signatures on algorithms’ performance.

The results of Task 1 point out the importance of the acquisi-
tion conditions to improve systems’ performance. Indeed, evalua-
tion of algorithms on BioSecure DS2 and DS3 shows a clear
performance degradation on DS3 due first, to the forgery acquisi-
tion protocol of DS3, which is better suited to capture good
quality forgeries; and secondly, to the quality degradation of
signatures acquired in mobile conditions.

The results of Task 3 show the dependence of systems’ perfor-
mance on the quality of the signatures of a person. Indeed, the
obtained results point out the interest of evaluating performance of
the systems not only globally on the whole database, but also on
different categories of writers linked to a specific criterion related to
the intrinsic quality of the signatures, based on Personal Entropy
measure previously introduced in [24,25]. The results show on one
hand that some systems are more robust than others, when dealing
with signatures of different qualities; and on the other hand, that the
performance of a given classifier can significantly vary when con-
sidering good quality signature or bad quality ones in the evaluation.

Finally, in comparison to the previous competitions, BSEC’2009
has shown an important progress in the state-of-the-art in signature
recognition. While the best results of SVC’2004 were around 2.84%
and 2.12% on skilled and random forgeries, respectively, and those of
BMEC’2007 were around 13.43% on skilled forgeries and 4.03% on
random forgeries in mobile conditions, the current competition
provides an important reduction: 2.2% and 0.51% on skilled and
random forgeries, respectively, on DS2; 4.97% and 0.55% on skilled
and random forgeries respectively on DS3 (mobile conditions).

To conclude, in BSEC’2009, online signature verification sys-
tems were evaluated in terms of quality of the genuine signatures.
However, recent research in the field of biometrics has shown an
increased interest on systems’ resistance to attacks, which can be
of different qualities. Therefore, in the future, we intend to
conduct a new evaluation campaign, which will aim at assessing
the resistance of online signature verification systems to different
quality-based categories of skilled forgeries, generated using
Personal Entropy measure.
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