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a b s t r a c t

In this paper, we use a hill-climbing attack algorithm based on Bayesian adaption to test the

vulnerability of two face recognition systems to indirect attacks. The attacking technique uses the scores

provided by the matcher to adapt a global distribution computed from an independent set of users, to

the local specificities of the client being attacked. The proposed attack is evaluated on an eigenface-

based and a parts-based face verification system using the XM2VTS database. Experimental results

demonstrate that the hill-climbing algorithm is very efficient and is able to bypass over 85% of the

attacked accounts (for both face recognition systems). The security flaws of the analyzed systems are

pointed out and possible countermeasures to avoid them are also proposed.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic access of persons to services is becoming increas-
ingly important in the information era. This has resulted in the
establishment of a new research and technology area known as
biometric recognition, or simply biometrics [1]. The basic aim of
biometrics is to discriminate automatically between subjects—in
a reliable way and according to some target application—based on
one or more signals derived from physical or behavioral traits,
such as fingerprint, face, iris, voice, hand, or written signature.

Biometric technology presents several advantages over classi-
cal security methods that are based on a pass-phrase (Personal
Identification Number or password) or on a physical key (or access
card) [2,3]. A major disadvantage of traditional authentication
systems is that they cannot discriminate between impostors who
have illegally acquired the privileges to access a system and the
genuine user. Furthermore, in biometric systems there is no need
for the user to remember difficult PIN codes that could be easily
forgotten or to carry a key that could be lost or stolen.

Despite their advantages, biometric systems are still vulner-
able to external attacks which could decrease their level of
security. Thus, it is of utmost importance to analyze the
vulnerabilities of biometric systems, in order to find their
limitations and to develop useful countermeasures for foreseeable
attacks. Furthermore, the vulnerability study carried out in the

present work can be of great use for other parties working in the
biometric field such as developers or security evaluators. In
particular, the interest for the analysis of security vulnerabilities
has surpassed the scientific community and different standardi-
zation initiatives at international level have emerged in order to
deal with the problem of security evaluation in biometric systems,
such as the common criteria (CC) through different supporting
documents [15], or the biometric evaluation methodology (BEM)
[16]. The present research work can be of great help to further
develop these ongoing security evaluation standardization efforts,
and for independent institutions in charge of objectively asserting
the level of security offered to the final user by face recognition
systems.

In [4] Ratha identified and classified eight possible attack
points for biometric recognition systems. These vulnerability
points, depicted in Fig. 1, can be broadly divided into two groups:

� Direct attacks: In [4] the possibility to generate synthetic
biometric samples (for instance, speech, fingerprints or face
images) in order to illegally access a system was discussed, and
defined as the first vulnerability point in a biometric security
system. These attacks at the sensor level are referred to as
direct attacks and require no specific knowledge about the
system (e.g., matching algorithm, feature extraction process or
feature vector format). Furthermore, the attack is carried out in
the analog domain, outside the digital limits of the system, so
digital protection mechanisms (digital signature or water-
marking) cannot be used. Some previous works have studied
the robustness of biometric systems to direct attacks, specifi-
cally finger- and iris-based systems [5–7].

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.de/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2009.08.022

� Corresponding author.

E-mail addresses: javier.galbally@uam.es (J. Galbally),

christopher.mccool@idiap.ch (C. McCool), julian.fierrez@uam.es (J. Fierrez),

sebastien.marcel@idiap.ch (S. Marcel), javier.ortega@uam.es (J. Ortega-Garcia).

Pattern Recognition 43 (2010) 1027–1038



Author's personal copy
ARTICLE IN PRESS

� Indirect attacks: This group includes all the remaining seven
points of attack identified in Fig. 1. Attacks 3 and 5 might be
carried out using a Trojan Horse that bypasses the feature
extractor and the matcher, respectively. In attack 6 the system
database is manipulated (a template is changed, added or
deleted) in order to gain access to the application. The
remaining points of attack (2, 4, 7 and 8) are thought to
exploit possible weak points in the communication channels of
the system by extracting, adding or changing information from
them. In this case the intruder needs to have some additional
information about the internal working of the recognition
system and, in most cases, physical access to some of the
application components (feature extractor, matcher or data-
base) is required.

Some efforts have been made to study the robustness of
biometric systems against indirect attacks. In [8] a model-based
attack which is capable of reconstructing the user’s face images
from the matching scores is presented. The method has the strong
constraint of needing a large number of real face images to
initialize the algorithm.

Apart from [8], most of the works studying the vulnerability of
biometric systems to indirect attacks use some type of variant of
the hill-climbing algorithm presented in [9]. In that preliminary
work, a basic hill climbing attack was tested over a simple image
recognition system using filter-based correlation. This attack takes
advantage of the score given by the matcher to iteratively change
a synthetically created template until the score exceeds a fixed
decision threshold and thereby gain access to the system.

Two hill-climbing attacks to a standard and Match-on-Card
minutiae-based fingerprint verification systems have been re-
ported in [11,12], respectively. In these attacks a synthetic random
minutiae template is presented to the input of the matcher and,
according to the score generated, the random template is
iteratively changed until the system returns a positive verification.
The minutiae in the template are modified one at a time and the
change is only stored if the score returned by the matcher
improves the previous one, otherwise it is discarded. The changes
included in the modification scheme are adding, substituting,
changing or deleting a minutia, which make the attack not
applicable to any other biometric system different from a
minutiae-based fingerprint recognition system.

Adler proposed a hill-climbing attack to a face recognition
system in [10]. The input image, which is selected from an
arbitrary set of real face images, is modified using an independent
set of eigenfaces (which makes it applicable only to face
recognition systems) until the desired matching score is attained.
This work reported results on a PCA-based face recognition
system and showed that after 3000 iterations, a score correspond-
ing to a very high similarity confidence (99.8%) was reached. The
success rate of the attack (how many accounts were broken out of
the total attacked) or the operating point of the system is not
given, so the results are difficult to interpret or compare.

Most of the hill-climbing approaches are all highly dependent
on the technology used, only being usable for a very specific type
of matcher. However, in [13] a hill-climbing algorithm based on

Bayesian adaptation, which can be applied to attack different
biometric systems, was presented and tested using an on-line
signature verification system. In the present contribution this
attack is successfully applied to two automatic face recognition
systems thus showing its big attacking potential and its ability to
adapt to different biometric systems and matchers which use
fixed length feature vectors of real numbers and delivering real
similarity (or dissimilarity) scores.

Two case studies are presented in this work where several
aspects of the attack are investigated. The first one examines the
effectiveness of the technique on an eigenface-based verification
system while the second uses a more advanced Gaussian mixture
model (GMM) parts-based approach. For both case studies the
experiments are conducted on the XM2VTS database [14] and it is
shown that the attack is able to bypass over 85% of the accounts
attacked for the best configuration of the algorithm found.
Furthermore, the hill-climbing approach is shown to be faster than
a brute-force attack for all the operating points evaluated, as well
as being capable of reconstructing the user’s face image from the
similarity scores, without using any real face images to initialize
the algorithm. As a result, the proposed algorithm has vulnerability
implications related to both security and privacy issues of the users.

The paper is structured as follows. The hill-climbing attack
algorithm used in the experiments is described in Section 2, while
the two attacked systems are presented in Section 3. The database
and experimental protocol followed are described in Section 4.
The results on the eigenface-based system and the GMM system
are detailed in Sections 5.1 and 5.2, respectively. Conclusions are
finally drawn in Section 6.

2. Bayesian hill-climbing algorithm

Problem statement. Consider the problem of finding a K-dimen-
sional vector y� which, compared to an unknown template C (in our
case related to a specific client), produces a similarity score bigger
than a certain threshold d, according to some matching function J,
i.e., JðC; y�Þ4d. The template can be another K-dimensional vector
or a generative model of K-dimensional vectors.

Assumptions. Let us assume:

� That there exists a statistical model G (K-variate Gaussian with
mean lG and diagonal covariance matrix RG, with r2

G ¼

diagðRGÞ), in our case related to a background set of users,
overlapping to some extent with C.
� That we have access to the evaluation of the matching function

JðC; yÞ for several trials of y.

Algorithm. The problem of finding y� can be solved by adapting
the global distribution G to the local specificities of template C,
through the following iterative strategy:

1. Take N samples (yi) of the global distribution G, and compute
the similarity scores JðC; yiÞ, with i¼ 1; . . . ;N.

2
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Fig. 1. Architecture of an automated biometric verification system. Possible attack points are numbered from 1 to 8.
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2. Select the M points (with MoN) which have generated highest
scores.

3. Compute the local distribution LðlL;rLÞ, also K-variate Gaus-
sian, based on the M selected points.

4. Compute an adapted distribution AðlA;rAÞ, also K-variate
Gaussian, which trades off the general knowledge provided
by GðlG;rGÞ and the local information given by LðlL;rLÞ. This is
achieved by adapting the sufficient statistics as follows:

lA ¼ alLþð1� aÞlG ð1Þ

r2
A ¼ aðr

2
Lþl2

L Þþð1� aÞðr
2
Gþl2

GÞ � l2
A ð2Þ

5. Redefine G¼ A and return to step 1.

In Eqs. (1) and (2), l2 is defined as l2 ¼ diagðllT Þ, and a is an
adaptation coefficient in the range [0,1]. The algorithm finishes
either when one of the N similarity scores computed in step 2
exceeds the given threshold d or when the maximum number of
iterations is reached.

In the above algorithm there are two key concepts not to
be confused, namely: (i) number of iterations (nit), which refers to
the number of times that the statistical distribution G is
adapted and (ii) number of comparisons (ncomp), which denotes
the total number of matchings carried out through the algorithm.
Both numbers are related through the parameter N, being
ncomp ¼N � nit .

3. Face verification systems attacked

The described Bayesian hill-climbing algorithm is used to
test the robustness against this type of attacks of two different
face verification systems, one based on eigenfaces [17], and a
second using GMM with a part-based representation of the face
[18]:

� Eigenface-based system: The face verification system used for
the evaluation of the hill-climbing attack is based on the well
known eigenfaces technique introduced by Turk and Pentland
in [17]. This algorithm applies eigen-decomposition to the
covariance matrix of a set of M vectorized training images xi. In
statistical pattern recognition this technique is referred to as
PCA [19]. This method has become a de facto standard for face
verification and was used to present initial results for the
recent face recognition grand challenge evaluation [20].
The first similarity measure used to compare PCA based
features was the Euclidean distance, however, several other
similarity measures have been later proposed and studied [21].
The evaluated system uses cropped face images of size 64� 80
to train a PCA vector space where 80% of the variance is
retained. This leads to a system where the original image
space of 5120 dimensions is reduced to 91 dimensions
(K ¼ 91). Similarity scores are then computed in this PCA
vector space using the standard correlation metric, dðx; yÞ ¼
1� ½ðx� mxÞ � ðy � myÞ�=sxsy , as it showed the best perfor-
mance out of the tested similarity measures.
� GMM parts-based system: The GMM parts-based system used in

the evaluation tesselates the 64� 80 images into 8� 8 blocks
with a horizontal and vertical overlap of 4 pixels. This
tessalation process results in 285 blocks and from each block
a feature vector is obtained by applying the discrete cosine
transform (DCT); from the possible 64 DCT coefficients only
the first 15 coefficients are retained (K ¼ 15). The blocks are
used to derive a world GMM Ow and a client GMM Oc [18].

Experimentation found that using a 512 mixture component
GMM gave optimal results.
When performing a query, or match, the average score of the
285 blocks from the input image is used. The DCT feature
vector from each block vi (where i¼ 1 . . .285) is matched to
both Ow and Oc to produce a log-likelihood score. These scores
are then combined using the log-likelihood ratio,
Sllr;j ¼ log½PðvjjOcÞ� � log½PðvjjOwÞ�, and the average of these
scores is used as the final score, SGMM ¼

1
285

P285
j ¼ 1 Sllr;j. This

means that the query template can be considered to be a
feature matrix formed by 285 fifteen dimensional vectors
(representing each of the blocks in the image).

4. Database and experimental protocol

4.1. The XM2VTS database

The experiments are carried out on the XM2VTS face database
[14], comprising 295 users. The database was acquired in four
time-spaced capture sessions in which two different face images
of each client were taken under controlled conditions (pose and
illumination) to complete the total 295� 8¼ 2360 samples of the
database. Two evaluation protocols are defined for this database,
the Lausanne Protocol 1 and 2 (LP1 and LP2). In Fig. 2 some
examples of images that can be found in the XM2VTS are shown.

4.2. Performance evaluation

The performance of the evaluated systems is computed
based on the LP2 protocol. This protocol is chosen as the training
and evaluation data are drawn from independent capture
sessions.

According to LP2 the database is divided into: (i) a training
set comprising the samples of the two first sessions of 200
clients (used to compute the PCA transformation matrix, and the
world GMM Ow, respectively) and (ii) a test set formed by
the fourth session images of the previous 200 users (used to
compute the client scores), and all the eight images of 70 different
users with which the impostor scores are calculated. As a result of
using the same subjects for PCA training and client enrollment,
the system performance is optimistically biased, and therefore
harder to attack than in a practical situation (in which the
enrolled clients may not have been used for PCA training).
This means that the results presented in this paper are a
conservative estimate of the attack’s success rate. In Fig. 4 a
general diagram showing the LP2 evaluation protocol is given
(although defined by LP2, the development set was not used in
our experiments).

In the case of the eigenface-based system, the final score given
by the system is the average of the p scores obtained after
matching the input vector to the p templates of the attacked client
model C, while in the GMM system the p templates are used to
estimate the parameters of the client GMM (Oc). In Fig. 3 we can
see the system false acceptance rate (FAR) and false rejection rate
(FRR) curves for the eigenface-based system (left) and for the
GMM system (right), using the described protocol with p¼ 4
enrollment templates. The eigenface-based system presents an
equal error rate (EER) of 4.71%, while the GMM system shows a
better performance with a 1.24% EER. The three operating points
where the hill-climbing algorithm is evaluated (corresponding to
FAR¼ 0:1%, FAR¼ 0:05%, and FAR¼ 0:01%) are also highlighted.
These operating points correspond to a low, medium, and high
security application according to [22].

J. Galbally et al. / Pattern Recognition 43 (2010) 1027–1038 1029
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4.3. Experimental protocol for the attacks

In order to generate the user accounts to be attacked using the
hill-climbing algorithm, we used the train set defined by LP2 (i.e.,
samples corresponding to the first two sessions of 200 users).

The initial K-variate distribution G of the algorithm was
estimated using part or all the samples (depending on the
experiment) from the impostors in the test set (70 users) defined
in LP2 (referred to in the rest of the work as generation set). This
way, there is no overlap between the attacked set of users (200
accounts), and the subjects used to initialize the algorithm, which
could lead to biased results on the success rate (SR) of the attack.
The SR is defined as the number of accounts broken Ab by the
attack (i.e., accounts where the hill-climbing scheme reaches the
decision threshold d), divided by the total number of accounts

attacked AT ¼ 200. Thus, SR¼ Ab=AT . In Fig. 5 the partitioning of
the database used for the attacks is shown.

5. Experiments

The goal of these experiments is to study the vulnerability of
automatic face recognition systems to hill-climbing attacks. This
is achieved by examining the effectiveness of the Bayesian-based
hill-climbing algorithm in attacking two different face recognition
systems at several operating points. By performing these attacks it
will also be studied the ability of the Bayesian-based hill-climbing
algorithm to adapt, not only to different matchers, but also to
other biometric traits (it was already shown to be successful
attacking an on-line signature verification system in [13]).

Fig. 2. Examples of the images that can be found in XM2VTS.
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Fig. 3. FAR and FRR curves for the eigenface-based system (left) and the GMM-based system (right).
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Fig. 4. Diagram showing the partitioning of the XM2VTS database according to the LP2 protocol (which was used in the performance evaluation of the present work).
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Two case studies are presented for the attacks on the two
separate face verification systems. The first case study examines
the effectiveness of the Bayesian-based hill-climbing attack on the
eigenface-based system (Section 5.1). The second study uses the
previously found optimal configuration to attack the GMM parts-
based system (Section 5.2).

5.1. Case study 1: attacking an eigenface-based face verification

system

In the first set of experiments, we study the effect of varying
the three parameters of the algorithm (N, M, and a) on the success
rate (SR) of the attack over the eigenface-based system (described
in Section 3). The objective is to reach an optimal configuration
where the number of broken accounts is maximized, while
minimizing the average number of comparisons (ncomp) needed
to reach the fixed threshold d. As described in Section 2, the above
mentioned parameters denote: N the number of sampled points of
the adapted distribution at a given iteration, M the number of top
ranked samples used at each iteration to adapt the global
distribution, and a is an adaptation coefficient which varies from
½0 . . .1�.

The importance of the initial distribution G is also examined by
evaluating the attack performance when a smaller number of real
samples is used to compute G. The case where G is randomly
selected is also examined.

When presenting results the brute-force approach is used to
provide a baseline to compare with the hill-climbing algorithm.
We compare ncomp with the number of matchings necessary for a
successful brute-force attack at the operating point under
consideration (nbf ¼ 1=FAR). However, it should be noticed that
the proposed hill-climbing algorithm and a brute-force attack are
not fully comparable as the latter requires much greater resources
(e.g., a database of thousands of samples).

5.1.1. Analysis of N and M (sampled and retained points)

For the initial evaluation of the algorithm an operating point of
FAR¼ 0:01% was fixed (this FAR leads to an FRR of 50%). This FAR
implies that an eventual brute-force attack would be successful,
on average, after 10,000 comparisons. Given this threshold the
algorithm was executed for different values of N and M (fixing
a¼ 0:5) and the results are given in Table 1. The maximum
number of iterations (nit) allowed for the algorithm appears in
brackets. This value changes according to N in order to maintain
constant the maximum number of comparisons permitted
(ncomp ¼N � nit). In plain text we show the success rate of the
attack (in % over the total 200 accounts tested), while the average
number of comparisons needed for a successful attack is
represented in bold.

Examining Table 1 the optimal configuration for these
parameters is ½N¼ 25;M¼ 5� (highlighted in gray). For this point,

the number of accounts broken is maximized (86%) and ncomp is
minimized (4275). This minimum represents less than half of
the expected number of matchings required for a successful brute-
force attack (nbf ¼ 1=FAR¼ 10;000).

Further analysis of the results indicates that selecting the best
possible N has a deeper impact on the speed of the attack than
choosing a good value for M. This is because N represents the
number of scores produced at each iteration of the attack and
consequently has a direct impact on the number of comparisons
performed ncomp.

It can also be drawn from the results presented in Table 1 that
choosing a value such that N4M provides a better efficiency
(in terms of ncomp) than if MCN (the sub-sampling of the local
distribution is too general and so the speed of the attack is
reduced) or NbM (the sub-sampling of the local distribution is
too specific which again reduces the speed of the attack).

Irrespective of how N and M are optimized the number of
accounts broken by the attack remains stable. For almost all
the configurations evaluated 86% of the accounts were broken
(172 out of a total of 200). Further examining this result it was
found that the 28 clients who remain robust to the attack are the
same in all cases.

To search for an explanation, the 28 unbroken client models
(comprising the four images of the first two database sessions)
were matched to the other four images of the user (those
corresponding to sessions three and four). It was found that none
of the client models produced a score high enough to enter the
system, which means that these 28 clients would not be suitable

Session 25 Users 70 Users
11 2
12 2
13 2
1

4
2

Attacked Accounts
Generation Set
(samples used  
to compute G)

XM2VTS DB (295 Users) 
 Sample 200 Users 

Fig. 5. Diagram showing the partitioning of the XM2VTS database followed in the attacks protocol.

Table 1
Success rate (in %) of the hill-climbing attack for increasing values of N (number of

sampled points) and M (best ranked points).

N

10 25 50 100 200

(2500) (1000) (500) (250) (125)

M

3 84.5 86.0 86.0 86.0 86.0

5162 4413 4669 5226 6296
5 81.5 86.0 86.0 86.0 86.0

5796 4275 4512 5022 5988
10 85.5 86.0 86.0 86.0

4534 4540 5019 5941
25 86.0 86.0 86.0

5213 5379 6256
50 86.0 86.0

6455 6934
100 86.0

8954

The maximum number of iterations allowed is given in brackets. The success rate

(in %) appears in plain text, while the average number of iterations needed to break

an account appears in bold. The best configuration of parameters N and M is

highlighted in italic and bold italic.
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for face recognition under the considered system working at the
selected operating point. We can then conclude that the attack
successfully broke all the models that would be used in a real
application. In Fig. 6 the enrollment images which form three of
the resistant accounts are shown. In all cases we can observe a
great variance among the samples of a given model (glasses/not
glasses, different poses, and blurred images).

5.1.2. Analysis of a (adaptation coefficient)

For the optimal configuration of N and M the effect of varying a
on the performance of the attack is studied. This parameter is
changed from 0 (only the global distribution G is taken into
account) to 1 (only the local distribution L affects the adaptation
stage). The results are presented in Table 2 where the success
rate of the attack appears in plain text (%), while the average
number of comparisons needed for a successful attack is shown in
bold.

From Table 2 it can be seen that the optimal point is a¼ 0:5
(where both the number of accounts broken is maximized and the
number of comparisons needed minimized). This corresponds to
the case where both the global and local distributions are given
approximately the same importance. As in the previous experi-
ment, it can be noticed that 14% of the accounts (the same 28

clients as in the previous experiments) is never bypassed as a
consequence of the large user intra-variability.

5.1.3. Analysis of the initial distribution G

In the previous experiments the K-variate initial distribution G

was computed using the two images from the first session of the
70 users comprised in the generation set (see Fig. 5). In this
section the effect of estimating G using different number of
samples, and a random initialization of G, are both explored.

In Table 3 we show how the performance of the attack
varies depending on the number of samples used to estimate
this distribution G, for the best configuration of the attack
½N;M;a� ¼ ½25;5;0:5�. As the generation set comprises 70 users,
for numbers of images smaller than 70, one sample per subject
(randomly selected from the generation set) was used, while for
70 images or larger numbers, 1, 2, 4, and 8 samples from each
subject are used. In all cases, the resulting multivariate Gaussian G

results in ½�0:8omio0:5� and ½0:2osio18�, where mi and si are,
respectively, the mean and variance of the i-th dimension, with
i¼ 1 . . .91.

No real samples are used in the random initialization, where G

corresponds to a multivariate Gaussian of zero mean and variance
one.

Fig. 6. The four enrollment images (columns) constituting the model of three of the unbroken accounts (rows).

Table 2
Success rate (in %) of the hill-climbing attack for increasing values of a and for ½N;M� ¼ ½25;5�.

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SR (%) 0 84.5 86.0 86.0 86.0 86.0 86.0 81.0 71.5 51.0 20.0

ncomp 25,000 6468 5121 4617 4381 4275 4380 4990 7901 10,404 14,154

The success rate (in %) appears in plain text, while the average number of iterations needed to break an account appears in bold.

J. Galbally et al. / Pattern Recognition 43 (2010) 1027–10381032
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From the results shown in Table 3 we can see that the number
of samples used to compute the initial distribution G has little
effect on the performance of the attack. In fact, the experiment
shows that the algorithm can be successfully run starting from a
general initial distribution G of zero mean and unit variance. This
means that an attacker would not need to have any real face
images to carry out the attack (on the studied system), which is in
stark contrast to a brute force attack which requires a large
database to perform a successful attack.

5.1.4. Analysis of different operating points

Using the best configuration ½N;M;a� ¼ ½25;5;0:5� and starting
from a general initial distribution G of zero mean and unit
variance, the algorithm was evaluated in two additional operating
points of the system (see Fig. 3). The two additional operating
points are: (i) FAR¼ 0:05%, which implies nbf ¼ 2000 and leads to
FRR¼ 30%, and (ii) FAR¼ 0:1%, which implies nbf ¼ 1000 and
leads to FRR¼ 25%. Results are given in Table 4.

Smaller values of the FAR imply a bigger value of the threshold
d to be reached by the algorithm, which causes a rise in the
average number of iterations required for a successful attack.
However, the results in Table 4 demonstrate that this technique is
effective across multiple operating points. In all cases the number
of comparisons needed to break the system (using the Bayesian
hill-climbing attack) is lower than that of a brute force attack. The
hill-climbing approach has the added advantage that it does not
need any real face images to initialize the attack.

5.1.5. Graphical analysis of the attack

In order to illustrate graphically how the hill-climbing
algorithm works we repeated the attack for the best configuration
½N;M;a� ¼ ½25;5;0:5� at a high security operating point
(FAR¼ 0:01%). To visualize the hill climbing attack we present
the results using the Euclidean distance as the similarity measure.
This metric provides very similar results to those obtained with
the standard correlation metric (in terms of the SR of the attack

and ncomp), however, due to the different characteristics of both
measures (the standard correlation is angle based) the Euclidean
distance provides a more intuitive visual insight into the effect of
the hill-climbing attack, as can be observed in Figs. 7 and 8.

In Figs. 7 and 8 two examples of broken and non-broken
accounts (corresponding to two of the users presented in Fig. 6)
are shown. For each of the examples the evolution of the score
through the iterations of the algorithm is depicted. Highlighted
in each example are six points, including the first and the last
ones, of the iterative process marked with letters A through to F.
The dashed line represents the objective value to be reached
(i.e., the threshold d). The two upper faces correspond to one of
the original images of the attacked user and the reconstructed
image of a K-dimensional eigenface template (where part of the
information has been lost because of the dimensionality reduc-
tion). The sequence of the six faces below corresponds to the
feature vectors that produced each of the six scores marked with
A through to F. The first point A is produced by randomly sampling
the estimated general distribution G and the last point F
represents the image which is able to break the system. These
two figures show that the algorithm can be used not only as a
break-in strategy but also as a method to accurately reconstruct
the client’s face image (with the privacy issues that this entails).

In Figs. 7 and 8 we can observe that the hill-climbing algorithm
starts from a totally random face which is iteratively modified to
make it resemble as much as possible to the PCA projection of the
attacked user�s face labeled as ‘‘Original-PCA’’ (this effect cannot
be observed as clear when using the standard correlation metric).
In both cases (broken and non-broken accounts) the attack
successfully finds a final image which is very similar to the
objective face, however, in the case of the accounts resistant to the
attack, the threshold is not reached as a consequence of the large
user intra-variability, which leads to low scores even when
compared with images of the same client.

5.2. Case study 2: attacking a GMM face verification system

In order to attack the GMM-based system, the best configura-
tion of the algorithm found in the previous experiments was used
(N¼ 25, M¼ 5, and a¼ 0:5). The default operating point to attack
the system corresponds to FAR¼ 0:01% (this means that a brute
force attack would need on average to be successful nbf ¼ 10;000
matchings), which leads to FRR¼ 16%.

Two different approaches to the problem of attacking the GMM
system are tested in these experiments:

� Single block search: This attack searches for one block to break
the client’s account. As explained in Section 3, the client score
Sc is computed by taking the average score from all the blocks,
therefore, if we are able to find one good matching block and
replicate it for all the other blocks we should be able to
produce a score high enough to be granted access. With these
premises, this attack uses the Bayesian adaptation to search for
one 15 dimensional vector which is repeated 285 times in
order to produce the final synthetic template capable of
breaking the system.
� Multiple block search: In this case we search for a unique set of

vectors which are capable of breaking into the client’s account.
Like the single block search this attack undertakes a search in a
15 dimensional space, however, in this case 285 random
vectors (of 15 dimensions) are sampled to generate the
synthetic client template. As before, when performing the
Bayesian adaptation the average of the M best synthetic
templates is used to produce the vectors lL and rL. The fact
that we are looking for a greater number of vectors than in the

Table 3
Success rate (in %) of the hill-climbing attack for increasing number of samples

used to compute the initial distribution G.

Number of real samples used to compute G Random

(m¼ 0;s¼ 1)

5 10 35 70 140 280 560

86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0

4353 4307 4287 4283 4279 4285 4281 4492

N, M, and a are set to 25, 5, and 0.5, respectively. The success rate (in %) appears in

plain text, while the average number of iterations needed to break an account

appears in bold.

Table 4
Results of the attack for different points of operation and the best configuration

found of the attacking algorithm (N¼ 25, M¼ 5, a¼ 0:5).

Operating points (in %)

FAR¼ 0:1, FRR¼ 25 FAR¼ 0:05, FRR¼ 30 FAR¼ 0:01, FRR¼ 50

SR (in %) 99.0 98.5 86.0

ncomp 840 1068 4492

nbf 1000 2000 10,000

The success rate is given in plain text (over a total of 200 accounts), and ncomp in

bold. The average number of matchings needed for a successful brute-force attack

(nbf ) is also given for reference.
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single block search makes the multiple block search more
difficult to accomplish and also more difficult to detect.

5.2.1. Experiments starting from an average initial distribution G

For these experiments we computed an initial distribution G

representing the average block (i.e., mean and average of the 15
dimensional blocks found in several images). The distribution was
computed using a different number of images selected from the
generation set defined in the attack protocol (see Fig. 5). For

numbers of images smaller than 70, one sample per user
(randomly selected) is picked, while for larger numbers (140,
280, and 560) 2, 4, and 8 samples per subject are selected,
respectively. In Tables 5 and 6 the results for the single and
multiple block search approaches are shown.

For the single block search all the accounts are broken at the
first iteration of the attack (at each iteration 25 comparisons are
computed). This means that the Bayesian adaptation hill-climbing
algorithm is not necessary and that the system can be broken
using synthetic templates built replicating 285 times a random
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Fig. 7. Examples of the evolution of the score and the synthetic eigenfaces through the iterations of the attack for broken and accounts. The dashed line represents the

objective threshold.
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average block estimated using as few as five images. This serious
security flaw can be countermeasured by checking if all the blocks
in the template trying to access the system are different.

The multiple block search attack has almost a 100% success
rate regardless of the number of images used to compute the
initial distribution G. However, for this attack we would need, on
average, around 1200 comparisons (corresponding to 55 iterations
of the attack) to break the system. This represents less than one-
sixth of the matchings required by a successful brute force attack
(nbf 10;000) with the added advantage that just five real face
images are needed to perform the hill-climbing attack. Although

the multiple block search is slower than the single block search
approach, in this case countermeasuring the attack is significantly
more difficult as all the vectors, which form the synthetic
template, are different amongst themselves.

5.2.2. Experiments starting from a random initial distribution G

The GMM-based system was also attacked starting from a
random initial distribution G with zero mean and unit variance.
For the single block search approach 98% of the accounts (out of
the total 200 tested) were bypassed, and the average number of
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Fig. 8. Examples of the evolution of the score and the synthetic eigenfaces through the iterations of the attack for non-broken and accounts. The dashed line represents the

objective threshold.

J. Galbally et al. / Pattern Recognition 43 (2010) 1027–1038 1035



Author's personal copy
ARTICLE IN PRESS

matchings needed to enter the system was 1102. Although that
success rate is very high, we can observe in Fig. 9 that the
hill-climbing is not working properly as the score remains
unaltered and equal to zero throughout the iterations (there is
no increasing or hill-climbing effect) until at one point it very
rapidly (two or three iterations) reaches the objective value
(shown with a dashed line).

This behavior can be explained by the fact that the score given
by the system is the substraction of the client and the world
scores (see Section 3). As the synthetic templates are built
duplicating a block randomly selected from a general distribution
G, their appearance is completely different to that of a face and so
both similarity scores (those obtained from the world and client
model) are the same, leading to a zero final score. As the final
score obtained by all the synthetic templates is the same (zero),
we have no feedback as about the local distribution L (represent-
ing those templates which are more similar to the attacked one).
Therefore, the algorithm ends up doing a random search
until at some point one of the templates produces (by chance) a
non-zero score.

Even though this attack is the equivalent of a random search it
successfully breaks the system at the first attempt (corresponding
to 25 matchings) for 43% of the tested accounts. Therefore, this
security breach should be taken into account when designing
countermeasures (e.g., checking that all the blocks of the template
are different) for final applications.

The above experiments were repeated using the multiple block
search scheme. In this case, all 200 accounts were bypassed and
the average number of comparisons needed to break the system
was 3016. In Fig. 10 it can be observed that the hill-climbing
algorithm is able to produce the desired increasing effect in the

Table 5
Success rate (in %) of the hill-climbing attack under single (top) and multiple

(bottom) block search, for increasing number of real samples used to compute the

initial distribution G.

Number of real samples used to compute G

5 10 35 70 140 280 560

Sing. block search 100 100 100 100 100 100 100

25 25 25 25 25 25 25
Mult. block search 100 100 100 100 99.5 100 100

1031 1025 1631 1514 1328 1293 1254

The success rate (in %) appears in plain text, while the average number of iterations

needed to break an account appears in bold.

Table 6
Results of the attack for different points of operation and the best configuration

found of the attacking algorithm (N¼ 25, M¼ 5, a¼ 0:5).

Operating points (in %)

FAR¼ 0:1,

FRR¼ 5

FAR¼ 0:05,

FRR¼ 7

FAR¼ 0:01,

FRR¼ 16

Sing. block search 100 100 98

123 413 1102

Mult. block search 100 100 100

724 1835 3016

nbf 1000 2000 10,000

The success rate is given in plain text (over a total 200), and ncomp in (bold). The

average number of matchings needed for a successful brute-force attack (nbf ) is

also given for reference.
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Fig. 9. Evolution of the score for four of the broken accounts using the single block search approach on the GMM-based face verification system. The dashed line represents

the objective threshold.
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score throughout the iterations. We can see that the synthetic
templates produce a negative final score (they get a better
matching score from the world model than from the client
model, S¼ Sc � Sw) and thus, the algorithm gets the necessary
feedback to iteratively improve the estimate of the vector
distribution G. Again, this approach is slower than the single
block search, but on the other hand it is more difficult to
countermeasure as all the image blocks are different amongst
themselves.

5.2.3. Analysis of different operating points

The GMM-based system was evaluated at two additional
operating points, these being: (i) FAR¼ 0:05%, which implies
nbf ¼ 2000 and leads to FRR¼ 7%, and (ii) FAR¼ 0:1%, which
implies nbf ¼ 1000 and leads to FRR¼ 5%. For these experiments
the initial distribution G was chosen as a Gaussian distribution
with zero mean and unit variance and the two different attacking
approaches (single block search and multiple block search)
were tested.

The results indicate that the Bayesian hill-climbing attack is
effective for all of the operating points. The number of broken
accounts remains unaltered (100% for all cases) and, the same as
in the PCA-based system study, the number of comparisons
needed to break the system is always lower than that of a brute
force attack.

6. Conclusions

The robustness of two different face verification systems
(one PCA-based and one working on GMMs) against a hill-
climbing attack based on Bayesian adaptation has been studied.

Experimental results show that the two face verification systems
studied are highly vulnerable to this type of attack, with over an
85% success rate for all of the attacks; even when no real images
were used to initialize the algorithm. Furthermore, the attack
showed its ability to reconstruct the user’s real face image from
the scores, thus arising security issues concerning the privacy of
the client.

The performance of the Bayesian hill-climbing algorithm was
compared to a brute force attack. It was found that the Bayesian
hill-climbing attack is more efficient under all tested conditions.
In addition, it is worth noting that the resources required by
both approaches differ greatly. In order to perform an efficient
brute-force attack, the attacker must have a database of more than
a thousand real different templates, while the hill-climbing
approach does not need any real templates to be successful.

It has also been found that the GMM-based system, although
its overall performance is significantly better than the PCA-based
system, is very vulnerable to random attacks carried out with
templates formed by a replicated random or average block. This
important security flaw can be solved by incorporating to the
systems a mechanism to detect duplicated patterns in the image.

At the same time, the present study points out the serious risk
that the Bayesian-based hill-climbing algorithm represents as it
has been successfully applied not only to different matchers but
also to different biometric traits (in [13] it was shown to be an
effective method to attack an on-line signature verification
system). Thus, this threat should be studied when designing
biometric security systems working with fixed length feature
vectors of real numbers and delivering real similarity scores.

Applying this technique to a multi-class classifier and not a
verification system (two-class problem) is not straight forward.
Therefore, applying this technique directly to a multi-class SVM or

Iterations

S
co

re

0 50 100 150 200 250 300 350 400 450

50 100 150 200 2500

0

−6

−5

−4

−3

−2

−1

0

1

−2

−1.5

−1

−0.5

0.5

Iterations

S
co

re

0 100 200 300 400 500
Iterations

S
co

re

0 50 100 150 200 250 300 350 400 450

0

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0.5

−1.6
−1.4
−1.2

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4

Iterations

S
co

re

Fig. 10. Evolution of the score for four of the broken accounts using the multiple block search approach on the GMM-based face verification system. The dashed line

represents the objective threshold.
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probabilistic neural network represents a challenging attacking
scenario that will be the source of future research.
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