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École Polytechnique de Montréal
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Abstract—The kinematical information present in synthet-
ically generated signatures is analyzed using the Sigma-
Lognormal model and compared to the kinematical properties
of real samples. Experiments are carried out on totally inde-
pendent development and test sets and show a high degree of
similarity between humanly produced and artificial signatures.
One particular flaw is found in the velocity profile of synthetic
signatures. Two possible solutions are proposed to improve the
synthetic generation method using the Kinematic Theory of
rapid human movements.
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I. INTRODUCTION

With the increasing importance that biometric security

systems are acquiring in today’s society and their intro-

duction in many daily applications, a growing interest is

arising for the generation of synthetic biometric traits such

as voice [1], fingerprints [2], iris [3], handwriting [4], or

signature [5]. In many cases, these synthetically generated

traits have proven to present, when used in automatic recog-

nition systems, a very similar performance to that of the

real ones [6]. In addition, synthetic databases have the clear

advantage over real datasets of presenting a nearly effort-

free generation process in comparison to the time-consuming

and complicated process of real acquisition campaigns. All

these characteristics make synthetic samples very useful for

the performance evaluation of biometric systems.

However, in spite of their advantages in many potential

applications, the generation of realistic synthetic biometric

data still represents a very complex problem: modeling

the information contained in a certain biometric trait as

well as the inter-class and intra-class variations found in

real databases (i.e., variation between samples of different

subjects, and variation between samples of the same subject,

respectively). Furthermore, one of the problems to be faced

when generating synthetic biometric traits is the definition

of objective ways to quantify the realism of the produced

artificial samples. That is, to define the set of needs that

a synthetic sample has to satisfy in order to be recognized

and treated by automatic verification systems as a physically

collected trait.
For the particular case of on-line signature, we can

distinguish three different requirements that should be met

by synthetic samples: i) synthetic signatures should look as

close as possible to real signatures, ii) synthetic signatures

should present the same information as real signatures, and

iii) synthetic signature databases should present the same

inter- and intra-user variability as real signature datasets.
This work addresses the second of these requirements

focusing, in particular, on the analysis of the kinematic

information contained on real and synthetic signatures with

two objectives:

• Objective 1. Determine to what extent this type of

information is present in a similar manner in both types

of samples (real and synthetic).

• Objective 2. Use the knowledge acquired from the

experiments carried out to complete the previous ob-

jective, to propose a way to improve the generation

method of synthetic dynamic signatures.

For this purpose, we will use the Kinematic Theory of

rapid human movements, which was initially proposed for

the analysis of handwriting [7], [8] and then used for other

applications [9], [10]. This theory models in a realistic

way the different neuromuscular processes involved in the

production of handwriting through the application of the

Sigma-Lognormal model which can be used to parameterize

each of the strokes involved in the signing process [9].
The theory will be applied to analyze the kinematic

properties of real signatures from the BiosecurID database

[11], and synthetic signatures generated according to the

algorithm proposed in [5]. Although different methods have

been proposed in the literature for the generation of artificial

on-line signatures, the great majority follows duplicated
samples strategies which are able to produce different syn-

thetic impressions of a single real signature [12], [13],

[14], but cannot generate totally synthetic individuals. In a

previous work [5], a fully automatic model-based method

was proposed for the generation of totally synthetic datasets

(i.e., no real samples are used in the process); moreover,
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quantitative results were reported about the suitability of the

methodology for synthetic signature generation.

The paper is structured as follows. The Sigma-Lognormal

model is reviewed in Sect. II, while the method for synthetic

signature generation is revised in Sect. III. The experimental

protocol is presented in Sect. IV, and results are given in

Sect. V. Conclusions are finally drawn in Sect. VI.

II. THE SIGMA-LOGNORMAL MODEL

The Kinematic Theory of rapid human movements, which

was first introduced in [7], [8], relies on the Sigma-

Lognormal model to represent the information of both the

motor commands and the timing properties of the neuro-

muscular system involved in the production of complex

movements like signatures.

The Sigma-Lognormal model considers the resulting

speed of a single stroke j as having a lognormal shape Λ
scaled by a command parameter (D) and time-shifted by the

time occurrence of the command (t0).

|�vj(t; Pj)| = DjΛ(t − t0j ;μj , σ
2
j ) =

= Dj

σ(t−t0j)
√

2π
exp{ [ln(t−t0j)−μj ]

2

−2σ2
j

},
where Pj = [Dj , t0j , μj , σj , θsj , θej ] represents the set of

Sigma-Lognormal parameters:

• Dj : the amplitude of the input commands.

• t0j : the time occurrence of the input commands, a time-

shift parameter.

• μj : the log-time delays, the time delays of the neuro-

muscular system expressed on a logarithmic time scale.

• σj : the log-response times, which are the response

times of the neuromuscular system expressed on a

logarithmic time scale.

• θsj : starting angles of the circular trajectories described

by the lognormal model along a pivot.

• θej : ending angles of the circular trajectories described

by the lognormal model along a pivot.

Additionally, from the hypothesis that every lognormal

stroke represents the movement as happening along a pivot,

the angular position can be computed as

φj(t;Pj) = θsj +
θej − θsj

Dj

∫ t

0

|�vj(τ ; Pj)|dτ,

In this context, a signature can be seen as the output

of a generator that produces a set of individual strokes

superimposed in time. The resulting complex trajectory can

be modeled as a vectorial summation of lognormals (being

NLN the total number of lognormal curves in which the

signature is decomposed):

�v(t) = ΣΛ(t) =
NLN∑
j=1

�vj(t; Pj).

The velocity components in the Cartesian space can be

calculated from the tangential speed as:

�vx(t) =
NLN∑
j=1

|�vj(t; Pj)| cos(φj(t;Pj)),

�vy(t) =
NLN∑
j=1

|�vj(t; Pj)| sin(φj(t; Pj)).

The reconstruction error of a velocity profile using the

Sigma-Lognormal parameters can be evaluated by comput-

ing the SNR between the reconstructed specimen and the

original one [15]:

10 log(

∫ te
ts

[v2
xo(t) + v2

yo(t)]dt∫ te
ts

[(vxo(t) − vxa(t))2 + (vyo(t) − vya(t))2]dt
), (1)

where ts and te are respectively the starting and ending

times of the signature, and the subindex o refers to the

original velocity profile (x or y) while a corresponds to the

artificially reconstructed functions.

This fitness evaluation metric will be used in the experi-

ments (Sect. V-B) to estimate how well the velocity function

of synthetic signatures is reconstructed following the Sigma-

Lognormal model in comparison to real samples.

III. GENERATING DYNAMIC SYNTHETIC SIGNATURES

In the present contribution we will consider that on-

line handwritten signatures are described by three time

sequences, namely: i) the two trajectory functions x and y
defining respectively the horizontal and vertical movement

of the signing process, and ii) the function p that represents

the pressure exerted by the signer at each sampled point.

The synthetic signatures used in the experiments are

produced following an algorithm based on a generative

model obtained from the spectral analysis of real signatures,

and described in [5]. This method follows three steps in

order to generate realistic signatures starting from filtered

white noise:

• Step 1. A parametrical model in the frequency domain

is used to colour the white noise and create the synthetic

Discrete Fourier Transform (DFT) of the trajectory

signals x and y. The parameters that define the model

are: i) time duration, ii) number of low-frequency high-

energy coefficients (i.e., number of coefficients whose

energy exceeds a given threshold), iii) magnitude of

these relevant coefficients, iv) magnitude of the remain-

ing DFT coefficients (high-frequency and low-energy).

All these parameters are estimated from the BiosecurID

database [11], comprising 6,400 real signatures from

400 users collected over 4 acquisition sessions.

• Step 2. The Inverse Discrete Fourier Transform (IDFT)

is computed and the resulting trajectory signals are

processed in the time domain in order to give the
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Figure 1. Examples of real and synthetic signatures. The trajectories x[n], y[n], and pressure p[n] sequences correspond to the sample in the first row.

synthetic signatures a more realistic appearance. This

processing stage consists of: i) smoothing of the sig-

nals, ii) giving the x signal an increasing tendency (as

it is the case in most left to right written signatures),

iii) adding an artificial round-like flourish at the end

of some signatures, iv) translation, rotation and scaling

transformations.

• Step 3. The pressure function of the signature is gener-

ated following the BiosecurID [11] penups distribution

and according to the coordinate signals previously

created. The penups of the signal are located close to

maxima/minima of the y function (as it happens in most

of the cases in real signatures) and undesired effects are

suppressed (e.g., too long or too short penups, penups at

the start or the end of the signature, etc.) The pressure

signals are finally quantized to 1024 levels.

Once the three dynamic sequences (x, y, and p) have

been created, different samples of that master-signature are

generated modeling the user variability for intrasession and

intersession samples. The process for generating multiple

samples includes: i) scaling the three functions, ii) expand-

ing or contracting its length, and iii) adding smoothed white

noise to the trajectory sequences.

IV. EXPERIMENTAL PROTOCOL

Three different datasets were used in the experiments. One

development set (comprising real signatures) for the estima-

tion of the parameters that define the synthetic generation

method, and two test sets one real and one synthetic, to

compare the kinematic information present in both of them.

• Development set: For the estimation of the parame-

ters which define the synthetic generation method we

used the signature data in the BiosecurID multimodal

database [11]. This signature corpus includes for each

of the 400 users, 16 original samples captured in four

acquisition sessions over a six month time span which

makes it a very efficient tool to estimate the inter and

intrasession variability.

• Real test set: As real test set, the dynamic signature

data of the MCYT database was used [16]. The signa-

ture dataset used in the experiments is formed by 25

original samples for each of the 330 users present in

MCYT.

• Synthetic test set: The synthetic database produced

for the experiments (SDB) was generated following the

MCYT structure, comprising 330 different signers with

25 samples per user. The first 5 of those 25 signatures

were generated using the intrasession values of the

model parameters (estimated on the development set

BiosecurID), and the rest with the intersession values.

In Fig. 1 three samples of three real (left) and synthetic

(right) signers are shown. Real and synthetic signatures have

been extracted from MCYT and SDB respectively.

V. RESULTS

Two different experiments were carried out in order to

evaluate to what extent the kinematic information of real

signatures is present in a similar manner in synthetic sam-

ples. Results from each of the experiments are described in

the next sections.
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Figure 2. Distributions of the Sigma-Lognormal parameters for synthetic (SDB) and real (MCYT) signatures.

Percentage of shared kinematic information
NLN t0 D μ σ θs θe Mean

MCYT–SDB 76.51 90.97 73.36 74.47 78.32 82.81 88.92 80.77

Table I
PERCENTAGE OF SHARED KINEMATIC INFORMATION BETWEEN REAL AND SYNTHETIC DATABASES ACCORDING TO THE SIGMA-LOGNORMAL MODEL.

A. Experiment 1: Sigma-Lognormal parameters comparison

In this first experiment we analyzed the percentage of

shared information present in the real and synthetic test

sets (SDB and MCYT) according to the set of Sigma-

Lognormal features described in Sect. II. With this objective

the Sigma-Lognormal parameters were extracted from each

signature (six parameters per stroke) in MCYT and from

SDB following the method described in [15]. The set of

features was completed with a seventh parameter NLN

defining the number of lognormal strokes forming a given

signature.

In order to give a measure of the common information

between MCYT and SDB, the individual distributions of

each parameter for real and synthetic samples were com-

puted and the amount of information shared by both type

of signatures (real and synthetic) was estimated as the

area common to both distributions. That is, given the real

and synthetic distributions Ri and Si with i = 1 . . . 7,

corresponding to each of the 6 lognormal features plus

LLN , the shared information for one particular parameter is

defined as Ai = 1− 1/2
∫ |Ri −Si|, while the total amount

of common information for real and synthetic signatures

is computed as A = 1/7
∑

i Ai. These amounts of shared

information between real and synthetic signatures are given

in Table I.

In order to supply also with a visual comparison between

distributions in addition to the quantitative measures, the

real (solid) and synthetic (dashed) individual distributions

for each of the Sigma-Lognormal parameters are shown in

Fig. 2.

The main differences that can be pointed out from the

distributions depicted in Fig. 2 are that synthetic strokes are:

i) a little bit shorter (see D distribution), ii) slightly slower

(see μ and σ distributions), and iii) they do not present any

predominant starting or ending direction while real strokes

tend to begin and finish with an angle close to 0 or π (see

θs and θe distributions).

It should also be noticed that synthetic signatures are

formed by a slightly fewer number of strokes (see NLN

distribution) which combined with the previous observations

i) and ii) means that compared to real signatures artificial

samples are a little bit shorter from a spatial point of view,

but of the same duration.

Apart from the differences highlighted above, the results

given in Table I and Fig. 2 show that, from a general point of

view, the kinematic information of the synthetic signatures

is very similar (over 80%) to that found in real samples.
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Figure 3. Distributions of the reconstruction error of the velocity profile
for real signatures (MCYT) compared to synthetic signatures (SDB), left
plot, and to synthetic signatures discarding the initial and final 20 samples
(SDB20), right plot.

B. Experiment 2: Reconstruction error

In this second experiment, the velocity profile of real

and synthetic signatures was reconstructed from their set of

Sigma-Lognormal parameters and the reconstruction error

evaluated according to the SNR metric defined in Eq. 1. The

resulting distributions of the reconstruction errors committed

on real and artificial samples is depicted in Fig. 3 (left),

where we can observe that, although the Sigma-Lognormal

features (as proved in experiment 1) are very similar in both

types of signatures, the reconstruction of the velocity profiles

is much worse in the case of the synthetic samples.

This degradation in the reconstruction quality is due

to very high velocity peaks that can be observed at the

beginning and ending parts of the original velocity profile of

many of the synthetic signatures (see solid lines in Fig. 4),

which do not correspond to the typical movement of real

signers, where the velocity function starts and finishes at

zero (or near zero) values.

These abnormal speed artifacts can be corrected by dis-

carding a few initial and final samples of the synthetic

signatures. In Fig. 3 (right) we show the SNR distributions

for the reconstructed velocity profiles of the complete real

signatures in MCYT and the synthetic samples in SDB

without considering the first and last 20 samples (SDB20).

It can be observed that most of the reconstruction error

was concentrated in the erased samples as in this case both

distributions are very similar, the error committed in the

reconstruction of the synthetic samples being even a little

bit lower.

Although the previous approach (discarding the spurious

samples) has proven its efficiency, it artificially modifies

the synthetic signatures making them slightly shorter. A

better way of approaching the problem would be to use

the reconstructed Sigma-Lognormal velocity function (from

which the coordinate signals x and y may be recovered) as

the new master signature for the generation of duplicated

samples. In this way, by combining the spectral analysis

and the Kinematic Theory of rapid human movements,

the synthetic generation method would be improved as the

produced signatures would not present these type of high

velocity undesired artifacts (see the reconstructed velocity

functions in Fig. 4, dashed lines) and at the same time they

would encompass not only the topological and geometric

information, but also the full kinematic properties of real

signatures. This solution is beyond the scope of the present

study and will eventually be part of a follow up project.

VI. CONCLUSIONS

The kinematic information present in synthetic on-line

signatures has been analyzed using the Kinematic Theory

of rapid human movements and compared to the dynamic

properties of real samples.

The experiments, carried out using totally independent

development and test sets, have proven that to a very high

extent this type of information is shared in a very similar way

by both type of signatures (real and synthetic). However, in

spite of the clear similarities observed, a flaw has been de-

tected in the velocity profile of synthetic signatures and two

possible solutions have been proposed in order to improve

the synthetic generation method used in the experiments.
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