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A novel method for the generation of synthetic on-line signatures based on the spectral analysis and the

Kinematic Theory of rapid human movements, was presented in Part I of this series of two papers. In

the present paper, the experimental framework used for the validation of the novel approach is

described. The validation protocol, which uses different development and test sets in order to achieve

unbiased results, includes the comparison of real and synthetic databases in terms of (i) visual

appearance, (ii) statistical information, and (iii) performance evaluation of three competitive and totally

different verification systems. The experimental results show the high similarity existing between

synthetically generated and humanly produced samples, and the great potential of the method for the

study of the signature trait.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In Part I of this series of two papers [1], we introduced the
theoretical framework of a novel method for the generation of
synthetic on-line signatures. The proposed model-based algo-
rithm is capable of producing fully synthetic specimens using
the combined information obtained from spectral analysis and
the Kinematic Theory of rapid human movements, giving freedom
both in the number of subjects and samples per user to be
generated. In this way, the methodology constitutes a very
effective tool to overcome the usual shortage of biometric data
without undertaking highly resource-consuming acquisition cam-
paigns. In the present paper we describe the validation protocol
followed in order to determine the degree of similarity existing
between real and synthetic databases, and we analyze the
experimental results obtained. Hence, the main objective of this
second part is to present a consistent and replicable evaluation
methodology and results which validate the general on-line
signature generation approach presented in the preceding paper.

As it was introduced in Part I of this research work, the challenge
of generating artificial biometric samples is twofold: (i) on the one
hand, the intrinsic information contained in each of the synthetic
impressions has to be similar to that comprised within human-
produced traits, and (ii) on the other hand, the generation algorithm
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must be able to produce, in a fully automatic way, synthetic datasets
where the overall performance and behavior of a wide range of
biometric recognition systems working on that particular trait is
consistent and as close as possible, to that obtained on real databases.

Therefore, when validating an approach for the generation of
synthetic biometric traits, the problem to be faced is to determine
a way to measure, in a quantitative manner, the realism of the
synthetically produced samples. That is, to define the set of needs
that a synthetic sample has to satisfy in order to be recognized and
treated by automatic verification systems as a physically collected
trait. For the particular case of on-line signature, we can distin-
guish three different requirements that should be met by synthetic
samples. These requirements are closely related to the twofold
challenge of synthetic biometric traits generation exposed above,
and the experimental framework presented in Sections 3–5 is
focused on giving quantitative measures for each of them.
�

ign
Requirement 1: appearance: Synthetic signatures should look
as close as possible to real signatures (i.e., they should have a
signature-like visual appearance). This requirement is difficult
to quantify as it partly depends on the subjective evaluation of
the observer.

�
 Requirement 2: information: Synthetic signatures should

have the same statistical characteristics as real signatures.
This statistical information can be divided into: (i) topological
properties (related to geometry, direction and pressure),
(ii) spectral properties (related to time and frequency), and
(iii) kinematical properties (related to the speed and accelera-
tion of the strokes).
ature generation. Part II: Experimental validation, Pattern
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�
 Requirement 3: performance: Synthetic signature databases
should present the same inter- and intra-user variability as
real signature datasets, which means that the performance of
signature verification systems should be as similar as possible
when tested on synthetic and real databases.

The new model-based approach for realistic signature genera-
tion proposed in the previous article [1] is conceived to produce
samples which largely meet these three requirements.

The experimental framework has been designed to establish
the level of compliance of the novel scheme proposed, with the
twofold challenge posed by the synthetic traits generation pro-
blem. The tests comprise results aimed to evaluate to what extent
the synthetic signatures present the same type of information as
human produced samples (i.e., challenge (i)), and experiments
where the global behavior of signature verification systems is
assessed both on real and synthetically generated databases (i.e.,
challenge (ii)). In all the experimental framework, different
datasets have been used in the development and test stages in
order to obtain totally unbiased results.

The validation protocol includes the visual comparison of the
artificial samples appearance and that of real signatures (require-
ment 1), and the quantitative comparison between the distribu-
tions of different distinctive signature global features in the real
and synthetic databases (requirement 2). In the recognition
experiments, we compare the performance of three state-of-
the-art signature verification systems (working on totally differ-
ent features and matchers), using two real databases and
two synthetic datasets generated following the proposed
scheme (requirement 3). The different results obtained show
the high degree of similarity existing between the synthetic and
real signatures and the suitability of the proposed technique for
the automatic generation of fully synthetic on-line signature
databases.

As was presented in Part I, the proposed synthetic approach is a
general method that can generate, depending on the value of its
parameters, databases with different levels of intra- and inter-user
Stage 1:
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Fig. 1. Validation strategy followed to evaluate the methodology fo

Please cite this article as: J. Galbally, et al., Synthetic on-line s
Recognition (2012), doi:10.1016/j.patcog.2011.12.007
variability (i.e., different degrees of difficulty in terms of automatic
signature recognition). In the present work we have tried to adapt the
generation method to the level of variability found in standard real
databases of western-European signatures such as MCYT [2] or
BiosecurID [3]. Although other measures have been proposed in the
literature [4], the most common metric to account for the difficulty of
a database is the performance evaluation of different verification
systems. This is the perspective followed in the third validation
experiment described in the present article.

The rest of the article is structured as follows. In Section 2 the
development (Section 2.1) and test (Section 2.2) databases used in
the validation protocol are presented. The experimental results
are divided in: appearance tests, Section 3; information compar-
isons, Section 4; and performance evaluations, Section 5. Conclu-
sions are finally drawn in Section 6.
2. Databases

In order to avoid biased results, four different datasets are used
in the experiments. One development set (comprising western-
European real signatures) where the parameters of the generation
model are estimated, and three test sets, one real (different from the
development set, but also containing western-European signers) and
two synthetic, where comparative results on the performance of the
generation algorithm are obtained. In Fig. 1 we show the general
validation strategy followed to evaluate the methodology for syn-
thetic on-line signature generation described in Part I [1], with the
databases used in the development and test stages.

2.1. Development database: BiosecurID

The parameters which define the method for synthetic on-line
signature generation proposed in [1] (shown here in Fig. 1) are:
�

r sy

ign
Synthetic individuals: N (signature length), NR (number of
relevant spectral coefficients), G (power ratio), PU (number of
penups), S (signature slope), F (round-like flourish length).
Eperimental Validation: Realism Estimation 

TEST: MCYT (real), SDB1 and SDB2 (synth.) 

Experiment 1: APPEARANCE 

Experiment 2: INFORMATION 

Experiment 3: PERFORMANCE

Real / Synthetic?

Amount of shared
information between
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different systems with
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signatures    

nthetic on-line signature generation described in Part I [1].
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�

P
R

Duplicated samples:
J Algorithm 1: SNR¼ ½SNRx,SNRy� (noise addition), M

(resampling), and a¼ ½ax,ay,ap� (amplification). With differ-
ent SNR, M and a for intra-session and inter-session
samples.

J Algorithm 2: C¼ ½ct0
,cD,cm,cs,cys

,cye
� (distortion matrix

of the Sigma-Lognormal parameters). Again with different
values for inter-session and intra-session variability.
lea
eco
For the estimation of these parameters we used the signature
data in the BiosecurID multimodal database [3] which was acquired
in five different Spanish universities. BiosecurID, comprises eight
different biometric traits of 400 users and was captured in four
acquisition sessions over a 6-month time span (which makes it an
efficient tool to estimate the inter and intra-session variability).
The signature subset comprises for each user, 16 original samples
(four samples per session), and 12 forgeries carried out with an
increasing degree of skill over the sessions (both the off-line and on-
line information of each signature is available.) In the present work,
the imitations were discarded and the 400� 16¼ 6400 genuine
dynamic signatures were used as development set.

The values obtained on this dataset for each of the parameters
defining our generation model of synthetic individuals are given
in Appendix A.

2.2. Test databases: MCYT, SDB1, and SDB2

Three different databases, one real and two synthetic, are used
in the experiments as test data in order to evaluate the perfor-
mance of the synthetic on-line signature generation scheme
described in Part I of the present report:
�
 Real test set: MCYT: The dynamic signature data of the MCYT
database (comprising signature and fingerprint information of
330 users) is used as real test set [2]. This way we ensure that
no overlap exists with the development set: different acquisi-
tion protocols and sites, different users, number of samples,
etc. The signature subcorpus in MCYT is formed by 25 original
samples and 25 skilled forgeries per user (captured in five
different acquisition sets). For the validation experiments the
original data are used while the forged samples are discarded.

�

Fig. 2. Set of 100 real and synthetic samples used in Experiment 1 to evaluate the

realism of the visual appearance of synthetic signatures. Real signatures are

highlighted in gray.
Synthetic test sets: SDB1 and SDB2: Two different synthetic
databases were produced for the experiments, one using
Algorithm 1 for the generation of duplicated samples (SDB1),
and the other following Algorithm 2 (SDB2). Both synthetic
datasets follow the MCYT structure, comprising 330 different
signers with 25 samples per user. The first 5 of those 25
signatures are generated using the intra-session values of the
model parameters (estimated from the development set Bio-
securID), and the remaining 20 specimens present a higher
variability in order to imitate samples acquired in different
sessions (inter-session values of the parameters).

Three different experiments were carried out on the previous
databases in order to estimate the level of compliance of the
synthetic samples with each of the three requirements that should
be met by synthetic signatures and which were defined in Section 1.
3. Validation experiment 1: appearance comparison

This first experiment is designed to evaluate from a statistical
point of view the subjective perception that non-expert human
observers have of synthetic signatures. For this purpose, the set of
100 real and synthetic samples shown in Fig. 2 was given to a group
of 25 people with naive knowledge on signature recognition and
se cite this article as: J. Galbally, et al., Synthetic on-line s
gnition (2012), doi:10.1016/j.patcog.2011.12.007
they were asked to mark each specimen from 0 (fully synthetic) to
4 (somewhat synthetic) and from 6 (somewhat real) to 10 (fully
real) according to their impression after a quick inspection of the
signature. The maximum time permitted to complete the experi-
ment was 20 min.

Although sometimes the synthetic generation method produces
isolated characters, in general it is not capable of generating hand-
writing or real names, thus, in order to make the task more difficult
and fair, the 50 real signatures were chosen from the MCYT DB with
the only restriction that no easily readable name could be distin-
guished. The 50 synthetic signatures were randomly selected from
SDB1 and SDB2 (half from each dataset).

Two types of errors can be committed in the classification task:
(i) a real signature is marked as synthetic (0–4), measured by the
False Synthetic Rate (FSR), and (ii) a synthetic signature is mistaken
ignature generation. Part II: Experimental validation, Pattern
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Table 1
Error rates, average scoring and average time produced by the 25 participants in

Experiment 1: classifying as real or synthetic the set of 100 signatures shown in

Fig. 2. FSR stands for False Synthetic Rate, FRR for False Real Rate, and ACE for

Average Classification Error.

Error rates (%) Average scoring Average

time (min)

FSR FRR ACE Real Synthetic

35.28 36.72 36.00 5.91 4.16 11.5

Table 2
Information divergence between real and synthetic databases generated following

the methodology described in the present work. Smaller values indicate a higher

amount of shared information.

DBs Relative entropy

Time Direct. Speed Geom. Total 20-Best

MCYT–Bio.ID 0.03 0.14 0.05 0.12 0.09 0.11

MCYT–SDB1 1.01 0.52 0.30 0.74 0.64 0.62

MCYT–SDB2 1.21 0.64 0.90 0.90 0.92 1.13

MCYT–Unif. 1.31 1.42 2.93 2.01 1.92 1.75
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with a real sample (ranked 6–10), measured by the False Real Rate
(FRR). The final Average Classification Error (ACE) is defined as
ACE¼ ðFSRþFRRÞ=2. These error rates are presented in the first three
columns of Table 1. In the next two columns we give the average
scoring given by all 25 subjects to the 50 real and synthetic samples.
Finally the average time taken to complete the experiment is shown.

From the results presented in Table 1 we can see that over one
third of the signatures (36%) were misclassified, proving the real-
like appearance of synthetic samples (a random classifier would
present an ACE of 50%). It should also be noticed that both error
rates FSR and FRR are very similar (35.28% and 36.72%, respec-
tively) which means that the number of mistaken real and
synthetic samples is very similar and that it is not easier to
distinguish one class over the other.

As well, the FSR obtained on the samples of both synthetic
databases, SDB1 and SDB2, was almost identical (33.66% and
36.90%, respectively), showing that the visual appearance of the
samples generated by either method is very similar and close to
that of real signatures.

Furthermore, the average scoring given by the users to real
(5.91) and synthetic specimens (4.16) is quite close, reinforcing
the idea that human subjects have a very similar perception of
both types of signatures.

Finally, we have to remark that the average time taken by the
users to carry out the experiment was 11.5 min (around 7 s per
signature), which is fully aligned with the overall objective of the
experiment of not making a detailed and profound analysis of
each signature, but estimating the general visual appearance of
synthetic samples after a short inspection.
4. Validation experiment 2: information estimation

In addition to the observable similarity between the real and
synthetic signatures appearance (patent from the results obtained
in the first experiment), two other experiments were carried out
in order to assess the suitability of the proposed synthetic
signature generation algorithm.

In this second experiment, we evaluated the compliance of the
synthetic generation algorithm with requirement 2. With this
objective, we studied to what extent the synthetic signatures in
SDB1 and SDB2 present the same information as the real signa-
tures in MCYT, according to the comprehensive set of 100 global
features described in [5].

In the experiment, this 100-feature set, which comprises many
of the features of the most popular works on feature-based
signature verification [6], is extracted from each signature in
MCYT and from both synthetic databases. Then, in order to give a
measure of the common information, the individual distributions
of each parameter for real and synthetic samples are computed
and the similarity between both types of signatures (real and
synthetic) is estimated as the Kullback–Leibler divergence [7]
(also named relative entropy or information divergence).
Please cite this article as: J. Galbally, et al., Synthetic on-line s
Recognition (2012), doi:10.1016/j.patcog.2011.12.007
The Kullback–Leibler divergence DðRJSÞ is used in probability
theory and information theory as a way to measure the difference
between two probability distributions R and S. Typically R

represents the true distribution of data, observations, or a precise
calculated theoretical distribution which, in this particular case,
will be represented by each parameter distribution extracted
from MCYT, Ri with i¼ 1 . . .100. The distribution S typically
represents a theory, model, description, or approximation of R

which in this case will be each parameter distribution extracted
from SDB1 and SDB2, Si with i¼ 1 . . .100.

For probability distributions Ri and Si of a discrete random
variable X their K–L divergence is defined as

DiðRiJSiÞ ¼
X

xAX
RiðxÞ log

RiðxÞ

SiðxÞ
: ð1Þ

The K–L divergence for the whole 100 feature set is then
computed as D¼ 1=100

P
iDi. The relative entropy is always

nonnegative and is zero if and only if R¼S, that is, the smaller
the K–L divergence the higher the shared information by the two
distributions R and S.

The parameters comprised in the 100 feature set considered in
this experiment can be classified according to the signature
property measured in [8]: (i) time related features, (ii) direction
related features, (iii) speed and acceleration related features, and
(iv) geometry related features. The amount of information present
in synthetic signatures of SDB1 and SDB2 for each of these groups
according to the K–L metric defined above (Eq. (1)) is given in the
first four columns of Table 2, while the fifth column corresponds
to the information for the whole feature set. As the distributions
of the set of parameters may also vary among databases compris-
ing real signatures, for completion and also as a baseline result, in
Table 2 the information divergence in the two real databases used
in the validation protocol, BiosecurID and MCYT, is also given.
Also for reference, the value of the relative entropy between the
parameter distributions extracted from MCYT and uniform dis-
tributions is given in the last row of Table 2.

Apart from the previous classification, the 100-feature set has
been studied in signature verification tasks [9], where a best
performing 20-parameter subset was found using the Sequential
Forward Floating Selection (SFFS) algorithm [10]. The K–L diver-
gence between real and synthetic signatures for this subset is
given in the last column of Table 2.

Several observations can be extracted from the results presented
in Table 2: (i) the K–L divergence between real databases for all the
groups of parameters analyzed is very small and consistent (always
around 0.1), which suggests that the 100-feature set is a good way to
condense the information contained in signatures; (ii) the amount of
shared information between real and synthetic datasets is quite big
(K–L divergence lower than 0.7 for the best synthetic dataset), and for
all cases clearly higher than the similarity obtained with a uniform
distribution; (iii) the information divergence is slightly lower for all
subsets considered in the case of SDB1 compared to SDB2 (0.64
ignature generation. Part II: Experimental validation, Pattern
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against 0.92 when the whole 100 feature set is taken into account).
From this last observation, we can infer that the direct modification of
the Sigma–Lognormal parameters (Algorithm 2 for the generation of
duplicated samples) is slightly worse than Algorithm 1 with respect
to maintaining the information present in real signatures. This may
be explained by the fact that while Algorithm 1 directly modifies the
x and y functions, Algorithm 2 first reconstructs the velocity signal,
introduces some deformations in it, and then decomposes it again
into the new coordinate sequences. In spite of being very accurate, in
the latter case, the reconstruction and decomposition processes may
introduce some unwanted noise into the x and y functions that can
account for the small loss of information observed.

However, Algorithm 2 provides more natural results in some
parts of the signatures (e.g. it better preserves the nonlinearity of
the time fluctuations between samples). This is because Algo-
rithm 2 is based on information extracted from the neuromus-
cular impulses involved in human handwriting encompassed in
the Sigma–Lognormal model. As a result, we can conclude that
Algorithm 1 and Algorithm 2 are complementary.
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In order to supply also with a visual comparison between
distributions in addition to the quantitative measure, the real (solid)
and synthetic (dashed) individual distributions for each of the para-
meters comprised in the best performing 20-feature subset are shown
in Fig. 3 (the parameter numeration followed is the same used in [5]).
The complete best performing 20-feature subset is given in Appendix
B. Although the synthetic distributions have been obtained using
SDB1, those corresponding to SDB2 do not present any significant
difference to the ones shown here, and are just omitted for clarity.

From the resulting individual distributions of real and syn-
thetic signatures shown in Fig. 3, we can observe the clear
correlation that exists between them, not only in the quantitative
values, but also in shape and appearance, being in some cases
(parameters 1, 8, 21, 34, 57, and 77) practically identical.

We can conclude from the results shown in Table 2 and Fig. 3
that most of the features, and therefore most of the information,
that characterize the signature trait, are present in a very similar
fashion both in the real and synthetic signatures generated
according to the proposed approach.
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5. Experiment 3: performance measure

In this last experiment, we focused on the analysis of the third
requirement given in Section 1 to be complied by synthetic
signatures, that is, if the behavior of signature verification
systems is similar when they are evaluated on real and synthetic
databases. For this purpose, we have assessed the performance of
three different competitive on-line signature verification systems
using totally diverse feature sets (feature- and function-based)
and matchers (distance measure, Hidden Markov Models, and
Dynamic Time Warping), over the three test databases (MCYT,
SDB1 and SDB2).

Two different scenarios have been considered in the experi-
ments, namely: (i) a realistic working scenario where a reduced
number of samples of each user are available to train its model,
and (ii) a hypothetical case study in which we may have many
training samples for each user. The protocol followed to compute
the set of genuine and impostor scores in each of the cases was:
�

P
R

Few training samples: The first five signatures were used to
train the user model, and the remaining 20 samples were used
as test set, thus producing 20� 330¼ 6600 genuine scores.

�
 Many training samples: The user model was trained with 20

signatures, and the remaining five samples were used as test
set, which gives 5� 330¼ 1650 genuine scores.

In both cases the set of impostor scores was computed using
one signature of the remaining users, which means that we have a
total 329� 330¼ 108;570 non-genuine scores.

The three on-line verification systems evaluated in the experi-
ments were:
�
 System A: feature-based þ Mahalanobis distance: This
system models the signature as a holistic multidimensional
vector composed of the best performing 40-feature subset
extracted in [9] from the total set of 100 global features
described in [5] (the analogue best 20-feature subset was
already used in experiment 2 of the present work). In the
present study, we used this 40-feature representation of the
signatures normalizing each of them to the range [0,1] using
the tanh-estimators described in [11]. Finally, the similarity
scores are computed using the Mahalanobis distance between
the input vector and a statistical model of the attacked client
estimated using a number of training signatures (few/many
depending on the scenario).

�
 System B: function-based þ HMM: This function-based

verification system applies a regional approach using a statis-
tical model built using Hidden Markov Models (HMMs) [12] to
a set of 10 time sequences selected applying the SFFS feature
selection algorithm to the total set of 34 functions defined in
[13]. This subset of 10 signals are derived from the coordinate
(x and y) and pressure (p) functions, while no pen inclination
signals are used as its utility for automatic signature recogni-
tion is at least unclear [14]. After some preprocessing (position
and rotation alignment), and the computation of extended
functions (path angle, velocity, curvature, acceleration, and
time derivatives) to complete a set of 23 time sequences,
similarities are computed using 12 left-to-right HMM states
and mixtures of four Gaussians per state. This system partici-
pated in the Signature Verification Competition 2004 with
very good results [15], and the general configuration is
detailed in [16].

�
 System C: function-based þ DTW: In this function-based

local approach a subset of nine time functions (selected using
SFFS from the total 34 feature set as in the case of system B)
are directly matched using the elastic technique Dynamic Time
lease cite this article as: J. Galbally, et al., Synthetic on-line s
ecognition (2012), doi:10.1016/j.patcog.2011.12.007
Warping (DTW) [17]. Dynamic Time Warping is an application
of Dynamic Programming to the problem of matching time
sequences of different lengths, thus, the goal of DTW is to find
an elastic match among samples of a pair of sequences that
minimize a given distance measure. In this particular imple-
mentation, which is thoroughly described in [18], we use the
Euclidean distance as the measure to be optimized and only
three correspondences among samples of the compared
sequences are allowed, using symmetrical weighting factors.
Although the DTW algorithm has been replaced by more
powerful ones such as HMMs or SVMs for speech applications,
it remains a highly effective tool for signature verification as it
is best suited for small amounts of training data, which is a
common case in signature verification.

In the particular context of this experiment, the ultimate goal
of biometric traits synthesis would be to produce synthetic
databases such that the DET (Detection Error Trade-off) curves
obtained on any verification system are as similar as possible to
those achieved using real datasets. We cannot forget that one
given verification system will not present exactly the same
behavior even when evaluated with two different real datasets,
thus, a certain variability on the performance among real and
synthetically produced data would be not only acceptable but
desirable.

The performance results (DET curves) obtained for verification
systems A, B and C, following the described experimental proto-
col, and for the three mentioned databases (MCYT, SDB1 and
SDB2), are shown in Fig. 4. We can observe that the curves of the
three systems under the two considered scenarios present a very
high degree of resemblance, both from a quantitative (EERs) and
qualitative (general behavior) point of view, for the case of real
and synthetic signatures. Note for example the high similarity of
the DET curves for system A with five training signatures.

The results obtained for both synthetic databases are quite
remarkable. We may argue that, from a qualitative point of view,
SDB1 presents in general a slightly better fit with the performance
obtained for MCYT than SDB2. However, if we analyze the results
upon the basis of the EER, SDB2 reaches more similar values to
MCYT in three out of the six cases, and in two out of three when
only the more realistic 5 Tr. scenario is considered (three training
signatures is the upper limit for many commercial applications).

The performance of systems B and C on both scenarios (few/
many training signatures) was also analyzed without considering
the pressure function (which is not captured by all on-line
signature acquisition devices). System A was not included in this
case since many of its features are based on the pressure function.
With this experiment, we have been able to study the impact of
including the pressure information in the overall performance of
the systems, and study if the synthetic pressure function has a
similar effect than the real pressure on the error rates of the
verification applications considered. Results are shown in Fig. 5
where we can observe that the performance of the systems
worsens compared to the case in which the pressure signal is
included. It is important to notice that this increase in the error
rates occurs in a very similar way for the case of real and
synthetic signatures, which suggests that the artificial pressure
function contributes to the general performance of the verifica-
tion systems in an analogue manner than the humanly produced
signal.

Again, when comparing the performance of both synthetic
databases, we may observe the same trends as in the scenario
where the pressure function was considered: although the sub-
jective appearance of the SDB1 curves is slightly more similar to
MCYT than SDB2, the EER reached with SDB2 is closer to that of
MCYT for all four tests. Thus, in general, Algorithm 1 or 2 can be
ignature generation. Part II: Experimental validation, Pattern
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Fig. 4. Comparison of the performance of systems A, B, and C, for 5 and 20 training signatures, on a real (MCYT, gray DET curve) and synthetic databases (SDB1 and SDB2,

solid and dashed black DET curves). The EER (Equal Error Rate) is indicated in each plot. FAR stands for False Acceptance Rate, FRR for False Rejection Rate and Tr for

training signatures.
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used depending on whether the user wants to obtain a better
estimation of a system’s overall behavior (SDB1), or a more exact
quantitative measure of the EER operating point (SDB2).

Moreover, for most cases in both scenarios (with and without
taking into account the pressure information), SDB1 provides an
upper limit to the real signatures curves, while, in turn, SDB2
produces a lower bound. This may account for the complemen-
tarity of both algorithms, which should be jointly used for a better
estimation of the performance of on-line signature verification
systems.

We may conclude that the results and conclusions derived
from this third validation experiment, confirm the great potential
of the described generation methodology and prove its suitability
for obtaining reliable estimations on the performance of signature
verification systems.
6. Conclusions and discussion

The novel method for the generation of synthetic on-line hand-
written signatures introduced in the first paper of this series of two
papers has been evaluated in the present paper using two different
development and test sets in order to avoid biased or over optimistic
results. Although several general indications as how to evaluate
synthetic databases are given, and some of the ideas proposed and
used here may be applicable to the evaluation of synthetic datasets
containing other biometric traits, addressing the problem of synthetic
database evaluation from a general perspective would constitute in
itself a whole new work that falls out of the scope of this research.

The validation protocol included three different experiments
where synthetic and real signatures were compared in terms of:
(i) visual appearance, (ii) statistical information which they
present, and (iii) performance evaluation of three competitive
Please cite this article as: J. Galbally, et al., Synthetic on-line s
Recognition (2012), doi:10.1016/j.patcog.2011.12.007
and totally different signature verification systems. In all the tests,
the synthetic signatures obtained remarkable results, showing a
very high degree of similarity in all the considered scenarios with
humanly produced samples.

A comparative evaluation of both duplicated samples genera-
tion algorithms was also conducted in the validation experiments.
Both schemes, one of them based on some signal processing
simplifications and the other based on biomechanical properties
of the human handwriting, reached very good results showing a
high degree of complementarity specially for performance eva-
luation purposes.

The validation protocol and results described in the present
work have demonstrated that, from a computer-based recogni-
tion point of view, the databases produced following the proposed
generation approach are fully representative of the different real
signatures that may be found in every day life in a western-
European context. This was the primary goal of the novel research
work described in Parts I and II. From a human perspective, it is
clear that some of the signatures have a more realistic appearance
than others as the proposed algorithm is not capable of producing
readable names but only, by chance, isolated characters. Even
though this was not the primary objective of the project, the first
evaluation experiment has clearly shown that the synthetic
methodology is specially effective generating human-like signa-
tures consisting of just some sort of flourish.

The validation results described in this work have shown that
the novel generation method presented in Part I constitutes a very
powerful and useful system with a great potential for many
different tasks such as: performance estimation [19], security
evaluation in order to test existing biometric solutions against
fraudulent attempts [20], individuality studies [21], or for synthe-
tically increasing the amount of enrollment data in order to
improve the performance of a given application [22].
ignature generation. Part II: Experimental validation, Pattern
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It should be emphasized that the objective of this novel work
is not to encourage the substitution of real signatures by synthetic
ones, but rather to provide a powerful tool for the development of
signature recognition systems. In particular, the synthetic signa-
tures can be used to objectively compare the authentication
efficiency, limitations, and capabilities of newly designed verifi-
cation algorithms through their testing on a large-scale dataset of
synthetically generated signatures. However, although it has been
proved that synthetic traits contain similar characteristics and
information to that of real samples, and therefore constitute a
very useful aid for performance estimation, they should not be
seen as a substitute but as a complement of real traits and the
definitive evaluation of a given system should always be carried
out in a realistic working environment and using real data.
Therefore, the use of synthetic biometric data should be under-
stood as a valid alternative in order to obtain a fast and reliable
estimate of the recognition performance of biometric systems
under controlled and repeatable conditions which enable the fair
comparison of different algorithms, but in no case as a replace-
ment of human-generated data.

Also to be noticed that the UK Biometrics Working Group [23]
has published a set of best practices for testing and reporting
Please cite this article as: J. Galbally, et al., Synthetic on-line s
Recognition (2012), doi:10.1016/j.patcog.2011.12.007
performance results of biometric systems [24], where it is advised
to avoid adding synthetic data to a test set, or adding noise to the
data for scenario testing in order to prevent the bias derived from
those practices that often makes the results difficult to interpret.
However, neither of these cases is similar to the scenario studied
and proposed in this work, where we did not artificially increase
the amount of real data with synthetically generated samples, but
we created fully synthetic databases on which it was shown that
different verification systems present performance results which
are consistent with those reached on real datasets.
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Appendix A. Parameter values

The values obtained on the development dataset (BiosecurID)
for each of the parameters defining our generation model of
synthetic individuals are given below. It should be noticed that
using different development and test sets ensures that the feature
values shown here are not tuned to obtain over optimistic results
in the validation tests.

As the synthetic generation approach is general, these values
may be recomputed on different development databases (e.g.
containing Asian, North American, or Arabian signatures) in order
to produce specimens with more similar characteristics to other
type of signers different from the western-European considered in
the present work.

The values of the parameters obtained on the development
dataset defining the model for the generation of the master
signature are:
�

P
R

Parameter N: It follows the length distribution of the
development set.

�
 Parameter NR: The values that define the uniform distribution

from which this parameter is extracted are: ½dmin
N ,dmax

N � ¼

½0:15,0:26�, with NR ¼ dNN.

�
 Parameter G: The ratio between the power of the relevant and

non-relevant coefficients follows a uniform distribution
defined by Gmin

¼ 8 and Gmax
¼ 19.
�
 Parameter PU: It follows the penups distribution of the
development set according to the signature length N (i.e.,
longer signatures present a higher probability of having a
bigger number of penups.)

�
 Parameter S: The values that define the uniform distribution

which allow to compute the slope of left-to-right written
signatures are: ½dmin

S ,dmax
� ¼ ½0:05,0:25�, with ss ¼ dSN, sl ¼N,

and S¼ ss=sl.

�
 Parameter F: The values that defines the uniform distribution

from which the length of the round-like flourish is estimated
are: ½dmin

F ,dmax
F � ¼ ½0:08,0:17�, with F ¼ dF N. This waveform is

added to the signatures with a probability pF¼0.37.

The values of the parameters defining Algorithm 1 (for the
generation of duplicated samples) obtained on the development
dataset are:
�

Table 3
Set of best performing 20 global features considered in Section 4 of the present

work, sorted following the numeration used in [5] where they were first

introduced. T denotes time interval, t denotes time instant, N denotes number of

events, and y denotes angle. Note that all notations are either defined or

referenced somewhere in the table (e.g., Dx is defined in 17, histograms in

57,65, and 66 are referenced in 34, etc.).

# Feature description # Feature description

1 Signature total duration Ts 2 N(pen-ups)

5 Standard deviation of ay 8 N(local maxima in x)

9 Standard deviation of ax 17 ðx1st pen�down�xmin Þ

Dx ¼
Ppen�downs

i ¼ 1
ðxmax9i�xmin9i Þ

18 ðylast pen�up�yminÞ=Dy 20 ðTw average velocity vÞ=ðymax�yminÞ

21 ðTwvÞ=ðxmax�xminÞ 22 (Pen-down duration Tw)/Ts

26 v=vmax 28 ðxlast pen�up�xminÞ=Dx

30 ðxmax�xmin ÞDy

ðymax�ymin ÞDx

34 Direction histogram s1 [5]

36 ðxmax�xminÞ=xacquisition range 57 Direction histogram s3

65 Spatial histogram t4 66 Direction histogram s4

68 (1st tðvx,maxÞ)/Tw 77 yð1st pen� down to last pen� upÞ
Parameter SNR: Based on the assumption of uncorrelated
signature signals and noise, we estimate the SNR averaging the
noise (computed between pairs of genuine signatures avoiding
repetitions) across users. Thus, the global SNR of signal x of a
specific user ðSNRU

x Þ is estimated as

SNRU
x ¼

1

CðNgs,2Þ

XNgs

k ¼ 1

Pi
x

9Pi
x�Pj

x9
for j4 i,

where Ngs represents the number of considered genuine
signatures from the user, and CðNgs,2Þ is the number of
possible combinations of the Ngs signatures taken in pairs:
CðNgs,2Þ ¼Ngs!=2!ðNgs�2Þ!.
The final SNRx distribution is estimated using the 400 SNRU

x

measures obtained from BiosecurID.
Parameter SNRy is computed similarly, being in both cases the
genuine pairs of signatures (Ngs) either from the same or
different acquisition sessions (intra-session and inter-session
SNR models, respectively).
The results show that the power of the noise added in the x

coordinate to produce inter-session samples Pinter
nx has to be

around 8% higher than in the case of intra-session repetitions
Pintra

nx (i.e., Pinter
nx ¼ 1:08Pintra

nx ). In the case of the noise affecting
lease cite this article as: J. Galbally, et al., Synthetic on-line sign
ecognition (2012), doi:10.1016/j.patcog.2011.12.007
the y coordinate function, the variability between samples
captured in the same and different sessions is slightly higher:
Pinter

ny ¼ 1:11Pintra
ny .
�
 Parameter M: The value of the intra-session duration varia-
bility found in the development set is defined by Mintra

¼ 0:1,
while the inter-session variability follows a uniform distribu-
tion characterized by Minter

¼ 0:14.

�
 Parameter a: The values that define the uniform distributions

from which this parameter is extracted are (for the three time
functions x, y, and p)

½aintra
x ,ainter

x � ¼ ½0:06,0:08�,

½aintra
y ,ainter

y � ¼ ½0:08,0:11�,

½aintra
p ,ainter

p � ¼ ½0:05,0:06�:

The values of the parameters defining Algorithm 2 (for the
generation of duplicated samples) obtained on the develop-
ment dataset are:

�
 ParameterC: The values that define the uniform distributions

from which this parameter is extracted are (for the six
Lognormal features)

½cintra
t0

,cinter
t0
� ¼ ½0:004,0:005�,

½cintra
D ,cinter

D � ¼ ½0:12,0:15�,

½cintra
m ,cinter

m � ¼ ½0:08,0:1�,

½cintra
s ,cinter

s � ¼ ½0:08,0:1�,

½cintra
ys

,cinter
ys
� ¼ ½0:04,0:06�,

½cintra
ye

,cinter
ye
� ¼ ½0:04,0:06�:

From these values of C we can see that the most critic
Lognormal feature (the one that admits the lowest variation) is
t0, while the most relaxed is D (relatively large variations of this
parameter do not change significantly the master signature). The
rest of lognormal features (m, s, ys, and ye) accept a similar degree
of variation in order to generate realistic duplicated samples
following Algorithm 2.
ature generation. Part II: Experimental validation, Pattern
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Appendix B. Validation experiment 2: 20-parameter set

In Table 3 we show the best performing 20-parameter set
found in [9] and used in the validation experiment 2 of the present
work to compare the information present in synthetic and real
signatures. Each parameter corresponds to the feature distribu-
tions shown in Fig. 3. The numeration followed is the same used in
[5] where the complete 100-parameter set was first introduced.
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