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The theoretical framework and algorithms of a novel method for the generation of synthetic on-line

signatures are presented. This model-based approach combines the spectral analysis of real signatures

with the Kinematic Theory of rapid human movements in order to generate totally synthetic

specimens. Two different algorithms are also described in order to produce duplicated samples from

the synthetic master signatures, so that the generation scheme as a whole is able to produce in a

complete automatic fashion huge synthetic databases. Typical examples of synthetic specimens are

presented to highlight their human-like appearance. The validation protocol and the test results are

presented and discussed in a companion paper.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic access of persons to services is becoming increas-
ingly important in the information era. This has resulted in the
establishment of a new technological field known as biometric
recognition, or simply biometrics [1]. The basic aim of biometrics
is to discriminate automatically between subjects -in a reliable
way and according to some target application- based on one
or more signals derived from physical or behavioral traits [2],
such as fingerprint [3], face [4], iris [5], voice [6], or written
signature [7,8].

One of the big challenges that this relatively new security
technology has to face is the permanent need for the collection of
new data that permit the objective and statistical evaluation of
the performance of biometric recognition systems. In this context,
one key element for the development of biometric applications is
the availability of biometric databases. In order to comply with
this need for new and statistically meaningful data, in recent
years important efforts in the form of cooperative national and
international projects have been devoted to the acquisition of
large multimodal datasets [9–11] (i.e., comprising different bio-
metric traits of the same users). However, the acquisition of
biometric features corresponding to a large population of
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: þ34 91 497 2107.

lly),

.fierrez@uam.es (J. Fierrez),

al., Synthetic on-line sign
.2011.12.011
individuals, together with the desirable presence of biometric
variability of each trait (i.e., multi-session, multiple acquisition
sensors, different signal quality, etc.), makes database collection a
time-consuming, expensive and complicated process, in which a
high degree of cooperation of the donors is needed. Additionally,
the legal issues regarding data protection are controversial
[12,13] and make the sharing and distribution of biometric data
among different research groups or industries very tedious and
difficult.

Furthermore, these legal restrictions have pushed each research
laboratory to acquire their own evaluation data, instead of
encouraging the generation of common benchmarks in which to
compare the performance of different recognition algorithms in a
fair fashion. Only in the frame of technology evaluations the testing
of all competing algorithms is carried out on standardized data-
bases and following fixed protocols so that tests are repeatable
and results fully comparable. Some examples of these competitive
evaluations are the NIST Facial Recognition Technology Evalua-
tions [14]; the NIST Speaker Recognition Evaluations (SRE) [15];
the Fingerprint Verification Competitions (FVC) [16]; the BioSecure
Multimodal Evaluation Campaign held in 2007 [17]; or different
signature verification competitions [18,19]. However, even in
these cases, efforts are punctual and restricted to the duration
of the competition, and do not usually remain in time as research-
ers cannot always access the data to carry their own posterior
tests.

In this context, due to the difficulties linked to database
acquisition and to the legal obstacles for their free distribution,
ature generation. Part I: Methodology and algorithms, Pattern
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in recent years different initiatives have been conducted within
the biometric scientific community to generate databases formed
by totally synthetic traits [20,21]. These synthetic databases
present the advantages of: (i) being effortless to produce (once
the generation algorithm has been developed), (ii) having no size
restrictions (in terms of subjects and samples per subject) since
they are automatically produced from a computer, and (iii) not
being subdued to legal aspects because they do not comprise the
data of any real user.

Synthetically generated datasets have already been used in
some of the previously cited international competitive evalua-
tions for performance assessment tasks [16]. However, their
usefulness is not restricted to performance evaluation, and they
can also be exploited for other research purposes such as vulner-
ability assessment (e.g., performing brute force attacks [22], or
even inverting certain feature extraction methods [23]), indivi-
duality studies in order to better understand the intrinsic infor-
mation contained within a given trait [24–26], or practical
implementations in which the amount of available training data
is crucial for decision making [27,28].

However, in spite of their advantages and potential applica-
tions, the generation of realistic synthetic biometric data still
represents a very complex pattern recognition problem: modeling
the information contained in a certain biometric trait as well as
the inter-class and intra-class variation found in real databases
(i.e., variation between samples of different subjects, and varia-
tion between samples of the same subject).

In this work, we address the problem of generating synthetic
databases of human-like on-line handwritten signatures.
Although the methodology is general, the artificial samples
produced follow the pattern of the so called occidental signatures
which typically consist of left-to-right handwritten concatenated
text and some form of flourish (in opposition to other types of
signatures consisting of independent symbols such as the asian

signatures).
The fully automatic approach proposed for the generation of

synthetic on-line signatures comprises two successive stages: in the
first one, a master signature corresponding to a synthetic individual
is produced using a generative model based on information obtained
from the spectral analysis of real signatures and on the kinematic
theory of rapid human movements [29,30] (i.e., this step controls
the number of different subjects that will be present in the final
synthetic database). In the second step, the master signature is used
to generate different samples of that same synthetic subject (i.e., in
this second step we generate a number of samples for each user). In
the latter stage of the generation scheme, two different novel
algorithms for the generation of duplicated samples are proposed:
one based on geometric deformations of the signature dynamic
functions, and the other on small variations of the Sigma-Lognormal
parameters which define each of the strokes forming the master
signature [31].

The motivation to base our model on the combined informa-
tion obtained from the spectral analysis and the Kinematic Theory
of rapid human movements comes mainly from three facts:
�

P
R

Spectral analysis constitutes a general and powerful tool that
enables the parameterization of complex time functions such
as the ones found in online signature biometrics, and permits
to condense the general topological and geometric information
shared by real signatures. This is for example patent in [26]
where it is used to devise a spectrum-based signature para-
meterization in order to perform an individuality study of the
on-line signature biometrics. Furthermore, working with the
spectrum of the signature time functions permits to exploit
some similarities that have been observed among different
occidental handwritten signatures.
lease cite this article as: J. Galbally, et al., Synthetic on-line sign
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�
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The Kinematic Theory, which was initially proposed for the
analysis of handwriting [29,30] and then used for other
applications [32–34], relies on sound mathematical ground
to model in a realistic way the different movements involved
in handwriting through the application of the Sigma-Lognor-
mal model to parameterize each of the strokes involved in the
signing process [33]. Being a theory based on the human
writing behavior, its application to the synthetic generation
of signatures provides the artificial samples with human-based
kinematic information.

�
 The synthetic generation method, which is based on the

previous two complimentary general models, has the advan-
tage of being invariant (in terms of the parameters to be
considered, not in their specific values) to cultural or language
differences, whereas systems based on visual characteristics
often need to be tailored for Chinese, Arabic, European, or
American signatures.

The rest of the article is structured as follows. In Section 2
some recent works related to the preset study are given. The
overall synthetic generation method is presented in Section 3. The
generation of totally synthetic individuals is presented in Section 4,
with the two steps (based on spectral analysis and on the
Kinematic Theory) involved in the process being described in
Sections 4.1 and 4.2. The generation of duplicated samples is
presented in Section 5, with the two algorithms proposed for this
purpose being described in Sections 5.1 and 5.2. Conclusions are
finally drawn in Section 6.

The validation protocol followed to evaluate the proposed
approach for the generation of on-line synthetic signatures,
together with tests and experimental results are reported in the
accompanying paper ‘‘Synthetic On-Line Signature Generation.
Part II: Experimental Validation’’.
2. Related works

Historically, manually synthesized biometric traits such as
fingerprints and specially signatures and forged handwriting have
been a point of concern for experts from a forensic point of view
[35,36], and more recently for vulnerability assessment studies
[37,38]. However, it has not been until the recent development of
the biometric technology when other applications of synthetic
samples have been considered and a growing interest has arisen
in the scientific community for the analysis of automatic genera-
tion of synthetic traits such as voice [39], fingerprints [20], iris
[21], handwriting [40], face [41], or signature [42].

It should be emphasized that, although there are multiple
works which address the problem of generating synthetic traits
[43,44], not all of them consider the term synthetic in the same
way. In particular, three different strategies for producing syn-
thetic biometric samples can be found in the current literature:
�
 Duplicated samples: In this case the generation algorithm
starts from one or more real samples of a given person and,
through different transformations, produces different synthetic
(or duplicated) samples corresponding to the same person. This
type of algorithms are useful to increase the amount of already
acquired biometric data but not to generate completely new
datasets (i.e., the number of subjects in the final database is
restricted to the number of real users available in the original
dataset). Therefore, this class of methods can be helpful to
synthetically augment the size of the enrollment set of data in
identification and verification systems [45–47,28], a critical
parameter for instance in signature biometrics [27], but its
utility for performance evaluation in biometrics is limited.
re generation. Part I: Methodology and algorithms, Pattern
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R

The great majority of existing approaches for synthetic signa-
ture generation is based on this type of strategy [48–53]. This
approach has also been applied to handwriting [54–58], and
face synthesis [59,41,60,61].

�
 Combination of different real samples: This is the approach

followed by most speech [62,63] and handwriting synthesizers
[64–66,34,67,40]. This type of algorithms start from a pool of
real units, n-phones (isolated or combination of sounds) or
n-grams (isolated or combination of letters), and using some
type of concatenation procedure combine them to form the
synthetic samples.
Although these techniques are very useful in text-to-speech
[68,69], typewriting-to-handwriting [40,70], or CAPTCHAs (Com-
pletely Automatic Public Turing Test to tell Computers and
Humans Apart) applications [71,72], they present the drawback
of needing real samples to generate the synthetic trait and
therefore their usefulness for performance evaluation in bio-
metrics is also limited (i.e., only samples of the previously
acquired real users can be generated). As in the previous case,
this perspective for the generation of synthetic data is useful to
produce multiple biometric samples of a given real user, but not
to generate synthetic individuals and databases (where both
control on the number of subjects and samples per subject are
needed).

�
 Synthetic-individuals: In this case, some kind of a priori knowl-

edge about a certain biometric trait is learned from a development
set of real samples (e.g., minutiae distribution, iris structure,
signature length, etc.) and then used to create a model that
characterizes that biometric trait for a population of subjects. New
synthetic individuals can then be generated by sampling the
constructed model. In a subsequent stage of the algorithm,
multiple instances of the synthetic users can be generated by
any of the procedures for creating duplicated samples.
Regarding performance evaluation and other applications such as
vulnerability assessment or individuality studies in biometrics,
this approach has the advantage over the two previously pre-
sented of not using any real biometric samples in the generation
stage to produce completely synthetic databases (i.e., with these
strategies there is freedom both in the number of subjects and
samples per user to be generated). This way, these algorithms
constitute a very effective tool to overcome the usual shortage of
biometric data without undertaking highly resource-consuming
acquisition campaigns.
Fig. 1. General architecture of the synthetic s

lease cite this article as: J. Galbally, et al., Synthetic on-line sign
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Different model-based algorithms have been presented in the
literature to generate synthetic individuals for biometric traits
such as iris [73,21,74], fingerprint [20], or speech [75,76]. Regard-
ing the signature trait, different methods have been proposed in
order to characterize the handwriting process, using the oscilla-
tory motion model [77], the Sigma-Lognormal model[31], or the
Beta-Elliptic model [78]. Although all of them have been applied
to the analysis and parameterization of signatures and to the
generation of duplicated samples, no conclusive experiments have
been carried out regarding the suitability of these models for the
synthesis of totally artificial subjects. To the best of our knowl-
edge, Popel is the only author who has described this type of
approach for synthetic signature generation using a model based
on visual characteristics extracted from the time domain [42]. The
method was validated visually, comparing the appearance of the
synthetic signatures to that of real samples, but no clear quanti-
tative results on the suitability of the technique were given.

3. Synthetic signature generation

The new model-based approach for realistic signature genera-
tion proposed in this work is designed to produce samples which
coincide to a very high extent with real signatures in terms of:
(i) visual appearance, (ii) information content (topological, spec-
tral and kinematic properties), and (iii) performance of the
verification systems tested on the synthetic databases. The
validation protocol described in Part II of this series of papers
gives quantitative results on the realism of synthetically produced
databases measured according to the previous three character-
istics: appearance, information, and performance.

The synthetic generation algorithm, as can be seen in Fig. 1,
presents two different stages which will be described in Sections 4
and 5:
�

igna

atu
Stage 1: A master signature corresponding to a synthetic individual
is produced using a generative model based both on the spectral
and on the kinematical information of real signatures.

�
 Stage 2: In the second stage the master signature is used to

generate different samples of that same synthetic user. Two
different generation schemes are exploited to produce these
duplicated samples. In the sequel, we provide detailed infor-
mation about this step-wise methodology.
ture generation algorithm proposed.

re generation. Part I: Methodology and algorithms, Pattern
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As has been stated before, the proposed generation method may
produce different types of signatures (e.g., occidental, asian, arabic)
and variability depending on the specific values given to the model
parameters. In order to maintain this generality no particular values
are given in the description of the generative approach presented in
the following sections. All the specific parameter values for a
particular case study where the BiosecurID database [10] is used
as development set, are given in Part II of this series of articles.
4. Stage 1: generation of synthetic individuals

The objective of this first stage of the proposed synthetic
generation method is to produce one realistic signature (i.e.,
master signature) of different synthetic individuals, following the
inter-variability found in real signatures (i.e., existing variability
among signatures produced by different users).

Although other signals such as the azimuth and elevation
angles of the input pen might be taken into account, in this work
we consider that an online signature is defined by three time
sequences [x[n] y[n] p[n]] specifying respectively the x and y

coordinates, and the pressure applied during the signing process
at the time instants n¼ 1, . . . ,N (here sampled at 100 Hz).

The algorithm proposed in the present contribution to generate
synthetic signers comprises two steps, as can be seen in Fig. 1.
�

P
R

Step1.A: In the first step a parametrical model obtained from
the analysis of real signatures in the frequency domain is used
to generate a first synthetic master sample with the topologi-
cal and spectral properties of real samples.

�
 Step1.B: In the second step the synthetic sample produced in the

previous step is analyzed and processed according to the Sigma-
Lognormal model in order to give the final synthetic master
signature the kinematical characteristics of real signatures.

The models involved in both steps are described in the next
sections.

4.1. Step 1.A: generative model based on spectral analysis

The algorithm proposed for this first step of the synthetic
individuals generation algorithm comprises in turn three succes-
sive phases, as can be seen in Fig. 2:
�
 Phase 1.A.1: The synthetic Discrete Fourier Transform (DFT) of
the trajectory signals x and y is generated in the frequency
domain using a parametrical model obtained by the spectral
analysis of a development set of real signatures.
DFTx and DFTy

PHASE 1.A.1:
FREQUENCY DOMAIN

Low-Pass Filter NR G

INVERSE DFT

PHAS
PRE

FUNC

White noise N

SYNTHETIC-INDIVIDUALS GENERA

Fig. 2. General diagram of the step 1.A of the synthetic
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Phase 1.A.2: The resulting trajectory signals are used to gen-
erate the pressure function.

�
 Phase 1.A.3: Finally all the three signals are processed in the

time domain in order to give the synthetic signatures a more
realistic appearance.
4.1.1. Phase 1.A.1: signature model in the frequency domain

The parametrical model proposed in the present contribution
is based on the high degree of similarity existing among the
trajectory signals of real signatures in the frequency domain.
In Fig. 3 some examples of DFTs of the x and y signals are shown,
where we can observe that the energy is concentrated in the first
coefficients and remains constant and practically negligible from
that point (marked with a vertical dashed line in Fig. 3) to the end.

This common structure of the spectrum of x and y allows us to
determine a model defined by the following parameters:
�
 Sequence length (N): It defines the number of samples of the
three time functions x, y, and p. It is computed for each
particular case according to the specific length distribution of
the database being used as development set.

�
 Number of relevant spectral coefficients (NR): It defines the

number of coefficients which have a significant power
(i.e., those which appear before the dashed line in Fig. 3). This
parameter is computed as a percentage of N, NR ¼ ddNNe,
where dN follows a uniform distribution between dmin

N 40
and dmax

N o1.

�
 Power ratio (G): Computed as the quotient between the power

of the relevant spectral coefficients, and that of the last
spectral coefficients (i.e., in Fig. 3 those after the dashed line),
G¼ PR=PI . The value of G is taken from a uniform distribution,
GA ½Gmin,Gmax

�.

In order to generate a synthetic signature, the DFT of each of
the trajectory signals is generated coloring a white noise
sequence of length N0 with a linear low-pass filter defined by
NR0 (i.e., filter bandwidth) and G0 (i.e., attenuation of the high
frequencies). This approach implies two simplifications: (i) that
all Fourier coefficients are independent (as they are taken from a
white noise sequence) and (ii) that both coordinate functions
x and y are independent (as they are generated from two white
noise sequences).

Although some correlation actually exists among Fourier
coefficients corresponding to nearby frequencies, the first of the
simplifications (i) has already been applied in other recent studies
with fairly good results [26].
Initial Master Signature

Functions [x,y]

Function [p]

PHASE 1.A.3:
REFINEMENT 
IN THE TIME 
DOMAIN (S F)

.A.2:
RE 
 PU

 ALGORITHM: STEP 1.A

ividuals generation algorithm shown in Fig. 1.
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Fig. 3. DFT amplitude examples of the trajectory functions x (top) and y (bottom), of five real signatures (from left to right). The total length N (in number of samples)

of the signatures is also given.
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As for the second simplification (ii), it could be argued that the
coordinate functions x and y are not fully independent. However,
this assumption largely helps to keep the simplicity of the
method. Furthermore, from the good validation results reported
in the second part of this series of two papers [79], it is at least
unclear whether the benefits derived from the inclusion of the
dependencies between x and y would exceed the inconveniences
arisen from a much more complex model.

Once the synthetic DFT of both trajectory signals has been
generated, we compute the Inverse DFT (IDFT) in order to obtain
the coordinate functions x and y in the time domain.
4.1.2. Phase 1.A.2: the pressure function

The two main features defining the pressure function of a
signature are as follows:
�

P
R

Number of penups (PU): A penup is a zero pressure segment of
the signature (it occurs when the pen is lifted from the paper
during the signing process). The distribution of the number of
penups PU is extracted in each case from the specific devel-
opment database, and applied to the synthetic signatures
according to their length N (i.e., a longer signature presents a
higher probability of having a large number of penups).

�
 Placing of the penups: From an heuristical analysis of the y and

p signals of real signatures, we can conclude that most penups
occur close to a singular point of the y function. With this
premise, the location of the penups is selected so that they
coincide with (or are near) a maximum or minimum of the y

signal. Separation between penups is also taken into account
at this point in order to avoid placing them unrealistically
close. Thus, a minimum distance of nz non-zero points is set in
between consecutive penups. The specific value of this para-
meter will depend on the sampling rate considered. For a
typical sampling rate of 100 Hz assumed in the present
research work nz¼15.

Once the penups are located through the pressure function,
some maximum points (between penups) are selected randomly.
In a successive step the pressure waveform is generated by
joining all these singular points (penups and maxima) using a
cubic spline interpolation algorithm. Once this initial p signal is
generated, it is processed in order to avoid undesired effects:
�
 Many online signature acquisition devices consider 1024
integer pressure levels, so each point of the synthetic p
lease cite this article as: J. Galbally, et al., Synthetic on-line signatu
ecognition (2012), doi:10.1016/j.patcog.2011.12.011
function is rounded to the nearest integer value, and those
which exceed 1024 are set to this maximum value. The same
way, those points lower than 0 are set to the penup value.

�
 A signature pressure signal cannot start or end with a penup.

If this is the case the function is artificially changed so that the
starting and ending points are non-zero elements.

�
 Due to the biomechanical properties of the human writing move-

ments, penups cannot be shorter than a certain number of points
(around 15 for a 100 Hz sampling rate). The pressure function is
accordingly modified in order to avoid unrealistic penups.

4.1.3. Phase 1.A.3: signature refinement in the time domain

Several actions are undertaken at this point to give the
signature a more realistic appearance according to occidental
samples. This phase of the algorithm may change in order to
produce different types of signatures (e.g., arabic or asian).
�
 Smoothing: Both trajectory functions are smoothed using a 10-
point moving average in order to avoid possible high
frequency noise.

�
 Slope (S): The x function of most left-to-right written signa-

tures presents a general growing tendency fluctuating around
a straight of fixed slope. This slope (S¼ ss=sl) is artificially
produced in this step of the algorithm according to the length
of the signature. It is computed as the slope of the diagonal of a
rectangle where the long side (sl) coincides with the length of
the signature (sl ¼N) and the value of the short side (ss) is
extracted as a percentage of the signature length (ss ¼ ddSNe),
where dS follows a uniform distribution ranging between
dmin

S 40 and dmax
S o1.
�
 Flourish (F): In many cases, real signatures present a large
fluctuation of their values at the end of the x and y signals,
which in most cases can be identified with a round-like
flourish. This final waveform is also artificially added to
some signatures in this part of the algorithm (with a prob-
ability pF). It consists of a deformation of the last points of the
signature so that its total length is not modified. In order to
generate it, (i) its length is fixed as a percentage of the
total signature length F ¼ dF N where dF follows a uniform
distribution between dmin

F 40 and dmax
F o1, (ii) the maximum

and minimum points of the waveform are randomly located
and (iii) then they are interpolated using a spline cubic
function.

�
 Additionally, translation, rotation and scaling transformations

can also be applied at this point.
re generation. Part I: Methodology and algorithms, Pattern
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4.2. Step 1.B: postprocessing based on the Sigma-Lognormal model

The initial master signature produced in the previous step
presents very similar spectral and topological information to that
found in real signatures. However, the kinematical properties of
this first synthetic sample still differ to some extent to those
which are typical of real samples. In particular, very high velocity
peaks are observed at the beginning and ending parts of many of
these initial master signatures (see dashed circles in Fig. 4), which
do not correspond to the typical movement of real signers where
the velocity function starts and finishes at zero (or near zero)
values [80].

These abnormal velocity artifacts can be corrected by applying
the Sigma-Lognormal model to postprocess the initial master
signature. This parametrical model is able to represent in a
compact manner the kinematical information comprised in
humanly produced strokes, therefore it constitutes a useful
method to confer the synthetic signatures with the velocity and
acceleration properties of the real ones.

This step includes two different phases, as is shown in Fig. 4,
where the coordinate functions x and y are slightly modified
while the pressure function p remains unaltered:
�

P
R

Phase1.B.1: Extraction of the Sigma-Lognormal parameters. In
this phase, the velocity function of the initial synthetic master
signature (vI in Fig. 4) is decomposed in singular strokes and
the Lognormal parameters which best fit each of the individual
strokes are computed.

�
 Phase1.B.2: Reconstruction of the velocity function of the

definitive synthetic master signature according to the pre-
viously computed parameters (vD in Fig. 4). The new coordi-
nate signals are then obtained from the reconstructed velocity
function.

4.2.1. Phase 1.B.1: Sigma-Lognormal parameters extraction

The core idea behind our approach relies on the fact that an
ideal signature is a well learned movement, executed very fast
without any sensorimotor or proprioceptive feedback. Once a
subject starts signing, the overall trajectory is executed as
planned. This trajectory is made up of individual strokes super-
imposed in time. Each stroke is characterized by a lognormal
velocity profile that reflects the impulse response of the neuro-
muscular system involved in its production [29]. In the context of
the Kinematic Theory and its Sigma-Lognormal model [33], the
velocity of the pentip can be seen as the output of these
neuromuscular systems and the signature, as the result of the
SYNTHETIC-INDIVIDUALS GENERAT

Initial Master Signature

PHASE 1.B.1:
SIGMA

LOGNORMAL
PARAMETERS

EXTRATION

[x,y] vl
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v l

P
X

Y

Fig. 4. General diagram of the step 1.B of the synthetic
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vectorial summation of a delayed sequence of NLN strokes:

~vðtÞ ¼
XNLN

i ¼ 1

~vi ðt; PiÞ, ð1Þ

where each stroke is described by its velocity module:

9viðt; PiÞ9¼
Di

sðt�t0iÞ
ffiffiffiffiffiffi
2p
p exp

½lnðt�t0iÞ�mi�
2

�2s2
i

( )
, ð2Þ

and its direction

jiðt; PiÞ ¼ ysiþ
yei�ysi

2
1þerf

lnðt�t0iÞ�mi

si

ffiffiffi
2
p

� �� �
: ð3Þ

Each curved stroke, indexed by i (with i¼ 1 . . .NLN), is thus
completely described in a 2D space by six Sigma-Lognormal
parameters Pi ¼ ½Di,t0i,mi,si,ysi,yei�:
�

ION

θe]

v D

ind

atu
Di: the amplitude of the ith input command.

�
 t0i: the time occurrence of the input command initiating the

ith stroke, a time-shift parameter.

�
 mi: the log-time delay of the ith neuromuscular response

expressed on a logarithmic time scale.

�
 si: the log-response time of the ith neuromuscular response

expressed on a logarithmic time scale.

�
 ysi: starting direction of the ith stroke.

�
 yei: ending direction of the ith stroke.

The velocity components in the Cartesian space can be
calculated from the tangential speed as:

~vx ðtÞ ¼
XNLN

i ¼ 1

9~viðt;PiÞ9cosðjiðt; PiÞÞ, ð4Þ

~vy ðtÞ ¼
XNLN

i ¼ 1

9~viðt; PiÞ9sinðjiðt; PiÞÞ: ð5Þ

The use of lognormal impulse responses has been shown to
reproduce human like movements that encompass all the basic
characteristics of the upper limb rapid movements [81]. More-
over, it has been proved recently that such a model constitutes
the ultimate kinematic minimization model [82].

The exploitation of the full power of this representation for
signature analysis requires the solution of an inverse problem,
that is, the recovery of the set of parameters constituting a
sequence of strokes. To do so, we have used a software that
automatically extracts the parameters that minimize the error
Definitive Master
Signature

 ALGORITHM: STEP 1.B

PHASE 1.B.2:
VELOCITY
FUNCTION

RECONSTRUCTION

vD [x,y]

X
Y

P

ividuals generation algorithm shown in Fig. 1.
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between an original signature and its ideal Sigma-Lognormal
reconstruction [83]. This extractor works in two different modes:
�

P
R

In the first, the lognormal equations are estimated and
optimized according to their order of occurrence. This mode
provides a framework to isolate each lognormal. It is designed
such that, while estimating the ith stroke, it minimizes the
superposition effects from the direct neighbor strokes (ith�1)
and (ithþ1) by removing their extracted value. The goodness
of the extraction process can be estimated in terms of the
Signal to Noise Ratio (SNR) between the original and the
reconstructed velocity profiles, defined as:

10 log

R te

ts
½v2

xoðtÞþv2
yoðtÞ�dtR te

ts
½ðvxoðtÞ�vxaðtÞÞ

2
þðvyoðtÞ�vyaðtÞÞ

2
� dt

 !
, ð6Þ

where ts and te are respectively the starting and ending times
of the signature, and the subindex o refers to the original
velocity profile (x or y) while a corresponds to the artificially
reconstructed functions.

�
 If the end of the signals is reached without getting a satisfac-

tory minimal error (as expressed by the SNR), the extractor
switches to a second mode where it processes the lognormal
strokes in descending order of their area under the curve, that
is, according to the importance of their effect on the
movement.

The detailed algorithms used by the extraction tool are
thoroughly described in [83]. What is of interest for the present
study is that such a tool provides, at the end of the process, a list
of the parameter values P¼ ½P1,P2, . . . ,PNLN

� that best represent a
given target signature. In other words, the algorithm successfully
segments a signature into its constituent lognormal strokes.

4.2.2. Phase 1.B.2: reconstruction of the definitive master signature

The set of optimal parameters estimated in the previous phase
of the generation algorithm and defining a velocity profile vD

(computed according to Eq. (1)) can then be used as a definitive
synthetic master signature from which the signature trajectory
function x and y can be reconstructed by:

xðtÞ ¼

Z t

0
9~vx ðtÞ9 dt¼

XNLN

j ¼ 1

Di

yei�ysi
½sinðjiðt; PiÞÞ�sinðysiÞ�, ð7Þ

yðtÞ ¼

Z t

0
9~vy ðtÞ9 dt¼

XNLN

j ¼ 1

Di

yei�ysi
½�cosðjiðt; PiÞÞþcosðysiÞ�: ð8Þ

In Fig. 5 we show four examples of the initial velocity profiles
(vI) of four synthetic signatures (before step 1.B of the generation
algorithm), and their respective definitive reconstructed velocity
functions according to the Sigma-Lognormal parameters (vD, after
applying step 1.B), where we can see that the high speed artifacts
at the starting and ending segments of the signatures have been
corrected, while maintaining the human-like kinematics of the
whole trajectory.
t

v

Initial (vI)
Definitive (vD)

t

v

Initial (vI)
Definitive (vD)

Fig. 5. Initial (vI) and definitive (vD) velocity fun
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5. Stage 2: generation of duplicated samples

Once the time sequences [x[n] y[n] p[n]] defining the master
signature of a synthetic user have been generated following the
method described in Section 4, the next stage for the automatic
generation of synthetic on-line signature databases is the creation
of duplicated samples starting from that master sample (as is
shown in Fig. 1).

Therefore, the objective of this second stage of the proposed
synthetic generation method is to produce different samples of
one same synthetic individual following the intra-variability
found in real signatures (i.e., existing variability among signatures
produced by the same user). For this purpose, two different
algorithms are designed.
�

v

ctio

atu
Algorithm 1: The time sequences of the master signature [x[n]
y[n] p[n]] are modified according to a model simulating the
distortions introduced by a given channel h. Therefore, this
algorithm is based on the direct modification of the spatial and
geometry characteristics of the signature.

�
 Algorithm 2: The velocity function v derived from the coordi-

nate functions x and y is decomposed into simple strokes and
the Sigma-Lognormal parameters are extracted from each of
those individual strokes. Different velocity functions vj

(with j¼ 1 . . . S, being S the number of samples to be generated)
are obtained by varying the lognormal parameters, and the
corresponding xj and yj functions are then recovered from them.

Although it provides very good results (as it will be shown in
Part II) and it stands out for its simplicity, Algorithm 1 does not
directly rely on biomechanical properties of the handwriting
process. The method is based on some signal processing simpli-
fications such as independent noise, and linear distortions. These
facts motivated the proposal of Algorithm 2 as an alternative
approach for the generation of duplicated samples based on the
motion pattern variability rooted in the motor representation
space of the handwritten movements. This second algorithm
takes advantage of the information extracted using the Sigma-
Lognormal model from the neuromuscular impulses related to the
movements produced during handwriting in order to take into
account effects such as noise correlation and non-linearity of
distortions.

The performance of the two algorithms is later evaluated in
Part II of this series of articles, where none of them clearly
outperforms the other. On the contrary, both methods showed a
great degree of complementarity, setting respectively and upper
and lower bound to the performance of real samples.

5.1. Algorithm 1: direct modification of the time functions

Lets consider the signing process as follows. A clean dynamic
signature ½x½n�, y½n�, p½n��, unique for each subject, is transmitted
through an unknown channel h where it is distorted, in this way
generating the various genuine impressions corresponding to the
natural variability of the subject at hand (see Fig. 6). Under this
t t

v

Initial (vI)
Definitive (vD)

Initial (vI)
Definitive (vD)

ns of four example synthetic signatures.
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framework, the generation of multiple samples from a given clean
signature is straightforward once the distortion parameters are set.

In the present algorithm we consider three different phases to
model the distortions introduced by the channel h in the signa-
ture time signals: (i) adding noise according to a particular Signal
to Noise Ratio (SNR), (ii) resampling/downsampling of the original
signal by a factor M, and (iii) amplifying or attenuating the signal
amplitudes in terms of a parameter a. Next we describe each of
the three distortion phases. The specific values of these para-
meters should be extracted from different development sets of
users depending on the type of signatures that want to be
produced (e.g., occidental, asian, arabic, etc.)
�

P
R

Noise addition (SNR): Low-frequency noise nx and ny is added to
the trajectory functions x and y so that the resulting signals xn and
yn present a particular SNRx and SNRy (defined as the quotient
between the function’s power Px, and the noise power Pnx, i.e.,
SNRx ¼ Px=Pnx). The SNR should vary depending on whether we
want to generate samples from the same or from different
sessions (intra- and inter-session SNRs respectively). In our
experiments, we assume that the noise is uncorrelated with the
signature signals.
      

SNRx=Px/Pnx
SNRy=Py/Pny

Resamplin
Downsampli

Inter-/Intra-
Session Dist
(BiosecurID

DUPLICATED SAMPLESGENER

xn, yn, p 

Low-Pass Noise 
nx, ny (Pnx, Pny)

Low-Pass Filter White Nois

Master Signature 

X
Y

P

Fig. 6. General architecture of Algorithm 1 for th

Fig. 7. General architecture of Algorithm 2 for th
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At this step, no distortion is introduced in the pressure (p) signal
which remains unaltered.

�
 Resampling/downsampling (M): This is equivalent to a duration

expansion or contraction of the signals (the same length
increase or decrease is applied to all three functions).
Considering T as the duration of a signature (the same for the
trajectory and pressure signals), the duration of the contracted/
expanded new signature is computed as: TM ¼ ð1þMÞT .
The value of the resampling/downsampling factor M is taken
from a different uniform distribution depending on whether
we want to produce intra-session (MA ½�Mintra,Mintra

�) or inter-
session (MA ½�Minter,Minter

�) variability, being in general
9Mintra9o9Minter9.

�
 Amplification/Attenuation (a): An affine scaling is finally

applied to all three signals according to a parameter a (which
varies for each time function) [48]. Analogously to the resam-
pling parameter M, the amplification factor a follows a uni-
form distribution between ½�aintra

x ,aintra
x � for intra-session

samples, and between ½�ainter
x ,ainter

x � for inter-session samples
(similarly for functions y and p). For a given value of the
parameter ax, the scaled function xa is computed as
xa ¼ ð1þaxÞx.
Duplicated Samples 
(SDB1)

g/
ng 

 
r. 
) 

Amplification/ 
Attenuation 

Inter-/Intra- 
Session Distr. 
(BiosecurID) 

ATION: ALGORITHM 1

α

e 

Channel h 

e generation of duplicated samples.

e generation of duplicated samples.
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5.2. Algorithm 2: modification of the Sigma-Lognormal parameters

The set of optimal Sigma-Lognormal parameters computed in
Section 4.2 can be used as a reference from which a variety of
synthetic specimens (duplicated samples) can be generated.
Various approaches can be followed here, all based on the same
paradigm: adding some noise to the original parameter template,
while respecting typical sensitivity patterns previously found in
automatic handwriting generation [84].

As described in Section 4.2, the velocity function v of the
master signature can be decomposed into single strokes following
the Sigma-Lognormal where each stroke si (with i¼ 1 � � �NLN ,
being NLN the total number of strokes in a given signature) is
defined by the set of Sigma-Lognormal parameters Pi ¼ ½t0i,Di,mi,
si,ysi,yei�. Thus, the whole signature is represented by the matrix
X
Y

P

X
Y

P

X
Y

P

x
y

p

x
y

p

x
y

p

Fig. 8. Examples of real (a) and synthetic (b) signatures extracted from MCYT and SDB1,

with the time sequences x[n], y[n], and p[n] corresponding to the first sample. (a) Real si

with the proposed model-based generation algorithm.
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P¼ ½t0,D,l,r,hs,he�, where t0 is a column vector of dimen-
sion NLN � 1 formed by ½t01,t02, . . . ,t0NLN

� (similar for D, l, r, hs,
and he).

The inter-session duplicated samples are generated according
to a distortion matrix Cinter

¼ ½winter
t0

,winter
D ,winter

l ,winter
r ,winter

hs
,winter

he
�,

where winter
t0

is a column vector of dimension NLN � 1 with its
elements belonging to a uniform distribution ½�cinter

t0
,cinter

t0
� (ana-

logously for the rest of distortion vectors comprised in matrix
Cinter). Then, each of the inter-session samples is computed as
Sinter

j ¼ PþWinter
j (with j¼ 1 . . . Sinter, being Sinter the number of

inter-session samples to be generated).
Therefore, the parameters which define Algorithm 2 for

the generation of duplicated samples are the limits of the
uniform distribution for each of the lognormal features, i.e.,
C¼ ½ct0

,cD,cm,cs,cys
,cye
�.
X
Y

P

X
Y

P

x
y

p

x
y

p

SDB2. Three samples of five different real and synthetic signers are shown together

gnatures extracted from the MCYT database [85]. (b) Synthetic signatures produced
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Intra-session duplicated samples are generated in a totally
analogue way, keeping in general the level of distortion allowed
lower than in the inter-session case, cinter

t0
4cintra

t0
and similarly

for the remaining features.
The velocity function vj is computed from each of the dupli-

cated samples Sj, and in a subsequent step the new coordinate
functions xj and yj are recovered from the velocity information
(according to Eqs. (7) and (8)).

In Algorithm 2 the pressure function pj of the different
duplicated samples is generated following the same process as
in Algorithm 1 where it is resampled and amplified according to
parameters M and a respectively (see Section 5.1). In this case the
resampling parameter M is defined by the length of the new
signals xj and yj, while a is selected from the same uniform
distribution as in Algorithm 1. The general diagram of Algorithm 2
for the synthetic generation of duplicated samples is given in
Fig. 7.

As in the previous case, the specific values for the parameters
involved in this algorithm and the relationship between the intra-
and inter-session features, should be extracted from a develop-
ment pool of users representative of the type of signatures to be
generated.
6. Conclusions

A novel methodology for the generation of synthetic on-line
handwritten signatures has been presented. This method com-
bines the advantages of both spectral analysis and the Kinematic
Theory of rapid human movements to generate totally synthetic
individuals which are not based on any particular real signature.
Furthermore, two complimentary algorithms were described for
the generation of duplicated samples produced from the artificial
specimens, one taking advantage of the benefits of signal proces-
sing to directly modify spatial and geometric information and the
other exploiting the kinematic properties of rapid human move-
ments. This way, the presented approach as a whole permits the
fully automatic generation of huge synthetic on-line signature
databases.

As a representative example of the signatures generated with
the proposed scheme, three samples of five real (a) and synthetic
(b) signers are shown in Fig. 8. This way, we can perform a
qualitative (and subjective) validation of the visual appearance of
the final synthetic signatures. The real signers are taken from
the publicly available MCYT database [85], and the synthetic
subjects are produced using the proposed generation method
applying Algorithm 1 (first three synthetic individuals) and
Algorithm 2 (last two signers) to obtain the duplicated samples.
The trajectory and pressure signals of the first signature appear
below. We can observe that, although just some recognizable
characters can be distinguished in the synthetic signatures, their
aspect and that of their time functions is very similar to the real
signatures appearance. In Part II of the present work [79], we
describe the experimental framework followed to validate from a
quantitative and objective perspective the proposed approach,
where it is proven that the generation method produces realistic
signatures in terms of appearance (for human observers), infor-
mation contained, and performance (of automatic verification
systems).

The novel synthetic generation algorithm described in this
work presents a great potential for many different applications
such as performance estimation [16], security evaluation in order
to test existing biometric solutions against fraudulent access
attempts [22], individuality studies [26], or for synthetically
increasing the amount of enrollment data in order to improve
the performance of a given application [28].
Please cite this article as: J. Galbally, et al., Synthetic on-line sign
Recognition (2012), doi:10.1016/j.patcog.2011.12.011
Acknowledgements

J.G. is supported by a FPU fellowship from Spanish MEC.
This work has been partially supported by projects Contexts
(S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186)
from Spanish MICINN, Dirección General de la Guardia Civil, and
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