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Abstract: In this study, the effects of using handheld devices on the performance of automatic signature verification systems are
studied. The authors compare the discriminative power of global and local signature features between mobile devices and pen
tablets, which are the prevalent acquisition device in the research literature. Individual feature discriminant ratios and feature
selection techniques are used for comparison. Experiments are conducted on standard signature benchmark databases
(BioSecure database) and a state-of-the-art device (Samsung Galaxy Note). Results show a decrease in the feature
discriminative power and a higher verification error rate on handheld devices. It is found that one of the main causes of
performance degradation on handheld devices is the absence of pen-up trajectory information (i.e. data acquired when the pen
tip is not in contact with the writing surface).
1 Introduction

Signature verification is still a challenging task within
biometrics. Owing to their behavioural nature (as opposed
to anatomic biometric traits), signatures present a notable
variability even between successive realisations, which can
be increased over medium or large periods of time [1].
Moreover, evaluating the robustness of a system against
forgeries is complex, as highly skilled forgers are rarely
available during the collection of research databases. A
signature verification system designer must face a high
‘intra-class’ variability (between the signatures of a specific
user) and a low ‘inter-class’ variability, when forgeries are
considered. Reliable automatic signature verification is
nevertheless an active research field [2] because of the
widespread social and legal acceptance of signatures as a
validation means.
On-line or dynamic signature verification systems use

discrete-time functions sampled from the pen tip motion
(e.g. x and y coordinates) to perform authentication. These
signals may be captured, for example, with pen tablets or
touch screens. Dynamic systems have reached traditionally
a better verification performance than off-line systems,
which consider only the static handwritten signature image,
since more levels of information than the signature still
image are available [3].
Dynamic signature verification systems can be classified

into two main categories. ‘Feature-based’ or global systems,
which model the signature as a holistic multidimensional
vector composed of global features such as average pen
speed or number of pen-ups [4], and ‘function-based’ or
local systems that perform signature matching using the
captured discrete-time functions (pen coordinates, pressure
and so on) [5]. Feature-based systems use statistical
classifiers such as Parzen-windows or Gaussian mixture
models [6, 7], whereas function-based systems traditionally
use dynamic time warping (DTW) [8, 9] or hidden Markov
models (HMM) among other techniques [10].
Smartphones and handheld devices have recently gathered a

high level of popularity in the context of ubiquitous access to
information and services. These devices represent an attractive
target for the deployment of a signature verification system,
providing enough processing capabilities and a touch-based
interface [11]. However, signature verification on handheld
devices is affected by factors not present in other input
devices primarily because of a small input area, poor
ergonomics or the fact that the user may be in movement.
Users must sign on an unfamiliar and usually unstable
surface with a small stylus or a finger. As a consequence,
the signature generation process may be degraded.
The BioSecure Signature Evaluation Campaign (BSEC

2009) [12], with the participation of several independent
research institutions, has shown that the performance of
signature verification using samples captured on a handheld
device is significantly lower than with signatures captured
on a pen tablet. Nevertheless, the impact of handheld
devices on local and global signature features has not been
systematically studied to the extent of our knowledge. A
preliminary statistical comparison of such signature features
acquired with several devices, including a pen tablet and a
personal digital assistant (PDA) was performed in [13],
showing that there are significant differences in feature
distributions among different devices.
The objective of this work is to study the effects of mobile

acquisition conditions in automatic signature verification. We
focus on the impact of mobile conditions on the feature
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discriminative power of different types of features (local and
global) compared to the traditional pen tablet scenario using
discriminant analysis of individual features and feature
selection algorithms. The performance of state-of-the-art
verification systems is also studied in both scenarios, using
a global and an HMM-based local system. Two feature sets
are considered in this work. A global feature set based on
the one described in [14], and a local set which contains
most local features proposed in recent years for dynamic
signature verification.
Two different databases are used in the experiments: (i) the

BioSecure Multimodal Database (BMDB), as a standard
benchmark [15]; (ii) a signature database captured using a
state-of-the-art device (Samsung Galaxy Note). The BMDB
signature database has two subcorpora, one captured on a
PDA and other on a digitising pen tablet. They correspond
to the same users in both devices, allowing a fair
comparison between them.
This paper is structured as follows. First, related work on

signature verification on handheld devices is reviewed in
Section 2. In Section 3, the global and local features
considered in this work are described and a global and a
local verification system are also presented. The
experimental protocol and databases are described in
Section 4. Results are reported in Section 5. Conclusions
are finally drawn in Section 6.

2 Related work

Little research has been carried out in the field of dynamic
signature verification on handheld devices. In most works
related to automatic signature verification, signature
databases are captured using a pen tablet [2]. As a matter of
fact, most research-oriented signature databases have been
acquired with a pen tablet [16], although there is an
emerging interest in signature-based authentication using
alternative devices [17].
Compared to touch screens on PDAs or handheld devices,

pen tablets usually capture more information than the pen
trajectory, namely pen orientation (azimuth and altitude)
and pen pressure. Moreover, pen tablets also detect the pen
trajectory when the tip is not in contact with the surface,
allowing trajectory acquisition pen-ups.
The BMDB [15] contains, among other biometric traits, two

signature datasets from the same set of donors. One dataset was
captured with a pen tablet (DS2 dataset) and another with a
PDA (DS3 dataset). In Fig. 1, the capture conditions of both
datasets are shown. In 2007, the BioSecure Multimodal
Fig. 1 Signature capture conditions on different devices

a PDA signature capture process in the BIOSECURE DS3 – mobile scenario data
b Pen tablet capture process in the BIOSECURE DS2 – access control scenario da
c Signature capture process on a mobile device (Samsung Galaxy Note) used for v
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Evaluation was held, where verification algorithms from
several European research institutions were compared using
the PDA dataset [18]. It was found that error rates were
notably higher than in previous competitions, such as SVC
2004 [19], where signatures had been captured on a pen
tablet. In 2009, the BSEC was aimed towards comparing the
verification performance between the handheld scenario and
the pen tablet scenario [12]. Two different tasks were
reported. In Task 1, a direct comparison of verification
performance using a pen tablet against a PDA for signature
acquisition was carried out, with signatures from the BMDB
database. Task 2 studied the verification performance
variation with respect to the information content in signatures
[20]. Results of Task 1 showed that the participating
signature verification algorithms had a significant lower
performance against skilled forgeries when signatures were
captured on a PDA compared to a pen tablet. On the other
hand, verification performance against random forgeries was
less negatively affected in the PDA scenario.
It is also known from previous works that features extracted

from signatures acquired with different devices present
statistical distributions that might be significantly different
[13]. These statistical differences between features from
different devices may affect device interoperability and may
also result in large verification performance differences
among sensors. In [21], the authors compare the error rates
of two systems when signatures are captured with two
different tablet-PCs. It is shown that the performance
depends on the sampling quality of the device used for
enrolment. In [22], the effects of constraining the available
signing space are studied, although not specifically for
handheld devices. The authors show that the lack of space
affects signature complexity, may cause hesitation marks,
and reduce fluency, among other factors.
Signatures captured with a pen tablet and a handheld

device have also been compared from the point of view of
their entropy or information content. In [20] a client-entropy
measure is defined, and it is shown that signatures captured
with a PDA have a higher entropy than those captured with
a pen tablet. The entropy measure defined in that work
increases in general with signature variability and
graphically simple signatures. Higher verification error rates
for signatures with higher entropy are reported.

3 Features and recognition systems

The objective of this work is to study the effects of handheld
devices on signature features and verification performance.
set
taset
alidation experiments
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Two totally different recognition systems have been selected,
one based on global features and the other based on local
features. In order to reach these goals, two signatures
datasets have been used, containing samples acquired on a
pen tablet and a handheld device. In Fig. 2, the
experimental approach that has been followed is depicted.

3.1 Global features

Feature-based or global signature verification systems have
been extensively studied in the past [4, 14, 23]. Signatures
are described in this case by an n-dimensional vector,
containing features related to shape, and timing-events
among other feature types. In this work, a large set of 100
global features is considered, which comprises a high
proportion of the best performing global features studied in
the literature [4, 24, 25]. A complete description of the
feature set is shown in Table 1.
Features are extracted directly from the pen motion

discrete-time signals and are normalised between [0, 1]
using tanh-estimators [26]. These global features can be
divided into four categories according to the physical
magnitude measured:

† Time (25 features): related to signature duration, or timing
of events such as pen-ups or local maxima.
† Speed and acceleration (25 features): obtained from the
first- and second-order time derivatives of the position time
functions.
† Direction (18 features): extracted from the path trajectory.
Examples are starting direction or mean direction between
pen-ups.
† Geometry (32 features): associated with the strokes or
signature aspect-ratio.
3.1.1 Global verification system: A classifier based on a
simplified version of the Mahalanobis distance is used in this
work, in order to compare an input signature with a claimed
user model. This distance measure has the advantage of
being relatively simple to compute and generic enough to
provide a reasonable empirical estimate of the statistical
class separability achieved by the feature vectors. User
models C = (m, S) are created from a training set of
genuine signatures, where μ and S are the mean vector and
covariance matrix obtained from the training signatures. A
diagonal covariance matrix is used, and the values below a
fixed threshold are replaced by the threshold value. This is
done to avoid obtaining a singular covariance matrix
because of the limited number of training samples in
comparison to the problem dimensionality, and to simplify
Fig. 2 Diagram of the experimental setup followed in this work

Global and local systems are presented in Section 3. The experimental protocol an
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the implementation of this algorithm in handheld devices
with limited processing power. The threshold value is
0.00085 and has been heuristically obtained in preliminary
experiments. Thus, the matching score s is obtained as the
inverse of the ‘simplified’ Mahalanobis distance between
the input signature feature vector x and the claimed user
model C

s(x, C) = (x− m)T S
( )−1

(x− m)
( )−1/2

(1)

If the score s(x, C) is above a specific threshold, the signature
is considered as genuine. In contrast it is rejected by the
system.

3.2 Local features

The local feature set considered in this work is an extension of
the feature set described in [10], which has been extended by
adapting features from [23, 27, 28]. In the original set, seven
discrete-time functions are extracted from the pen tip
trajectory and the pen pressure, from which the first- and
second-order derivatives are computed, leading to a
21-dimensional feature vector [10]. In this work, all
second-order derivatives except those extracted from x and
y coordinates are discarded since they showed a very low
contribution in the verification performance (as corroborated
in [23]). Thus, 16 functions from the original set are used
(7 + 7 derivatives + 2 second-order derivatives), which
correspond to features numbered 1–14 and 17–18 in
Table 2. The set has been extended with 11 functions
extracted from [23, 27, 28].
In Table 2 the resulting set of 27 functions is described. As

in the case of global features, this feature set comprises a high
proportion of the features proposed in the recent literature for
local signature verification.
This feature set assumes the availability of pressure and

pen-inclination information, although that is not usually the
case for signatures captured with a handheld device. In
those cases, only 21 features can be extracted from the raw
signals (see caption of Table 2).
3.2.1 Local verification system: An HMM system is
used in the experiments. This system is based on the one
described in [10], which reached second position in Task 2
of the Signature Verification Competition 2004 [19]. Each
user is modelled with a 2-state HMM with 32 Gaussian
mixtures per state. Similarity scores are computed as the
log-likelihood of the target signature (using the Viterbi
algorithm) divided by the total number of samples of the
d databases are described in Section 4. Results are reported in Section 5
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Table 1 Global feature set considered in this contribution

# Time related feature # Direction related feature

# Speed and Acceleration
related feature

# Geometry related feature

# Feature description Optimal feature set # Feature description Optimal feature set

Ps Pr Tr Ts Ur Us Ps Pr Tr Ts Ur Us

1 signature total duration Ts ✓ ✓ ✓ ✓ ✓ ✓ 2 (pen-down duration Tw)/Ts

3 (1st t(vmax))/Tw 4 T(vx > 0)/Tw ✓ ✓ ✓ ✓ ✓
5 T(vx < 0)/Tw ✓ 6 T(vy > 0)/Tw ✓
7 T(vy < 0)/Tw ✓ 8 T(vx > 0|pen-up)/Tw
9 T(vx < 0|pen-up)/Tw ✓ ✓ 10 T(vy > 0|pen-up)/Tw ✓ ✓
11 T(vx < y|pen-up)/Tw 12 T(1stpen-up)/Tw ✓ ✓
13 T(2ndpen-up)/Tw ✓ ✓ 14 T(2nd pen-down)/Ts ✓ ✓
15 T(3rdpen-down)/Ts ✓ ✓ ✓ 16 (1st t(vy,max))/Tw ✓ ✓ ✓ ✓
17 (1st t(vy,min))/Tw ✓ ✓ ✓ ✓ ✓ 18 (1st t(vx,max))/Tw ✓ ✓ ✓
19 (1st t(vx,min))/Tw ✓ ✓ ✓ ✓ ✓ 20 T((dy/dt)/(dx/dt) > 0)/T((dy/dt)/

(dx/dt) < 0)
✓ ✓

21 T(curvature > thresholdcurv)/Tw 22 (1st t(xmax))/Tw ✓ ✓
23 (2nd t(xmax))/Tw ✓ ✓ ✓ 24 (3rd t(xmax))/Tw ✓
25 (2nd t(ymax))/Tw ✓ ✓ ✓ 26 (3rd t(ymax))/Tw ✓ ✓
27 (average velocity �v)/vmax ✓ ✓ 28 N(vx = 0) ✓ ✓ ✓
29 N(vy = 0) ✓ ✓ ✓ ✓ ✓ 30 �v/vx ,max ✓ ✓ ✓ ✓ ✓ ✓
31 �v/vy ,max ✓ 32 (velocity rms v)/vmax ✓ ✓ ✓ ✓
33 (centripetal acceleration rms ac)/

amax

✓ ✓ 34 (tangential acceleration rms
at)/amax

✓ ✓ ✓ ✓

35 (acceleration rms a)/amax ✓ ✓ 36 (integrated abs. centr. acc.
aIc)/amax

✓ ✓ ✓ ✓ ✓

37 (velocity correlation vx,y)/v
2
max ✓ ✓ ✓ ✓ 38 standard deviation of vx ✓

39 standard deviation of vy ✓ ✓ ✓ 40 standard deviation of ax
41 standard deviation of ay ✓ ✓ ✓ ✓ 42 average jerk ✓ ✓
43 �Jx 44 �Jy
45 jmax ✓ ✓ ✓ 46 jx,max ✓ ✓
47 jy,max ✓ ✓ ✓ 48 jrms ✓ ✓
49 t( jmax)/Tw ✓ ✓ 50 t( jx,max)/Tw ✓ ✓ ✓ ✓ ✓
51 t( jy,max)/Tw ✓ ✓ ✓ ✓ 52 N(pen-ups) ✓ ✓ ✓ ✓ ✓
53 N(sign changes of dx/dt and dy/dt) ✓ ✓ ✓ ✓ ✓ ✓ 54 T((dx/dt)(dy/dt) > 0)/T((dx/dt)

(dy/dt) < 0)
55 θ(initial direction) ✓ 56 θ(1st to 2nd pen-down) ✓ ✓ ✓ ✓
57 θ(1st pen-down to 1st pen-up) ✓ ✓ 58 θ(1st pen-down to 2nd

pen-up)
✓

59 θ(2nd pen-down to 2nd pen-up) ✓ ✓ ✓ ✓ 60 θ(before lastpen-up) ✓ ✓
61 θ(1st pen-down to last pen-up) ✓ 62 direction histogram s1 ✓ ✓ ✓ ✓
63 direction histogram s2 ✓ ✓ ✓ ✓ ✓ 64 direction histogram s3
65 direction histogram s4 ✓ ✓ ✓ ✓ ✓ 66 direction histogram s5 ✓ ✓
67 direction histogram s6 68 direction histogram s7
69 direction histogram s8 ✓ ✓ 70 direction change histogram

c2

✓ ✓

71 direction change histogram c3 ✓ 72 direction change histogram
c4

✓

73
Amin = (ymax − ymin)(xmax − xmin)

Dx = ∑pen−downs
i=1 (xmax |i − xmin |i )

( )
Dy

✓ ✓ ✓ 74 (max distance between
points)/Amin

75 (x1st pen-down− xmax)/Δx ✓ ✓ ✓ ✓ 76 (x1st pen-down− xmin)/Δx ✓ ✓ ✓ ✓
77 (xlast pen-up− xmax)/Δx ✓ ✓ 78 (xlast pen-up− xmin)/Δx ✓
79 (y1st pen-down− ymax)/Δy ✓ ✓ 80 (y1st pen-down− ymin)/Δy ✓ ✓ ✓ ✓
81 (ylast pen-up− ymax)/Δy ✓ ✓ ✓ ✓ 82 (ylast pen-up− ymin)/Δy ✓
83 (xmax− xmin)Δy/(ymax− ymin)Δx ✓ ✓ 84 (standard deviation of x)/Δx ✓ ✓ ✓
85 (standard deviation of y)/Δy ✓ ✓ 86 (Tw�v)/(ymax − ymin) ✓ ✓ ✓
87 (Tw�v)/(ymax − ymin) ✓ ✓ 88 (xmax− xmin)/xacquisitionrange ✓ ✓ ✓ ✓
89 (ymax− ymin)/yacquisition range 90 (�x − xmin)/�x ✓
91 spatial histogram t1 ✓ ✓ ✓ 92 spatial histogram t2 ✓ ✓ ✓ ✓
93 spatial histogram t3 ✓ ✓ 94 spatial histogram t4 ✓
95 N(local maxima in x) ✓ ✓ ✓ ✓ 96 (x2nd local max− x1st pen-down)/Δx ✓
97 (x3rd local max− x1st pen-down)/Δx ✓ 98 N(local maxima in y) ✓ ✓ ✓ ✓ ✓
99 (y2nd local max− y1st pen-down)/Δy 100 (y3rd local max− y1st pen-down)/Δy ✓ ✓ ✓ ✓

T denotes time interval, t denotes time instant, N denotes number of events, and θ denotes angle. All notations are defined or
referenced in the table. Features 36, 37, 62 and 91 are based on [25]. The optimal 40-feature subsets, as described in the Experimental
Results (Section 5.2), are shown for each optimisation scenario: Ps and Pr denote PDA skilled and random forgeries, Ts and Tr pen
tablet skilled and random forgeries and Us and Ur refer to pen tablet with interpolated pen-ups against skilled and random forgeries,
respectively
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signature signal. In order to keep scores between a reasonable
range, normalised scores ŝ between (0,1) are obtained
as ŝ = exp s(x, C)/30

( )
, where s(x, C) is the score returned
4
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by the HMM system and x and C represent, respectively,
the input signature and the enrolled model of the claimed
identity.
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Table 2 Local feature set presented in this contribution

# Feature Description

1 x-coordinate xn
2 y-coordinate yn
3 pen-pressure zn
4 path-tangent angle un = arctan(ẏn/ẋn)

5 path velocity magnitude yn =
����������
ẏ2
n + ẋ2

n

√

6 log curvature radius rn = log(1/kn) = log(yn/u̇n), where κn is the curvature of the position trajectory

7 total acceleration magnitude an = ���������
t2n + c2n

√ =
������������
ẏ2n + y2nu

2
n

√
, where tn and cn are, respectively, the tangential and

centripetal acceleration components of the pen motion
8–14 first-order derivative of features 1–7 ẋn, ẏn , żn, u̇n, ẏn, ṙn, ȧn
15 pen azimuth γn
16 pen altitude fn

17–18 first-order derivative of features 15–16 ġn , ẇn

19–20 second-order derivative of features 1–2 ẍn, ÿn

21 ratio of the minimum over the maximum
speed over a window of 5 samples

yrn = min yn−4, . . . , yn
{ }

/max yn−4, . . . , yn
{ }

22–23 angle of consecutive samples and
first-order difference

an = arctan(yn − yn−1/xn − xn−1)
ȧn

24 sine sn = sin(αn)

25 cosine cn = cos(αn)

26 stroke length to width ratio over a
window of 5 samples

r5n =
∑k=n

k=n−4

��������������������������������
(xk − xk−1)

2 + (yk − yk−1)
2

√

max xn−4, . . . , xn
{ }−min xn−4, . . . , xn

{ }

27 stroke length to width ratio over a
window of 7 samples

r7n =
∑k=n

k=n−6

��������������������������������
(xk − xk−1)

2 + (yk − yk−1)
2

√

max xn−6, . . . , xn
{ }−min xn−6, . . . , xn

{ }

Upper dot notation (e.g. ẋn) indicates time derivative, and the subindexes (integers) indicate time sampling instants. Features 3, 10, 15,
16, 17 and 18 are not available in the mobile scenario, as the pressure and pen-inclination information is not acquired by this type of
devices
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4 Experimental protocol

4.1 Databases

Two databases are used in the experiments, the BMDB,
acquired using a pen-tablet and a PDA [15], and a database
captured using a Samsung Galaxy Note device, referred to
as SG-NOTE.
A subset of 120 users from the BMDB is used in this work

[available at the BioSecure Foundation web site: http://
biosecure.it-sudparis.eu/AB/index.php?option=com_content&
view=article&id=72 as the ‘120 common DS2/DS3’ signature
dataset]. It contains 20 genuine signatures and 20 skilled
forgeries per user and acquisition device (PDA and pen
tablet). Genuine signatures were acquired in two different
sessions separated by an average period of two months. The
first five signatures correspond to the initial session whereas
the remaining 15 belong to the second session. Signatures
were captured with a PDA while the user was standing and
holding the device with one hand in the handheld scenario,
whereas for the pen tablet case they were acquired while
the user was sitting, using a pen on a paper placed over the
tablet (see Fig. 1a and b). This emulates real operating
conditions.
In both devices, skilled forgeries for each user were

performed by four different forgers (five forgeries each)
under ‘worst case’ conditions: each forger had visual access
to the dynamics of the genuine signature using a tracker
tool that allowed replaying the original strokes.
Only the x and y position signals and the sample

timestamps are captured by the PDA, whereas pressure (z)
and pen orientation (θ, γ) signals are also acquired by the
pen tablet. Pen trajectories during pen-ups (when the pen
IET Biom., pp. 1–11
doi: 10.1049/iet-bmt.2013.0081
tip is not in contact with the tablet surface) are recorded by
the pen tablet but are not available in the PDA dataset. It is
found in the pen tablet dataset that, for each genuine
signature, an average of 18% of sampled points correspond
to pen-up trajectories (i.e. when the pen tip is not in contact
with the tablet surface). A histogram of the proportion of
sample points during pen-ups compared to the total
signature samples is depicted in Fig. 3. In order to evaluate
the effect of the lack of pressure and inclination information
and pen motion during pen-ups, a third signature dataset is
artificially created by removing the samples produced
during pen-ups (i.e. having pressure values equal to 0) in
the pen tablet dataset. This set will be referred to as ‘tablet
interpolated pen-ups’. Pen-up trajectories are interpolated in
the PDA and in the tablet interpolated pen-ups dataset.
Cubic splines are selected for interpolation as they provided
a better verification performance in preliminary
experiments, which are omitted for the sake of clarity. For
the PDA subset, an additional preprocessing step is
performed to interpolate erroneous (missing) samples.
From each of the three BMDB subsets (i.e. PDA, tablet and

tablet interpolated pen-ups), each one containing 120 users,
signatures from the first 50 users are used for development
purposes (i.e. individual feature analysis and feature
selection), whereas the remaining 70 are left to validate the
performance of the optimal feature vectors selected by the
Sequential Forward Floating Search (SFFS) algorithm. We
will refer to the development datasets as BMDB-DEV50
and to the validation datasets as BMDB-VAL70.
This setup follows the protocol of the BSEC [12], where a

subset of 50 users was released for algorithm tuning prior to
the competition, which was later carried out using a different
test dataset.
5
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Fig. 3 Histogram of signatures classified by the proportion of sampled points during pen-up trajectories against total signature sample points,
computed on the pen tablet signature dataset

www.ietdl.org
The SG-NOTE database [available at http://atvs.ii.uam.es]
is also used for performance validation, in addition to the
BMDB-VAL70 subset. This dataset was captured by the
authors using a Samsung Galaxy Note mobile phone and
contains signatures from 25 users. The SG-NOTE database
was captured in two different sessions with an average gap
of 5 days between them. In each session, signatures were
acquired in two blocks of five samples, with a short break
between blocks. No skilled forgeries are available in this
database. Consequently, the database contains a total
amount of 500 signatures (25 users × 2 sessions × 10
signatures per session). See Fig. 1c for an example
signature acquisition in SG-NOTE.
The five genuine signatures from the initial session are used

for enrolment, both for the global and local systems.
‘genuine’ user scores are computed using the remaining
from the second session (15 signatures in BMDB and 10
signatures in SG-NOTE). ‘Random forgery’ scores (the case
where a forger uses his own signature claiming to be a
different user) are obtained by comparing the user model to
one signature sample of all the remaining users. ‘Skilled
forgery’ scores for the BMDB datasets are computed
comparing the 20 available skilled forgeries per user with
his or her own model (trained with five signatures, as stated
before).

4.2 Development and validation experiments

The experiments are structured as follows: first, a global and
local individual feature analysis is performed on signatures
from the BMDB-DEV50 development dataset (Experiments
1 and 2). Optimal feature combinations are then computed
using feature selection (Experiments 3 and 4). Finally,
results are validated using the BMDB-VAL70 and
SG-NOTE datasets (Experiment 5).

4.2.1 Experiment 1 – global feature analysis: The
discriminative power of global features can be measured
using the Fisher discriminant ratio (FDR) for each
individual feature. The FDR provides an intuitive measure
of discriminative power, as it increases with the inter-class
variability and decreases with the intra-class variability. The
FDR D for the ith feature from user u is computed as follows

Di(u) =
(mGi

− mFi
)2

s2
Gi
+ s2

Fi

(2)

where μ and σ are the average and standard deviation,
respectively, of the genuine signature sample set Gi and the
forged sample set Fi. We use this measure in this work to
6
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compare the discriminative power of each feature defined in
Table 1 between the mobile and the pen tablet scenario.

4.2.2 Experiment 2 – local feature analysis: In
contrast to the case of global features, the application of the
FDR to compute the discriminative power of individual
local features is impractical. This is because of the fact that
local features are time functions. As a consequence, the
computation of distances between average feature values as
defined in the FDR does not represent a realistic measure.
A distance-based discriminative measure using time

functions is proposed in [27] to overcome this limitation. In
that work, a consistency value is described, which provides
a similar measure to the FDR at least from an intuitive
point of view, as it decreases when genuine features are far
apart among them and close to forgeries and vice versa. We
use the DTW algorithm to compute distances between the
time functions, as in [27]. We modify the consistency value
definition in order to make its notation similar to the FDR
and thus define the distance discriminant ratio (DDR) R for
the ith feature of user u as

Ri(u) =
(mDGi

− mDFi
)2

s2
DGi

+ s2
DFi

(3)

where DGi is the set of distances among the user genuine
signatures and DFi is the set of distances between the
genuine signatures and forgeries. This measure assumes that
for each user the mean distance between genuine signatures
and forgeries mDFi

is higher than the mean distance between
genuine signatures mDGi

, which has been tested to be true in
the datasets used for experiments. As can be seen, while not
being mathematically equivalent to the FDR, the DDR
provides a comparable measure in terms of the feature
discriminative power. Unlike the FDR, this measure is not
scale invariant. Consequently, in our experiments local
features are normalised to have zero mean and variance
equal to 1.
The median FDR and DDR are computed differently for

random and skilled forgeries. In the case of random
forgeries, for each user, the FDR and DDR between the
user samples and the rest of the genuine signatures in the
database are computed, whereas for skilled forgeries,
the FDR and DDR are computed between the genuine
signatures and the available skilled forgeries for each user.

4.2.3 Experiment 3 – feature selection: In order to
select the best performing feature combinations, feature
selection on the global 100-feature set and the local
25-feature set is carried out using the SFFS algorithm [29],
IET Biom., pp. 1–11
doi: 10.1049/iet-bmt.2013.0081
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which is set to minimise the system equal error rate (EER)
over the BMDB-DEV50 development dataset.

4.2.4 Experiment 4 – validation: Finally, the verification
performance in terms of the EER using the optimal feature
vectors selected by the SFFS algorithm for each scenario
are compared on the two available validation sets
(BMDB-VAL70 and SG-NOTE).

5 Results

5.1 Experiments 1 and 2: individual feature
analysis

From Fig. 4a, we observe that the median FDR for each
feature is similar in the pen tablet and the PDA scenario
when random forgeries are considered (left column).
Nevertheless, the FDR for pen tablet tends to be always
Fig. 4 FDR and DDR of global and local features

a FDR of each global feature for random (left) and skilled (right) forgeries
b DDR of each local feature for random (left) and skilled (right) forgeries

IET Biom., pp. 1–11
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higher or equal than the FDR for PDA. In the case of
skilled forgeries, the FDR is higher in most cases for pen
tablet than PDA in the case of skilled forgeries (right
column). This suggests that the verification performance in
the PDA scenario against skilled forgeries would be a priori
lower than for pen tablet independently from the classifier
used. Interestingly, the FDR for the interpolated pen-ups
tablet subset is in general lower than the original subset,
especially for skilled forgeries. This suggests that pen-up
trajectories are more resilient to forgeries (i.e. harder to
imitate).
The DDR is in general higher for pen tablet than for PDA,

independently of the availability of pen-up trajectories (see
Fig. 4b). As for global features, when pen-up trajectories
are interpolated, the DDR is more negatively affected for
skilled forgeries than for random forgeries. In random
forgeries, the most relevant difference is observed in the
vertical coordinate feature y, which is the one that best
7
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characterises the shape of signatures. The first derivative of y
has also a notably higher DDR in the pen tablet scenario. This
suggests a higher geometrical variability in the PDA scenario.
As can be seen, first and second x, y derivatives are more
discriminative when pen-ups are interpolated, which may
reflect unstable motion during pen-ups. The path velocity
magnitude y and its first derivative are also considerably
more discriminative in the pen tablet dataset. This suggests
higher variability in the writing speed on the PDA, which
can be motivated by the unfamiliar signing surface (touch
screen) and device.

5.2 Experiments 3 and 4: feature selection

In Fig. 5 the evolution of the global and the local system EER
using the optimal feature vector, as selected by the SFFS
algorithm, is depicted for each possible vector size. It can
be observed that while the behaviour for the case of random
forgeries is similar on both scenarios (mobile and tablet),
the optimal verification performance is significantly better
for skilled forgeries in the pen tablet scenario.
In the global system, the verification performance for pen

tablet does not significantly vary when pen-up trajectories
are interpolated. On the other hand, the EER increases
notably in the local system when pen-ups are interpolated.
This corroborates the results from the individual feature
analysis, that is trajectories during pen-ups provide
considerable discriminative information against skilled
forgeries.

5.2.1 Experiment 3 – global features: As can be seen in
Fig. 5a, the optimal feature vectors have an approximate size
of 40 features. The specific features which conform the
optimal 40-feature vectors are shown in Table 1. The
proportion of each feature type (time, speed and
acceleration, direction and geometry, as described in
Table 1) in each optimisation scenario is represented in
Fig. 6, considering feature vectors of 40 elements. As can
be seen, geometry features have a higher relevance in the
PDA dataset. In contrast, time and speed and acceleration
features are more relevant in pen-tablet feature vectors,
specially against skilled forgeries. Geometry features are in
principle the easiest to forge, so their higher presence in
Fig. 5 System EER for each possible size of the optimal feature vector

a Global system
b Local system
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PDA feature vectors may lead to a lower verification
performance.

5.2.2 Experiment 4 – local features: The optimal local
feature combinations selected by the SFFS algorithm for
each optimisation scenario are the following:

† PDA skilled forgeries: x, y, y, ρ, ẏ, ṙ, c
† PDA random forgeries: x, y, ρ, ẋ, ẏ, u̇, ȧ, c
† Pen tablet skilled forgeries: x, y, y, ẏ, u̇, ẏ, y r, ȧ, c
† Pen tablet random forgeries: x, y, ẏ, u̇, ȧ, c
† Pen tablet skilled forgeries interpolated pen-ups: x, y, θ, y,
ÿ, yr, s
† Pen tablet random forgeries interpolated pen-ups: x, y, a,
ẏ, yr, ȧ, c

Several remarks can be extracted from these results. First,
neither pressure nor pen orientation-related features are
present in the pen tablet optimal feature vectors, suggesting
that the lack of them should not penalise the verification
performance (in contrast to the results presented in [30]).
For the two original datasets (PDA and pen tablet), three
features are present in all vectors, namely the x coordinate,
the first derivative of the y coordinate and the cosine c of
the trajectory angle α.
These results also reveal that less features are needed for

HMM-based signature verification compared to the ones
commonly considered in other works such as [10, 23, 28],
at least under these experimental conditions. The absence of
pressure in the optimal feature vectors suggests that a pen
tablet-based system does not have a priori advantage over a
handheld device because of the capture of pressure
information per se. The main disadvantage of a handheld
device would be the lack of trajectories during pen-ups,
which penalises verification performance.

5.3 Experiment 4: validation

The verification performance (in terms of EER) on the
BMDB-VAL70 validation set using the optimal feature
vectors in each scenario is shown in Table 3. As can be
seen, global features provide better results in general on
mobile conditions, at least compared to an HMM-based
as selected by the SFFS algorithm for the global and local systems

IET Biom., pp. 1–11
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Fig. 6 Histogram of global feature types selected by the SFFS algorithm in each optimisation scenario

Feature vectors of 40 elements are considered. Rd denotes random forgeries, Sk skilled forgeries and ‘interp.’ refers to the interpolated pen-ups dataset

Table 4 System performance in terms of EER on the SG-NOTE
set using global or local features on both scenarios for random
(rd) forgeries

Optimisation scenario Global Local
EERrd, % EERrd, %

Sk. forgeries PDA 4.2 6.2
Rd. forgeries PDA 2.1 6.8

Vectors of 40 features have been selected in every configuration
for the global system

Table 5 System performance in terms of EER in the BSEC
2009 Signature Evaluation Campaign both for random (rd) and
skilled (sk) forgeries

System ID DS2 pen tablet
dataset

DS3 PDA dataset

EERsk, % EERrd, % EERsk, % EERrd, %

UPM1 4.9 2.3 7.4 1.9
UPM2 4.4 1.9 8.2 2.0
SKU 2.9 1.6 7.9 1.3
ASU 3.8 2.7 31.6 30.6
VDU 2.2 1.0 6.6 1.7
SU 3.0 2.2 5.0 4.3
UAM-DTWr 4.2 0.5 12.2 0.6
UAM-DTWs 2.9 1.5 5.8 1.5
UAM-HMM 19.2 24.2 25.8 21.3
UAM-GLO 6.7 3.3 13.2 4.7
UAM-FUS 2.2 0.6 5.5 0.7
reference 4.5 1.7 11.3 4.8

Table data have been extracted from [12]
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system. It can also be observed that when pen-up trajectories
are not available, the performance of the local system is
significantly degraded against skilled forgeries. This
corroborates the reduction of the individual feature
discriminative power (FDR and DDR) against skilled
forgeries observed in the individual feature analysis
(Section 5.1).
It can also be observed in Table 3 that, comparing both

optimisation scenarios, when the systems are optimised
against random forgeries, there is a significant degradation
in the performance against skilled forgeries. In contrast, the
EER against random forgeries is nearly not degraded (or
even enhanced) when the systems are optimised against
skilled forgeries.
A combined EER (EERc) is also presented in Table 3,

where all available scores (genuine, random forgeries and
skilled forgeries) are used for its computation. This implies
that, for each user, 15 genuine user scores, 20 skilled
forgery scores and 69 random forgery scores are used for
the (EERc) computation. It can be observed that in most
cases the systems optimised against skilled forgeries present
a better overall performance under this experimental
conditions.
In Table 4, the verification performance in terms of EER

against random forgeries is shown for the SG-NOTE
validation dataset. As can be seen, the performance is
similar than in the BMDB database when the local system
is used. In contrast, the global system verification
performance is better than with the BMDB database.
Results of the BSEC 2009 Signature Evaluation Campaign

[12] Task 1 are reported in Table 5. Performance in terms of
EER of the eleven participating systems and a reference
system is shown. The BMDB signature corpus was used for
the competition, which contains 382 users. As can be seen
performance is degraded on mobile conditions. The
UAM-GLO system is based on the global system presented
Table 3 System performance in terms of EER on the BMDB-VAL70 v
random (rd) and skilled (sk) forgeries

Optimisation scenario Global

EERrd, % EERsk, %

Sk. forgeries PDA 7.2 16.3
pen tablet 5.6 11.3

pen tablet interp. 6.9 10.9
Rd. forgeries PDA 5.4 17.7

pen tablet 6.7 13.0
pen tablet interp. 6.7 10.9

Combined EER (EERc) is also presented, as described in Section 5.3. Ve
the global system

IET Biom., pp. 1–11
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in this work, and the UAM-HMM system is based on the
local system. Unfortunately, the UAM-HMM system had an
alidation set using global or local features on both scenarios for

Local

EERc, % EERrd, % EERsk, % EERc, %

9.7 6.0 17.5 9.1
7.5 4.5 9.3 5.7
7.9 6.8 12.1 8.1
9.2 5.8 22.2 9.5
8.6 3.8 11.1 7.1
7.7 5.8 15.3 8.9

ctors of 40 features have been selected in every configuration for
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implementation error that led to a poor performance in the
BSEC 2009 competition.

6 Conclusions and future work

The effects on the feature discriminative power produced by the
usage of handheld devices for signature acquisition have been
studied. It has been observed that mobile conditions
negatively affect feature discriminative power, specially when
local features are considered, at least for the HMM-based
system used in the experiments, which is based on the one
that reached top positions in the SVC-2004 competition [8].
The performance difference against skilled forgeries

between the mobile and pen tablet BMDB datasets may
also be because of the different forgery acquisition
protocols. On the mobile scenario, forgers had access to an
on-screen replay of the signature whereas the replay shown
was on a separate screen when using pen-tablet.
Nevertheless, it has been clearly seen that verification
performance decreases when pen-up samples are not
available, except for the case of the global system and
skilled forgeries. These results indicate that trajectories
during pen-ups contain relevant biometric information,
corroborating the findings reported in [31] in the field of
handwriting recognition. The verification performance when
using global features presents a more robust behaviour than
the local approach based on discrete-time functions against
the lack of pen-up samples.
It has also been observed that the optimal feature set

selected by the SFFS algorithm has a similar performance
on the SG-NOTE database in the case of local features,
whereas it presents lower error rates for the global system.
The performance of the global system is better whereas the
local system has a similar performance. This corroborates
the apparent robustness of global features against degraded
signature acquisition conditions, at least in this experimental
setup.
At an individual feature level, it has also been observed that

on handheld devices the feature discriminative power is more
negatively affected for skilled forgeries than for random
forgeries. The discriminative power on the mobile scenario
is penalised by the lack of pen-up trajectories, the
unfamiliar screen surface where users must sign and the
poor ergonomics of a handheld device stylus. Features
related to pen inclination and pen pressure, not available in
this scenario, have not proven to be among the most
discriminant in the pen tablet setup.
An interesting topic for future work is the study of

interoperability between devices and the effects of mobile
conditions on DTW-based systems, which in recent years
have gained popularity in the literature.
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