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Abstract

The first consistent and reproducible evaluation of the effect of aging on dynamic signature is reported. Experiments are
carried out on a database generated from two previous datasets which were acquired, under very similar conditions, in 6
sessions distributed in a 15-month time span. Three different systems, representing the current most popular approaches in
signature recognition, are used in the experiments, proving the degradation suffered by this trait with the passing of time.
Several template update strategies are also studied as possible measures to reduce the impact of aging on the system’s
performance. Different results regarding the way in which signatures tend to change with time, and their most and least
stable features, are also given.
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Introduction

Due to the fact that biometrics, as an automatic means of

human recognition, constitutes a relatively novel field of research

[1], up to date most efforts undertaken by the different parties

involved in the development of this technology (researchers,

industry, evaluators, etc.) have been mainly focused on the

improvement of its performance (i.e., finding novel methods to

obtain lower error rates) [2,3]. As a consequence, other important

aspects closely related to this type of systems such as the

performance degradation effect known as aging have been left

partially uncovered [4].

Although there always exists a certain variability among

biometric samples of one given user (even when they have been

acquired successively) [5–7], in biometrics the term aging is

generally used to refer to the gradual decrease in a system

performance caused by the changes suffered by the users’ trait in

the long-term (which cannot be avoided as is inherent to human

nature) [8]. These changes provoked by age, entail that, after a

sufficiently long period of time, the initial enrolment template of a

certain subject substantially differs from his current biometric

samples, producing this way lower similarity scores and increasing

the error rates of the system. Thus, aging may be considered as a

especial type of large intra-user variability (i.e., variability within

the samples of the same user) caused by the inherent transforma-

tions of the human body or behavior over time.

The amount of time required for the stored template to become

obsolete varies for each biometric trait depending, among other

external aspects, on its own degree of permanence [4]. Thus,

biometric traits such as the fingerprints or the iris are more stable

over time, while others, such as the face (especially at early stages

of life) or the signature, are much more sensitive to relatively short

time variations. Furthermore, not every biometric system will be

affected in the same way by aging, as the features extracted from

one given biometric trait are not necessarily all equally robust to

the passing of time. In this context, the effect of aging should be

analyzed in a wide range of recognition systems working on a

certain individual biometric modality in order to determine the

approximate period of time in which the performance of that given

trait will be consistent, before its discriminant capabilities start to

drop.

In addition, once the consistent-performance time interval for a

given recognition system has been set, an analysis of the best

approach to overcome the effect of aging should also be carried

out. Among the different palliative methods that have been

proposed in the literature, the ones that have received more

attention from researchers and industry are the automatic

template update strategies [9,10]. These schemes use some type

of target function (e.g., quality measure, similarity score) to

automatically select from the most recent biometric samples given

by the user to access the system, those which are most suited to be

used to recompute (update) the subject’s enrolment template.

In this context, for the definitive introduction of the biometric

technology in the security market, it is of utmost importance to

take into account the problem of aging in practical biometric

applications, and to implement strategies that compensate the

gradual drift of their performance so that their valid life period (in

which they are competitive) is increased.

However, in spite of their importance, studies regarding aging

and template update are difficult to be carried out due to the lack

of long-term biometric data. It is not easy to find databases where

a statistically significant group of people have been captured over a

sufficiently long period of time [11]. Furthermore, the acquisition

process of such a database should be carried out under almost

identical conditions (in terms of acquisition devices, level of
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control, supervision, etc.) so that the differences in the system

performance can be attributed to the elapse of time and not to the

variability produced by other external factors.

It has not been until recently that different European and

national efforts have led to the acquisition of compatible

(regarding certain traits) multimodal databases with a relatively

large number of common users which have been captured in

different sessions over a several year time span. Some examples

include the Biosec [12], BiosecurID [13] and Biosecure [14]

projects. For the current work, the signature modality of this

common subset of users has been used to generate a new Long-

Term dynamic signature dataset which has been deployed to

analyze the effect of aging on three competitive on-line signature

verification systems working on totally different features and

matchers. In addition to the study of the signature performance

stability over time, several template update strategies have also

been explored in order to assess their efficiency as a way to

maintain the consistency of the system performance in the long-

term. Furthermore, several experiments regarding the changes

suffered by signatures with time and their most/least robust

features have also been carried out.

This way, although some novelty may be found in the

algorithms and techniques used in the experiments, the most

relevant contributions of the present work lie on: i) the

comprehensive revision of the state of the art in aging related

problems; ii) the presentation of the first dataset where the

signature of different subjects may be tracked over more than a

year; iii) the rigorous methodology followed to reach the

experimental results, which may be generalized in the future for

similar aging studies focused on other biometric traits; iv) the

experimental findings and practical conclusions extracted from

them, which help to shed some light into the difficult problem of

handwriting evolution over time.

The rest of the article is structured as follows. After the

introduction, a selection of the most important related works may

be found in Sect. The on-line signature Long-Term DB used in

the experiments is presented in Sect. The experimental protocol

followed is described in Sect. while results are given in Sect.

Conclusions are finally summarized in Sect.

Related Works

In the literature there exist different works where the aging of

human biometric traits has been studied from a medical point of

view [15–18], to help in the early diagnosis of diseases [19], or

even its forensic implications [20,21]. However, not many studies

can be found where aging is analyzed from a pure biometrical

perspective (two surveys of these works were recently published in

[8] and [22]). Furthermore, almost all of these aging biometric

works are related to the face modality, but, to the best of our

knowledge, none of them have been focused on the study of the

signature trait.

Among these face related contributions, there are works dealing

with different aspects of aging, for instance, its effect on the

performance of face verification systems [23,24], methodologies

for the synthetic simulation of age [25,26], approaches for the

compensation and modeling of the aging effect [27], automatic age

estimation methods [28–30], or descriptions of long-term facial

databases [11]. All this interest in the study of the effect of time on

face recognition, led in 2004 to the creation of a research group

specialized in the analysis of the different factors related to face

aging [31].

Figure 1. Example of a signature acquisition for the Signature Long-Term DB using the Wacom Intuos 3 digitizing tablet and a
paper template with a delimited signing area for each sample.
doi:10.1371/journal.pone.0069897.g001
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Outside the face trait, Modi et al. studied the correlation

between the quality of fingerprint samples and the age of the users

that produced them, and its impact on the final performance of

fingerprint recognition systems [32,33]. In the same direction as

the fingerprint works by Modi et al., several studies have analyzed

the degree of the signing/drawing skill of people belonging to

different age groups, their ability to repeat certain valuable

recognition features and their vulnerability to eventual imitators

[34–37]. Although all these works study an interesting issue related

to aging, they are not equivalent to the analysis carried out in the

present work, as they do not track individuals over a significant

period of their life, but they are focused on establishing a

relationship between a certain group of people (e.g., the elderly,

youngsters) and a given characteristic (fingerprint quality or

signing skill) of their biometric samples (e.g., the elderly-bad

quality-poor skill, youngsters-good quality-high skill).

In addition to the aforementioned works, several authors have

also addressed aging-related problems (such as age estimation or

age modeling), generally using relatively short-term data, in

biometric traits such as the handwriting [38], the voice [39,40], or

even the gait [41].

Although it cannot be strictly considered as aging, several works

have analyzed the short term variability of signatures using

samples captured in the same session (intra-session variability,

within minutes), or in different sessions (inter-session variability,

within days/weeks) of a regular acquisition campaign [35,42]. In

these cases, the differences in the systems performance can be

attributed more to the inherent variability of the biometric samples

(inter and intra-user short term variability) than to a real process of

aging, as the time interval between samples is in general too short

[5,43].

Regarding strategies that try to minimize the effect of aging,

among other possibilities such as using age invariant features [35],

or compensating age changes [44], most efforts have been focused

on the study of template update techniques [10](i.e., using the

most representative recent test samples of a user to update his

enrolment template). In this field, different fully unsupervised or

semiautomatic approaches have been proposed for the fingerprint

trait [45,46], for face-based systems [47], or even in multimodal

biometric applications [48].

The On-Line Signature Long-Term Database

The dataset used in the experimental section of this work

comprises the on-line signature data of the 29 common users to the

BiosecurID and the Biosecure databases. These two signature

subsets, which were acquired in a 15 month time span, present

some unique features that make them especially suited for the

aging evaluation performed in the present work.

N The BiosecurID Signature Subset [13]. It comprises 16

original signatures and 12 skilled forgeries per user, captured in

4 separate acquisition sessions (named here BID1, BID2, BID3

and BID4). The sessions were captured leaving a two month

interval between them, in a controlled and supervised office-

like scenario. Users were asked to sign on a piece of paper,

inside a grid that marked the valid signing space, using an

inking pen. The paper was placed on the Wacom Intuos 3 pen

tablet that captured the time signals of each signature at a

100 Hz sampling rate (trajectory functions x and y with an

accuracy of +0:25mm, and pressure function p with a

precision of 1024 pressure levels). All the dynamic information

is stored in separate text files following the format used in the

first Signature Verification Competition, SVC [49]. All the

acquisition process was supervised by a human operator whose

task was to ensure that the collection protocol was strictly

followed and that the captured samples were of sufficient

quality (e.g., no part of the signature outside the designated

space), otherwise, the donor was asked to repeat a given

signature. In a second stage, the database was validated by a

signature expert to avoid unwanted mistakes. For further

details on the acquisition and validation process we refer the

reader to [13]. See Fig. 1 for an acquisition example.

N The Biosecure Signature Subset [14]. This dataset was

captured 6 months after the BiosecurID acquisition campaign

had finished (the time sequence of the two databases is shown

in Fig. 2). It comprises 30 original signatures per user, and 20

skilled forgeries, distributed in two acquisition sessions

separated three months (named here Bure1 and Bure2). The

15 original samples corresponding to each session were

captured in three groups of 5 consecutive signatures with an

interval of around 15 minutes between groups (named here

Bure11-12-13 and Bure21-22-23, respectively). The signature

dataset was designed to be fully compatible with the

BiosecurID one. The acquisition scenario and protocol are

almost identical: as in the BiosecurID case, users had to sign

using an inking pen on a piece of paper with a restricted space,

placed over the Wacom Intuos 3 pen tablet. The dynamic

information stored is the same as in BiosecurID and following

also the SVC format. The supervision and validation of the

database was very similar as well to that followed in

BiosecurID, with a human operator controlling the acquisition

Figure 2. General time diagram of the different acquisition sessions that conform the Signature Long-Term Database.
doi:10.1371/journal.pone.0069897.g002
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Figure 3. Typical samples that can be found in the Signature Long-Term DB. Each signature corresponds to each of the acquisition sessions
of five different users.
doi:10.1371/journal.pone.0069897.g003
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process and an expert doing a posterior verification of the data

(a complete description of both tasks is given in [14]).

For the final dataset used in the present work, only the original

signatures were considered. This way, it comprises 1,334

signatures coming from the 29 common users of the two databases

with 46 samples per user (16 from BiosecurID, and the remaining

30 from Biosecure) which are distributed in 6 sessions (BID1-2-3-4

and Bure1-2) according to the general time diagram shown in

Fig. 2.

It constitutes the first signature dataset where we can track, over

a 15 month time span (as there are 6 almost uniformly distributed

acquisition sessions in this interval), the signature of a given user,

and assess if that period of time is sufficient to detect a decrease in

the verification performance of signature-based biometric systems.

Furthermore, as all the samples of the same subject have been

acquired under almost identical conditions we may discard

external factors as the cause of a possible degradation in the

recognition rates.

All users in the database are Spanish, white Caucasian with

higher level education, between 20 and 51 years of age. In

particular, the age distribution of the subjects is: 24 donors

between 18 and 25; 3 donors between 25 and 45; and 2 donors

above 45 years old. The gender distribution within the database is

quite balanced with 11 women and 18 men.

It should also be noted that all the users included in the database

may be considered as adults in terms of writing. This means that

their signature is a well learned sequence of movements which

may be considered as permanent and that has already gone

through the transitional learning period which usually happens in

the youth. The effect of aging during the time in which the

signature has not yet been fully fixed should be much greater and

would be the subject of future work.

Some typical examples of the signatures that can be found in the

different sessions comprised in the Signature Long-Term DB are

shown in Fig. 3.

The Signature Long-Term DB is publicly available for research

purposes at the Biometric Recognition Group-ATVS website [50].

Experimental Protocol

The experimental framework has been designed to evaluate the

effect of aging on the performance of signature-based systems and

to assess the stability of signatures through time. In particular, five

different objectives are pursued in the experiments, which may be

divided into two main groups:

N Signature recognition performance. On the one hand, i)
to evaluate the loss of performance of different competitive

signature recognition systems as a consequence of the changes

suffered by the signature trait with time (i.e., aging); ii) to

determine the dependencies of this performance degradation

(e.g., signature-dependent vs user-dependent); and iii) to assess

the efficiency of different template update approaches to

thwart this effect.

N Signature evolution. On the other hand, iv) to determine

which are the changes that entail the previously evaluated

decrease in the signature recognition performance; and v) to

Figure 4. Performance of the three signature recognition
systems used in the experiments, considering 4 signatures
for enrollment, and evaluated on the BiosecurID DB.
doi:10.1371/journal.pone.0069897.g004

Table 1. Division of the feature set introduced in [56] (given also in Appendix S1) according to the type of information they
contain.

Features #

Static 2,7,8,12,15–19,24,27–28,30,34–37,43,46,51,53–57,61,63,65–67,

70–73,75,77–78,84,86,93,95,97–99.

Dynamic 1,3–6,9–11,13–14,20–23,25–26,29,31–33,38–42,44–45,47–48,50,52,58–60,

62,64,68–69,74,76,79–83,85,87–92,94,96,100.

doi:10.1371/journal.pone.0069897.t001

Table 2. Enrollment and test signatures used to compute the
genuine scores in the aging experiments.

Aging Experiments

Enrollment Test

Exp. A BID1 (4 sig.) BID2 (4 sig.)

Exp. B BID1 (4 sig.) BID3 (4 sig.)

Exp. C BID1 (4 sig.) BID4 (4 sig.)

Exp. D BID1 (4 sig.) Bure1 (15 sig.)

Exp. E BID1 (4 sig.) Bure2 (15 sig.)

doi:10.1371/journal.pone.0069897.t002
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establish which are the most stable features in the signature

trait.

In order to achieve these goals the experimental protocol

includes two groups of tests which are described in the next

sections.

Tests 1: Signature Recognition Performance
The first objective of this group of experiments is to evaluate the

degree of aging that may be observed in the recognition

performance of signature-based systems. The results will also shed

some light on the user- and signature-dependency of aging, that is,

if certain type of signatures are more prone to worsen their

performance in the long term, or if this only depends on the signer

(second objective).

The third objective of these tests is to analyze different template

update approaches that can help to reduce the performance

deterioration that signature recognition systems suffer with time.

In order to reach these goals, several sets of genuine matching

scores (i.e., those computed between samples of the same user and

Figure 5. Performance evolution of the three signature recognition systems considered in the experiments. For the DTW-based system
only two curves appear as for experiments A–C its EER is close to zero. The EER for the three systems and for the different experiments are reported in
Table 3.
doi:10.1371/journal.pone.0069897.g005

Table 3. EER for the aging experiments defined in Table 2.
The whole DET curves for these experiments are shown in
Fig. 5.

Aging Experiments - EER (%)

Exp. A Exp. B Exp. C Exp. D Exp. E

HMM-based 3.21 5.52 5.63 22.67 27.83

GF-based 0.96 2.01 4.16 4.93 4.96

DTW-based 0.0 0.0 0.01 0.12 0.51

doi:10.1371/journal.pone.0069897.t003

Ageing in Biometrics: On-Line Signature
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Figure 6. Evolution through time of the mean (circles) and variance (vertical lines) of the genuine score distributions (in vertical on
the right) for the three systems considered in experiments A–E. A darker gray level represents a better performance of the given system.
doi:10.1371/journal.pone.0069897.g006
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therefore affected by aging) are computed on the Signature Long-

Term DB simulating two different scenarios:

N Aging experiments: Fixed template and varying test.
In this case the user models enrolled to the system are always

computed using the same samples (i.e., those belonging to the

first session of the Signature Long-Term DB, BID1), while the

test signatures are taken from the following sessions (BID2-3-4

and Bure1-2).

N Template update experiments: Varying template and
fixed test. In this case the test samples are always taken from

session Bure13, while the enrolled models are updated with

signatures coming from different previous sessions (BID2-3-4

and Bure11-12).

As mentioned in Sect. 0, not all the systems working on a given

trait are necessarily affected in the same way by aging. In order to

account for possible differences, we have carried out this set of

experiments on three different competitive on-line signature

verification systems using totally diverse feature sets (feature- and

function-based) and matchers (Mahalanobis distance, Hidden

Markov Models, and Dynamic Time Warping). A brief description

of each of the three systems is given next, while their DET curves

evaluated on the BiosecurID DB (as an indication of their

recognition capabilities) are shown in Fig. 4:

N System A: function-based+HMM. This function-based

verification system applies a regional approach using a

statistical model built using Hidden Markov Models (HMMs)

[51] to a set of 10 time sequences selected applying the

Sequential Forward Floating Selection (SFFS) algorithm [52]

to the total set of 34 functions defined in [53]. This subset of 10

signals are derived from the coordinate (x and y) and pressure

(p) functions, while no pen inclination signals are used as its

utility for automatic signature recognition is at least unclear

[54]. After some preprocessing (position and rotation align-

ment) and the computation of the 10 functions, similarities are

computed using 12 left-to-right HMM states and mixtures of 4

Gaussians per state. This system participated in the Signature

Verification Competition 2004 with very good results [49], and

the general configuration is detailed in [54].

N System B: feature-based+Mahalanobis distance. This

system models the signature as a holistic multidimensional

vector composed of the best performing 40-feature subset

Figure 7. Aging Coefficient (AC) from the least affected to the most affected user by aging in the Signature Long-Term DB, for the
three systems considered in the experiments. Please note that the least affected user, the most affected user, or any of the users in between,
do not necessarily have to coincide (i.e., be the same signer) for all three systems. The three AC curves are shown on the same figure for an easier
visual comparison across systems.
doi:10.1371/journal.pone.0069897.g007

Table 4. Most and least affected users by aging in the
Signature Long-Term DB according to the three systems
considered in the experiments.

Aging: user dependency

Most affected users Least affected users

Dm 15, 17, 16, 22, 4 19, 27, 3, 9, 28

HMM Ds 17, 4, 5, 26, 12 28, 6, 1, 9, 3

AC 17, 4, 5, 22, 11 28, 3, 6, 27, 19

Dm 16, 24, 11, 23 19, 21, 3, 2, 27

GF Ds 14, 1, 21, 6, 9 18, 12, 16, 17, 13

AC 1, 24, 7, 11, 21 18, 12, 21, 19, 3

Dm 7, 16, 11, 1, 8 19, 13, 3, 14, 26

DTW Ds 11, 9, 16, 14, 2 19, 24, 26, 8, 29

AC 16, 11, 1, 18, 7 19, 13, 26, 3, 24

Users with the most appearances in the AC rows (in bold) are depicted in Fig. 8.
doi:10.1371/journal.pone.0069897.t004
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extracted in [55] from the total set of 100 global features

described in [56] which may also be found for quick reference

in Appendix S1 (submitted as a supporting information file of

the present article). In the present study, we used this 40-

feature representation of the signatures normalizing each of

them to the range [0,1] using the tanh-estimators described in

[57]. Finally, the similarity scores are computed using the

Mahalanobis distance between the input vector and a

statistical model of the client estimated using a fixed number

of training signatures.

N System C: function-based+DTW. In this function-based

local approach a subset of 9 time functions (selected using

SFFS from the total 34 feature set as in the case of system B)

are directly matched using the elastic technique known as

Dynamic Time Warping (DTW) [58]. Dynamic Time

Warping is an application of Dynamic Programming to the

problem of matching time sequences of different lengths, thus,

the goal of DTW is to find an elastic match among samples of

a pair of sequences that minimize a given distance measure. In

this particular implementation, which is described in [59], we

use the Euclidean distance as the measure to be optimized and

only three correspondences among samples of the compared

sequences are allowed, using symmetrical weighting factors.

Although the DTW algorithm has been replaced by more

powerful ones such as HMMs or SVMs for speech applica-

tions, it remains a highly effective tool for signature verification

as it is best suited for small amounts of training data, which is a

common case in signature verification. As an example, the

DTW implementation used here was the winner of the

BioSecure Signature Evaluation Campaign 2009, outperform-

ing other systems based on HMMs and global features [60].

Tests 2: Signature Evolution
In this case, the aim of the experiments is to give some

indication on whether there is a common trend in the evolution

through time of signatures coming from different users (objective

four), and if there are certain type of features (e.g., static vs

dynamic) which are more stable (objective five).

To reach these objectives, the Signature Long-Term DB is

parameterized using the set of features described in [56]. In that

work, a set of 100 global features (i.e., features computed over the

entire signature as opposed to a localized area of interest) was

proposed as a compact representation of the information

comprised within a signature (see Appendix S1). This 100-feature

Figure 8. Most (left) and least (right) affected users by aging in the Signature Long-Term DB according to Table 4.
doi:10.1371/journal.pone.0069897.g008

Table 5. Enrollment and test signatures used to compute the
genuine scores in the template update experiments.

Template Update Experiments

Enrollment Test

Exp. F (baseline) BID1 (4 sig.) Bure13

Exp. G (complete) Bure11 (4 sig.) Bure13

Exp. H (mixed) BID1 (4 sig.)+Bure11 (4 sig.) Bure13

Exp. I (complete) Bure11 (4 sig.)+Bure12 (4 sig.) Bure13

doi:10.1371/journal.pone.0069897.t005

Ageing in Biometrics: On-Line Signature
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Figure 9. Mean (circles) and variance (vertical lines) of the genuine score distributions (in vertical on the right) for the 4 different
template update strategies tested and for the three systems considered in the experiments. A darker gray shade represents a better
performance of the given system.
doi:10.1371/journal.pone.0069897.g009
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Figure 10. Evolution through time of the duration, maxima points in x, maxima points in y, number of penups and speed of the
signatures in the Signature Long-Term Database.
doi:10.1371/journal.pone.0069897.g010
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set may be divided into two classes according to the information

contained by each of the parameters, namely: static or dynamic.

All the features assigned to each class are specified in Table 1 (the

numbering criterion is the same used in [56]).

Results

The results obtained for the two sets of experiments described in

Sect. are presented in the next sections.

Tests 1: Signature Recognition Performance
As mentioned in Sect. aging may be defined as the loss of

performance experimented by biometric systems due to the

transformations suffered by biometric traits in the long term.

With this in mind, the questions raised in this section are: Is aging

present in the signature trait? To what extent? Are some users

more prone to be affected by aging than others? How can it be

corrected?

In order to give an answer to these questions, several sets of

genuine scores (i.e., those affected by aging) are computed in order

to evaluate the performance of signature recognition systems.

Before presenting the results, it is very important to notice that,

given a fixed set of impostor scores, the best possible performance

results are reached when the genuine similarity score distributions

have a mean value as high as possible and a variance as low as

possible. Therefore, a worsening of the systems performance with

time (i.e., aging) may be caused by two factors: i) a decrease of the

genuine distributions mean value, or ii) an increase of the genuine

distributions variance.
Objective 1: Aging analysis. As mentioned before, these

experiments are aimed at estimating the impact of aging on

signature recognition systems. For this purpose, the enrolled

models of the 29 users present in the Signature Long-Term DB are

trained using the 4 signatures corresponding to the first session

(BID1). Then, the sets of genuine and impostor scores are

computed as follows:

N Genuine scores are generated matching the models against the

signatures of the following 5 sessions: BID2-3-4 and Bure1-2.

This way, for each user 5 different sets of genuine scores are

computed: BID1 vs BID2, BID1 vs BID3, BID1 vs BID4,

BID1 vs Bure1, and BID1 vs Bure2 (see Table 2).

N On the other hand, the same set of impostor scores is used for

all the experiments A–E (i.e., we assume impostor signatures

may come from any of the acquisition sessions as they are not

affected by aging). To compute the set of impostor scores one

signature from each session of the rest of the users is matched

against the enrolled model of the subject at hand, leading this

way to a total 29|6|28~4,872 impostor scores.

As the impostor score distribution is fixed for all the scenarios,

any changes observed in the performance of signature recognition

Figure 11. Variation Coefficient (VC) from the least variable to the most variable dynamic and static features (see Table 1)
proposed in [56] (see Appendix S1).
doi:10.1371/journal.pone.0069897.g011

Table 6. Most and least variable features over time.

Most variable global features

Dmgf 33(D), 36(S), 47(D), 95(S), 66(S), 64(D), 31(D), 10(D), 76(D),85(D)

Ds gf 73(S), 86(S), 76(D), 19(S), 85(D), 13(D), 90(D), 77(S), 65(S), 28(S)

VC 33(D), 47(D), 76(D), 85(D), 10(D), 64(D), 31(D), 36(S), 9(D), 32(D)

Least variable global features

Dmgf 38(D), 59(D), 3(D), 17(S), 20(D), 7(S), 19(S), 40(D), 46(S), 60(D)

Ds gf 93(S), 72(S), 58(D), 45(D), 17(S), 97(S), 21(D), 62(D), 67(S), 54(S)

VC 17(S), 58(D), 38(D), 93(S), 59(D), 72(S), 3(D), 45(D), 97(S), 7(S)

The numbering criterion is the same used in [56] (also in Appendix S1). ‘S’
stands for Static and ‘D’ for Dynamic according to the classification established
in Table 1.
doi:10.1371/journal.pone.0069897.t006
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systems among experiments A–E will be caused by changes in the

genuine score distributions.

The DET (Detection Error Trade-off) curves obtained with the

aforementioned genuine and impostor scores for the five scenarios

(A–E) and for the three recognition systems are shown in Fig. 5. A

darker gray level corresponds to a better performance of the

evaluated system. It may be observed that, as the test signatures

are more distant in time from those samples used for enrollment,

the performance of all the three systems drops. For completion, the

Equal Error Rate (EER) corresponding to the curves shown in

Fig. 5 is given in Table 3.

In order to further analyze this performance loss, in Fig. 6 we

show the evolution of the genuine scores when the test signatures

move away (in terms of time) from the model. The distributions for

each of the five sets of genuine scores are depicted on the right

planes (in vertical) with a darker gray representing a better

performance. On the left planes we can see the mean (circles) and

variance (vertical lines) for each of the five distributions. Several

observations can be extracted from the results shown in Figs. 5 and

6:

N The performance of the three systems consistently decreases as

the testing signatures move away from the model (the DET

curves in Fig. 5 are further away from the origin), which means

that the users discriminant power decreases with time or, in

other words, that all the three recognition approaches are

affected by aging. The previous observation indicates that this

effect is not particular of a certain signature recognition

technology, but that, as expected, it is inherent to the signature

trait itself.

N Not all the systems are affected in the same way by the passing

of time, that is, not all the curves in Fig. 6 present the same

decreasing slope. In particular, the system based on DTW

presents a decrease in the average genuine score between the

first and the last test set of signatures of 5.6%, compared to a

16.7% of the one based on global features and a 21.8% for the

HMM. Thus, we may conclude that the signature recognition

technology based on DTW is not only more accurate (see

Fig. 4) but also more robust to aging.

N The effect of aging may also be observed in the worsening of

the scores variance through time, that is, the scores are not

only lower but also more disperse. This way we can see how

the variance increases around 45% from experiment A to E for

all the three technologies tested.

N Another important observation to be made from the results

shown in Fig. 6 is that the effect of aging on the signature trait

is not negligible. There is a significant drift in the genuine score

distributions (from the first to the last signature test set) in a

relatively short period of time (15 months).

Objective 2: Aging user-dependency analysis. The sets of

genuine scores generated in the previous experiments (Sect. 0) are

used here to determine if certain users are more prone to suffer

from aging. For this purpose we compute an Aging Coefficient

(AC) defined as: AC~Dm:Ds, where Dm and Ds are respectively

the mean and variance relative variation between two sets of

scores. This way both aging effects (i.e., decrease of the genuine

scores mean value and increase of the variance) are taken into

account in one metric, so that the higher the AC of a user, the

more affected that subject’s signature is by the elapse of time.

The AC is computed for all the users in the database between

the genuine scores of experiments A and E, which are the two

score distributions more separated in time. In Fig. 7 the AC is

shown for all the subjects ordered according to their level of aging,

from the lowest to the highest, for all the three systems considered

in the experiments. Please note that the least affected user, the

most affected user, or any of the users in between, do not

necessarily have to coincide (i.e., be the same signer) for all three

systems. The three AC curves are shown on the same figure for an

easier visual comparison across systems.

The five most/least affected subjects by aging (i.e., those with

respectively a higher/lower AC) are shown in Table 4 for all the

three systems tested. For completion, the individual mean and

variance variation indexes (i.e., Dm and Ds) are also given.

Different observations may be extracted from the results shown

in Fig. 7 and Table 4:

N As expected, not all the systems present the same AC values.

The DTW-based system has the lowest values (i.e., most

consistent system over time), compared to the one based on

global features (GF-based) and the HMM. This is consistent

with the results obtained in Sect. 0 and confirms that the AC is

a valid metric to evaluate the level of aging.

N In all the three systems there is a very big difference (around

95%) between the AC of the least and most affected users.

Thus, even for the most robust technologies (DTW), the degree

of aging is very dependent on the signer.

N In general the users tend to perform consistently well (3, 19) or

badly (1, 17, 11) regardless of the recognition system used.

Furthermore, none of the top five users in a system (i.e., those

least affected by aging) appear in the list of the worst five users

of the other two systems, and vice versa. This means that, as a

general rule, a subject that despite of the aging effect presents

high recognition rates on a given system, will be very likely to

be consistently recognized if the system is changed.

Therefore, we may conclude that, although some technologies

are more robust than others to aging, the degree of deterioration of

a subject’s signature depends mainly on the subject and not on the

recognition system being used.

Those subjects with the highest number of appearances in the

AC rows of Table 4 (shown in bold) are considered to be those

with a more/less stable signature. The signatures of these users are

depicted in Fig. 8 where we can see that the complexity of the

signature is not a key factor in the level of aging. That is, complex

signatures (i.e., long signatures, with the written name and flourish)

may be very affected by aging or, on the contrary, can also be very

stable through time. The same happens for short and simple

signatures. In other words, these initial results seem to suggest that

the degree of aging does not depend on the type of signature, but

on the signer. However, these findings regarding aging and

signature complexity should be further addressed on a specific

database where signatures are classified into different complexity

groups by expert examiners.

Objective 3: Template update analysis. The results

presented in Sects. 0 and 0 confirm the necessity to develop

strategies that can help to minimize the effect of aging, especially

in those behavioral or learned traits, such as the signature, which

are more sensitive to time. Here, we analyze the efficiency of

different template update approaches varying the enrollment

signatures used to compute the users models and testing always

with the same set of samples, as shown in Table 5. In particular,

the scenarios considered are:

N Baseline result (Exp. F). This represents the scenario with no

template update strategies to correct aging. There is a 14

month difference between the enrolled model (BID1) and the

test set (Bure13).
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N Complete update (Exp. G). The first template update

approach considered is to discard the old enrollment samples

(BID1) and replace them by new samples acquired very close

in time to the test set (Bure11).

N Mixed update (Exp. H). In this case we do not discard the old

samples but we update the enrolled model with newly acquired

samples (BID1+Bure11). Thus, in this scenario there will be

more available data to train the model than in the previous two

cases (experiments F and G).

N Complete update (Exp. I). Here, we consider the same amount

of training data as in experiment H, but all of it comes from

recent acquisitions (Bure11+Bure12).

The results of the previously described setups for the three

considered systems are shown in Fig. 9. As in the case of the aging

experiments the score distributions for each of the four considered

scenarios is shown on the right planes in vertical with a darker gray

shade representing a better performance of the given system. On

the left plane we can see the evolution of the mean (circles) and

variance (vertical lines) of the score distributions. Although all the

template update strategies studied improve the performance with

respect to the baseline experiment (in all cases there is an increase

of the mean value and a decrease of the variance), two different

behaviors may be observed in Fig. 9 depending on the signature

recognition system considered:

N HMM system. HMM-based systems heavily depend on the

amount of training data available [54]. As a consequence, it is

better to perform a mixed update (i.e., do not discard the old

samples, exp. H) so that the model is trained with as many

signatures as possible (8 signatures, in this particular case),

instead of using few recent samples (i.e., exp. G, where only 4

signatures are used for enrollment).

N Global features and DTW systems. On the other hand, the

systems based on DTW and global features do not rely as

much on the amount of enrollment data, but on the quality of

these data [59]. Therefore, the performance reached using 4

recently acquired samples (exp. G) is almost the same as the

one obtained using 8 of those signatures (exp. I). This means

that, as can be seen in Fig. 9, in these cases it is preferable to

perform a complete update with the most recent samples (i.e.,

exp. G) than to keep the old ones (i.e., exp. H) even if this

means training the enrolled model with a smaller number of

signatures.

As could be expected, in all cases the best possible template

update strategy is to use for enrollment all the most recent samples

available (i.e., exp. I). However, this may represent a somewhat

unrealistic scenario, as we are assuming that we have access to as

many as 8 signatures captured in a time period very close to the

test set. The amount of new collected data will rarely comply with

this condition.

Tests 2: Signature Evolution
The results presented in Sect. 0 clearly show that the effect of

aging is patent in the signature trait. The purpose of the present set

of experiments is to further investigate the causes of the

deterioration in the performance of signature recognition systems.

From a human perspective, the changes experienced with age

by certain biometric traits are easily distinguished. For instance,

we know that the face gradually loses its oval shape and that the

wrinkles and sun-stains make its texture less smooth (in fact, these

characteristics are successfully used for automatic age estimation

purposes). However, what are the changes and transformations, if

any, undergone by signatures with age?

In order to shed some light on this difficult question, the aging-

related issues raised in this section are: How do signatures typically

evolve over time? What type of transformations do they suffer? Are

some signature-defining features more stable over time than

others?

Objective 4: Signature evolution analysis. In order to

determine the way in which signatures typically evolve with time,

five of the most representative global features given in [56] (also in

Appendix S1) have been analyzed for the whole Signature Long-

Term DB. Not all the features proposed in [56] have a direct

physical meaning, thus, the selected parameters have been those

with an easy interpretation, namely: duration of the signatures

(parameter 1 in [56]), number of maxima points in x (parameter 8)

and y (parameter 12), number of pen-ups (parameter 2) and the

average speed (parameter 26).

These parameters have been averaged for all the users in the

database in a sample by sample basis. That is, in the end, for each

of the features, a 46-dimensional vector is computed where each

element is the result of averaging the value of that parameter for

the corresponding sample (from 1 to 46) of all the users in the

database. In that way, we can see the evolution of the feature value

from the first acquisition (month 0) to the last one (month 15). The

results are shown in Fig. 10.

We can observe that, regardless of the user, the general trend for

the signatures is to become: shorter, with fewer singular points and

penups, and faster. That is, the results imply that signatures tend to

be simplified with time.

Objective 5: Parameter evolution analysis. In this case

the goal is to determine which of the global features proposed in

[56] are more stable through time and, on the contrary, which are

those that suffer the largest variations in the long term. For this

purpose we use a Variation Coefficient (VC) analogue to the Aging

Coefficient (AC) computed in Sect. This new Variation Coefficient

is defined as: VC~Dmgf
:Dsgf , where Dmgf and Dsgf are

respectively the mean and variance relative variation of a certain

global feature between two acquisition sessions.

Prior to compute the VC, the values of the global features are

averaged for all the users in the database on a sample by sample

basis. That is, for each sample (1–46) we compute a 100-

dimensional vector where each dimension is the mean value of

that global feature for all the users in the dataset. Then, in order to

evaluate the degree of variation through time of each global

feature, the VC is computed between the samples of acquisition

sessions BID1 and Bure2, which are the two most distant in time.

In Fig. 11 we show the value of the Variation Coefficient from

the least variable to the most variable static and dynamic features.

On the other hand, in Table 6 the 10 most and least variable

features are shown following the numbering criterion used in [56].

The ‘S’ and ‘D’ stand for Static and Dynamic features respectively,

according to the classification given in Table 1.

In Table 6 we can see that 9 out of the total 10 most unstable

features correspond to parameters measuring dynamic informa-

tion. Furthermore, Fig. 11 shows how, in general, dynamic

features present a higher variability with time. From these results it

may be concluded that the static information of a signature (e.g.,

geometric, spatial, or angular) is more robust over time than the

dynamic data (e.g., velocity or acceleration). In other words, with

time, signers tend to be more consistent repeating the shape of

their signature rather than the way in which this shape is

produced. These results are in line with the findings of previous

related studies [6,21,61].
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Limitations of the Study, Open Questions, and
Future Work

The main limitations of the present study are derived from the

characteristics of the database used in the experiments. It has been

mentioned in the article that the On-Line Signature Long-Term

DB is, as far as the authors are concerned, unique regarding the

number of subjects whose signature has been uniformly tracked

over more than a year. Nevertheless, although this was the best

available possibility, it is still limited both in terms of individuals

(29) and time span considered (15 months).

The present work sets a first landmark in the understanding of

aging in a behavioral biometric. However, its conclusions still have

to be confirmed by further analysis and assessment on databases

comprising a big number of uniformly-acquired samples for a

larger number of individuals (several hundreds) and over a longer

period of time (several years). However, we do believe that the

experimental protocol and posterior analysis carried out in the

present work is general and may serve as a baseline to be applied

in future studies.

Therefore, the results, findings and conclusions presented in the

article should be taken as a first approximation to the challenging

problem of assessing aging in the signature trait, but not as

conclusive and demonstrated facts. Furthermore, the study is also

constrained to the type of subjects present in the database:

Spaniards white Caucasians, mostly between 20 and 25 years of

age, with a higher education degree (or pursuing it). For similar

studies concerning other sectors of the population, specific data

should be acquired.

Accordingly, the present study should be understood as a

valuable but limited start which leaves different open questions

which should be addressed in similar future works. For instance:

N Is 15 months a sufficiently long period of time to be in the

presence of real ‘‘aging’’? Although all the results given in the

present work point in that direction, as mentioned above, this

end should still be fully confirmed on a database acquired over

a larger time span.

N What is the relationship (if any) between signature complexity

and aging? In the current work an initial approach to address

this issue has been established. However, more rigorous studies

should be carried out on databases where signatures have been

grouped into different complexity levels either by experts,

different human observers, or some type of objective measure.

N Can the results presented here (using data acquired in

laboratory conditions) be generalized to real world scenarios?

For this type of study specific data from a real application

should be employed.

N Are the signatures from men/women more prone to aging? A

large gender-balanced database may be used to study this

issue.

N Is the aging effect more pronounced in individuals with low

writing skills? The current study was carried out only taking

into account subjects with higher education degrees.

Conclusions
We have conducted the first systematic study on the degradation

of on-line signature with time and how this aging effect may be

compensated. For this purpose, we have introduced the Signature

Long-Term DB which contains the dynamic signature samples of

the 29 common users of the BiosecurID and the Biosecure

databases. All the subjects were captured under very similar

conditions over a 15 month time span. The experiments, carried

out using three totally different state-of-the-art systems represent-

ing the most usual technologies in on-line signature recognition,

have proven that the aging effect is present in this trait even for

time lapses of several months. Several conclusions have been

extracted throughout the work thanks to the consistent and

reproducible experimental protocol followed:

N Aging in the signature trait is a user-dependent effect. This

means that:

– In general, a user affected by aging perform badly regardless of

the system being used (this deterioration will be higher in those

systems more sensitive to time).

– Complex and simple signatures can present the same amount

of aging. Aging does not seem to depend on the type of

signature but on the signer.

N Not all signature recognition technologies are equally affected

by aging. The one based on DTW has demonstrated that it is

not only the most accurate [60], but also the most robust to the

passing of time.

N Global features containing dynamic information are in general

less stable with time than those which comprise static

information.

N With time, signatures evolve towards a higher simplicity. They

become: shorter, faster and with fewer singular points and pen-

ups.

N Depending on the signature recognition system being used

some template update strategies are more efficient than others.

In summary, due to its very high user-dependency, the analysis

and subsequent correction of aging in the signature trait should be

done, ideally, on a user by user basis. Given a specific signature

recognition technology, different template update approaches

should be adopted for different users, depending on the

performance degradation that each of the subjects present with

time. This is consistent with previous research works which also

emphasize the strong user dependencies found in signature

recognition [62,63].

In light of the experimental results obtained in the present work,

a possible strategy to detect the appearance of aging in the

signature of a given individual would be to follow a constant

monitoring over time of the Aging Coefficient. A possible ‘‘aging

detection’’ protocol for a signature-based application would be:

1. Set a suitable AC threshold (i.e., dAC) for the given application

depending on the amount of aging allowed.

2. With every new genuine access attempt, estimate the mean and

variance of the last known N genuine access attempts and

compare them to the mean and variance of the first N attempts

(i.e., attempts that were recorded when the individual first

started using the application).

3. Given the variation of the mean and variance between both

sets of scores (new and old) compute the AC.

4. If dAC is exceeded, apply a suitable template update strategy

depending on the signature recognition technology being used.

In this suggested protocol both dAC and N will depend on the

type of application where it is being implemented (e.g., high

security, commercial, high convenience), and on the level of

restriction that will be imposed on aging. If only a small amount of

aging is allowed a small value of both variables should be selected.
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On the contrary, if the designer prefers to be quite flexible with

aging, larger values would be acceptable.

Research works such as the one presented here try to shed some

light into the difficult problem of biometric aging. Performing

systematic studies of biometric systems sensitivity to time is

essential before effective strategies that minimize the impact of the

detected effects can be developed, so that the user acceptability of

this rapidly emerging technology is improved.

This way, we believe that this work can be of great utility not

only for researchers, but also for developers and vendors in order

to produce more secure and trustful applications based on the

signature trait, to better understand its strengths, and to be able to

foresee the weaknesses of this biometric modality. Furthermore,

this type of study can also help to develop the ongoing biometric

standards and to better define the requirements that real

applications should comply with [64–66].

In summary, the work main contribution is the theoretical and

practical new knowledge built in the fields of signature recognition

and biometric aging, which may be directly applied by researchers

and companies for the future development of the biometric

technology.
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