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DEALING WITH VARIABILITY

FACTORS AND ITS APPLICATION TO

BIOMETRICS AT A DISTANCE

–TESIS DOCTORAL–

TRATAMIENTO DE FACTORES DE VARIABILIDAD Y
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Abstract

This Thesis is focused on dealing with the variability factors in biometric recognition and

applications of biometrics at a distance. In particular, this PhD Thesis explores the problem of

variability factors assessment and how to deal with them by the incorporation of soft biometrics

information in order to improve person recognition systems working at a distance. The proposed

methods supported by experimental results show the benefits of adapting the system considering

the variability of the sample at hand.

Although being relatively young compared to other mature and long-used security technolo-

gies, biometrics have emerged in the last decade as a pushing alternative for applications where

automatic recognition of people is needed. Certainly, biometrics are very attractive and useful

for video surveillance systems at a distance, widely distributed in our lifes, and for the final user:

forget about PINs and passwords, you are your own key. However, we cannot forget that as

any technology aimed to provide a security service, biometric systems should ensure a reliable

performance in any scenario. Thus, it is of special relevance to understand and analyse the

variability factors to which they are subjected in order to ensure a suitable performance and

increase their benefits for the users.

In this context, the present PhD Thesis gives an insight into the difficult problem of variability

factors evaluation through the systematic study of biometric scenarios at a distance and the

analysis of effective compensation methodologies that can minimize the effects of them. Pursuing

the aim to increase the performance of the remote person recognition in this thriving technology.

This way, the experimental studies presented in this Dissertation can help to further develop the

ongoing variability compensation efforts, and may be used as guidelines to adapt the existing

systems in biometric at a distance and make them more secure and stable.

The problem of variability compensation in biometric systems had already been addressed

in some previous works, but in most cases not using the acquisition distance related with the

variability factors in order to identify and define scenarios. In this Dissertation, after sum-

marizing and classifying the most relevant works related to the Thesis and defining what we

understand as scenario at a distance, we describe methods applied throughout the experimental

chapters. These experimental chapters are dedicated first to the study of variability factors

(scenario analysis), and then to the application of the proposed techniques to deal with them

(soft biometrics and adaptive fusion). All experiments are conducted using standard biometric

data and benchmarks.

The experimental part of the Thesis starts with a scenario evaluation of the variability

factors found in face recognition systems. We evaluate, between others, the relationship between

variability factors and the acquisition distance in this kind of systems, the variability of facial

landmarks in mugshot and CCTV images, and the performance variability of different facial

regions of the human face on various forensic scenarios at a distance. In addition to be useful



background information that can guide and help experts to interpret and evaluate face evidences,

these findings can have a significant impact on the design of face recognition algorithms.

We then study various types of soft biometric information available in biometrics at a distance

suitable for video surveillance and forensics applications. These soft labels can be visually

identified at a distance by humans (or an automatic system) and their discriminative information

will vary depending on the distance. It is worth noting that this relation between scenarios at

a distance and the performance of soft biometrics for person recognition has not been studied

in this way before. Moreover, the largest set of morphological facial soft biometric features

extracted following forensic protocols is also introduced and evaluated. The experimental results

using this set of features show that a system that is completely based on facial soft biometrics

features for forensics is feasible.

Finally, we study experimentally various types of adaptive fusion exploiting soft biometrics.

In particular, we study: scenario-based, soft biometrics-based, facial regions-based, and color

facial regions-based schemes of score–level fusion and their benefits in systems at a distance. The

proposed adaptive fusion schemes achieve notable improvements demonstrating their utility in

biometrics at a distance.

The research work described in this Dissertation has led to novel contributions which include

the development of two new methods to deal with variability factors in biometrics systems at a

distance, namely: i) soft biometrics suitable for video surveillance and forensics, and ii) adaptive

fusion schemes at score–level based on scenario acquisition, soft biometrics, facial regions, and

color facial regions. Moreover, different original experimental studies have been carried out dur-

ing the development of the Thesis (e.g., relation between scenarios at a distance and variability

factors). Besides, the research work completed throughout the Thesis includes the generation

of various literature reviews and the generation of new biometric resources.



A mi familia.

A mi padre.

(One can only see what one observes,

and one observes only things which are already in the mind)

(Se puede ver sólo lo que se observa

y se observa sólo lo que ya está en la mente)
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gracias familia, ¡Tai otoshis para todos!

Ya llegando al final me centro en ese grupo con denominación de origen MorataYork, barrio,
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Madrid, November 2013



Contents

Abstract VII

Acknowledgements XI

List of Figures XVIII

List of Tables XXV

1. Introduction 1

1.1. Biometric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Biometric Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Variability Factors in Biometric Systems at a Distance . . . . . . . . . . . . . . . 6

1.2.1. Variability vs Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2. Soft Biometrics vs Variability . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. Motivation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. The Thesis and Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5. Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6. Detailed Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Variability Factors and Biometric Recognition at a Distance 17

2.1. Definition of Biometric Variability Factors . . . . . . . . . . . . . . . . . . . . . . 18

2.2. Sources and Classification of Biometric Variability Factors . . . . . . . . . . . . . 19

2.2.1. User Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2. User-Sensor Interaction Factors . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3. Sensor Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4. System Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.5. Graduation of Variability Factors in Systems At a Distance . . . . . . . . 22

2.3. Definition of Systems AD (At a Distance) . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1. Acquisition Distance Levels . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4. Biometric Traits At a Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1. Primary Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2. Soft Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xv



CONTENTS

2.5. Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Proposed Methods: Soft Biometrics and Adaptive Fusion 33

3.1. Soft Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1. Soft Biometrics for Video Surveillance . . . . . . . . . . . . . . . . . . . . 35

3.1.2. Soft Biometrics for Forensics . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2. Adaptive Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1. Scenario-based Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2. Soft Biometrics-based Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3. Regions-based Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3. Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4. Performance Evaluation of Biometric Systems at a Distance 47

4.1. Performance Evaluation of Biometric Systems . . . . . . . . . . . . . . . . . . . . 47

4.1.1. Performance Measures of Authentication Systems . . . . . . . . . . . . . . 48

4.2. Biometric Databases at a Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1. Existing Databases at a Distance . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2. MBGC DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3. Tunnel DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.4. SCface DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.5. ATVS Forensic DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3. Other Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1. MORPH DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4. Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5. Scenario Analysis 65

5.1. Scenario Analysis for Face Recognition at a Distance . . . . . . . . . . . . . . . . 66

5.1.1. Database and Scenario Definition . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.2. Scenario Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.3. Face Verification Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.4. Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2. Facial Landmarks Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1. Database and Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 80

5.2.2. Facial Landmarks Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3. Facial Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1. Facial Regions Extraction and Representation . . . . . . . . . . . . . . . . 88

5.3.2. Database and Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 93

5.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4. Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xvi



CONTENTS

6. Soft Biometrics 107

6.1. Soft Biometrics for Video Surveillance . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1. Soft Biometrics Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.2. Verification Based on Soft Biometrics . . . . . . . . . . . . . . . . . . . . 113

6.1.3. Database and Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 114

6.1.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2. Soft Biometrics for Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1. Soft Biometrics Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.2. Verification Based on Facial Soft Biometrics . . . . . . . . . . . . . . . . . 125

6.2.3. Database and Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 126

6.2.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3. Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7. Adaptive Fusion 133

7.1. Scenario-based Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1.1. Acquisition Distance Estimation . . . . . . . . . . . . . . . . . . . . . . . 135

7.1.2. Database and Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 136

7.1.3. Face Verification Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1.4. Fusion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2. Soft Biometrics For Video Surveillance . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1. Database and Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 140

7.2.2. Face Verification Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.3. Fusion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3. Facial Regions-based Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.1. Facial Regions Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.2. Databases and Experimental Protocol . . . . . . . . . . . . . . . . . . . . 149

7.3.3. Fusion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4. Facial Regions-based Fusion using Color Information . . . . . . . . . . . . . . . . 153

7.4.1. Extraction and Color Methodology . . . . . . . . . . . . . . . . . . . . . . 153

7.4.2. Database and Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 155

7.4.3. Fusion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5. Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8. Conclusions and Future Work 161

8.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A. Resumen Extendido de la Tesis 167

A.1. Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.2. Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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Chapter 1

Introduction

This PhD Thesis is focused on dealing with the variability factors in biometric recogni-

tion and applications of biometrics at a distance. In particular, this PhD Thesis explores the

variability factors present in practical applications of biometrics at a distance, and then studies

how soft biometrics information can help in such scenarios.

Nowadays, due to the expansion of the networked society, there is an increasing need for

reliable personal identification by automatic means. Establishing the identity of individuals is

recognized as fundamental not only in numerous governmental, legal or forensic operations, but

also in a large number of civilian applications. This has resulted in the establishment of a new

technological area known as biometric recognition, or simply biometrics [Jain et al., 2006]. The

basic aim of biometrics is to discriminate automatically between subjects in a reliable way and

according to some target application based on one or more signals derived from physical or

behavioral traits, such as face, fingerprint, iris, voice, hand, signature, etc. These personal traits

are commonly denoted as biometric modalities or also as biometrics.

The difficulties associated with person identification and individualization were already high-

lighted by the pioneers of forensic sciences. Alphonse Bertillon developed in the eighteenth

century an anthropometric identification approach, based on the measure of physical charac-

teristics of a person [Bertillon, 1893]. Automatic person authentication has been a subject of

study for more than thirty five years [Atal, 1976; Kanade, 1973], although it has not been un-

til the last decade when biometric research has been established as an specific research area.

This is evidenced by recent reference texts [Jain et al., 2008, 2011b; Ratha and Govindaraju,

2008; Ross et al., 2006; Tistareli et al., 2009], specific conferences [Bowyer et al., 2008a; Fierrez

et al., 2013; Lee and Li, 2007; Tistarelli and Maltoni, 2007; Vijaya-Kumar et al., 2008], common

benchmark tools and evaluations [Beveridge et al., 2013; Phillips et al., 2000a; Phillips, 2006;

Phillips et al., 2011, 2009a,b; Przybocki and Martin, 2004; Yeung et al., 2004], cooperative in-

ternational projects [BBfor2, 2010; BioSec, 2004; Biosecure, 2004; COST, 2007; MTIT, 2009;

Tabula Rasa, 2010], international consortia dedicated specifically to biometric recognition [BC,

2005; BF, 2009; BI, 2009; EBF, 2009], standardization efforts [ANSI/NIST, 2009; BioAPI, 2002;

ISO/IEC JTC 1/SC 27 , 2009; SC37, 2005], and increasing attention both from government
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1. INTRODUCTION

[BWG, 2009; DoD, 2005] and industry [IBIA, 2009; International Biometric Group, 2006].

This introductory chapter presents the basics of biometric systems, including properties,

systems and biometric traits. We also outline the topic of variability factors in biometrics at

a distance, from which the motivation of this Thesis is also derived. We finish the chapter

by stating the Thesis, giving an outline of the Dissertation, and summarizing the research

contributions originated from this work.

Although no special background is required for this chapter, the reader will benefit from

introductory readings in biometrics such as Jain et al. [2008, 2006, 2004d]. A deeper reference

is Jain et al. [2011b].

1.1. Biometric Systems

A biometric system is essentially a pattern recognition system that makes use of biometric

traits to recognize individuals. The objective is to establish an identity based on who you are

or what you produce, rather than by what you possess or what you know. This new paradigm

not only provides enhanced security but also avoids, in authentication applications, the need to

remember multiple passwords and maintain multiple authentication tokens. Who you are refers

to physiological characteristics1 such as face, iris or fingerprint. What you produce refers to

behavioral patterns which entail a learning process and that characterize your identity such as

the gait, voice or the written signature.

The digital representation of the characteristics or features of a biometric trait is known

as template. Templates are stored in the system database through the enrollment or training

process, which is depicted in Figure 1.1 (top). The database can either be centralized (this is the

case of most biometric systems working at the moment), or distributed (as in Match-on-Card

systems where each user carries the only copy of his template in a personal card [Bergman, 2008]).

Once the users have been enrolled to the system, the recognition process can be performed in

two modes [Jain et al., 2011b]:

Identification. In this mode, the question posed to the system is: is this person in the

database?, the answer might be No (the person is unknown to the system), or any of the

registered identities in the database. In order to give the answer the system has to perform

a one-to-many matching process, as it has to compare the input biometric to all the stored

templates (Fig. 1.1, center).

In most practical cases, under the identification operation mode, the system usually re-

turns, in a ranked manner, those identities that are more likely to be the searched person

in a previously created database (i.e., those that have produced a higher similarity score),

and then a human expert decides whether the subject is or not within that reduced group

1Although the term physiological characteristic is commonly used when describing biometrics, the purpose is

to refer to the morphology of parts of the human body, therefore the proper term is morphological characteristic.
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Figure 1.1: Diagrams of the typical modes of operation in a biometric system.

of people. Typical identification applications include Automated Fingerprint Identification

Systems [Komarinski, 2005].

Verification. In this case what we want to know if a person is really who she claims to

be. This way, under the verification mode (Fig. 1.1, bottom), the system performs a one-

to-one matching process where the submitted biometric trait is compared to the enrolled

pattern associated with the claimed identity, in order to determine if the subject is a client

(the identity claim is accepted), or an impostor (the identity claim is rejected). Typical

verification applications include network logon, ATMs, physical access control, credit-card

purchases, etc.

This Thesis is focused on the evaluation of biometric systems working under the verification

mode (also known as authentication). In this mode, the clients or targets are known to the

system (through the enrollment process), whereas the impostors can potentially be the world

population. The result of the comparison between the feature vector X (extracted from the

biometric sample B provided by the user) and the template TI corresponding to his/her claimed

identity I is a similarity score s which is compared to a decision threshold. If the score is higher

than the decision threshold, then the claim is accepted (client), otherwise the claim is rejected

(impostor).
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1. INTRODUCTION

1.1.1. Biometric Modalities

A number of different biometrics have been proposed and are used in various applications

[Jain et al., 2011b]. As mentioned before, biometric traits can be classified into physiological

biometrics (also known as anatomical or morphological) which include images of the ear, face,

hand geometry, iris, retina, palmprint or fingerprint, and behavioral biometrics including voice,

written signature, gait or keystroking. This classification is just indicative, as some of the traits

are not easy to categorize in any of the groups. The voice, for instance, is commonly accepted

to be a behavioral biometric (as the voice is something that we learn to produce), however its

distinctiveness largely depends on physiological characteristics (e.g., vocal tracts, mouth, nasal

cavities, or lips). On the other hand, other very distinctive human feature, the DNA, is usually

not considered a biometric modality as recognition systems based on it still require manual

operation and cannot be used in (pseudo) real-time. Example images from various biometrics

are given in Fig. 1.2.

In theory, any human characteristic can be used as a biometric identifier as long as it satisfies

these requirements:

Universality, which indicates to what extent a biometric is present in the world popula-

tion.

Distinctiveness, which means that two persons should have sufficiently different biomet-

rics.

Permanence, which indicates that the biometric should have a compact representation

invariant over a sufficiently large period of time.

Collectability, which refers to the easiness of the acquisition process and to the ability

to measure the biometric quantitatively.

Other criteria required for practical applications include:

Performance, which refers to the efficiency, accuracy, speed, robustness and resource

requirements of particular implementations based on the biometric.

Acceptability, which refers to which people are willing to use the biometric and in which

terms.

Circumvention, which reflects the difficulty to fool a system based on a given biometric

by fraudulent methods.

Exception handling, which has to do with the possibility to complete a manual matching

process for those people that cannot interact in a normal way with the system (e.g.,

impossibility to perform the feature extraction process due to an excessive degradation of

the trait).
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Figure 1.2: Examples of common biometrics. Red bounding box indicates suitable biometrics at a

distance.

Cost, which refers to all the costs that would be necessary to introduce the system in a

real-world scenario.

An ideal biometric system should meet all these requirements; unfortunately, no single bio-

metric trait satisfies all the above mentioned properties. While some biometrics have easy and

friendly collectability (e.g. face or voice), their distinctiveness is low. Other biometrics with

high distinctiveness are not easy to acquire (e.g. iris or fingerprint).
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1. INTRODUCTION

1.2. Variability Factors in Biometric Systems at a Distance

First of all, it is important to remember that absolute variability compensation in image

and video processing does not exist: there are countless variability sources in uncontrolled

and unconstrained systems at a distance. The objective of the research community is usually

to develop applications in which the variability sources are under certain margins in order to

guarantee a desired recognition accuracy.

In the next sections a number of variability related issues are discussed in order to clarify

the perspective followed during the development of the Thesis, and to define our position within

the complex field of variability research in biometrics at a distance.

1.2.1. Variability vs Distance

Nowadays, biometric devices use, between others, the face, the iris, and even the gait in

order to recognize the identity of a person. These technologies are still far away to be mature

systems and do not answer all the necessities of the wide number of potential applications. In

particular, there is an increasing interest in acquiring biometric information in a non intrusive

way such as with people on the move or at a distance.

Biometric recognition on the move or at a distance leads to the necessity to properly consider

the scenario at hand in order to have the variability factors under certain margins. In this kind

of heterogeneous scenarios, the selection of the best recognition strategy strongly depends on

the scenario, therefore systems ideally should be able to automatically identify and classify each

scenario by the different variability factors affecting in each case.

The concept of estimating the acquisition distance in order to define different scenarios has

not been traditionally used in person recognition at a distance. This will be exploited afterwards

in this Thesis.

Throughout the Dissertation different variability factors that may affect biometric systems

at a distance are pointed out, systematically evaluated, and compensated based on different

acquisition distances between the subject and the camera.

1.2.2. Soft Biometrics vs Variability

The first personal identification system developed by Bertillon [1896] for identification of

criminals was based on three sets of features: i) body measurements (anthropometrics) like

height and length of the arm, ii) morphological description of the appearance and shape of

the body like eye color and anomalies of the fingers, and iii) peculiar marks observed on the

body like moles, scars, and tattoos. Although the Bertillon system was very useful in tracking

criminals, it had an unacceptably high rate of false identification. This was due to two reasons.

Firstly, several individuals can have the same set of values for these measurements (inter-user

variability). Secondly, for the same individual, these values can change over time (intra-user

variability). In other words, these characteristics do not have the distinctiveness and perma-

nence to uniquely identify an individual over a period of time and hence we refer them as soft
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biometric traits. Soft biometric traits are those characteristics that provide some information

about the individual, but lack the distinctiveness and permanence to sufficiently differentiate

any two individuals.

Soft biometric traits can either be continuous or discrete. Traits such as gender, eye color,

ethnicity, etc. are discrete in nature. On the other hand, traits like height and weight are

continuous variables. In principle, a system that is completely based on soft biometric traits

cannot provide enough accuracy in the recognition of individuals. However, soft biometric traits

can be used to improve the performance of a traditional biometric system (e.g., face, gait, etc.)

in many ways. One of these ways that will be explored in the Dissertation is the increased

robustness that can be achieved in highly variable scenarios when properly integrating soft

biometrics to primary traditional biometric systems. This way, throughout the Dissertation

different soft biometric information that may be extracted from biometric systems at a distance

are pointed out, systematically evaluated, and incorporated through adaptive fusion to person

recognition systems working at a distance.

1.3. Motivation of the Thesis

Provided that the performance of a biometric system at a distance is heavily affected by the

variability factors of multiple sources, this Thesis is focused on the identification and classifica-

tion of variability factors in biometrics at a distance, and then presents methods to deal with

them (soft biometrics and adaptive fusion). Note that we aim to be comprehensive in our study

of variability factors, but a full report of variability compensation methods is out of the scope

of the Thesis. Here we only provide two methods to deal with the challenging factors found in

biometrics at a distance. The research carried out in this area has been mainly motivated by

five observations from the state-of-the-art.

Automatic face recognition technology is still an open problem, particularly when working

with video surveillance imagery. Such progress for face recognition is one of the goals of the FBI’s

Next Generation Identification program [Next Generation Identification]. Face recognition in

video surveillance scenarios is a very challenging task due to the variability that can be present.

In this sense, there are several studies Li and Jain [2011]; Tome et al. [2010b, 2012]; Zhang and

Gao [2009] based on realistic scenarios trying to understand the effect of the different variability

factors in this field. However, in most of those valuable research contributions, a complex

question remains unanswered: how variability factors affect the face systems at a distance?.

The second observation is strongly related to the first one. In the existing publications in face

recognition at a distance, experimental results are obtained and reported considering fixed and

isolated variability sources. In practice the actual variability sources are multiple and unknown.

The third observation comes from the different initiatives that are currently trying to assist

the development of face and person recognition algorithms [Beveridge et al., 2013; Phillips et al.,

2011, 2009a]. These evaluations are designed by [National Institute of Standards and Technology

(NIST)] to provide the research community and law enforcement agencies with information to

7
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assist them in determining where and how facial recognition technology can best be deployed.

These initiatives are focusing their interest in the last years on biometrics systems at a distance.

The fourth observation that has motivated this Thesis is the constant need for high accu-

racy in person recognition applications (and in this particular case, in biometric systems at a

distance), in order to make them reliable in challenge scenarios and motivate the industry.

The last observation is that the development of new variability compensation approaches

for the studied biometric systems at a distance is currently a research challenge. Although

different efforts have been carried out in this direction [Cardinaux et al., 2006; Lucey and Chen,

2004; McCool and Marcel, 2009; McCool et al., 2013; Sanderson and Lovell, 2009], there is still

no definitive solution for some of the variability factors focused in important applications of

biometrics such as surveillance and forensics.

1.4. The Thesis and Main Contributions

The Thesis developed in this Dissertation can be stated as follows:

The incorporation of soft biometrics information through adaptive fusion to person

recognition systems working at a distance can provide significant benefits in these very

challenging scenarios. In particular, the variability factors found in practical biometrics

applications working on the move or at a distance can be compensated to some extent

exploiting this idea.

The approach we follow to develop this PhD Thesis is in two steps: i) understanding the

variability factors associated with specific scenarios of practical importance (e.g. surveillance

and forensics), and ii) proposing and studying new methods in soft biometrics and adaptive

fusion.

The main contributions in these two steps are summarized as follow:

First step. The research contributions are methodological based on how variability is

studied in an unique way, we also provide experimental evidences, and finally we contribute

with new biometric data made public for the research community.

Second step. The contributions are new algorithms for soft biometrics and adaptive fusion

supported by experimental results on realistic scenarios at a distance (in video surveillance

and forensics).

1.5. Outline of the Dissertation

The main objectives of the PhD Thesis are as follows: 1) reviewing and studying the problem

of variability factors associated with realistic scenarios at a distance in order to identify and

evaluate the variability sources and the suitable biometrics; 2) devising practical compensation

8
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methods based on soft biometrics and adaptive fusion to deal with variability factors in order

to enhance the robustness of biometric systems at a distance; and 3) applying the proposed

techniques and methodologies to practical scenarios, systems, and databases widely available

for the biometrics research community, with emphasis on face verification systems.

The Dissertation is structured according to a traditional complex type with background

theory, practical methods, and three independent experimental studies in which the methods

are applied [Paltridge, 2002]. The chapter structure is as follows:

Chapter 1 introduces the topic of variability factors in biometric systems at a distance and

gives the motivation, outline and contributions of this PhD Thesis.

Chapter 2 summarizes related works which have motivated this Thesis.

Chapter 3 introduces two novel methods proposed in the framework of this Thesis and

that are later used in the experimental part of the Dissertation. These methods are: i)

soft biometric information suitable for video surveillance and forensic applications, and ii)

some adaptive fusion schemes using ancillary information and distance estimation (which

presents the advantage over previously proposed schemes of using the distance to identify

the scenario and apply the best solution).

Chapter 4 considers the issue of performance evaluation in biometric systems and presents

the methodology followed in the Dissertation for evaluation of biometric systems at a

distance. The biometric databases used in this Dissertation are also introduced.

Chapter 5 studies the variability in practical scenarios at a distance at different acquisition

distances.

Chapter 6 studies the variability and discrimination power of the soft biometric proposed

in Chapter 3, in video surveillance and forensics applications.

Chapter 7 studies the application of the adaptive score fusion schemes proposed in Chap-

ter 3 to biometrics at a distance in different scenarios.

Chapter 8 concludes the Dissertation summarizing the main results obtained and outlining

future research lines.

The dependence among the chapters is illustrated in Fig. 1.3. For example, before reading

any of the experimental Chapters 5, 6 and 7 (shaded in Fig. 1.3), one should read first Chap-

ters 4 and 3. Before Chapter 4 one should start with the introduction in Chapter 1, and the

recommendation of reading Chapter 2. Following the guidelines given in Fig. 1.3 and assuming

a background in biometrics [Jain et al., 2011b], one should read the experimental Chapter 5

before the Chapters 6 and 7.

The methods developed in this PhD Thesis are strongly based on popular approaches from

the pattern recognition literature. The reader is referred to standard texts for a background on

9
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1.6 Detailed Research Contributions

the topic [Duda et al., 2001; Theodoridis and Koutroumbas, 2008]. This is especially useful for

dealing with Chapter 3. Chapters 3 and 5 assume a knowledge of the fundamentals of image

processing [Gonzalez and Woods, 2006], and pattern recognition [Bigun, 2006].

1.6. Detailed Research Contributions

The research contributions of this PhD Thesis are the following (some publications appear

in several items of the list):

NOVEL METHODS.

1. Novel methods for incorporating soft biometrics information to biometric systems at

a distance.

• P. Tome, J. Fierrez, R. Vera-Rodriguez and D. Ramos. “Identification using Face Regions: Application

and Assessment in Forensic Scenarios”, Forensic Science International (FSI), n. 233, pages 75 - 83,

2013e.

• P. Tome, J. Fierrez, F. Alonso-Fernandez, and J. Ortega-Garcia. “Scenario-based score fusion for face

recognition at a distance”, in Proc. IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pages 67 - 73, June 2010a.

2. Novel methods for extracting and analysing facial regions in biometric systems at a

distance.

• P. Tome, L. Blazquez, R. Vera-Rodriguez, J. Fierrez, J. Ortega-Garcia, N. Exposito, and P. Leston.

“Understanding the discrimination power of facial regions in forensic casework”, in Proc. International

Workshop on Biometrics and Forensics, pages 1 - 4, Lisboa, Portugal, April 2013a.

• P. Tome, J. Fierrez, R. Vera-Rodriguez and D. Ramos. “Identification using Face Regions: Application

and Assessment in Forensic Scenarios”, Forensic Science International (FSI), n. 233, pages 75 - 83,

2013e.

3. Novel methods for combining different facial regions for face verification.

• P. Tome, J. Fierrez, R. Vera-Rodriguez, and J. Ortega-Garcia. “Combination of face regions in forensic

scenarios”, Rapid Communications in Forensic Science International (FSI), 2013c. submitted.

• P. Tome, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia. “Fusion of facial regions using color

information in a forensic scenario”, in Proc. 18th Iberoamerican Congress on Pattern Recognition

(CIARP2013), LNCS 8259, pages 399 - 406, Habana, Cuba, November 2013f.

NEW BIOMETRIC SYSTEMS.

1. A new face verification system based on Sparse Representation.

• P. Tome, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia. “Variability compensation using NAP

for unconstrained face recognition”, in Proc. 10th International Conference on Practical Applications

of Agents and Multi-Agent Systems (PAAMS12), volume 151, pages 129 - 139. Springer, March 2012.
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2. A new Soft biometric verification system.

• P. Tome, J. Fierrez, R. Vera-Rodriguez, and M. S. Nixon. “Soft biometrics and their application in

person recognition at a distance”, IEEE Transaction on Information Forensics and Security, 2013b.

submitted.

• P. Tome, J. Fierrez, R. Vera-Rodriguez, and Javier Ortega-Garcia. “Facial soft biometrics features for

forensic face verification”, Pattern Recognition, 2013d. submitted.

NEW BIOMETRIC DATA.

1. A mugshot faces biometric database (ATVS Forensic DB) including three different

views from 50 subjects acquired in the framework of this PhD Thesis.

• R. Vera-Rodriguez, P. Tome, J. Fierrez, N. Exposito, and F. J. Vega. “Analysis of the variability of

facial landmarks in a forensic scenario”, in Proc. International Workshop on Biometrics and Forensics,

pages 1 - 4, Lisboa, Portugal, April 2013a.

2. A set of manually labelled facial landmarks from the ATVS Forensic DB including

21 facial landmarks of 50 subjects with 8 frontal face images each.

• R. Vera-Rodriguez, P. Tome, J. Fierrez, N. Exposito, and F. J. Vega. “Analysis of the variability of

facial landmarks in a forensic scenario”, in Proc. International Workshop on Biometrics and Forensics,

pages 1 - 4, Lisboa, Portugal, April 2013a.

3. A set of manually labelled facial landmarks from SCface DB and the MORPH DB

including 21 facial landmarks of a subset of 130 subjects with 6 frontal face images

each.

• P. Tome, J. Fierrez, R. Vera-Rodriguez and D. Ramos. “Identification using Face Regions: Application

and Assessment in Forensic Scenarios”, Forensic Science International (FSI), n. 233, pages 75 - 83,

2013e.

4. A large sets of facial soft biometric features from the ATVS Forensic DB and the

MORPH DB generated in the framework of this PhD Thesis, developed jointly

with Binetskaya [2013].

• P. Tome, J. Fierrez, R. Vera-Rodriguez, and Javier Ortega-Garcia. “Facial soft biometrics features for

forensic face verification”, Pattern Recognition, 2013d. submitted.

NEW EXPERIMENTAL STUDIES

1. Acquisition scenario analysis for face recognition at a distance

• P. Tome, J. Fierrez, M. C. Fairhurst, and J. Ortega-Garcia. “Acquisition scenario analysis for face

recognition at a distance”, in Proc. 6th International Symposium on Visual Computing (ISVC), LNCS

6453, pages 461 - 468, November-December 2010b.

• R. Vera-Rodriguez, J. Fierrez, P. Tome and J. Ortega-Garcia, “Face Recognition at a Distance: Scenario

Analysis and Applications”, in Proceedings 7th International Symposium on Distributed Computing and

Artificial Intelligence, Springer Advances in Intelligent and Soft Computing-79, pages 341 - 348, 2010.
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2. Incorporating acquisition distance information to improve face recognition systems

at a distance.

• P. Tome, J. Fierrez, F. Alonso-Fernandez, and J. Ortega-Garcia. “Scenario-based score fusion for face

recognition at a distance”, in Proc. IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pages 67 - 73, June 2010a.

3. Analysis of the variability of facial landmarks.

• P. Tome, J. Fierrez, R. Vera-Rodriguez and D. Ramos. “Identification using Face Regions: Application

and Assessment in Forensic Scenarios”, Forensic Science International (FSI), n. 233, pages 75 - 83,

2013e.

• R. Vera-Rodriguez, P. Tome, J. Fierrez, N. Exposito, and F. J. Vega. “Analysis of the variability of

facial landmarks in a forensic scenario”, in Proc. International Workshop on Biometrics and Forensics,

Lisboa, Portugal, April 2013a.

• R. Vera-Rodriguez, P. Tome, J. Fierrez, and J. Ortega-Garcia. “Comparative analysis of the variability

of facial landmarks for forensics using cctv images”, in Proc. 6th Pacific Rim Symposium on Image and

Video Technology (PSIVT), 2013b.

4. Variability compensation using Nuisance Attribute Projection for face verification.

• P. Tome, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia. “Variability compensation using NAP

for unconstrained face recognition”, in Proc. 10th International Conference on Practical Applications

of Agents and Multi-Agent Systems (PAAMS12), volume 151, pages 129 - 139. Springer, March 2012.

5. Study and evaluation of the discrimination power of different facial regions for face

verification.

• T. Ali, P. Tome, J. Fierrez, R. Vera-Rodriguez, L. Spreeuwers and R. Veldhuis, “A study of identi-

fication performance of facial regions from CCTV images”, in Proc. 5th International Workshop on

Computational Forensics (IWCF2012), Tsukuba, Japan, November 2012.

• P. Tome, L. Blazquez, R. Vera-Rodriguez, J. Fierrez, J. Ortega-Garcia, N. Exposito, and P. Leston.

“Understanding the discrimination power of facial regions in forensic casework”, in Proc. International

Workshop on Biometrics and Forensics, pages 1 - 4, Lisboa, Portugal, April 2013a.

• P. Tome, J. Fierrez, R. Vera-Rodriguez and D. Ramos. “Identification using Face Regions: Application

and Assessment in Forensic Scenarios”, Forensic Science International (FSI), n. 233, pages 75 - 83,

2013e.

6. Evaluation of the performance of soft biometrics for video surveillance systems in

terms of the proposed adaptive fusion aimed to improve face recognition performance.

• P. Tome, J. Fierrez, R. Vera-Rodriguez, and M. S. Nixon. “Soft biometrics and their application in

person recognition at a distance”, IEEE Transaction on Information Forensics and Security, 2013b.

submitted.

7. Study of combination of different facial regions for face verification.

• P. Tome, J. Fierrez, R. Vera-Rodriguez, and J. Ortega-Garcia. “Combination of face regions in forensic
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1. INTRODUCTION

Other contributions so far related to the problem developed in this Thesis but not presented

in this Dissertation include:

NEW BIOMETRIC SYSTEMS.

1. An iris verification system based on Gabor features.

• [Tome, 2008]

2. An iris verification system based on SIFT features, developed jointly with Alonso-

Fernandez et al. [2009].

• F. Alonso-Fernandez, P. Tome, V. Ruiz-Albacete and J. Ortega-Garcia, “Iris Recognition Based on

SIFT Features”, in IEEE Proc. International Conference on Biometrics, Identity and Security, BIDS,

September 2009.

3. An automatic facial landmarks error detector, developed jointly with Blazquez [2012].

• [Blazquez, 2012]

4. A face verification system based on LBP and PCA features, developed jointly with Eslava-

Rios [2013].

• [Eslava-Rios, 2013]

5. A forensic face verification system based on morphological features, developed jointly

with Binetskaya [2013].

• [Binetskaya, 2013]

NEW BIOMETRIC DATA.

1. A new database (BIOGIGA) composed of simulated images of 50 people at 94GHz

(within the millimeter wave band - MMW).

• [Moreno-Moreno et al., 2011]

NEW BIOMETRIC APPLICATIONS.

1. Application of face verification in real time together with an interactive interface,

developed jointly with Eslava-Rios [2013].

• [Eslava-Rios, 2013]
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1.6 Detailed Research Contributions

NEW EXPERIMENTAL STUDIES.

1. A study of a scenario for biometric recognition at a distance adapted to acquisition

of MMW images.

• [Moreno-Moreno et al., 2010]

2. A study of different approaches for human action recognition in real videos, developed

jointly with Herranz [2010].

• [Herranz, 2010]

3. A study of different face and iris detectors for face verification, developed jointly

with Dragolici [2010].

• [Dragolici, 2010]

4. Study of effects of time variability in iris recognition.

• P. Tome, F. Alonso-Fernandez and J. Ortega-Garcia. “On the Effects of Time Variability in Iris Recog-

nition”, in Proc. IEEE Conference on Biometrics: Theory, Applications and Systems (BTAS), pages 1

- 6, Washington DC, USA, September 2008.

5. Analysis of direct attacks to iris verification systems using high quality printed images

and software attack based on generic algorithm to iris recognition systems.

• V. Ruiz-Albacete, P. Tome, F. Alonso-Fernandez, J. Galbally, J. Fierrez and J. Ortega-Garcia. “Direct

attacks using fake images in iris verification”, in Proc. COST 2101 Workshop on Biometrics and Identity

Management, BIOID, Springer LNCS 5372, pages 181 - 190, Roskilde, Denmark, May 2008.

• M. Gomez-Barrero, J. Galbally, P. Tome and J. Fierrez, “On the Vulnerability of Iris-based Systems

to a Software Attack based on a Genetic Algorithm”, in Proc. Iberoamerican Conference on Pattern

Recognition, CIARP, Springer LNCS 7441, pages 114 - 121, Buenos Aires, Argentina, September 2012.

6. Comparative evaluation of gait recognition systems on lower part of the human body

and with limited data information.

• S. Gabriel-Sanz, R. Vera-Rodriguez, P. Tome and J. Fierrez, “Assessment of gait recognition based on

the lower part of the human body”, in Proc. International Workshop on Biometrics and Forensics

(IWBF’13), pages 1 - 4, 2013.

• R. Vera-Rodriguez, S. Gabriel-Sanz, J. Fierrez, P. Tome and a. J. Ortega-Garcia, “Analysis of Gait

Recognition on Constrained Scenarios with Limited Data Information”, in Proc. 11th International

Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS-13), Springer Berlin

Heidelberg Communications in Computer and Information Science-365, pages 231 - 239, May 2013.

7. Combination of footsteps and face recognition systems on uncontrolled environment.

• R. Vera-Rodriguez, P. Tome, J. Fierrez and J. Ortega-Garcia, “Fusion of Footsteps and Face Biometrics

on an Unsupervised and Uncontrolled Environment”, in Proc. International Conferencie SPIE Defense

Security and Sensing, Biometric Technology for Human Identification IX (SPIE’12), Baltimore, USA,

April 2012.
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Chapter 2

Variability Factors and Biometric

Recognition at a Distance

Biometric variability measurement is an operationally important step in systems at a

distance that is nevertheless under-researched in comparison to the primary feature extraction

and pattern recognition task. Recently, variability factors measurement has emerged in the

biometric community as an important concern after the poor performance observed in biometric

systems at a distance. There are a number of variability factors that can affect the performance

of biometric systems.

Independent evaluations of commercial and research biometric systems conducted during the

last decade included in each edition new scenarios and conditions that are progressively more

difficult in nature. We can observe that, in many cases, this has resulted in a performance

worsening, and it is not until subsequent editions that the algorithms show progress under the

new challenging conditions. For instance, in the 1996, 2002 and 2006 editions of NIST: Face

Challenges, the face samples used were acquired in controlled scenarios, resulting in an incre-

ment of verification rates (see Fig. 2.1). However, in the 2010 edition, these challenges started

to change, face samples were intentionally corrupted or acquired in uncontrolled conditions,

focusing towards biometrics at a distance scenarios. The result was that the verification rates

of the best systems are much worse (an order of magnitude) than those of previous editions,

although the technology improvement for acquisition sensors. The last editions of these chal-

lenges are totally focused on person recognition at a distance and the study of the variability

problem which degrades the system performance. This result shows the significant impact that

the variability factors can have on the recognition performance, and highlights the importance

of measuring and dealing with them in biometric systems at a distance.

There are at least two reasons for this trend; the first is the wide range of commercial and

law enforcement applications in these challenging scenarios and the second is the availability of

feasible technologies after decades of research. In addition, the problem of machine recognition of

human faces continues to attract researchers from disciplines such as image processing, pattern
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Figure 2.1: Results in terms of Verification Rate (VR) at FAR = 0.001 of the best performing algo-

rithm in all the databases of the NIST competitions based on face recognition [NIST: Face Challenges].

Performance progressively drops when shifting from controlled scenarios to uncontrolled conditions.

recognition, neural networks, computer vision, computer graphics, and psychology.

This chapter summarizes the state-of-the-art in the biometric variability assessment problem

in systems at a distance, giving an overall framework of the different factors related to it. It

is structured as follows. We first define what variability is from the point of view of biometric

systems at a distance. Next, we present the factors influencing biometric variability and the

possible variability sources of acquired biometric samples at a distance. Next, we define what

we consider to be a biometric system At a Distance (AD). The relationship between subjects and

the acquisition distance, as well as the role of the camera to subject distance within biometric

systems at a distance is then analysed.

Original contributions in this chapter include a taxonomy of variability factors affecting

biometric performance, and a taxonomy of roles of the acquisition distance in the context of

biometric systems at a distance.

2.1. Definition of Biometric Variability Factors

Broadly speaking, a variability factor is anything that degrades the similarity between a

biometric sample and its source in terms of people recognition. Using the standard [ISO/IEC

29794-1, 2006], based on biometric quality, the variability factors in systems at a distance can be

considered from two different points of view, see Fig. 2.2: i) stability, which refers to the intra-

variability attributable to inherent biometric sample features of the subject; and ii) degradation,

which is the degree of variability between a biometric sample and its source, attributable to

each step through which the sample is processed. The stability of the sample source and the

degradation of the processed sample contribute to, or similarly detract from, the utility of the

sample, which is the impact of the individual biometric sample on the overall performance of a

biometric system.
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Figure 2.2: Defining biometric variability factors from two different points of view: stability and degra-

dation. The stability and degradation contribute to or detract from the sample’s utility.

It is generally accepted that a compensation of variability factors should most importantly

be focused in maximizing the utility of the sample, so that samples with high distinctiveness

and reduced variability lead to better identification of individuals. An adequate variability

compensation technique will be largely dependent on the type of variability considered in each

scenario.

2.2. Sources and Classification of Biometric Variability Factors

There are a number of factors affecting the variability of biometric signals in systems at

a distance. Unfortunately, most of them cannot be controlled. We summarize in Fig. 2.3

the different variability factors that can affect the performance of biometric systems. They

are classified depending on their relationship with the different parts of the system. We can

distinguish four different classes: factors related entirely to the user, factors that have to do

with the user-sensor interaction process, factors related to the acquisition device, and factors

related with the processing system.

As can be seen in Fig. 2.3, the user-related factors affect the stability of the biometric

sample, that is, the intra-variability attributable to the inherent sample features. In this sense,

the control we have on these factors is low, as the inherent features of a person are difficult

or impossible to modify. The remaining factors affect the degradation, or in other words, the

difference between a biometric sample and its source. These factors can be better controlled

than user-related factors.

2.2.1. User Factors

The user-related factors are classified as physiological and behavioral factors. As they

have to do entirely with the “user side”, they are the most difficult to control. We give a

summary of the most important ones in Fig. 2.3 (top-right). Notice that most physiological

factors cannot be controlled (e.g. age, gender, race, etc.) A number of them do not necessarily
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Figure 2.3: Variability sources that can affect the biometric performance of systems at a distance (AD).

produce degradation on the biometric data, but additional biometric intra-variability (e.g. face

or speech characteristics are different in males and females, faces change as we grow up, etc.).

These additional variability factors, if not properly considered by the recognition algorithm, may

lead to degraded performance. Other factors, like diseases or injuries, may alter a part of our

body, our skin, our voice, our ability to walk, etc., resulting in invalid data. In some cases, the

alteration may be irreversible, making the affected biometric trait infeasible for recognition. On

the contrary, behavioral factors are easier to control than physiological ones, although it is not

always possible or convenient, as we would have to modify the people’s behavior or habits.

The acquisition process is usually uncontrolled in systems at a distance, hence people on

the move their biometric data. Also, the people may be tired, distracted or nervous. Note that

when dealing with some user factors, one solution is just to recapture after taking corrective

actions (e.g. “put off your hat/coat/ring/glasses” or “keep a frontal pose”), but this is not

always possible or appropriate.
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2.2 Sources and Classification of Biometric Variability Factors

2.2.2. User-Sensor Interaction Factors

There are two types of factors related to the interaction between the user and sensor: envi-

ronmental and operational , which we summarize in Fig. 2.3 (top-left). In principle, they are

easier to control than user-related factors, although users still play a part in them. For instance,

impact of environmental factors will be low if we can control the environment. The variability of

face and gait images or videos depends on illumination, background, object occlusion, etc., and

also face images are affected by modifications of the properties of the skin and the reflections.

The illumination and light reflections have great impact on iris images at a distance due to the

reflective properties of the eye, whereas the variability of face and gait are highly dependent of

the subject pose. Outdoor operation is specially problematic, as we can lose control of many

factors affecting not only the biometric trait but also the sensor itself: temperature, humidity,

weather, noise, illumination, etc. Outdoor operation demands additional actions to us regarding

sensor conditions and its maintenance. Unfortunately, in certain applications, we cannot control

the environment, as in the case of modern applications that make use of handheld devices with

acquisition capabilities of biometric samples (e.g. webcams, laptops, smartphones, etc.)

As in the case of environmental factors, operational ones (Fig. 2.3 (top-left)) can also be

controlled to some extent. Again, if the acquisition is not done physically in our premises,

we will not be able to provide help or supervision to the user, we will not know if the sensor

is cleaned periodically, or we will not be able to guarantee the ergonomics of the acquisition

setup. An important factor that has to do with the operation of the system is the time passed

between acquisitions, also known as ageing. There is an intrinsic variability in biometric data

characteristics as time passes, not only in the long-term (e.g. changes of our face, voice, etc.

or differences in the way we interact with the system) but also in the short-term (e.g. clothes,

temporary diseases). The most important consequence is that biometric data acquired from

an individual at two different moments may be very different. This affects any biometric trait,

although some of them are more sensitive than others [Jain et al., 2011b], as it is the case of gait

and face at a distance. Another operational factor that we should consider is if the user receives

feedback of the acquired data via display or similar, which leads to better acquired samples.

But these kind of factors are discarded in systems at a distance where the subject move freely

and the acquisition is totally uncontrolled.

2.2.3. Sensor Factors

Although the acquisition sensor is physically a part of the biometric system, it is the only

point of interaction with users and even in some cases, people interact with the system using their

own devices (e.g. mobile telephones). For these reasons, a number of sensor factors can affect the

variability of acquired biometric data: its ease of use and maintenance, the size of its acquisition

area, the resolution or the acquisition noise, its reliability and physical robustness, its dynamic

range or the time it needs to acquire a sample. It is important that these factors are compliant

with existing standards, so we will be able to replace the sensor if needed without degrading the
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Figure 2.4: Classification of variability factors depending on the acquisition distance, together with their

impact in degrading the system performance.

reliability of the acquisition process. This is specially important, because replacing the sensor is

very common in operational situations when it is damaged or newer designs appear. Standards

compliance also guarantees that we can use different sensors to interact with the system.

2.2.4. System Factors

Here we find the factors that are easiest to control, which are related to how we process a

biometric sample once it has been acquired by the sensor. Factors affecting here are the data

format we use for exchange or storage and the algorithms we apply for data processing. If there

are storage or exchange speed constraints, we may need to use data compression techniques,

which may degrade the sample or even introduce variability in the template.

2.2.5. Graduation of Variability Factors in Systems At a Distance

As previous section explained there are a number of uncontrolled variability factors affecting

the biometric signals in systems at a distance. These variability factors vary with the acquisition

distance, therefore an important aspect in a biometric system at a distance is to understand the

scenario, i.e., i) how the variability factors are affecting the system depending of the acquisition

distance, and ii) delimiting their range of variability. Fig. 2.4 shows a classification of the

degradation degree produced by the main variability sources in the different acquisition distances.

The sensor-related factors have high impact on the system at far distances compared to close

distances (a low resolution webcam is enough at close distance). On the other hand the user-

related factors (such as height, gender, ethnicity, etc.) have a high impact on the system in all

the distances.

Additionally, each variability factor summarized in Fig. 2.3 has an individual graduation

of degradation depending the acquisition distance between slight to severe, e.g., illumination

outdoors affect in a slight level if the object is close to the camera and in a severe level if the
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Figure 2.5: Face Recognition At a Distance (FRAD) example on an high quality image from a real

scenario extracted from http://avigilon.com.

object is far away from the camera. Therefore, measurement or approximation of the acquisition

distance based on the object of interest in the scene is useful to identify the variability factors

present in the scene.

2.3. Definition of Systems AD (At a Distance)

There is no formal closed definition of biometric system at a distance in the literature.

As previously explained the variability factors vary with the acquisition distance between the

user and the camera. In terms of this distance from user to the camera, biometric recognition

systems can be categorized into close distance (often used in cooperative applications), medium

distance, and far distance. In this PhD Thesis, we consider biometric systems at a distance

as systems where a biometric signal is captured at a distance in a controlled or uncontrolled

environment, with or without user cooperation, and influenced by several known or unknown

variability factors.

The most common biometric trait visually available considered in recognition systems at

a distance is the human face. It is both visible and readily imaged from a distance. For

security or covert applications, facial imaging can be achieved without the knowledge of the

subject. Fig. 2.5 shows an example of a biometric system at a distance based on face recognition

(referred to also in the literature as FRAD) where some variability factors affecting in terms

of acquisition distance from user to the camera can be seen. There is also great interest in iris

at a distance [Matey et al., 2006], however it is doubtful that iris will outperform face with

a comparable system complexity and cost. Gait information can also be acquired over large

distances, but crowded places and multi-person recognition make the face a more discriminating

identifier.

In real scenarios at a distance, subjects may be sparsely distributed and standing or walking

along predictable trajectories (e.g., airport passport control, building access, etc.), or they may
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Areas Specific applications

Entertainment
Video game, virtual reality, training programs

Human-robot-interaction, human-computer-interaction

Smart cards

Drivers’ licenses, entitlement programs

Immigration, national ID, passports, voter registration

Welfare fraud

Information security

TV Parental control, personal device login, desktop login, event login

Application security, database security, file encryption

Intranet security, internet access, medical records

Secure trading terminals, marketing

Law enforcement and surveillance

Watch-list, white-list, on-line recognition

Advanced video surveillance, CCTV control

Portal control, post-event analysis, access control

Shoplifting, suspect tracking and investigation

Table 2.1: The most important applications of recognition systems at a distance.

be in a crowd, moving in a chaotic manner, and occluding each other (e.g., surveillance cameras).

Therefore, the nature of the activity of subjects and the size of the surveillance area can vary

considerably with the scenario of application and this is closely related with the degree of

difficulty and the variability factors affecting to the system.

The two main difficulties faced by systems at a distance are: i) acquisition of biometric

signals (images) from a distance, and ii) recognition of the person in spite of imperfections and

variability factors in the captured data.

There are a lot of advantages/disadvantages that biometric systems at a distance have and a

lot of applications as we can see in Table 2.1, which lists some of the most important applications.

2.3.1. Acquisition Distance Levels

The acquisition distance is a very important factor to be studied in biometric systems at a

distance. The concept of estimating the acquisition distance in order to define different scenarios

has not been traditionally used in person recognition at a distance. It is important to emphasize

that in biometrics at a distance this scenario estimation based on the acquisition distance is very

useful, as different scenarios will usually have different variability factors and thus they may be

processed differently.

In order to develop this idea, we first propose a classification of acquisition distances, which

will help to study the variability factors and their degree of influence in systems at a distance.

The acquisition distances of biometric systems at a distance can be categorized into three levels

summarized in Fig. 2.6 with an example based on the human face.

Level 1 distances (real distances), which are the actual real distances between camera and

subject. The acquisition setup is configured (resolution, focus, etc.) for working at a fixed

distance. This is considered a controlled acquisition where variability factors generated

by the capture sensor are minimized. The camera configuration is assumed to be correct

for the scene at hand and therefore the captured image has correct resolution, focus, and

24



2.3 Definition of Systems AD (At a Distance)

Level 1

(Real distances) 

Level 2

(Computer vision distances) 

Level 3

(Relative distances) 

d = Real distance between 

object and camera 

d 

dp 

dz 

dc Cropped 

dp=dc 

Zoom in 

dp<dz 

Figure 2.6: Distance levels example for systems at a distance based on human face. dp, dc, and dz,

represent the Interpupillarity Pixel Distance (IPD) for original, cropped, and zoomed image, respectively.

other factors attributable to the acquisition sensor, but can be influenced by the user-

sensor interaction variability such as the environmental factors (e.g., lighting in outdoor

scenarios).

Level 1 distances are commonly used to design acquisition scenarios such as border control,

restricted walking zone, static capture, building access, etc.

Level 2 distances (computer vision distances), which are distances between camera to

object calculated using camera calibration approaches. Camera calibration is a common

step in computer vision. Although some information from a scene can be obtained by using

uncalibrated cameras, calibration is essential when metric information is required. The use

of precisely calibrated cameras makes the measurement of distances in the real world from

their projections on the image plane possible [Dang et al., 2009]. These distances can be

estimated using camera parameters. There are two kinds of parameters to be considered

for the calibration: i) intrinsic parameter set, which models the internal geometry and

optical characteristics of the image sensor, and ii) extrinsic parameters that measure the

position and orientation of the camera with respect to a world coordinate system.

Level 2 distances are mainly used in computer vision when metric information from the

scene is required.

Level 3 distances (relative distances) are estimated or relative distances, which are mea-

sured with respect to the image plane. In this level, we do not have access to information
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Figure 2.7: Examples of sensors and scenarios of recognition at a distance in the real life.

about the camera configuration, therefore we take the image plane as a reference. Fig. 2.6

shows an example, where the videos or images are post-processed (cropped, zoom in, ...)

or modified in some way, hence the configuration metadata is lost.

One example Level 3 distance is the segmented face area with respect to the full image

area. As we will see in the next chapters, such a simple computation is strongly correlated

with the actual acquisition distance, and therefore it will be very useful.

2.4. Biometric Traits At a Distance

The biometric data sources in scenarios at a distance are usually based on video surveillance

cameras [Li and Jain, 2011; Tistareli et al., 2009], also called Closed-Circuit Television Video

(CCTV) cameras, which can produce images or recordings for surveillance purposes, and can be

either video cameras, or digital stills cameras. Fig. 2.7 shows some examples of sensor technology

and real scenarios at a distance.

As this Fig. 2.7 shown the demand for human identification at a distance has gained consider-

able attraction, particularly due to the need for covertly recognizing individuals in unconstrained

environments with uncooperative subjects. In such environments, the person of interest may

not be interacting with the biometric system in a concerted manner. Further, the individual

might be moving in this environment characterized by variable illumination and a non-uniform

background. Biometric modalities such as fingerprint and static iris cannot be easily acquired

at large stand-off distances. On the contrary, the face, gait, and iris on the move modalities

26

ChapterVariabilityFactors/Figs/EPS/sensorExamples.eps


2.4 Biometric Traits At a Distance

Gait 
Recognition 

Face 
Recognition 

Iris 
Recognition 

Periocular 
Recognition 

Tattoo 
Recognition 

Facial Marks 
Recognition 

Anthropometric  
Recognition 

Nose

Mouth

Chin

Left earRight ear

tor

Forehead

Both eyebrows

Both eyes

Left eyebrow

Left eye

Right eyebrow

Right eye

Nose

Facial Regions Recognition 

P
ri
m

a
ry

 B
io

m
e

tr
ic

s
 

S
o

ft
 B

io
m

e
tr

ic
s
 

Figure 2.8: Biometrics traits suitable to be used in systems at a distance. Center image extracted from

http://avigilon.com.

can easily be acquired at a distance (see an example in Fig. 2.8), although the smaller spatial

resolution of the face at long distances can degrade the accuracy of face recognition systems. In

the next sections the suitable primary biometrics traits to be extracted and used in systems at

a distance are discussed.

There are many situations where primary biometric traits (i.e., gait, face, and iris) are

either corrupted or unavailable, and soft biometric information is the only available clue for

person recognition. For example, while a surveillance video may not capture the complete face

of a suspect, the face image in the video may reveal anthropometric information such as the

suspect’s gender, complexity, ethnicity, etc., or the presence of a mark or tattoo may provide

additional valuable clues.

In the next sections we will also discuss possible uses of soft biometric traits in biometrics at

a distance (i.e., facial regions, periocular, facial marks, tattoos and anthropometric information,

see Fig. 2.8). The periocular biometrics are gaining increasing attention since they offer a trade-

off between using the entire face image and the iris portion only. Facial marks and tattoos

are also gaining widespread attention since they offer complementary information that can be

exploited along with primary biometric traits.

2.4.1. Primary Biometrics

Gait Recognition.

Gait-based human recognition is a suitable technology for biometric recognition at a dis-

tance [Nixon and Carter, 2006]. Gait is defined as the pattern of locomotion in animals

and humans, i.e., it is the manner in which people walk. The formal definition of gait

recognition refers to human motion but practical approaches include both dynamic and

static features (such as body shape) of the moving human body.

Therefore, gait recognition is perceived as an attractive solution for distance-based iden-

tification that shows some advantages in this kind of scenarios: i) the gait biometric can
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be acquired passively in a not intrusive way and, therefore, explicit subject cooperation

is not required for data acquisition, and ii) this biometric trait can be extracted in low

resolution images or videos, this means that common camera devices such as low resolu-

tion CCTV cameras may be used for acquisition. On the other hand this technology also

present some disadvantages in systems at a distance that are mainly the occlusions due to

the clothes (e.g., a person wearing an attire such as a trench coat) or other bodies (e.g.,

crowded scenarios). Gait recognition has also limitations when people are walking on a

bumpy surface, downhill, uphill, etc.

Face Recognition.

The face modality has several advantages that make it preferable and the most suitable

in biometric systems at a distance [Zhao et al., 2003]. Firstly, unlike other biometrics

such as fingerprints, face can be acquired at a distance using non-contact sensors. This

trait is generally available in challenging scenarios (e.g., crowded scenarios) in contrast

to others like gait. Also, the face has several interesting information sources in addition

to the identity such as the emotions of a person (e.g., happiness, anger, etc.) as well as

biographic information (e.g., gender, ethnicity, and age). Finally, this is a biometric trait

very accepted in the population and people are generally willing to share it in the public

domain (e.g., social media applications such as Facebook).

While humans seem to be adept in determining the similarity between two face images

acquired under diverse conditions, the process of automated face recognition is beset with

several challenges in systems at a distance: i) The main disadvantage of this technology is

the variation of a face image due to variability factors such as the age, pose, illumination,

and facial expressions. ii) The occlusions are also a very important disadvantage in face

recognition systems at a distance that produce changes in appearance due to make-up, fa-

cial hair, or accessories (e.g., hat, sunglasses, etc.) iii) Moreover, there may be similarities

between the face images of different persons, especially if they are genetically related (e.g.,

identical twins, father and son, etc.) Such inter-class similarities further compound the

difficulty of recognizing people based on their faces. Despite these challenges, significant

progress has been made in the field of automated face recognition at a distance over the

past two decades.

Iris Recognition.

Iris recognition is one of the most powerful techniques for biometric identification [Bowyer

et al., 2008b]. In the beginning this technology was conceived for controlled acquisition sys-

tems at close distance where users had to cooperate in the acquisition process. Therefore,

the main problem in such systems were the constraints on position and motion but there

are new advances based on high-resolution cameras, video synchronized strobed illumi-

nation, and specularity based image segmentation which try to deal with these problems.

Last research advances open the opportunity to this technology to be suitable to biometric
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recognition at a distance. The Iris on the Move (IOM) system [Matey et al., 2006] is the

first system to enable the capture of iris images of sufficient quality at a distance while the

subject is moving at a normal walking pace through a minimally confining portal. These

advances make this technology to be considered for future applications in biometrics at a

distance.

2.4.2. Soft Biometrics

Facial Regions Recognition.

The concept of facial region recognition is based on the use of facial regions such as the

nose, mouth, eyes, eyelids, etc. as independent biometric traits in order to recognize

people [Tome et al., 2013e].

This approach has some remarkable benefits in systems at a distance: i) facial regions can

be extracted from a low resolution images (e.g., CCTV scenarios), ii) allow investigators

to work only with particular regions of the face, and iii) prevent that incomplete, noisy,

and missing regions degrade the recognition accuracy. In the same way that the field of

cognitive science continues to investigate the precise roles of facial regions and holistic pro-

cessing in human face perception [Gold et al., 2012], automatic face recognition algorithms

also need to explore the role that facial regions processing could have in improving the

performance of systems at a distance.

Periocular Recognition

Periocular recognition is based on person identification using the region around the eyes

(i.e., the skin, eyebrow, and eye) [Park et al., 2011]. The use of the periocular region as a

biometric cue represents a good trade-off between using the entire face region or using only

the iris for recognition. In biometric systems at a distance, the periocular biometric has

an interesting role such as soft biometric information that can be useful for identification

when good quality images are available and as a complementary information with low

resolution images.

Face Marks Recognition.

Advances in sensing technology have made it easy to capture high resolution face images.

From these high resolution face images, it is possible to extract details of skin irregularities,

also known as facial marks. This has opened new possibilities in face representation and

matching schemes [Jain et al., 2011a]. These skin details are mostly ignored and considered

as noise in a typical face recognition system. However, facial marks can be used to i)

supplement existing facial matchers to improve the identification accuracy, ii) facilitate

fast face image retrieval, iii) enable matching or retrieval with partial or off-frontal face

images, and iv) provide more descriptive evidence about the similarity or dissimilarity

between face images, which can be used as evidence in legal proceedings.
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Tattoo Recognition

The use of tattoos imprinted on the human body in suspect identification started with

the Bertillon system [Bertillon, 1896]. Since then, images of tattoos on the human body

have been routinely collected and used by law enforcement agencies to assist in suspect

and victim identification. When the primary biometric traits are unavailable or corrupted,

tattoos can be used to identify victims or suspects as demonstrated by Jain et al. [2012a].

Tattoos provide more discriminative information than the traditional demographic indi-

cators such as age, height, race, and gender for person identification. In most of the cases

these tattoos are visually available and may be distinguished at a distance.

Anthropometric Soft Biometrics.

The anthropometric soft biometrics are based on intrinsic characteristics of the subjects

(i.e., height, arm length, complexity, hair colour, etc.) This kind of soft biometrics features

can be recognized at a distance in most of cases and can be classified as:

• Global . Features such as age, ethnicity and sex. The demographic information as

the gender and ethnicity of a person does not typically change over the lifetime, so it

can be used to filter the database to narrow down the number of candidates. On the

other hand, age is easily estimated by physical traits at a distance and it can also be

used to filter suspects.

• Body . Features that describe the target’s perceived somatotype [Macrae and Boden-

hausen, 2000] (height, weight, etc.) These traits have a close correlation between the

style and kind of clothes that the subject is wearing in the annotation process. For

example, tight clothes will allow to obtain more stable labels than loose clothes.

• Head . This is, an area of the body humans pay great attention to if it is visible [Hewig

et al., 2008] (hair colour, beards, etc.) These are very interesting soft biometrics to

be fused with face recognition systems.

• Facial . Features that describe the facial regions based on the morphological analysis,

i.e., kind of eyelids, eyebrows, length and width of eyebrows, eyes shape, etc.

• Context information . Information of the scene where the object of interest is

immersed (e.g., we want to find a person on a beach, so the context information of

the beach is going to be very useful.) These features are very useful at information

retrieval applications.

2.5. Chapter Summary and Conclusions

Since the establishment of biometric research as an specific research area, the biometric

community has focused its efforts in the development of accurate recognition algorithms in

controlled scenarios. Nowadays, biometric recognition is a mature technology that is used in
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many applications (e.g. e-Passports, ID cards or border control [US-VISIT Program of the U.S.

Department of Homeland Security]). More recently, the biometric community is focusing on

biometrics at a distance in unconstrained and uncontrolled scenarios. We can notice in recent

studies that the performance of biometric systems at a distance is heavily affected by different

variability factors depending on the acquisition distance. The problem of dealing with these

variability factors is a current research challenge within the biometric community [NIST: Face

Challenges], and the main topic of the present Dissertation.

In this chapter, we present an overall overview of the different components and issues that

conform the biometric variability assessment problem in systems at a distance. Issues like the

variability factors influencing biometric samples, the strategies and approaches to dealing with

these variability factors, the definition of scenarios and biometric systems At a Distance (AD), or

the role of distance measures within this kind of biometric systems are addressed here. We also

present a framework for graduation and evaluation of the variability factors depending on the

acquisition distance, as well as existing primary and soft biometric traits suitable for biometric

scenarios at a distance.

This chapter includes novel contributions regarding the taxonomy of variability factors af-

fecting biometric samples.

31



2. VARIABILITY FACTORS AND BIOMETRIC RECOGNITION AT A DISTANCE

32



Chapter 3

Proposed Methods: Soft Biometrics

and Adaptive Fusion

In this chapter we present the two methods that have been proposed during the development

of the Thesis, and which will be used to deal with variability factors in the experimental part

of the Dissertation (Chapters 5, 6, and 7.) There is a large amount of literature describing

compensation methods to deal with general and specific variability but it is not the purpose of

this Thesis to organize and summarize this growing area. Based on the comprehensive treatment

of variability factor of Chapter 2, in the present Chapter we just focus on presenting two new

methods that can provide big benefits in highly variable scenarios.

The proposed methods are: i) soft biometrics based on morphological information that can be

applied in a straight forward manner to different matchers and biometric traits, and ii) adaptive

fusion schemes using ancillary information and person to camera distance estimation (which

present the advantage over previously proposed schemes of using the distance to identify the

scenario and apply the best solution). Both methods have been validated on realistic databases

following systematic and replicable protocols, reaching remarkable results.

The soft biometrics considered will be extensively analysed in Chapter 6, where they will

be applied to video surveillance and forensics. The adaptive fusion schemes proposed will be

applied in Chapter 7 as a method to deal with variability factors fusing ancillary information

(e.g. soft biometrics and facial regions). The distance estimation between the subject and the

camera (studied in Chapter 5) is used to carry out various combinations of face recognition

systems in Chapter 7.

This chapter is structured as follows. The soft biometrics are presented in Sect. 3.1, and

the adaptive fusion approaches in Sect. 3.2. The chapter summary and conclusions are given in

Sect. 3.3.

This chapter assumes a basic understanding of the fundamentals of pattern recognition and

classification [Duda et al., 2001; Jain et al., 2000; Theodoridis and Koutroumbas, 2008].

This chapter is based on the publications: Tome et al. [2013b,c,e, 2012].
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3.1. Soft Biometrics

The first system in the history that attempted to describe people for identification based on

the morphological and physiological traits was the anthropometric system developed by Bertillon

[1896]. This system was based on features such as body measurements (anthropometry), mor-

phological description of the appearance and shape of the body, and peculiar marks observed

on the body. This system was very useful in tracking criminals in the beginning but it had an

unacceptably high rate of false identification. This was due to that these characteristics did

not have the distinctiveness and permanence to uniquely identify an individual over a period

of time. Therefore, soft biometric traits are defined as those characteristics that provide some

information about the individual, but lack the distinctiveness and permanence to sufficiently

differentiate any two individuals (see Fig. 2.8 for examples of soft biometric traits).

Soft biometric traits can either be continuous or discrete. Traits such as gender, eye color,

ethnicity, etc. are discrete in nature. On the other hand, traits like height and weight are

continuous variables. In principle a system that is completely based on soft biometric traits

cannot provide the required accuracy in the recognition of individuals. However, soft biometric

traits can be used to improve the performance of a traditional biometric system (e.g., gait, face,

etc.) in many ways.

The first works in soft biometrics [Heckathorn et al., 1997; Jain et al., 2004a,b] tried to

use demographic information (e.g., gender and ethnicity) and soft attributes like eye color,

height, weight and other visible marks like scars [Jain and Park, 2009; Park and Jain, 2010]

and tattoos [Lee et al., 2008] as ancillary information to improve the performance of biometric

systems. They showed that soft biometrics can complement the traditional (primary) biometric

identifiers (like face recognition) and can also be useful as a source of evidence in courts of law

because they are more descriptive than the numerical matching scores generated by a traditional

face matcher. But in most cases, this ancillary information by itself is not sufficient to recognize

a user. In contrast, this PhD Thesis involves the application of an extensive set of labels that

can be visually described by humans at a distance.

More recently, Kumar et al. [2009] explored comparative facial attributes in the LFW Face

Database [Huang et al., 2007] for face verification. Gupta and Davis [2008] and Siddiquie and

Gupta [2010] used prepositions and adjectives to relate objects (e.g., persons) to each other for

more effective contextual modelling and active learning, respectively. Recent works such as Reid

and Nixon [2013] introduce the use of comparative human descriptions for facial identification.

They use twenty-seven comparative traits to accurately describe facial features, which are de-

termined by the Elo rating system from multiple comparative descriptions. These facial features

are extracted from mugshot images.

The use of soft biometric traits in automated human recognition systems has several benefits.

It is, therefore, essential to carefully investigate issues related to its extraction and recognition

capacity. Surveillance footage is generally of inferior quality and so traditional forms of identi-

fication at a distance cannot be easily used. Soft biometrics offer a solution in this regard but
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lack the distinctiveness that is expected of biometric traits.

This technology is ideal for applications with smaller populations, such as tracking people

within a camera network or identifying people who are known to be located within a certain

area. In these applications the view invariance is a key aspect when working with surveillance

footage, a successful technique must identify soft biometric features from any view of the subject.

Emphasis must be placed on finding practical ways to obtain view of invariant features (similar

to [Denman et al., 2009]) or developing methods to predict hidden features based on what can

be observed.

In the next sections we present two sets of soft biometrics: i) soft biometrics for video

surveillance, which are extracted visually from a subject at a distance (e.g., gender, height,

hair length, etc.), and ii) soft biometrics for forensics, which are extracted at close distance

(e.g., eyebrows form, nose height, mouth length, etc).

3.1.1. Soft Biometrics for Video Surveillance

As presented in previous Chapter 2, the two most popular traits for identification at a

distance are face [Zhao et al., 2003] and gait [Nixon and Carter, 2006]. These can suffer from

the poor sensor quality of most CCTV cameras. Low resolution can seriously impair facial

recognition, and low frame rates (sometimes even time-lapse cameras) obscure the motion of the

human body required for gait recognition. In contrast, several soft traits can often be obtained

from very poor quality video or images. This has huge potential for immediate real world use

without upgrading the vast surveillance infrastructure already deployed.

In this PhD Thesis a set of soft biometrics features have been used, whose main value is

that they are discernible by humans at a distance. These physical trait labels were proposed

by Samangooei [2010] and are available at the Southampton Multibiometric Tunnel Database

(TunnelDB) [Seely et al., 2008].

This soft biometric information was annotated against recordings taken of the individuals

in laboratory conditions [Seely, 2010]. A range of discrete values is given to each trait label,

e.g. “Arm length” marked as 1 (very short), 2 (short), 3 (average), 4 (long), and 5 (very long).

The annotation process of each label is described in detail in [Samangooei, 2010]. A summary

of these trait labels and their associated discrete semantic terms is provided in Table 3.1. These

labels were designed based on which traits humans are able to consistently and accurately use

when describing people at a distance. The traits were grouped in 3 classes, namely:

Body features that describe the target’s perceived somatotype [Macrae and Bodenhausen, 2000]

(height, weight, etc.) These traits have a close correlation between the style and kind of

clothes that the subject is wearing in the annotation process. For example, tight clothes

will allow to obtain more stable labels than loose clothes.

Global traits (age, ethnicity and sex). The demographic information as the gender and eth-

nicity of a person does not typically change over the lifetime, so it can be used to filter
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Body
Trait Range of Values

1. Arm Length Very Short, Short, Average, Long and Very Long

2. Arm Thickness Very Thin, Thin, Average, Thick and Very Thick

3. Chest Very Slim, Slim, Average, Large and Very Large

4. Figure Very Small, Small, Average, Large and Very Large

5. Height Very Short, Short, Average, Tall and Very Tall

6. Hips Very Narrow, Narrow, Average, Broad, and Very Broad

7. Leg Length Very Short, Short, Average, Long and Very Long

8. Leg Direction Very Bowed, Bowed, Straight, Knock Kneed, and Very Knock Kneed

9. Leg Thickness Very Thin, Thin, Average, Thick and Very Thick

10. Muscle Build Very Lean, Lean, Average, Muscly, and Very Muscly

11. Proportions Average and Unusual

12. Shoulder Shape Very Rounded, Rounded, Average, Square and Very Square

13. Weight Very Thin, Thin, Average, Big and Very Big

Global
Trait Range of Values

14. Age Infant, Pre Adolescence, Adolescence, Young Adult, Adult, Middle Aged, Senior

15. Ethnicity European, Middle Eastern, Indian/Pakistan, Far Eastern, Black, Mixed, Other

16. Sex Female, Male

Head
Trait Range of Values

17. Skin Colour White, Tanned, Oriental and Black

18. Facial Hair Colour None, Black, Brown, Red, Blond and Grey

19. Facial Hair Length None, Stubble, Moustache, Goatee and Full Beard

20. Hair Colour Black, Brown, Red, Blond, Grey and Dyed

21. Hair Length None, Shaven, Short, Medium and Long

22. Neck Length Very Short, Short, Medium and Long

23. Neck Thickness Very Thin, Thin, Average, Thick and Very Thick

Table 3.1: Soft biometrics for surveillance. Extracted from [Samangooei, 2010].

the database to narrow down the number of candidates. On the other hand, age is easily

estimated by physical traits at a distance and it can also be used to filter suspects.

Head features, an area of the body humans pay great attention to if it is visible [Hewig et al.,

2008] (hair colour, beards, etc.) These are very interesting soft biometrics to be fused with

face recognition systems.

Following the definitions in Chapter 11 of [Theodoridis and Koutroumbas, 2008], we can

see that some of the features are nominal, i.e., their values can not be ordered meaningfully

(e.g., ethnicity (15), sex (16), skin (17), facial hair (18) and hair colour (20)) whereas others are

ordinal, i.e., their values can be meaningfully ordered (e.g., arm length (1), arm thickness (2),

height (4), weight (13), and hair length(21)).

We assume that these soft biometrics for surveillance scenarios are discernible by humans

at a distance and are extracted manually by an annotator or automatically by an automatic

system. The other assumption in biometrics at a distance is that the quantity of soft biometric
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Close

Medium

Far

Face 

Camera 

F

Ca

Close Medium Far

Figure 3.1: Body region visible at the three distances considered. A person walking frontal to the camera

is captured by a high-resolution video camera (10 fps and resolution of 1600×1200) and soft labels available

visually in each scenario are extracted.

features in the scene is variable with the distance as it shown in Fig. 3.1.

Definition 3.1.1. Given a population of S subjects and a soft biometric feature X, the problem

of extraction of this feature can be carried out following two configurations: i) manually, by a

human annotator a, or ii) automatically, by an automatic system a. Each soft biometric feature

can be extracted by several annotators or different automatic systems, therefore a = {1, . . . , A},

where A is the total number of annotators. We can also formally define a set of soft biometric

features as Xk, where kth feature is k = {1, . . . ,K}, and K is the total number of soft biometric

features.

Based on previous assumptions, in this PhD Thesis we develop a general methodology to

understand the behaviour of soft biometric labels and their best application to biometrics at a

distance based on the use of just the available soft biometric information in the scene. For this

purpose, three general scenarios varying the distance between camera and subject are defined

and used in our experiments. The three scenarios are defined as follows (see Fig. 3.1):

Close distance. Includes both the face and the shoulders.

Medium distance. Includes the upper half of the body.

Far distance. Includes the full body.

The rationale behind the proposed methodology is the fact that depending on the particular

scenario, some labels may not be visually present and others may be occluded. As a result, the

discriminative information of the soft biometrics will vary depending on the distance. Table 3.2

shows the soft labels available for each of the scenarios defined.

The detailed description and evaluation of these soft biometrics features for video surveillance

can be found in Chapter 6.
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Close Medium Far

Body

1. Arm Length X X

2. Arm Thickness X X

3. Chest X X

4. Figure X X

5. Height X

6. Hips X

7. Leg Length X

8. Leg Direction X

9. Leg Thickness X

10. Muscle Build X X

11. Proportions X X X

12. Shoulder Shape X X X

13. Weight X X

Global
14. Age X X X

15. Ethnicity X X X

16. Sex X X X

Head

17. Skin Colour X X X

18. Facial Hair Colour X X X

19. Facial Hair Length X X X

20. Hair Colour X X X

21. Hair Length X X X

22. Neck Length X X X

23. Neck Thickness X X X

Table 3.2: Soft biometrics features available (marked with X) visually in each scenario at a distance.

3.1.2. Soft Biometrics for Forensics

Most forensic laboratories follow methodologies based on Bertillon’s approach [Bertillon,

1896] such as the police sketch used by the Spanish Guardia Civil (DGGC) or Netherlands

Forensic Institute (NFI) in the identification of criminals and the standards defined by Facial

Identification Science Working Group (FISWG). This sketch consists of a verbal description of

specific facial traits following a precise and well defined procedure. In particular, the morpho-

logical facial features of a subject are classified in three groups:

Morphological Chromatic Complementary

where morphological features describe the form, magnitude and direction of the facial traits,

the chromatic features are focused on the different colouration that a face has, and the com-

plementary features refer to other concepts that can not be analysed by the other two previous

types.

In this PhD Thesis we present a set of regions extracted from a frontal human face based on

these procedures. The face regions proposed are the next:

38



3.2 Adaptive Fusion

Forehead

Eyebrows

Eyeball and Orbit

Nose

Mouth and Lips

Chin

Ear

Contours

Based on the facial regions, we have defined, also based on procedures from DGGC and NFI,

the set of soft biometrics shown in Table 3.3. These attributes are:

Continuous features which take continuous values, generally distances in facial traits (e.g.

eyebrows length, nose height and width, mouth length, etc.)

Discrete features that take a finite number of categories. For example, eyebrow form that can

be arched, rectilinear and sinuous. This group of features needs a training set in order to

establish the thresholds between the range of values.

Similarly to previous Definition 3.1.1 we can also formally define here a set of facial soft

biometric features as Xk, where k = {1, ...,K}, and K = 56 is the total number of soft biometric

features, 32 continuous and 24 discrete.

The detailed description and evaluation of these facial soft biometrics features can be found

in Chapter 6 of the present Dissertation.

3.2. Adaptive Fusion

This section describes the adaptive score fusion schemes proposed in this Thesis to deal with

the variability factors. These schemes are divided into three classes: 1) scenario-based, 2) soft

biometrics-based, and 3) regions-based. The three classes are introduced sequentially in order

to facilitate the description.

We use the following nomenclature and conventions throughout the rest of the chapter.

Given a multimodal biometric verification system consisting of M different unimodal systems

j = 1, . . . ,M , each one computes a similarity score s between an input biometric pattern B and

the enrolled pattern or model of the given claimant u. The similarity scores s are normalized to

ŝ. Let the normalized similarity scores provided by the different unimodal systems be combined

into a multimodal score ŝ = [ŝ1, . . . , ŝM ]T , where [·]T denotes transpose. The design of a

fusion scheme consists in the definition of a function f : R
M → R, so as to maximize the

separability of client {f (̂s)|client attempt} and impostor {f (̂s)|impostor attempt} fused score

distributions. This function may be trained by using labelled training scores (̂si, zi), where

zi = {0 = impostor attempt, 1 = client attempt}, and i = 1, . . . , N . The rest of the chapter deals

with different schemes for constructing this function adapted both to the acquisition distance,

soft biometrics information, and/or the facial regions of the input biometric signals according

to different criteria. In Fig. 3.2 we depict the general system model including all the notations

defined above.
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Facial Trait Continuous Discrete

Forehead
1. Height 1. Height (Short, Average, and Long)

2. Width 2. Width (Small, Average, and Large)

Eyebrows

3. Separation (Distance between eyebrows) 3. Separation (Near and Distant)

4. ElevationL inner (Distance eyebrow and eye)

4. Elevation (Low, Average, High, and Asymmetric)
5. ElevationL outer (Distance eyebrow and eye)

6. ElevationR inner (Distance eyebrow and eye)

7. ElevationR outer (Distance eyebrow and eye)

8. LengthL 5. LengthL (Short and Long)

9. LengthR 6. LengthR (Short and Long)

10. Average WidthL 7. WidthL (Narrow, Linear, and Wide)

11. Average WidthR 8. WidthR (Narrow, Linear, and Wide)

12. Angles between cornersL 9. DirectionL (Horizontal, Oblique Internal,

13. Angles between cornersR and Oblique External)

10. DirectionR (Horizontal, Oblique Internal,

and Oblique External)

11. FormL (Arched, Rectilinear, and Sinuous)

12. FormR (Arched, Rectilinear, and Sinuous)

Eyeball and Orbit

14. Horizontal OpeningL 13. Horizontal OpeningL (Small and Large)

15. Horizontal OpeningR 14. Horizontal OpeningR (Small and Large)

16. Interocular Distance (inner corners)

15. Interocular Distance (Small, Normal, and Large)17. AnglesL between corners

18. AnglesR between corners

Nose

19. Width 16. Width (Small, Average, and Large)

20. Height 17. Height (Short, Average, and Long)

21. Nose Root Width 18. Nose Root Width (Narrow, Average, and Wide)

22. Naso-Labial Height 19. Naso-Labial Height (Short, Average, and Long)

Mouth

23. Length 20. Length (Small, Average, and Large)

24. Average Height 21. Orientation (ObliqueL, Neutral, and ObliqueR)

25. Angles between corners 22. Particularities (Heart Form)

Chin
26. Width 23. Width (Small and Large)

27. Height 24. Height (Short, Average, and Long)

Ears

28. LengthL

29. LengthR
30. AngleL between corners

31. AngleR between corners

Contours 32. Average Line Length

Table 3.3: Facial soft biometric features and their associated semantic terms grouped in continuous and

discrete values.
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Figure 3.2: General system model of multimodal biometric authentication using score level fusion in-

cluding name conventions.

To carry out the fusion stage of the biometric modalities, scores s of the different systems

were first normalized ŝ to the [0, 1] range using the tanh-estimators described by Jain et al.

[2005]:

ŝi =
1

2

{

tanh

(

C ·
si − µSD

σSD

)

+ 1

}

, (3.1)

where si is the ith score, ŝi denotes the normalized score, C is a constant, and µSD and σSD

are respectively the estimated mean and standard derivation of the score distribution.

The tanh-estimators introduced by [Hampel et al., 2005] are robust and highly efficient. This

method reduces the influence of the points at the tails of the distribution during the estimation

of the location and scale parameters. Hence, this method is robust against outliers.

3.2.1. Scenario-based Fusion

Distance measures between the camera and the person to be recognized can be used for

adapting the different modules of a multimodal authentication system at a distance. Although

any processing module is subject to this adaptation based on the person to camera distance,

only scenario-based score fusion is considered in this Thesis. In Sect. 8.2 we provide some points

of ongoing efforts and future works using camera to person distance measures for adapting other

modules. The system model of scenario-based score fusion proposed in this work is shown in

Fig. 3.3.

One straightforward way to incorporate the acquisition distance to the score fusion approach

is by including weights in simple combination approaches [Fierrez, 2006]. This can be achieved

by using the following scenario-based score fusion function

yi =

M
∑

j=1

gj(di)ŝ
j
i , (3.2)

where di is an acquisition distance measure corresponding to the score ŝji . The function gj(di)

takes a camera to person distance estimation and outputs a confidence measure of the system
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Figure 3.3: System model of biometric authentication with scenario-based score fusion.

j in providing a reliable matching score for the particular biometric signal being tested i, with

sumM
j=1g

j(di) = 1. For a particular biometric input i, as shown in Fig. 3.3, we can collect all

confidence measures corresponding to the M different fused systems in vector c = [c1, . . . , cM ]T .

The concept of measuring or estimating the acquisition distance in order to define different

scenarios has not been traditionally used in person recognition at a distance. This automatic

scenario estimation based on the acquisition distance gives us knowledge about the variability

level that affects the system (i.e., different scenarios usually present different variability factors)

and therefore is a valuable tool for system adaptation. It is important to emphasize that in

biometrics at a distance the scenario estimation is an important challenge because as the person

is moving away from the acquisition device variability factors lead to a change of scenario. Thus,

the variability factors can affect in different levels depending on the distance to the capturing

device.

In the experimental Chapter 7, we apply this methodology with an example camera to person

distance estimator based on the face size in the image plane.

The detailed description and evaluation of this example acquisition distance index and

scenario-based fusion can be found in Chapter 7 of the present Dissertation.

3.2.2. Soft Biometrics-based Fusion

Processing soft biometrics typically require less computation and input data quality com-

pared to other forms of identification at a distance, making them cheap and non-intrusive.

Niinuma et al. [2010] clearly demonstrate the suitability of soft biometric traits for continuous

user authentication. Determining applications adequate for this form of biometric identification

is essential for advancing the field.

The objective in this part of the Dissertation is stressing the importance of soft biometrics

at a distance using fusion techniques. By agglomerating multiple soft biometric features using

fusion techniques, the recognition performance can be enhanced significantly in very challenging

and realistic scenarios.
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Figure 3.4: System model of biometric authentication with soft biometrics-based score fusion.

Soft biometrics offer several benefits over other forms of identification at a distance as they

can be acquired from low resolution and low frame rate videos, and from an arbitrary viewpoint

of the subject. This allows for the use of soft biometrics when primary biometric identifiers

cannot be obtained or when only a description of the person is available. The system model of

soft biometrics-based score fusion proposed in this work is shown in Fig. 3.4.

One straightforward way to incorporate soft biometrics to the score fusion approach is by

considering Failure to Acquire (FTA) errors in simple fusion approaches [Fierrez, 2006]. This

can be achieved similarly to Eq. (3.2) by the following fusion function:

yi =
M
∑

j=1

gj(FTAj
i )ŝ

j
i . (3.3)

In this case gj(FTAj
i ) takes as input the binary features FTAj

i = {0, 1} corresponding to FTA

events in each system j for a particular input i, and outputs, similarly as in Eq. (3.2), a confidence

measure of the system j in providing a reliable matching score for the particular biometric signal

being tested i.

FTA is the Fail To Acquire error produced when there is a biometric trait in the image, but

it is not detected. Other important error to be considered is FTD, Fail To Detect error produced

when the biometric trait detector finds an object in the image, but it is not a biometric trait.

As it will be further developed in the experimental Chapter 7, this general approach can
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Figure 3.5: System model of biometric authentication with regions-based score fusion.

be applied, for example, in a switch fashion [Fronthaler et al., 2008] to consider soft biometrics

in cases where primary biometrics are detected, and weighted sum fusion of both primary and

soft biometrics when both scores are available. As it will be also shown experimentally, this

helps in realistic challenging scenarios dealing with low resolution images such as surveillance

and forensics.

The detailed description and evaluation of this soft biometrics-based fusion can be found in

Chapter 7 of the present Dissertation.

3.2.3. Regions-based Fusion

As discussed in Chapter 2, the two most popular traits for identification at a distance are

face [Zhao et al., 2003] and gait [Nixon and Carter, 2006]. Automatic person recognition systems

are generally designed to match images of full faces or bodies. However, in practice, the full trait

is not always available, e.g., due to occlusions and other variability factors. On the other hand,

in forensics, the examiners usually carry out a manual inspection of the face images, focussing

their attention not only on the full face but also on face regions. They carry out an exhaustive

morphological comparison, analysing the face region by region (e.g., nose, mouth, eyebrows,

etc.), even examining traits such as marks, moles, wrinkles, etc.

Understanding how different human facial and body regions are combined on different ap-

plication scenarios has some remarkable benefits, for example: i) allowing to work only with

particular regions, or ii) preventing that incomplete, noisy, and missing regions degrade the

recognition accuracy. Further, a better understanding of the combination of facial and body re-

gions should facilitate the study of regions-based person recognition. Therefore a fusion scheme

based on different regions is proposed to deal with variability factors and improve the perfor-

mance of biometric systems at a distance.

The system model of regions-based score fusion proposed in this work is shown in Fig. 3.5.

One straightforward way to incorporate the regions to the score fusion approach is by including
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various combinations of regions. Various selections of such regions in practical applications will

be studied in Chapter 7.

Once the regions to fuse are determined, a similar fusion approach to the one defined in

Eq. (3.2) can be also applied here:

yi =

M
∑

r=1

gr(Bi)ŝ
r
i . (3.4)

In this case, the weight gr(Bi) is an estimation of the confidence in obtaining a reliable recog-

nition using only the region r of the face or body for the input Bi. In the experimental chapter

we will obtain gr(Bi) based on the recognition errors on a development database using standard

recognizers.

A key element in the proposed region-based fusion approach is to properly segment the face

or body regions. This will be studied, respectively in Chapters 5 and 7 of the present Disser-

tation, where we will describe and evaluate new face segmentation methods with application to

surveillance and forensics.

3.3. Chapter Summary and Conclusions

In this chapter we have summarized the main contributions of this PhD Thesis, namely: soft

biometrics and adaptive fusion for challenging biometric scenarios.

The presented algorithms include a soft biometrics system based on face regions and mor-

phological information that can be applied in a straight forward manner to different matchers

and biometric traits, and adaptive fusion schemes using ancillary information and camera to

person distance estimation. All the methods will be validated on realistic databases following

systematic and replicable protocols, reaching remarkable results as will be shown in the next

chapters of the Dissertation.

All the methods proposed in this chapter are original contributions.
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Chapter 4

Performance Evaluation of Biometric

Systems at a Distance

This chapter summarizes the common practices in performance testing of biometric systems

and presents the evaluation methodology followed in the Thesis for the variability assessment of

automatic recognition systems. The main biometric databases at a distance used for both types

of evaluations (performance and variability) are also described.

The chapter is organized as follows. First we summarize the guidelines for performance

evaluation used in this Dissertation (Sect. 4.1). Finally we give an overview of the main existing

biometric databases at a distance (Sect. 4.2) and we thoroughly describe the most important

ones used in this Thesis.

4.1. Performance Evaluation of Biometric Systems

The practice in first research works on biometrics starting over three decades ago was to

report experimental results using biometric data specifically acquired for the experiment at hand

[Atal, 1976; Kanade, 1973; Nagel and Rosenfeld, 1977]. This approach made very difficult the

fair comparison of different recognition strategies, as the biometric data was not made publicly

available.

With the popularity of biometric systems and the creation of new research groups working

in the same topics, the need for common performance benchmarks was recognized early in the

past decade [Jain et al., 2004d; Phillips et al., 2000c]. In this environment, the first series

of international competitions for person authentication based on different biometric traits were

organized. In these competitions, biometric data along with specific experimental protocols were

established and made publicly available. Some examples include the following campaigns: NIST

Facial Recognition Technology Evaluations (FERET), starting in 1994 [Phillips et al., 2005,

2000c]; NIST Speaker Recognition Evaluations (SRE), held yearly since 1996 [Przybocki and

Martin, 2004]; NIST Iris Challenge Evaluations (ICE), first organized in 2005 [Phillips, 2006];
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Fingerprint Verification Competitions (FVC), held biannually since 2000 [Cappelli et al., 2006];

the Signature Verification Competition (SVC), organized in 2004 [Yeung et al., 2004]; and the

BioSecure Multimodal Evaluation Campaign held in 2007 [Mayoue et al., 2009]. Comparative

evaluations of commercial biometric technologies can also be found nowadays by standards

institutions like NIST [Grother et al., 2003; Wilson et al., 2004] and CESG [Mansfield et al.,

2001], or consulting firms like the International Biometric Group [2006]. This is also at least one

laboratory exclusively focused in the performance evaluation of biometric systems (Biometric

Services International [BSI, 2009], a non-profit company working under the National Biometric

Security Project [NBSP, 2009]) of the ISO/IEC 17025:2005 accreditation for testing [ISO/IEC

17025, 2005].

In this environment, and as a result of the experience gained in biometric performance

evaluation, the UK Biometrics Working Group generated a set of best practices for testing and

reporting performance results of biometrics systems [Mansfield and Wayman, 2002], to which

we adhere in this PhD Thesis.

Performance evaluation of biometric recognition systems can be carried out at three different

levels [Phillips et al., 2000b]: technology, scenario, and operational.

The goal of a technology evaluation is to compare competing algorithms thus identifying

the most promising recognition approaches and tracking the state-of-the-art. Testing of all

algorithms is carried out on a standardized database. Performance with this database will

depend upon both the environment and the population from which the data are collected.

Because the database is fixed, the results of technology tests are repeatable. Some important

aspects of a given database are: 1) Number of users, 2) number of recording sessions, and

3) number of different samples per session. Most standardized benchmarks in biometrics are

technology evaluations conducted by independent groups or standards institutions [Maio et al.,

2004; Petrovska-Delacretaz et al., 2009; Phillips et al., 2000c; Przybocki and Martin, 2004; Yeung

et al., 2004].

The goal of scenario evaluations is to measure overall system performance for a prototype

scenario that models an application domain. Scenario evaluations are conducted under con-

ditions that model real-world applications [Bone and Blackburn, 2002; Mansfield et al., 2001].

Because each system has its own data acquisition sensor, each system is tested with slightly dif-

ferent data, and thus scenario tests are not repeatable. An operational evaluation is similar to a

scenario evaluation. While a scenario test evaluates a class of applications, an operational test

measures performance of a specific algorithm for a specific application [Bone and Crumbacker,

2001].

In this Thesis we carry out the performance evaluation experiments as technology evaluations

of different systems at a distance working in the verification mode.

4.1.1. Performance Measures of Authentication Systems

Biometric technologies can be ranked according to several criteria, including [Jain et al.,

2004d]: universality, distinctiveness, permanence, collectability, performance, acceptability and
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Figure 4.1: FA and FR curves for an ideal (left) and real (right) authentication systems.

circumvention, as it was mentioned in Sect. 1.1.1. In the experiments of this Thesis we concen-

trate on performance indicators to compare different methods, and more specifically on authen-

tication error rates.

Biometric authentication can be considered as a detection task, involving a tradeoff between

two types of errors [Ortega-Garcia et al., 2004]: 1) False Rejection (FR), occurring when a

client, target, genuine, or authorized user is rejected by the system, and 2) False Acceptance

(FA), taking place when an unauthorized or impostor user is accepted as being a true user.

Although each type of error can be computed for a given decision threshold, a single performance

level is inadequate to represent the full capabilities of the system. Therefore the performance

capabilities of authentication systems have been traditionally shown in the form of FA and

FR Rates versus the decision threshold, as depicted in Fig. 4.1 for an ideal system (a), and

a real system (b). Another commonly used graphical representation of the capabilities of an

authentication system, specially useful when comparing multiple systems, is the ROC (Receiver

-or also Relative- Operating Characteristic) plot, in which FA Rate (FAR) versus FR Rate

(FRR) is depicted for variable decision threshold. A variant of the ROC curve, the so-called

DET (Detection Error Tradeoff) plot [Martin et al., 1997] uses a non-linear scale and makes the

comparison of competing systems easier. A comparison between ROC and DET curves for two

hypothetical competing authentication systems A and B is given in Fig. 4.2.

A specific point is attained when FAR and FRR coincide, the so-called EER (Equal Error

Rate). The global EER of a system can be easily detected by the intersection between the DET

curve of the system and the diagonal line y = x. Nevertheless, and because of the discrete nature

of FAR and FRR plots, EER calculation may be ambiguous according to the above-mentioned

definition, so an operational procedure for computing the EER must be followed. In the present

contribution, the procedure for computing the EER described by Maio et al. [2002] has been

applied.

In face recognition systems, the common graphical representation used is the VR-ROC plot,

in which FAR versus Verification Rate, VR = (1 - FRR) is depicted to analyse the capabilities
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Figure 4.2: Example of verification performance with ROC (left) and DET curves (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Acceptance Rate

F
a

c
e

 V
e

ri
fi
c
a

ti
o

n
 R

a
te

 

 

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Acceptance Rate

F
a

c
e

 V
e

ri
fi
c
a

ti
o

n
 R

a
te

 

 

System A

System B

System A

System B

Figure 4.3: Example of face verification performance with VR-ROC (left) and VR-DET curves (right).

of an authentication system. The VR-ROC and a variant of the VR-ROC curve, the so-called

VR-DET plot, are used in this Thesis [Phillips et al., 2005]. In this case, the use of a non-

linear scale (logarithmic scale at FAR axis) makes the comparison of competing systems easier

at different FAR points. The state-of-the-art in face recognition is commonly working at FAR

= 0.001 (10−3). A comparison between VR-ROC and VR-DET curves for two hypothetical

competing authentication systems A and B is given in Fig. 4.3.
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4.2 Biometric Databases at a Distance

4.2. Biometric Databases at a Distance

One key element for performance evaluation of biometric systems is the availability of bio-

metric databases. Some relevant efforts in this regard have been directed to the acquisition of

large multimodal (i.e., comprising different biometric traits of the same users) datasets [Fierrez

et al., 2009, 2007; Ortega-Garcia et al., 2009]. Multimodal databases have the clear advantage

over unimodal corpora of permitting to carry out research studies using individual or different

combined traits (i.e., multibiometrics) [Fierrez-Aguilar et al., 2005; Ross et al., 2006]. This

kind of databases are in general acquired in controlled conditions, however the advances in the

last years are focused in real uncontrolled scenarios using biometrics at a distance and on the

move [Phillips et al., 2009a]. In this sense, the acquisition of biometric databases at a distance

involves a low cost of resources (a webcam camera, is enough) making the database collection

an easy process, in which a low degree of cooperation of the donors is needed. Additionally,

acquisition at a distance involves the undesirable presence of variability factors (i.e., sensor,

sensor-user interaction, user and system effects), making very challenging the authentication

task. On the other hand, the legal issues regarding data protection are delicate [Flynn, 2007;

Wayman et al., 2005]. For these reasons, nowadays, the number of existing public biometric

databases at a distance is quite limited.

The databases at a distance currently available have resulted from collaborative efforts

in recent research projects. Examples of these joint efforts include European projects like

M2VTS [Messer et al., 1999] or BANCA [Bailly-Bailliere et al., 2003], and other initiatives by

NIST [National Institute of Standards and Technology (NIST)], with their series of biometrics

challenges.

In the following sections we provide an overview of existing biometric databases at a distance,

provide some information of current efforts in the acquisition of new corpora, and finally an

extended description of the databases at a distance used in this PhD Thesis.

4.2.1. Existing Databases at a Distance

Most test databases for face recognition contain images or video captured at close range with

cooperative subjects. They are thus best suited for training and testing face recognition systems

for access control applications. However, there are a few datasets that are more suitable for face

recognition at a distance development and evaluation.

UTD [O’Toole et al., 2005]. The database collected at the University of Texas at Dallas

for the DARPA Human ID program includes close-up still images and video of subjects and

also video of persons walking toward a still camera from distances of up to 13.6 m and video

of persons talking and gesturing from approximately 8 m. The collection was performed

indoors, but in a large open area with one wall made entirely of glass, approximating

outdoor lighting conditions. A fairly low zoom factor was used in this collection. This

is a database of static images and video clips of human faces and people that is useful
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for testing algorithms for face and person recognition, head/eye tracking, and computer

graphics modelling of natural human motions. For each person there are nine static “facial

mugshots” and a series of video streams. The videos include a “moving facial mugshot”,

a facial speech clip, one or more dynamic facial expression clips, two gait videos, and a

conversation video taken at a moderate distance from the camera. Complete data sets are

available for 284 subjects and duplicate data sets, taken subsequent to the original set, are

available for 229 subjects.

UTK-LRHM [Yao et al., 2008]. The face video database UTK-LRHM was acquired

from long distances and with high magnifications. Both indoor and outdoor sequences

were collected under uncontrolled surveillance conditions. This was the first database to

provide face images from long distances (indoor: 10-16 m and outdoor: 50-300 m). The

corresponding system magnifications range from 3× to 20× for indoor and up to 284×

for outdoor conditions. This database has applications in experimentations with human

identification and authentication in long range surveillance and wide area monitoring.

GBU [Phillips et al., 2011]. The Good, the Bad, and the Ugly challenge consists of three

frontal still face partitions. The paritions were designed to encourage the development

of face recognition algorithms that excel at matching “hard” face pairs, but not at the

expense of performance on “easy” face pairs. The images in this challenge problem are

frontal face stills taken under uncontrolled illumination, both indoors and outdoors. The

three partitions were constructed by analyzing results from the FRVT 2006. The Good

set consisted of face pairs that had above average performance, the Bad set consisted of

face pairs that had average performance, and the Ugly set consisted of face pairs that had

below average performance. There are 437 subjects in the data set. All three partitions

have the same 437 subjects. All three paritions have 1085 images in both the target and

query sets.

ND-QO-Flip [Barr et al., 2011]. ND-QO-Flip Crowd Video Database contains 14 between

25-59 second crowd video clips of 90 subjects, five of whom appear in multiple videos and

85 of whom appear in one video. These videos were acquired between November 2009 and

May 2010 (over a period of seven months) in different locations around the University of

Notre Dame campus. In each clip, the camera pans and zooms over a crowd of four to

12 people. Most people are seen from a nearly frontal viewpoint because the observers

tend to face toward the camera or focus on an object behind it. The crowd members were

allowed to exhibit any facial expression they chose. The video set contains 12 outdoor

videos, including six that were acquired under overcast conditions, six that were recorded

when the sun was visible, three with snow cover and one with falling snow. The videos

thus contain extensive variations in illumination and facial expression along with partial

face occlusions caused by the way the crowds formed. The acquisition process is carried

out using a Cisco Flip hand-held camcorder. All videos were compressed with the H.264

codec, have a 640× 480 resolution and a frame rate of 30 frames per second.
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LDHF-DB [Maeng et al., 2013]. Long Distance Heterogeneous Face Database (LDHF-

DB) contains both visible (VIS) and near-infrared (NIR) face images at distances of 60

m, 100 m and 150 m outdoors and at a 1 m distance indoors. Face images of 100 subjects

(70 males and 30 females) were captured; for each subject one image was captured at each

distance in daytime and nighttime. All the images of individual subjects are frontal faces

without glasses and collected in a single sitting.

PaSC [Beveridge et al., 2013]. Inexpensive point-and-shoot camera technology has com-

bined with social network technology to give the general population a motivation to use

face recognition technology. The Point-and-Shoot Face Recognition Challenge (PaSC) is a

challenge which includes 9, 376 still images of 293 people balanced with respect to distance

to the camera, alternative sensors, frontal versus non-frontal views, and varying location.

There are also 2, 802 videos for 265 people: a subset of the 293. Verification results are

also presented together with the database for public baseline algorithms and a commercial

algorithm for three cases: comparing still images to still images, videos to videos, and still

images to videos.

4.2.2. MBGC DB

The Multiple Biometric Grand Challenge (MBGC) [Phillips et al., 2009a] is being conducted

in two parts with two versions of the challenge problems. First version 1 introduced the partic-

ipants to the challenge problems and the MBGC protocol. And the version 2 encouraged the

development of algorithms that can handle large datasets.

The goal of the MBGC is to improve the performance of face and iris recognition technology

from biometric samples acquired under unconstrained conditions. The MBGC is organized into

three challenge problems. Each challenge problem relaxes the acquisition constraints in different

directions. In the Portal Challenge Problem, the goal is to recognize people from near-infrared

(NIR) and high definition (HD) video as they walk through a portal. Iris recognition can be

performed from the NIR video and face recognition from the HD video. The availability of NIR

and HD modalities allows for the development of fusion algorithms. The Still Face Challenge

Problem has two primary goals. The first is to improve recognition performance from frontal

and off angle still face images taken under uncontrolled indoor and outdoor lighting. The second

is to improve recognition performance on still frontal face images that have been resized and

compressed, as is required for electronic passports. In the Video Challenge Problem, the goal

is to recognize people from video in unconstrained environments. The video is unconstrained

in pose, illumination, and camera angle. All three challenge problems include a large data set,

experiment descriptions, ground truth, and scoring code.

The Still Face Challenge Problem builds on the Face Recognition Grand Challenge (FRGC)

adding non-frontal face images to the task and increasing the size and scope of experiments with

images acquired under uncontrolled illumination. A survey of work addressing face recognition

from unconstrained environments can be found elsewhere [Zhao et al., 2003] and provides some
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Figure 4.4: MBGC database example images of indoor and outdoor conditions.
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Southampton Tunnel

Figure 4.5: Tunnel database setup. There are eight cameras acquiring gait signal and one high-resolution

camera acquiring frontal people walking.

baseline estimates of the state-of-the-art for this problem. The increase in the scope of the Still

Face Challenge Problem includes recognition from highly compressed images.

The data for the Still Face Challenge Problem were collected with high resolution digital

cameras, 4 and 6 mega-pixels. Images were collected with both controlled and uncontrolled

illumination. The images with controlled illumination were collected in a studio environment

with controlled lighting. The images with uncontrolled illumination were collected in hallways

and outdoors. Fig. 4.4 shows an example of face images collected.

The Video Challenge Problem is the first NIST challenge problem to address face recognition

from unconstrained video. It makes available information that is commonly included in surveil-

lance video and so provides an estimate of the recognition performance that can be achieved in

security applications where video is available.

4.2.3. Tunnel DB

The new Southampton Multibiometric Tunnel Database (TunnelDB) [Seely et al., 2008]

contains biometric samples of 227 subjects for which 10 gait sample videos from between 8 to 12

viewpoints are taken simultaneously and stored to extract 3D gait information. TunnelDB also

contains high resolution frontal videos to extract face information and high resolution side face

images taken to extract ear biometrics. There are roughly 10 such sets of information gathered

for each subject in TunnelDB.

Of the 227 subjects, 67% were male; the majority were aged between 18-28 years old and

70% were of European origin. These biases in the demographic of the dataset were expected, as

this closely represents the student population.

The acquisition process is shown in Figs. 4.5 and 4.6, where subjects were collected walking

through an entry beam on a straight red path towards the exit beam and therefore towards a

face camera. During a single walk (a sample), the subject was simultaneously captured by the

gait cameras and the face camera. Upon reaching the exit beam, a single flash camera was used

to photograph the right ear.
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Gait Acquisition

Face Acquisition

Figure 4.6: Tunnel database samples.

The gait information is recorded by 12 cameras, and while gait images were taken, a single

higher definition camera at the end of the tunnel captures a 1600×1200 high resolution face

images at 27 frames per second. In the tunnel scenario, direction of gaze was guaranteed by

instructing the subjects as well as by their walking direction. Lighting and other environmental

variables were also controlled.

Figs. 4.5 and 4.6 shows the acquisition setup, together with an example of each biometric

trait captured per subject.

4.2.4. SCface DB

Surveillance Cameras Face Database (SCface) [Grgic et al., 2011] is a database of static

images of human faces. Images were taken in uncontrolled indoor environment using five video

surveillance cameras of various qualities. The database contains 4160 static images (in visible

and infrared spectrum) of 130 subjects. Images from different quality cameras mimic the real-

world conditions and enable robust face recognition algorithms testing, emphasizing different

law enforcement and surveillance use case scenarios. SCface database is freely available to the

research community. Subjects’ images were taken at three distinct distances from the cameras

with the outdoor (sun) light as the only source of illumination. All images were collected over

a 5 day period.
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Figure 4.7: SCface database. There are three different acquisitions distances: close, medium and far.

Acquisition angle of each distance calculated for a subject with mean height of 1.80 meters.

Here is a short summary of what makes this dataset interesting for the face recognition

research community:

1. Different quality and resolution cameras were used.

2. Images were taken under uncontrolled illumination conditions

3. Images were taken from various distances

4. Head pose variation in surveillance images is typical for a commercial surveillance system,

i.e. the camera is placed slightly above the subject’s head, making the recognition even

more demanding. Besides, during the surveillance camera recordings the individuals were

not looking to a fixed point.

5. Database contains nine different poses suitable for head pose modelling and/or estimation.

6. Database contains images of 130 subjects, enough to eliminate performance results ob-

tained by pure coincidence.

7. Both identification and verification scenarios are possible, but the main idea is for it to be

used in difficult real-world identification experiments.

This database used only as source of illumination the outdoor light, which came through

a window on one side. Two (out of five) surveillance cameras were able to record in IR night

vision mode as well. The sixth camera was installed in a separate, darkened room for capturing

IR mug shots. The high-quality photo camera for capturing visible light mugshots was installed

the same way as the infrared camera but in a separate room with the standard indoor lighting

and it was equipped with adequate flash. Mugshot imaging conditions are exactly the same

as would be expected for any law enforcement or national security use (passport images or any

other personal identification document). All six cameras (five surveillance and one IR mug shot)
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CCTV scenario Mugshot scenario

IR scenario

Figure 4.8: SCface image samples of each dataset for CCTV, mugshot, and IR scenarios.
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were connected to a professional digital video surveillance recorder, which was recording all six

video streams simultaneously all the time on internal hard disk.

They used 5 surveillance cameras named cam1, cam2, cam3, cam4 and cam5. Cam1 and

cam5 are also able to work in IR night vision mode. They decided to name the images taken

by them in the IR night vision mode as cam6 (actually cam1 in night vision mode) and cam7

(actually cam5 in night vision mode). Camera for taking IR mugshots was named cam8. All

cameras (surveillance and photo) were installed and fixed to the same positions and were not

moved during the whole capturing process.

Cameras 1-5 are visible light cameras and generate images of different qualities. There are

three images per subject for each camera, taken at three discrete distances (4.20, 2.60 and 1.00

m), see Fig. 4.7. This gives a total of 15 images per subject in this set (1950 in total). This set

was designed to test the face recognition algorithms in real-world surveillance setup. As can be

seen from the Fig. 4.8, the images differ substantially in quality and resolution. IR night vision

mug shots were taken in a separate dark room with a resolution of 426 × 320 pixels, grayscale.

There is one image per subject in this set, yielding a total of 130 of those images in the database.

All participants in this project passed through the following procedure. First they had to

walk in front of the surveillance cameras in the dark and after that they had to do the same in

uncontrolled indoor lighting. During their walk in front of the cameras they had to stop at three

previously marked positions. This way 21 images per subject were taken (cam1-7 at distances

of 4.20, 2.60 and 1.00 meters). In the end, subjects went into the dark room where the high

quality IR night vision surveillance camera was installed for capturing IR mug shots at close

range. In overall that gives 32 images per subject in the database.

The participants in this project were students, professors or employees at the Faculty of

Electrical Engineering and Computing, University of Zagreb, Croatia. From the total of 130

volunteers, 115 were males and 15 females. All participants were Caucasians, between the ages

of 20 and 75.

4.2.5. ATVS Forensic DB

The ATVS Forensic Database [Vera-Rodriguez et al., 2013a] was acquired in collaboration

with the Spanish Guardia Civil (DGGC) by the Universidad Autonoma de Madrid (UAM). The

main objective of the project was the acquisition of a realistic mugshot forensic database. Its

main characteristics are as follows:

1. Number of subjects: a total of 50 users (32 men and 18 women) were acquired.

2. Number of samples: 4 acquisition sets capturing 5 different mugshot images in each set.

3. Number of sessions: 2 sessions distributed in a 5 month time span.

In Table 4.1 the most relevant statistics of the ATVS Forensic database are shown.
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ATVS Forensic DB. 50 subjects

Gender Distribution 32 (Male) / 18 (Female)

Age Distribution (18–35)

Vision Aids 100% (None)

Table 4.1: Statistics of the ATVS Forensic database.

3 m 
2 m 

1 m 

Far Medium Close

Figure 4.9: Example setup used and the process followed in the acquisition of the ATVS Forensic

database.

4.2.5.1. Acquisition Environment

The 3 acquisition distances follow the same very general indications about the environmental

conditions, regarding illumination (neutral lighting with no preponderant focuses), noise (indoor

conditions with no excessive background noise), and pose of the contributor (stand up close to

a vertical reference scale). These relaxed environmental conditions allow a desirable variability

between the samples acquired (e.g., background in facial images) which simulates the changing

working conditions of a real-world biometric application. In Fig. 4.9 we show the acquisition

setup prepared, together with an example of the capture process followed in the acquisition.

During the acquisition procedure a human operator gave the necessary instructions to the

contributors so that the acquisition protocol was followed. In order to ensure that the ATVS

Forensic database complies with the acquisition protocol, all biometric samples were manually

verified by a human expert who either corrected or discarded non-valid data.

The camera used in the database collection was a Canon EOS 400D and, as a can be seen in

the Fig. 4.9, a vertical scale was used in the background, as it is done in current DGGC forensic

practice.
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Figure 4.10: ATVS Forensic database image samples of each dataset for mugshot close, medium, and

far distances, lateral right (+90 degrees), and semi-lateral left (−45 degrees) images. Facial landmarks

provided together with the mugshot frontal images are also shown on the top.
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4.2.5.2. Acquisition Protocol

The acquisition protocol followed for the ATVS Forensic database imitates current practice

by the Spanish Guardia Civil. Six pictures of each person were taken at every mugshot photo

session:

1. Full body. 2 pictures: front and lateral right view. Approximately three meters distance

from camera to person.

2. Upper body. 1 picture: front view. Approximately two meters distance from camera to

person.

3. Face. 3 pictures: front, lateral right (+90 degrees) and semi-lateral left (-45 degrees).

Approximately one meter distance from camera to person.

In this Thesis, only the three frontal images (full body, upper body and face) have been used

in the experimental Chapter 5 of this Dissertation. In Fig. 4.10 we summarize the data samples

captured for every user.

A manual facial landmark tagging of the different users in the database is also provided.

The first step after database collection was to define a set of facial landmarks to include in this

database. A set of 21 facial landmarks was defined following recommendations from the Spanish

Guardia Civil (DGGC), Netherlands Forensic Institute (NFI) and ENFSI [European Network

of Forensic Science Institutes], including the irises (2 landmarks) , inner and outer eye corners

(4), eyebrow ends (4), mouth corners (2), nose corners (2), center of the nose (1), chin (1),

upper and lower ears ends (4) and highest point on the head (1). Figure 3 shows the 21 facial

landmarks considered in this database (see Fig. 4.10 top). Therefore, a manual tagging of the

21 landmarks for the whole database was carried out by the same person, imitating the work of

a forensic examiner. This manual tagging was performed over the acquired mugshot images.

The database comprises data from 50 persons (32 men and 18 women) acquired in two

different sessions. The collection process took place from July to November 2012. The sessions

were collected in different days for the same persons. In each session the procedure was repeated

four times. Therefore, obtaining a total of 2400 mugshot images (50 persons × 2 sessions × 4

times × 6 images).

4.2.5.3. Potential Uses of the Database

Several potential uses of the database have already been pointed out throughout this Thesis.

In this section some of the research lines that can be further developed upon this data set are

summarized. It has to be emphasized that due to its characteristics in terms of acquisition envi-

ronment (reproducing real forensic protocols) and demographic distribution, the ATVS Forensic

database represents a good benchmark for the studied the variability factors presents in this

kind of scenarios and their possible solutions.
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Figure 4.11: MORPH database image samples of the subset European.

4.3. Other Databases

This section describes other database used in this PhD Thesis, which is classified only in the

close distance acquisition.

4.3.1. MORPH DB

The Craniofacial Longitudinal Morphological Face Database (MORPH) [Ricanek and Tesafaye,

2006] contains 55.000 frontal face images from more than 13.000 subjects, acquired from 2003

to late 2007. The distribution of ages ranges from 16 to 77 with an average age of 33. The

average number of images per individual is 4 and the average time between pictures is 164 days,

with the minimum being 1 day and the maximum being 1.681 days. The MORPH database is

divided in 5 subsets named: i) African, ii) European, iii) Asian, iv) Hispanic and v) Other.

The subset “European” comprises 2.704 subjects (2.070 males plus 634 females) and has

been selected for the experiments in this Thesis. Fig. 4.11 shows an example of this European

subset. The detailed description of the evaluation of these databases can be found, respectively,

in Chapters 5, 6 and 7 of the present Dissertation.

4.4. Chapter Summary and Conclusions

In this chapter we have outlined some best practices for performance evaluation in biometric

authentication. We have also provided a description of the evaluation protocol followed in this

Thesis, which can serve as guideline to carry out systematic and replicable studies of biometrics

at a distance. Finally we have given an overview of the main existing biometric databases at a

distance and we have described the most important ones used in this Thesis: MBGC, TunnelDB,

SCface, the developed ATVS Forensic DB, and MORPH database.

This chapter includes novel contributions in the survey of the most relevant biometric

databases at a distance, and in the description of the new corpus ATVS Forensic DB.
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Chapter 5

Scenario Analysis

This chapter studies the variability in scenarios at a distance and its effect on the system

performance at different acquisition distances, with special focus in surveillance and forensic sce-

narios. The variability of facial landmarks is analysed in forensic scenarios. The discriminative

power of different facial regions of the human face on various forensic scenarios is also evaluated.

As indicated in Chapter 2, the variability factors of a biometric system at a distance can be

broadly divided into user -related, sensor -related, user-sensor interaction, and system factors,

being the first the ones most difficult to control, and the user-sensor interaction factors the

ones that affect the most in systems at a distance. It would be desirable for a compensation

variability method to identify the acquisition distance between the subject and the camera in

order to compensate the variability factors that are severely affecting. The first step towards

this purpose is a better understanding of the scenario at hand. After a first general study in this

regard, with application to surveillance and forensics, the rest of the chapter will be focused in

forensic face recognition.

Large amounts of research are being carried out trying to compensate variability sources

(such as illumination, pose, facial expressions, occlusions, etc.) that affect significantly reducing

the performance of the face recognition systems. In a forensic scenario, these variability factors

are crucial, because forensic examiners have to deal with face images extracted from CCTV

cameras and other low quality sources, which make the task really difficult. Among the tasks

carried out by forensic examiners, in an anthropometric analysis they extract manually a set of

facial landmarks, then compute some distances between them, which can be used as features in

their analysis. The variability of these facial landmarks extracted by forensic experts (system-

related variability factors) has not been widely studied and must be considered in real caseworks.

Additionally, automatic face recognition systems are generally designed to match images of

full faces. However, in practice, forensic examiners carry out a manual inspection of the face

images, focussing their attention not only on the full face but also on individual traits. They

carry out an exhaustive morphological comparison, analysing the face region by region (e.g.,

nose, mouth, eyebrows, etc.), even examining traits such as marks, moles, wrinkles, etc. In
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this sense, a study of the discriminative power of different facial regions individually finding the

most discriminative areas of the face for recognition on different acquisition scenarios will have

remarkable benefits.

The chapter is structured as follows. One section is dedicated to each of the three different

studies: i) quantitative study of scenario at a distance, analysing the information content in

segmented faces and the effect of the different acquisition distances on the performance of face

verification (Sect. 5.1), ii) analysis of the variability of facial landmarks in a forensic scenario

over a database of mugshots and CCTV images (Sect. 5.2), and iii) exhaustive analysis of the

discriminative power of the different regions of the human face on various forensic scenarios

(Sect. 5.3). Each of these sections share a common structure where the scenario to analyse is

first described, then the database and experimental protocol, followed by the recognition systems

being evaluated are presented, and finally the results of the evaluation are given and analysed.

Finally, the chapter summary and conclusions are given in Sect. 5.4.

This chapter is based on the publications: Tome et al. [2013a, 2010b, 2013e]; Vera-Rodriguez

et al. [2013a,b].

5.1. Scenario Analysis for Face Recognition at a Distance

A new research line growing in popularity is focused on using biometrics for person recog-

nition in less constrained scenarios in a non-intrusive way, including acquisition “On the Move”

and “At a Distance”. The biometric technologies are still in their infancy when considering

uncontrolled scenarios, and much research and development is needed in order to achieve the

levels of precision and performance that these challenging conditions require. In this Section, an

experimental analysis of three acquisition scenarios for face recognition at a distance is reported,

namely: close, medium, and far distance between camera and query face, the three of them con-

sidering templates enrolled in controlled conditions. These three representative scenarios are

studied using data from the NIST - Multiple Biometric Grand Challenge [MBGC], as the first

step in order to understand the main variability factors that affect face recognition at a distance

based on realistic yet workable and widely available data.

The scenario analysis is conducted quantitatively in two ways. First, we analyse the in-

formation content in segmented faces in the different scenarios. Second, the effect of different

acquisition distances on the performance of face verification is studied. In particular, we evaluate

two standard face recognition approaches using popular features (PCA and DCT) and matchers

(SVM and GMM) under variation in the acquisition distance. The DCT-GMM-based system is

found to be more robust to acquisition distance degradation than the PCA-SVM-based system.

5.1.1. Database and Scenario Definition

The scenarios under study are extracted from the NIST Multiple Biometric Grand Chal-

lenge [MBGC], which is focused on biometric recognition at a distance using iris and face. In

particular, we use a subset of this benchmark dataset consisting of images from a total of 147
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a) Close distance b) Medium distance c) Far distance 

Figure 5.1: Example images of the three scenarios: a) close distance, b) medium distance, and c) far

distance.

a) b) c) d)

Figure 5.2: Example images of the different cases of missing values: a) eyes closed, b) face occluded,

c) low illumination and d) missing parts of the face.

subjects and 3482 images acquired at different distances and varying conditions regarding illumi-

nation, pose/angle of head, and facial expression, some of them acquired in controlled conditions

and others in uncontrolled environments.

Fig. 5.1 shows some examples of different kinds of face images in this dataset where we can

identify three big groups:

1. Close distance, in which the shoulders may be present (controlled conditions).

2. Medium distance, including the upper body (uncontrolled conditions).

3. Far distance, including the full body (uncontrolled conditions).

Using these three general definitions we tagged manually all the 3482 face images from

the 147 subjects present in the dataset NIST MBGC v2.0 Face Stills [MBGC]. Furthermore,

although this information is not used in the present Thesis, all the images were marked as

indoor or outdoor in order to carry out future studies of the effects in indoor versus outdoor

conditions. Sect. 4.2.2 describes in detail the MBGC database and Fig. 4.4 shows some samples

of the scenarios available in dataset.
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Figure 5.3: Distribution of samples per user of the three scenarios defined.

In this first stage during the manual marking we found some images unusable, which we

marked as missing values. A portion of the dataset was discarded (360 images from 89 subjects),

following the next four conditions: a) closed eyes completely; b) hair or other artefacts occluded

the face; c) the illumination completely degraded the face; and d) faces with unknown parts or

not present in the image. Some examples of these problems are shown in Fig. 5.2.

After this marking stage, the final result is shown in Fig. 5.3 where we can see the number of

images per user for each subset. As we can observe the dataset is composed by a bigger number

of close distance images and more or less the same quantity of images in the two other scenarios.

In both cases images are equally distributed among users.

Observing Fig. 5.3 we have defined two different partitions of the subset in order to carry out

two different studies: i) case study 1, represents the situation where the subject carries out a

controlled enrollment and is recognized in controlled/uncontrolled environments; ii) case study

2, studies uncontrolled enrollment and controlled/uncontrolled recognition.

5.1.1.1. Case Study 1: Controlled Enrollment

In this case study we have tried to simulate a real situation where the subject is enrolled

in the system in a controlled manner (close images, relatively controlled illumination, neutral

pose, uniform background, etc.) with good quality images. After the subject is enrolled in

the system, we have defined situations of recognition with different distances emulating e.g. a

control access system (close distance), an easy surveillance system (medium distance) and a

remote surveillance system (far distance) where variability factors are uncontrolled.

Fig. 5.4 summarizes the users chosen and discarded after the preprocessing stage that will

be used for the statistical analysis and experiments. In order to enable verification experiments

considering enrollment at close distance and testing at close, medium, and far distance scenarios,

we kept only the subjects with at least 2 images in close and at least 1 image in both of the
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Figure 5.4: Distribution of images per users for the three scenarios defined with the division carried out

for case study 1.

Num. Close Medium Far Discarded
Total

users distance distance distance images

147 1539 870 713 360 3482

At least 2 images At least 1 image
per user per user

112 1468 836 660 2964

Table 5.1: Number of images of each scenario constructed from NIST MBGC v2.0 Face Visible Stills

for case study 1.

two other scenarios. The data selection process is summarized in Table 5.1, where we can see

that the three considered scenarios result in 112 subjects and 2964 face images (1468 close, 836

medium and 660 far distance images).

5.1.1.2. Case Study 2: Uncontrolled Enrollment

In this second case study, we have focused our efforts in the analysis of behaviour of face

recognition systems in conditions where the enrollment is uncontrolled, e.g., in cases where the

enrollment has to be performed at a distance. We want to study the effects on the system

performance in this kind of situations.

We have also defined a new partition called mix comprised of the sum of the three acquisition

distance datasets. This is designed to study the effects of combining several kinds of information

(training with different acquisition distances).

The Fig. 5.5 summarizes the users chosen for development and evaluation and discarded

users. In this case only subjects with at least 4 images were kept in each scenario considered.

As before, a portion of the dataset was discarded: missing values (360 images from 89 subjects),

and a reduced number of subjects (13) were completely discarded (those that had less than 4

image per scenario) discarding a total 403 images of the whole dataset. The data selection process
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Figure 5.5: Distribution of images per user of the three scenarios defined with the division carried out

for case study 2.

Development Evaluation Discarded Total

# users 56 78 13 147

Condition: at least 4 images

per scenario: 2 train and 2 test.

# images 484 2595 403 3482

Table 5.2: Number of users and images of NIST MBGC v2.0 Face Stills dataset used.

Development Set

Scenario close Medium Far Mix

# images 222 132 130 484

Evaluation Set

Scenario close Medium Far Mix

# images 1290 727 578 2595

Train 661 386 304 1351

Test 629 341 274 1244

Table 5.3: Configuration of the datasets (close, medium, far and mix combination of all of them) for

each acquisition scenario.

is summarized in Tables 5.2 and 5.3, where we can see that the two considered sub-corpora result

in 134 subjects, using 484 images of 56 subjects for the development of the systems and 2595

images of 78 subjects for the evaluation.

5.1.2. Scenario Analysis

This section describes the analysis, from a statistical and an applied point of view, of the

datasets trying to study the differences among then related to the acquisition at a distance. Our

study is divided in three levels: segmentation, quality and content information aspects.
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Type Image sizes (Pixels) Resolutions (Mpx) Num. Images

Close distance

1000 × 1504 1.4688 88

3039 × 2014 5.9771 425

2592 × 3872 9.8010 88

3904 × 2616 9.9735 867

1468 images

Medium distance

1200 × 1600 1.8750 474

2592 × 3872 5.9771 4

2616 × 3904 9.8010 345

3039 × 2014 9.9735 13

836 images

Far distance

1200 × 1600 1.8750 315

2592 × 3872 9.8010 177

2616 × 3904 9.9735 168

660 images

Table 5.4: Sub-corpus description of each kind of images and resolutions available in the database.

Close Medium Far
Discarded Total

distance distance distance

Num. Images 1468 836 660 360 3324

Errors 21 151 545 848

Errors(%) 1.43% 18.06% 82.57%

Table 5.5: Segmentation results based on errors produced by the face extractor of VeriLook SDK.

First of all, we analyse the distribution of segmented face sizes per set constructed. As we

can see in Table 5.4 the resolutions available for each set are variable: {1.5, 2, 6 and 10 Mpx.}

except for far distance set where we only have two of these. It is important to note that the close

distance set has high quality/resolution images (most of them 10 Mpx.) and the far distance set

is balanced between 2 and 10 Mpx.

5.1.2.1. Face Segmentation and Resolution

We first segmented and localized the faces (square areas) in the three acquisition scenarios

using VeriLook SDK as discussed in Sect. 5.1.3. Segmentation results are shown in Table 5.5,

where the segmentation errors increase significantly across scenarios, from only 1.43% in close

distance to 82.57% in far distance. Segmentation errors here mean that VeriLook software could

not find a face in the image. For all the faces detected by VeriLook, we conducted a visual check,

where we observed 3 and 10 segmentation errors for medium and far distance, respectively.

All the segmentation errors were then manually corrected by manually marking the eyes.

The face area was then estimated based on the marked distance between eyes.

The resulting sizes of the segmented faces are shown in Fig. 5.6, where we observe to what

extent the face size decreases with the acquisition distance. In particular, the average face size

in pixels for each scenario is: 988 × 988 for close, 261 × 261 for medium, and 78 × 78 for far

distance.
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Figure 5.6: Histograms of face sizes for each scenario (side of the square area in pixels).

5.1.2.2. Quality

Another data statistic we computed for the three scenarios is the average face quality index

provided by VeriLook (0 = lowest, 100 = highest): 73.93 for close, 68.77 for medium, and 66.50

for far distance (see Fig. 5.7, computed only for the faces correctly segmented by VeriLook). As

stated by VeriLook providers, this quality index considers factors such as lightning, pose, and

expression.

50 55 60 65 70 75 80 85 90 95 100
0

50
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150
VeriLook quality measure

 

 

Close distance
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66.50 68.77 73.93

Figure 5.7: Histogram of face quality measures produced by VeriLook SDK.
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Figure 5.8: Histograms of entropy for full images (top) and segmented faces (bottom) for the three

scenarios with their corresponding average value.

5.1.2.3. Information Content

In information theory, entropy is the measure of the amount of information that is missing

before reception and is sometimes referred to as Shannon entropy. The definition of the informa-

tion entropy is, however, quite general and is expressed in terms of a discrete set of probabilities

pi as we can see in Eq. (5.1):

H(X) = −
n
∑

i=1

p(xi) logb p(xi) (5.1)

Applying this concept to image processing, the entropy of the face images in the different

acquisition scenarios represents a quantitative assessment of the information content in the gray

levels of the images. In principle, an image acquired in controlled conditions (illumination, clean

background, neutral pose, ...) would have less entropy than other image acquired at a distance

in uncontrolled conditions.

In Fig. 5.8 (top), this effect is patent: the farther the distance the higher the entropy. When

considering only the information within the segmented faces, as shown in Fig. 5.8 (bottom), the

opposite occurs: the farther the distance the lower the entropy.

These two measures (increment in entropy of the full image, and decrement in entropy of

the segmented faces), can therefore be seen, respectively, as a quantitative measure of how the

scenario complexity increases due to background effects, and the reduction in information within

the region of interest due to the change on the acquisition scenario.
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Figure 5.9: Generic scheme of a face recognition system.

5.1.3. Face Verification Systems

The presented systems are: i) a commercial system VeriLook, System Development Kit

provided by Neurotechnology which will be used as reference system of the state of the art,

ii) PCA-SVM, a system based on Principal Component Analysis (PCA) [Turk and Pentland,

1991b] and Support Vectors Machines (SVMs) [Cortes and Vapnik, 1995], and iii) DCT-GMM,

a system based on Discrete Cosine Transforms (DCT) in combination with Gaussian Mixture

Models (GMM) with a part-based representation of the face [Cardinaux et al., 2003]. The three

the systems follow the processing stages depicted in Fig. 5.9.

5.1.3.1. VeriLook SDK

VeriLook facial identification technology is intended for biometric systems developers and

integrators. This is the commercial face recognition system provided by Neurotechnology 1. This

technology assures system performance and reliability with live face detection, simultaneous

multiple face recognition and fast face matching in 1-to-1 and 1-to-many modes.

This system is available as a software development kit (SDK) that allows development of PC-

and Web-based solutions on Microsoft Windows, Linux and Mac OS X platforms. It provides a

toolkit with extractor and matcher module for face segmentation and verification. The system

also provides a quality measure based on pose, expression, lighting and changes of the face. The

extractors can be used with face images from cameras and/or files. The use of this system gives

us an idea of the performance and robustness of commercial applications.

5.1.3.2. PCA-SVM System

This second face verification system used for performance evaluation is based on the well

known eigenfaces technique introduced by Turk and Pentland [1991a]. This algorithm applies

eigen-decomposition to the covariance matrix of a set of M vectorised training images xi. In

statistical pattern recognition this technique is referred to as PCA [Fukunaga, 1990]. This

method has become a de facto standard for face verification and was used to present initial

results for the Face Recognition Grand Challenge evaluation [Phillips et al., 2005].

The first similarity measure used to compare PCA-based features was the Euclidean distance,

however several other similarity measures have been later proposed and studied [Perlibakas,

2004].

1http://www.neurotechnology.com/
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The evaluated system uses normalized and cropped face images of size 64 × 80 (width

× height), to train a PCA vector space where 96% of the variance is retained. This leads

to a system where the original image space of 5120 dimensions is reduced to 249 dimensions

(K = 249). Similarity scores are computed in this PCA vector space using a SVM classifier with

linear kernel [Cortes and Vapnik, 1995].

5.1.3.3. DCT-GMM System

The GMM parts-based system used in the evaluation divides the 64 × 80 face images into

8 × 8 blocks with horizontal and vertical overlap of 4 pixels. This tessellation process results

in 285 blocks and from each block a feature vector is obtained by applying the Discrete Co-

sine Transform (DCT); from the possible 64 DCT coefficients only the first 15 coefficients are

retained (N = 15). The blocks are used to derive a world GMM Ωw and a client GMM Ωc [Car-

dinaux et al., 2003]. From previous experiments we obtained that using (M = 1024) mixture

components per GMM gave the best results.

When performing a query, or match, the averages score of the 285 blocks from the input

image are used. The DCT feature vector from each block vi (where i = 1...285) is matched to

both Ωw and Ωc to produce a log-likelihood score. These scores are then combined using the

log-likelihood ratio, Sllr,j = log [P (vj |Ωc)] − log [P (vj|Ωw)], and the average of these scores is

used as the final score, SGMM = 1
285

∑285
j=1 Sllr,j. This means that the query template can be

considered to be a feature matrix formed by 285 fifteen dimensional vectors (representing each

of the blocks in the image).

5.1.4. Experimental Protocol

The experimental framework followed is covered in next sections. Here, we have studied the

effect of training and testing with images acquired at different distances using a face commercial

system (VeriLook SDK) and two classical face recognition approaches (DCT-GMM- and PCA-

SVM- based systems).

5.1.4.1. Case Study 1: Controlled Enrollment

For the first experiments, we have used the available users (112) that satisfy the condition

of having at least 2 images in close and at least 1 image in both of the two other scenarios. The

data selection process is summarized in Table 5.6, where we can see that the three considered

scenarios result in 112 subjects and 2964 face images.

Three main experiments are defined for the verification performance assessment across sce-

narios:

Close2close protocol. This will give us an idea about the performance of the systems in ideal

conditions (both enrollment and testing using close distance images). About half of the close

distance subcorpus (754 images) is used for development (training the PCA subspace, SVM,

etc.), and the rest (714 images) is used for testing the performance.
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Train Close 1468
754 Close Train

714 Close

Test
Test

Medium 836 Medium

Far 660 Far

Table 5.6: Configuration of datasets for the experiments of case study 1.

Development Set

Scenario close Medium Far Mix

# images 222 132 130 484

Evaluation Set

Scenario close Medium Far Mix

# images 1290 727 578 2595

Train 661 386 304 1351

Test 629 341 274 1244

Table 5.7: Configuration of the datasets (close, medium, far and mix combination of all of them) of

each acquisition scenario for the case study 2.

Close2medium, and close2far protocol. These two other protocols use as training set the

whole close distance dataset (1468 face images). For testing the performance of the systems,

we use the two other datasets: 836 medium distance images for close2medium, and 660 far

distance images for close2far.

5.1.4.2. Case Study 2: Uncontrolled Enrollment

For the experiments in this section we have divided the data in 56 subjects as development

for tuning the systems and the remaining 78 subjects as evaluation (see Fig. 5.5).

The dataset was then divided according to the three acquisition distance scenarios defined

in Sect. 5.1.1. The resulting subsets are shown in Table 5.7. The development set is used to

train a PCA subspace and GMM world model per scenario (close, medium, far and mix). Here

it is important to note that we have tuned the systems with an equal number of images (130

images, given by the smaller scenario, i.e. the “far” one).

On the other hand, the evaluation set was equally divided into a training and a test set, the

first one for training the models of SVM and GMM per user and the other to test the system

performance. Table 5.7 shows the different divisions of data in the three scenarios defined. It is

possible to appreciate that the number of images is not perfectly distributed between these two

sets (train and test) due to an imbalance in the number of samples per user.

Four main experiments are defined for verification performance assessment across scenarios:

close2x. This is designed to obtain the performance of the systems in situations where only

high quality controlled images are used to train the system. This will be considered as the
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VeriLook SDK close2close: EER−DET = 7.25

PCA SVM close2close: EER−DET = 8.53

DCT GMM1024 close2close: EER−DET = 12.17

VeriLook SDK close2medium: EER−DET = 15.83

PCA SVM close2medium: EER−DET = 14.47

DCT GMM1024 close2medium: EER−DET = 26.45

VeriLook SDK close2far: EER−DET = 39.98

PCA SVM close2far: EER−DET = 35.69
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close2closeclose2close

Figure 5.10: Verification performance results for the three scenarios and three systems considered.

Baseline system. In this case, only the 661 images of the close train set are used to train the

GMM and SVM classifiers.

medium2x, This protocol uses 386 images as training set from the medium distance dataset.

far2x protocol. This protocol uses 304 images as training set from the far distance dataset.

mix2x. This is designed to study the effects of combining several kinds of information (training

with different acquisition distances). The train dataset is comprised of the sum of the three

acquisition distance datasets (1351 images).

5.1.5. Results

5.1.5.1. Case study 1

In Fig. 5.10 we show the verification performance for the three considered scenarios: close2close,

close2medium, and close2far. We first observe that VeriLook is the best of the three systems

in close2close with an EER around 7%. At the same time, this commercial system is the most

degraded in uncontrolled conditions, with an EER close to 40% in close2far, worse than the

other two systems. This result corroborates the importance of analysing and properly dealing

with variability factors arising in biometrics at a distance.

We also observe in Fig. 5.10 that the GMM-based system works better in far distance condi-

tions than the other systems, although being the less accurate in close2close and close2medium.

This result demonstrates the greater generalization power of this recognition approach, and its

robustness against uncontrolled acquisition conditions.
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EER M Gaussians

N Coeff. close2close close2medium close2far

DCT 1024 128 8 1024 128 8 1024 128 8

15 12.17 14.62 20.06 26.45 29.06 36.19 31.01 32.52 38.74

10 13.22 15.97 19.62 26.09 28.72 34.90 29.80 32.83 38.58

5 17.66 19.80 22.15 31.72 34.60 35.43 33.46 37.07 39.37

Table 5.8: Verification performance of the DCT-GMM system for different configurations.
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Figure 5.11: Verification performance of the individual matchers (DCT-GMM- and PCA-SVM- based)

and their work in different conditions of training and test sets with different acquisition scenarios.

Based on this observation, we finally conducted a last experiment simplifying the DCT-GMM

complexity in order to enhance its generalization power, seeking for a maximum of performance

in the challenging close2far scenario. The verification performance results are given in Table 5.8

as EER for decreasing DCT-GMM complexity (N = DCT coefficients, M = Gaussian compo-

nents per GMM). The results indicate in this case that decreasing the recognition complexity

(i.e., improving the generalization power) of this simple recognition method does not help in

improving its robustness against uncontrolled conditions. In other words, the DCT-GMM recog-

nition complexity initially considered (N = 15,M = 1024), is the most adequate for the close2far

scenario studied here.

5.1.5.2. Case study 2

Verification performance results are given in Fig. 5.11 for the individual matchers: a) DCT-

GMM-based and b) PCA-SVM-based. This figure shows all the possible combinations between

training and test sets. The four curves represent the Equal Error Rate (EER) of each train set

defined (close2x, medium2x, far2x, and mix2x ) matched with each test set (Close, Medium,

Far, and Mix). As the person is going away the acquisition device the face information available

decreases. This effect is appreciated on the system performance in Fig. 5.11 where both systems

degrade their performance when the acquisition distance and the variability increases. We can
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appreciate how the increment of acquisition distance produces an increment of variability.

By analysing these curves, it can be seen that the DCT-GMM-based matcher is more robust

against an increasing acquisition distance [Tome et al., 2010b], as it was shown in previous

section, especially when training with the medium distance dataset. Conversely, although being

much better in ideal conditions (close2close), the PCA-SVM-based matcher degrades quick when

increasing the acquisition distance.

When the system is trained with the highest quantity of information possible (mix2x proto-

col), we obtain better performance in general but we must be careful in the comparison because

in this case we are training with a higher number of images compared to other scenarios.

5.2. Facial Landmarks Variability

Automatic face recognition over forensic caseworks is still a challenge for the research com-

munity. Large amounts of research are being carried out trying to compensate variability sources

(such as illumination, pose, facial expressions, occlusions, etc.) that affect significantly reducing

the performance of the face recognition systems. In a forensic scenario, these variability factors

are crucial, because forensic examiners have to deal with face images extracted from CCTV

cameras and other low quality sources, which makes the task really difficult.

Many different techniques have been developed to automatically tag facial landmarks on

a face [Arca et al., 2004, 2006; Beumer et al., 2006; Gupta et al., 2010]. These techniques

achieve good results over good quality and frontal faces, but are still not good enough for the

cases of having high variability and low quality images. Actually, in practice there is still no

automatic system that can achieve such a detailed level compared to humans. On the other

hand, humans are subjective and do not work as systematically as computers. For this reason,

in practice forensic examiners make use of semiautomatic systems, which can help in the suspects

identification tasks [Jain et al., 2012b].

Among the tasks carried out by forensic examiners, they perform identification tasks of a

given probe image in a set of gallery images (with known identity). In an anthropometric analysis

they extract manually a set of facial landmarks, then compute some distances between them,

which can be used as features in their analysis. Figure 5.12 shows a diagram of this procedure.

This section focuses on an analysis of the variability of facial landmarks in a forensic scenario

over a database of mugshots and CCTV images. This variability between landmarks is affected

by two factors, on the one hand the accuracy of the process of landmark tagging, which can be

done manually or automatically and can vary significantly due to the quality of the images, and

on the other hand it is also affected by the intrinsic variation of the landmarks, due to changes

in pose, expression or occlusions among others.

For mugshot images scenario, the ATVS Forensic database comprised of mugshot images at

three different distances (1, 2, and 3 meters) from 50 persons has been used. 21 facial landmarks

were defined and 1200 images have been manually tagged imitating the work performed by a

forensic examiner.
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Figure 5.12: General procedure followed by a forensic examiner to compare two face images.

Following the same criterion in the CCTV images scenario, we carry out the study using

SCface database, which is comprised of images at three different distances (1, 2.6, and 4.20

meters) between the camera and the persons. In this PhD Thesis we analyse two effects: i) the

effect of the distance between the subject and the camera in the landmark variability, and ii)

the comparison between the variability of an automatic system compared to a manual landmark

tagging imitating the work of a forensic examiner.

Some of the findings of this study are that in general facial landmarks located in the outer

part of the face (highest point on the head, ears and chin) have a high level of variability, due

possibly to hair occlusions. For mugshot images regarding the distances between the camera and

the persons, the variability increases gradually with the distance but not very much. On the other

hand in CCTV images the variability increases gradually with the distance. And surprisingly in

this CCTV scenario, very similar results are achieved for both manual and automatic approaches,

although not all the landmark points were able to be tagged by the automatic system. The

findings of this Section could be useful information for forensic examiners.

5.2.1. Database and Experimental Protocol

The experiments for the analysis of the variability of facial landmarks are divided in two

complementary studies and are carried out in two different databases: ATVS Forensic DB and

SCface DB, which are broadly described in Chapter 4.

The ATVS Forensic database is comprised of mugshot images at three different distances (1,

2, and 3 meters) from 50 persons. An example of the three frontal images captured is shown

Fig. 5.13 (top). This database is going to represent the mugshot scenario because the collection

process replicates the real practice of forensic laboratories. The database comprises data from 50

persons (32 men and 18 women) acquired in two different sessions. The sessions were collected

in different days for the same persons and in each session the procedure was repeated four times.

Therefore, obtaining a total of 1200 face images (50 persons × 2 sessions × 4 times × 3 images).

80

ChapterScenarioAnalysis/Figs/EPS/forensicDiagram.eps


5.2 Facial Landmarks Variability

Mugshot Close Medium Far
1 image 5 images 5 images 5 images

(Cam1 sample)             (Cam 1 sample) (Cam 1 sample)

CCTV Scenario: SCface DB

Mugshot Scenario: ATVS Forensic DB

8 images
Far

8 images
Medium

8 images
Close

Figure 5.13: On the top, examples from ATVS Forensic DB of front images acquired at a mugshot

session considering three distances between the person and the camera. On the bottom, image samples

from SCface database. High quality mugshot image, and 3 CCTV images acquired at three distances:

close, medium and far, for one of the five CCTV cameras.

The second one, SCface DB is a database of static images of human faces with 4.160 images

(in visible and infra-red spectrum) of 130 subjects (115 men and 15 women). The dataset is

divided into 6 different subsets: i) mugshot images, which are high resolution frontal images, and

ii) five visible video surveillance cameras. Each of these subsets contains 130 images, one per

subject at three different distances: 1.0 m (Close), 2.6 m (Medium) and 4.2 m (Far) respectively,

and acquired while the subject walked towards the cameras. Fig. 5.13 shows an example of a

mugshot image, and the images acquired by one of the surveillance cameras.

As can be seen there is a considerable scenario variation in terms of quality, pose and illu-

mination. The effect of the pose is specially important due to the different angles between the

person and the cameras.
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Figure 5.14: On the left, the set of 21 facial landmarks defined (in red are the landmarks considered

for automatic tagging). On the right, same example as in Fig. 5.13 (for SCface only for the CCTV

images) but normalizing the faces with 75 pixels between the center of the eyes. Also, the 21 manual

facial landmarks are shown (red), plus the center of the eyes (green).

This second database is of particular interest from a forensic point of view because images

were acquired using commercially available surveillance equipment, under realistic conditions.

One of its drawbacks is that it is just comprised of one mugshot session, so it is not possible

to study the landmark variability for the mugshot images, as several pictures per person are

needed. For this study, we use the 5 available images per person and per distance to analyse

the variability of the facial landmarks (1950 images in total, 3 distances × 5 cameras × 130

persons). Also, we carry out this study both in a manual way imitating the work that a forensic

examiner would perform, and using an automatic system to detect the facial landmarks.

5.2.2. Facial Landmarks Extraction

This section describes the process of facial landmark tagging and image processing in order

to analyse the variability of facial landmarks. The first step is to define a set of facial landmarks

to include in this study. A set of 21 facial landmarks was defined following recommendations

from the Spanish Guardia Civil (DGGC), Netherlands Forensic Institute (NFI) and European

Network of Forensic Science Institutes, including the irises (2 landmarks), inner and outer eye

corners (4), eyebrow ends (4), mouth corners (2), nose corners (2), center of the nose (1), chin

(1), upper and lower ears ends (4) and highest point on the head (1). Fig. 5.14 (left) shows the

21 facial landmarks considered in this study.
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For ATVS Forensic database the process was carried out manually, while for SCface database

this process of facial landmark tagging was carried out both manually and automatically. The

manual landmark tagging was carried out by the same person, imitating the work of a forensic

examiner. In this case the set of 21 landmarks was tagged for the whole database. On the

other hand for CCTV scenario, it is interesting to compare this experimental work with an

automatic landmark tagging system. For this case, Luxand Face SDK was used, which is a high

performance face recognition commercial software based on facial landmarks features. In this

case, a set of 13 facial landmarks (in red in Fig. 5.14 (left)) were considered, as the automatic

system was not able to locate most of the other 8 remaining landmarks.

A second stage of image processing was carried out in order to normalise the facial images

to the same size and position. Thus, the midpoint between the eye corners (midpoint between

points 6 and 8, and midpoint between 9 and 11) was computed and used instead of the irises

positions to align the faces, because the position of the irises can vary if the person does not look

at the camera directly. The positions of these two points were fixed having 75 horizontal pixel

between them following the recommendation from the ISO standard [ISO/IEC 19794-5:2011,

2011]. Therefore, translation, rotation and scaling of the original images was carried out to

normalize the database. This was done in the same way for images collected at different distances

between the camera and person. Fig. 5.14 (right) shows an example of the three mugshot and

CCTV face images shown in Fig. 5.13 but size normalised, and showing the positions of the 21

facial landmarks in red and the positions of the center of the eyes in green. As can be seen,

this is a challenging scenario for both manual and automatic landmark tagging due to the low

quality of the images to analyse.

5.2.3. Results

5.2.3.1. Person Specific Landmark Variability

In this experiment person specific landmarking variability (LV) was studied. Thus, the 8

and 5 available facial images per person and per distance for mugshot and CCTV scenarios

were considered, respectively. The mean and standard deviation for each facial landmark were

computed for the two (x,y) spatial dimensions (σx,i, σy,i, with i=1,...,13 or 21 depending on

the automatic or manual landmark tagging process), assuming following a Gaussian distribu-

tion (see Fig. 5.15). Fig. 5.16 shows some example face images superimposing for each facial

landmark the result of tagging the available images in each database. An ellipse around each

facial landmark is computed using as the radios (2σx,i, 2σy,i). Throughout this Section the

variability of the different facial landmarks is shown quantitatively together with these ellipses

as 2×mean(σx,i,σy,i) in pixels (for normalized images with 75 pixels between eye positions).. For

example, in the image shown in Fig. 5.16 the landmark for the highest point on the head shows

a variability of ± 9.8 pixels, which covers 95.44% of the assumed Gaussian distribution.

This procedure was followed for the 50 and 130 persons comprising the two databases, and

it was found that in both scenarios the variability of the facial landmarks, specially for the
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Figure 5.15: Gaussian distribution showing the range [µ − 2σ, µ + 2σ], covering the 95.44% of the

distribution.
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Figure 5.16: On the left, examples of the landmarking variability for two persons present in ATVS

Forensic database taken at ( far) 3 meters distance between the person and the camera. On the right,

examples of the manual landmarking variability for two persons present in the SCface database for images

taken at (medium) 2.60 meters distance between the person and the camera.

outer ones varies significantly from person to person. In the examples shown in Fig. 5.16, the

variability of these landmarks on the outer part of the face (highest point on the head, chin and

ears) is very dependent on hair occlusions, more frequent in women than men for the population

considered.

This effect is very interesting and therefore, the second experiment is designed to study the

variability of facial landmarks across gender on the mugshot scenario.

5.2.3.2. Gender Specific Landmark Variability

This section describes the experimental results of the variability of the facial landmarking

comparing results achieved for males and females contained in the mugshot scenario using ATVS

Forensic database. This gender specific landmarking variability experiment was not carried out

on CCTV scenario due to the low quantity of female subjects, 15 against 115 males.

84

ChapterScenarioAnalysis/Figs/EPS/gaussianLV.eps
ChapterScenarioAnalysis/Figs/EPS/personVariability.eps


5.2 Facial Landmarks Variability

10.4

4.2 4.4 4.5 4.1

1.6

2.2

1.6 1.6

2.3

1.6

4.4

4.9

4.4

4.8 4.6

7.2

10.6

9

10.5

9

12.1

4.8 4.5 4 4.8

2

2.5

2 2.1

3

2.1

4.2

5

4.2

4.6 4.6

7.7

10.4

11.4

12.2

11.4

Figure 5.17: Results of the landmarking variability for male and female for pictures taken at 3 meters

distance between the subjects and the camera.

In order to compute a global landmarking variability (LV) for males and females, the mean

of the different individual values of the variability of each facial landmark is computed, following

the equation:

LVM,i =
1

NM

NM
∑

j=1

(σx,i,j + σy,i,j) (5.2)

where i = 1, . . . , 21 are the landmarks and j = 1, . . . , NM , being NM the number of males.

Similarly we compute LVF,i for the NF females present in our database. Fig. 5.17 shows the

results achieved for male and female respectively for the case of the 3 meter distance mugshot.

As can be seen, in general the landmarking variability is larger for female compared to male

(16 landmarks out of the 21), mostly for the landmarks placed in the outer part of the face

(i.e., highest point on the head and ears), where there can be more the hair occlusions. Still the

difference in absolute number of pixels having normalised the images with 75 pixels between the

eyes is not very significant.

5.2.3.3. Distance Specific Landmark Variability

This experiment reports the experimental results achieved for the global landmarking vari-

ability (i.e., an average of the individual results and without distinction for males and females)

considering the effect of the 3 distances between the camera and the persons for each database.

In order to compute a global landmarking variability (LV), the mean of the different individual

values of the variability of each facial landmark is computed, following the previous equation 5.2,

where i = 1, . . . , 13 or 21 (for automatic or manual tagging respectively) are the landmarks and

j = 1, . . . , N , being N = NM + NF the maxima number of persons in the database, 50 or 130

in each case depending the scenario analysed. This procedure is followed for each of the three

distances considered.
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Figure 5.18: On the top, results of the landmarking variability for the three distances considered between

the persons and the camera: close (1 m), medium (2 m), and far (3 m). On the bottom, results of the

landmarking variability for the three distances considered between the persons and the camera: close (1.0

m), medium (2.6 m), and far (4.2 m).
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Fig. 5.18 (top) shows the results for the mugshot scenario, while Fig. 5.18 (middle and

bottom) shows the results for CCTV scenario achieved for the case of manual and automatic

landmark tagging, respectively. Here we focus on the analysis of the distance for the manual

case, as next section compares the case of manual vs. automatic landmark tagging. As can be

seen, there is a clear increment of the landmark variability regarding the acquisition distance

between the subject and the camera for all the facial landmarks considered for both scenarios

(except for the ears in CCTV scenario). Again, the outer facial landmarks (highest point on the

head, ears and chin) present the highest variability, then the mouth and nose areas, and the parts

with the least variability are the eyes and eyebrows. It is worth noting that the normalization

of the faces was done using the center of the eyes, so it is also natural that these parts present

less variability than the rest.

It is also worth noting that as the landmark tagging is carried out over the original size

images, in this case close images have a bigger size compared to far images, as can be seen in

Fig. 5.13. Therefore, the process of landmark tagging can be done with more precision for the

close images and therefore reducing the landmark variability.

For completeness, results achieved in the comparison between both scenarios CCTV and

mugshot are shown in Fig. 5.18. It is worth noting that in the mugshot scenario, the images

were of a much higher quality as the images from SCface database considered in the CCTV

scenario. As can be seen, the landmark variability in mugshots is much lower in all three

distances compared to the results achieved in CCTV scenario. This significant difference of the

variability is mainly due to the quality of the images considered. It is also worth mentioning

that SCface database was acquired in uncontrolled conditions while the mugshot database was

acquired in a controlled scenario.

5.2.3.4. Manual Vs. Automatic Landmarking Variability

Fig. 5.18 shows the landmark variability for both manual (middle) and automatic (bottom)

procedures. The number of facial landmarks tagged is different in both cases, 21 for manual

and 13 for automatic tagging, as described in Sect. 5.2.2. The results show that the landmark

variability is very similar for the set of common landmarks between the automatic and the

manual procedures. Specifically, for the close images, the landmarks located in the ocular region

present lower variability for the automatic system compared to the manual case, while the

landmarks located in the mouth region present a higher variability for the automatic system.

For the medium distance, both ocular and mouth region present in general a lower variability

for the automatic system, but in the far distance where the quality of the images is very low

the manual procedure achieves lower landmark variability. It is also worth noting that the

automatic system only considers 13 facial landmarks as it was not able to locate correctly most

of the remaining 8 landmarks (mainly the outer ones), but in general it achieves better results

than expected a priori.
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5.3. Facial Regions

Automatic face recognition systems are generally designed to match images of full faces.

However, in practice, forensic examiners carry out a manual inspection of the face images,

focussing their attention not only on the full face but also on individual traits. They carry out

an exhaustive morphological comparison, analysing the face region by region (e.g., nose, mouth,

eyebrows, etc.), even examining traits such as marks, moles, wrinkles, etc.

There are some previous works where region-based face recognition is studied [Bonnen et al.,

2013; Gupta et al., 2010; Heisele et al., 2007; Jain et al., 2012b; Kim et al., 2005; Li et al., 2008;

Ocegueda et al., 2011; Sadr et al., 2003; Tistarelli, 1995] but non of them focus their attention

in the regions normally considered by forensic experts. In this work, we have extracted facial

regions (as detailed in Sect. 3.2.3 of Chapter 3) following forensic protocols from law enforcement

agencies, allowing us to study the discriminative power of different facial regions individually.

In particular, we address in this section the problem of finding the most discriminative areas of

the face for recognition on different acquisition scenarios.

Studying the discrimination power of different facial regions on a wide population has some

remarkable benefits, for example: i) allowing investigators to work only with particular regions

of the face, ii) preventing that incomplete, noisy, and missing regions degrade the recognition

accuracy. Further, a better understanding of the individuality of facial regions should facilitate

the study of facial regions-based face recognition. In the same way that the field of cognitive

science continues to investigate the precise roles of facial regions and holistic processing in human

face perception [Gold et al., 2012], automatic face recognition algorithms also need to explore

the role that facial regions processing could have improving their performance.

The present Section reports an exhaustive analysis of the discriminative power of the differ-

ent regions of the human face on various forensic scenarios. In this scenario it is very important

to know based on scientific methods to what extent each facial region can help in identifying

a person. This knowledge is obtained using quantitative and statistical methods on given pop-

ulations can then be used by the examiner to support his observations. In order to generate

such scientific knowledge useful for the expert, several methodologies are compared, such as

manual and automatic facial landmarks extraction, different facial regions extractors described

in Sect. 3.2.3, and various distances between the subject and the acquisition camera. Also, three

scenarios of interest for forensics are considered comparing mugshot and CCTV face images

using MORPH and SCface databases. One of the findings is that depending of the acquisition

distances, the discriminative power of the facial regions change, having in some cases better

performance than the full face. Fig. 5.19 shows a diagram of the methodology followed in this

Section.

5.3.1. Facial Regions Extraction and Representation

The algorithm for extracting facial regions, as the rest of extraction approaches, is an iter-

ative method that takes advantage of the facial landmarks tagged by a human examiner or an
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Figure 5.19: Experimental framework followed to study the discrimination power of the 15 facial regions.

automatic system to extract a number of R = 15 facial regions based on the forensic practice.

The main difference with other extraction techniques is that in this case the extraction can be

done on controlled and uncontrolled images thanks to the use of facial landmarks and propor-

tions. This fact allows the algorithm to be suitable to be used in face biometric systems at a

distance working with facial landmarks easily tagged with an automatic system (regardless of

the tagged systems of facial landmarks, or the type of matcher being used). Fig. 5.20 shows

a diagram of the methodology followed. The extraction is defined by two main parameters:

i) interpupilarity pixel distance (IPD), which indicates the number of pixels between the eye

centres of the subject, and ii) L, which defines the number of facial landmarks tagged. L = 2

for the extractor based on facial proportions and L = 13 or L = 21 for the automatic or manual

extraction based on facial landmarks.

The experimental framework implemented based on these two extractors allows the extrac-

tion of 15 different facial regions as can be seen in Fig. 5.22. The election of these 15 regions

is based on protocols from international forensic laboratories [Netherlands Forensic Institute

(NFI); Spanish Guardia Civil (DGGC)]. The extraction procedure follows three steps:

1. Detection of facial landmarks.

2. Face normalization.

3. Facial region extraction.

Facial Landmark Detection. The first step is to extract a predefined set of anthropometric

landmarks. This step has two different configurations: automatic and manual in order to

find the facial landmarks.

Given the variability of facial appearances, as well as the variability caused by pose and ex-

pression changes, the extraction of facial landmarks is often a difficult task to be performed

automatically. When considering challenging scenarios at a distance, the low quality of the
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images introduces another important factor that makes even more difficult the detection

task.

On the other hand, the common practice of forensic examiners is mainly based on manual

and individual skills using some general image processing tools. This approach permits

to have reliable landmark information even in lower quality images but may introduce a

subjective bias in the process. In this PhD Thesis we have studied both automatic and

manual facial landmark detection.

For the automatic approach, the commercial SDK Luxand FaceSDK 4.0 [Luxand Face

SDK], was first used to automatically detect 65 facial landmarks. Next, the landmarks of

each facial region (eyebrows, eyes, nose, mouth and chin) were automatically selected and

the rest were removed. The result of this step is an initial placement of facial landmarks

where just 13 of them are considered as Fig. 5.21 (left) shows. These 13 facial landmarks

have been selected following forensic face recognition protocols by Spanish Guardia Civil

(DGGC) and Netherlands Forensic Institute (NFI) and they indicate the terminations of

each trait in a human face.

For the manual approach for landmark detection, a human manually tagged 21 facial

landmarks imitating the procedure of a forensic examiner, as shown in Fig. 5.21 (right).

As can be seen the 13 automatic facial landmarks are included as a subset of the 21 marked

with the manual approach. In the manual approach, the ears and the upper end of the

head are also marked.
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Figure 5.22: Facial regions extraction. On the top side, with dashed line, the extractor based on facial

proportions and on the bottom side, with solid line, the extractor based on facial landmarks.

Face Normalization. Once the facial landmarks have been detected, the next step is the

extraction of the facial regions. This is performed following two approaches: i) based on

human face proportions, and ii) based on facial landmarks.

Before extracting the facial regions all the faces were normalised following the ISO stan-

dard [ISO/IEC 19794-5:2011, 2011] with an interpupillary pixel distance (IPD) of 75 pixels.

This step eliminates variations in translation, scale and rotation in horizontal plane, and

provides a normalized face in order to compare it or extract facial regions with a standard

size for all faces considered.
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Extractor based on Facial Proportions. The extractor based on facial proportions uses the

proportionality relationships in a human face. These relationships divide the human face

in several horizontal and vertical areas with the same size as shown in Fig. 5.23 (top).

There are previous works where facial proportions of a human face were studied [Gunes

and Piccardi, 2006; Jefferson, 2004; Shiang, 1999]. Based on these works an automatic

facial region extractor system following these proportions rules has been developed. This

extractor applies facial proportions rules using the eye centers as reference point. Fig. 5.23

(top) shows the proportions calculated based on these reference points (lines A-M) used

to extract the 15 facial regions described in Fig. 5.22 (top).

Using just the two eyes coordinates, following single facial proportions rules considering

the IPD distance, 15 facial regions (eyebrows, eyes, nose, mouth, etc.) can be extracted

from a frontal face. The main drawback of this approach is the low precision, which can

produce small misalignments of the region for the different face images.

On the other hand, this extractor would be of interest in challenging uncontrolled scenarios

where landmarks are very difficult to be extracted automatically, but an automatic face

recognition system can locate the eyes coordinates easily or they can be tagged manu-

ally. An example of this extraction can be seen in Fig. 5.22 (top), which shows the 15

regions considered based on protocols from international forensic laboratories [Netherlands

Forensic Institute (NFI); Spanish Guardia Civil (DGGC)].

Extractor Based on Facial Landmarks. The second extractor, is based on anthropometric

facial landmarks allowing us to extract the facial regions with higher precision. In this

case, a facial region is extracted by estimating the center between each one of two facial

landmarks per facial trait and by applying a vertical and horizontal offset to generate a

bounding box that contains the facial region, as can be seen in Fig. 5.23 (bottom). This

procedure is followed automatically for the extraction of the 15 forensic facial regions as

shown in Fig. 5.22 (bottom).

The main drawback of this approach is that the precision of the extraction depends on

the correct manual or automatic localization of the facial landmarks. On the other hand,

this method provides a good alignment allowing us to compare facial regions keeping their

relationships of shape and size.

There are previous techniques [Kim et al., 2005; Pan et al., 2007] which have used pre-defined

cropping boundaries, and a more recent work [Bonnen et al., 2013] uses alignment approaches

such as procrustes analysis [Gower, 1975]. In our case, the ISO normalization step previously

applied, together with the central point estimation step allows us to solve alignment problems

in the extraction process.

Table 5.9 shows the size of the 15 facial regions for the two extractors. As can be seen, the

extractor based on proportions needs a bigger bounding box than the extractor based on facial

landmarks.
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Figure 5.23: (Top) Facial proportions: main facial divisions, horizontal, vertical and proportions based

on eyecoords. (Bottom) Extraction procedure of the mouth region using the extractor based on facial

landmarks.

Once each facial region has been extracted, histogram equalization is applied to each grayscale

facial region. In order to avoid external noise in each region, a noise mask is applied (see black

areas in Fig 5.22). Then, eigen-region (PCA) [Turk and Pentland, 1991a] is applied to each

facial region over the training set considering the first 200 principal components for each region.

Similarity scores are computed in this PCA vector space using a Support Vector Machine (SVM)

classifier with a linear kernel [Cortes and Vapnik, 1995].

5.3.2. Database and Experimental Protocol

The experimental work described in this section has been carried out using a collection of

mugshot and CCTV face images of 130 subjects from two different databases: SCface [Grgic

et al., 2011] and MOPRH [Ricanek and Tesafaye, 2006].

SCface is a database of static images of human faces with 4.160 images (in visible and infra-

red spectrum) of 130 subjects. The database is divided into 6 different subsets: i) mugshot

images, which are high resolution frontal images, and ii) five visible video surveillance cameras.
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Id Num. Facial Region Prop. based Extractor Landmarks based Extractor

1 Chin 55x188 75x181

2 Left ear 145x76 75x51

3 Right ear 145x76 75x51

4 Left eyebrow 48x57 51x75

5 Right eyebrow 48x57 51x75

6 Both eyebrows 48x132 51x151

7 Left eye 48x57 51x51

8 Right eye 48x57 51x51

9 Both eyes 48x132 51x151

10 Face ISOV 192x168 192x168

11 Forehead 71x132 101x151

12 Left middle face 180x132 173x106

13 Right middle face 180x132 173x106

14 Mouth 57x113 51x101

15 Nose 112x76 101x75

Table 5.9: Facial regions sizes for both extractors based on proportions and facial landmarks (height ×

width in pixels).

The database is broadly described in previous Sect. 4.2.4. The effect of the pose is specially

important due to the different angles between the person and the cameras as shown in Fig. 4.7.

This database is of particular interest from a forensic point of view because images were acquired

using commercially available surveillance equipment, under realistic conditions.

One of its drawbacks is that it is just comprised of one mugshot session, so the comparison

of mugshots versus mugshots cannot be carried out only being able to compare mugshots vs.

CCTV images and CCTV vs. CCTV. In order to solve this limitation a second dataset for our

experiments was used: the MORPH Non-Commercial Release database [Ricanek and Tesafaye,

2006] in order to study the mugshot vs. mugshot scenario. This database is described in

Sect. 4.3.1. For the experiments in this Thesis, we generated a new dataset comprised of 780

mugshot images for 130 subjects from the subset “European” with 6 sessions per subject and

with a time lapse between sessions around one year. As a result, a similar structure compared

to SCface DB is obtained, which facilities their comparison. Fig. 5.24 shows an example of the

images available for a person in both databases.

It is important to note that SCface was collected in 5 days while the time lapse in MORPH

database is around one year. This is an important difference that will be considered in the

experimental results and findings.

The experimental protocol followed in these experiments is similar to the one proposed

in [Wallace et al., 2011]1. The database was divided into 3 subsets based on the subject ID:

development (1-43), SVM training (44-87), and test (88-130).

1http://scface.org/
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Figure 5.24: (Top) SCface image samples of each dataset for mugshot and Cam1 images, and their

corresponding normalized face ISO for the close, medium, and far distance. (Bottom) MORPH image

samples (200× 240) of each session and their corresponding normalized face (300× 400).

In this work three different protocols are defined considering the different cases that a forensic

examiner can find in practice:

1. Mugshot vs mugshot protocol

2. Mugshot vs CCTV protocol

3. CCTV vs CCTV protocol

These three protocols are considered to extract conclusions that can be helpful in the forensic

practice or for improving the traditional face recognition systems in these challenging scenarios.

In addition, three distances between subject and camera are analysed: close, medium and

far distance. The analysis of these 3 configuration is also of great interest for forensics and face

biometrics.
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5.3.2.1. Mugshot vs Mugshot Protocol

This protocol has been defined in order to study the performance of different facial regions

in a controlled scenario. For this particular case the subset of the MORPH database previously

described is used.

This protocol compares good quality mugshot images against the same kind of images. The

development set consists of the 6 available images per subject (1 image × 6 sessions) for 43

subjects (218 images in total, subjects 1 to 43). This set is used to train the PCA subspace.

Each subject model in the Test set (subjects 88 to 130) is then trained using the first session

(s1), as Client data for SVM Training and all images from subjects 44 to 87 as Impostor data.

As test images we consider the other 5 sessions (s2-s6) in the Test set. This dataset partitioning

is summarized in Table 5.10.

5.3.2.2. Mugshot vs CCTV Protocol

This scenario is common in forensic laboratories, and it is very challenging because the

difficulty in finding reliable similarities between doubted CCTV images and undoubted mugshot

images from police records. For this reason, the results obtained in this scenario are specially

helpful for the forensic practice.

In this case each subject model is trained using a single mugshot image (SVM Training

Clients). Then, test images are taken from the 5 surveillance cameras at 3 different distances:

close, medium and far (Test set). The Development and SVM Training sets are similar to the

previous protocols as can be seen in Table 5.11.

5.3.2.3. CCTV vs CCTV Protocol

A third protocol was designed to compare CCTV against CCTV images. In this case the

same variability factors (low resolution, pose, illumination, etc.) affect both train and test

images (see Cam1 images in Fig. 5.24 (top)). This protocol was defined in order to understand

the performance when the training set is influenced by the same variability factors present in

test images.

As shown in Table 5.12, the partitioning of the SCface DB into Development, SVM Training,

and Testing is similar to the previous protocols, only considering in this case the information

from the 5 surveillance cameras, and using the first one for modelling each subject (through

SVM Training).

In this scenario the system is trained with images with close distance and compared with

images from the three distances: close, medium, and far.

5.3.3. Results

This section describes the experimental results and findings achieved following the protocols

described in Sect. 5.3.2. The main goal of the experiments is to study the discrimination power

of the different facial regions.
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MORPH DB (130 Subjects) - Mugshot vs Mugshot protocol

Subsets
1...43 Subject 44...87 Subject 88...130 Subject

(43 Subjects) (44 Subjects) (43 Subjects)

s1

Development set

SVM Training (Clients)

s2

SVM Training
Test

s3

s4 (PCA subspace) (Impostors)

s5 (Clients/Impostors)

s6

Table 5.10: Partitioning of the MORPH DB according to the Mugshot vs Mugshot images evaluation

protocol.

SCface DB (130 Subjects) - Mugshot vs CCTV protocol

Subsets
1...43 Subject 44...87 Subject 88...130 Subject

(43 Subjects) (44 Subjects) (43 Subjects)

Mugshot

Development set

SVM Training (Clients)

Cam 1

SVM Training
Test

Cam 2

Cam 3 (PCA subspace) (Impostors)

Cam 4 (Clients/Impostors)

Cam 5

Table 5.11: Partitioning of the SCface DB according to the Mugshot vs CCTV images evaluation

protocol.

SCface DB (130 Subjects) - CCTV vs CCTV protocol

Subsets
1...43 Subject 44...87 Subject 88...130 Subject

(43 Subjects) (44 Subjects) (43 Subjects)

Cam 1

Development set

SVM Training (Clients)

Cam 2
SVM Training

Test

Cam 3

Cam 4 (PCA subspace) (Impostors)

Cam 5 (Clients/Impostors)

Table 5.12: Partitioning of the SCface DB according to the CCTV vs CCTV images evaluation protocol.
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Figure 5.25: Comparative error analysis between the automatic facial landmark system and a manual

examiner (ground truth) based on Euclidean distance in the different scenarios analysed. Pixel values are

normalised to 240× 200 image size. Legend of landmark’s number can be seen in Fig. 5.21.

5.3.3.1. Comparison of Manual and Automatic Facial Landmark Detection

This experiment analyses the error introduced in the process of automatic facial landmark

tagging with respect to manual tagging (ground truth) in order to understand if it can affect

the performance. Fig. 5.25 shows the normalised average error in number of pixels for the 13

facial landmarks considered. Results are computed for the different datasets considered in this

section.

As can be seen there is a notable difference between the mugshot subsets for the MORPH

and SCface databases (i.e., error is much higher in MORPH mugshot). This difference is due to

the original image size (resolution), MORPH images are 240 × 200 pixels, and SCface mugshot

images are 3072× 2048. Facial landmark tagging over high resolution images can be much more

accurate compared to lower resolution images as concluded in previous Sect. 5.2.

CCTV images have a higher error compared to SCface mugshots. We have to note that the

image size for the close (224×168), medium (144×108), and far (100×75) scenarios is different,

which may be the main reason for the increasing error between close and far.

It is interesting to note that the landmarks for CCTV on the right part of the face image

present a higher error compared the left side. This effect can be due to illumination or pose

artifacts. The mugshot images do not present the previous effect.

As a result, we observe an increasing error between mugshot and CCTV, and between close

and far distances for the automatic landmark detection compared to the labelling done by a

human expert used as ground truth.
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Figure 5.26: EER values for the different facial regions extracted for the mugshot vs mugshot images

scenario. Curves are ordered by the manual landmarks results.

5.3.3.2. Mugshot vs Mugshot

This section presents the results for the mugshot versus mugshot scenario using the MORPH

database. Results for both manual and automatic landmark tagging together with the two facial

region extractors are presented and compared.

Better results are obtained with the manual landmark tagging in both extractors as shown in

Fig. 5.26. This graph presents the Equal Error Rate (EER) of the whole face region compared

with the rest of the facial regions extracted. The 15 facial regions are ordered from lower to

higher EER (left to right).

The face region achieves the best recognition performance. Inner traits of the face such as

the nose, both eyebrows, both eyes, etc., have better performance in this mugshot controlled

scenario compared to the outer traits of the face such as the ears, chin, and forehead. This is

in concordance with previous works [Faltemier et al., 2008; Ocegueda et al., 2011; Tome et al.,

2013a; Vera-Rodriguez et al., 2013a].

Regarding the two facial region extractors, it is interesting to see that some regions achieve

a better performance for the extractor based on the proportions (both eyes, middle faces, chin,

and forehead), and some others achieve a better performance using the extractor based on the

landmarks (nose, both eyebrows, mouth, and ears).

5.3.3.3. Mugshot vs CCTV

As discussed before, this is probably the most interesting and challenging scenario for forensic

examiners. Results are shown in Fig. 5.27, where EER achieved for each facial region extracted
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Figure 5.27: EER values for the different facial regions extracted for the three different distances: close,

medium and far for the mugshot vs CCTV images scenario.
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is represented over the three scenarios at a distance: close, medium and far for the SCface

database.

Fig. 5.27 presents a very interesting experimental finding comparing the EER of the face

region with the rest of the facial regions extracted. As can be seen, the recognition performance

considering the whole face improves when the distance increases (31.1% to 28.9% EER for close

and far distance, respectively). We believe this is mainly due to the varying acquisition angle.

As can be seen in Fig. 4.7 this angle is smaller in the far scenario, and therefore the pose is more

similar to the mugshot image. This can also explain that the best facial region performance

is achieved for the nose, mouth and forehead for the three distances (close, medium, and far)

respectively.

Similar to the previous scenario, here better results are obtained in all scenarios at a distance

by the manual landmarks tagging for both extractors, as could be expected.

Another very interesting finding is the discriminative power achieved by the forehead region

in the far distance which is better than the full face. These results could be due to the system

used where the features based on PCA may be not representing well the full potential of mugshot

and surveillance camera images.

From a global point of view, both extractors based on proportions and facial landmarks

experiment different performances for the different regions, but it is interesting to see how

they follow the same trend for the three distances considered (i.e., manual are usually better

than automatic landmarks, and proportions-based is usually better than landmark-based region

extraction). This effect could be due to that the extractor based on proportions estimates

the facial regions approximately, which even using the rigid noise masks, can include more

information and improves the EER.

These results suggest that for low quality images at a distance, facial regions could be

extracted just using two points (eye coordinates), which an automatic face recognition system

can locate easily and the recognition result of each region would be similar to the one obtained

using a more sophisticated facial landmark extractor.

5.3.3.4. CCTV vs CCTV

This scenario presents better performances in all distances than the analysed before on the

SCface database. This improvement could be because the training and testing sets include more

or less the same environmental variability (see Cam1 images in Fig. 5.24 (top)), and the effect

of the acquisition angle (pose) is not so important considering that all cameras are in the same

static position and never totally frontal as the acquisition of mugshot images. Here, the system is

trained with images from the close scenario and compared with images from the three scenarios:

close, medium, and far.

It is important to emphasize the unexpected by good performance achieved in this scenario,

which is better than the one in the mugshot vs mugshot scenario. This result can be explained

by the much larger time lapse between training and testing data for MORPH DB (mugshot vs

mugshot) compared to SCface (CCTV vs CCTV).

101



5. SCENARIO ANALYSIS

0

5

10

15

20

25

30

35

40

45

50

55

8.24

E
E

R
 −

 E
q

u
a

l 
E

rr
o

r 
R

a
te

 

SCface TEST − Close distance

 

 

Landmarks manual

Proportions manual

Landmarks auto

Proportions auto

  C
hin

  L
eft 

ear

  R
ig

ht e
ar

  L
eft 

eye
bro

w

  R
ig

ht e
ye

bro
w

  B
oth

 e
ye

bro
ws

  L
eft 

eye

  R
ig

ht e
ye

  B
oth

 e
ye

s

  F
ore

head

  L
eft 

m
id

dle
 fa

ce

  R
ig

ht m
id

dle
 fa

ce

  M
outh

  F
ace

  N
ose

0

5

10

15

20

25

30

35

40

45

50

55

15.2E
E

R
 −

 E
q

u
a

l 
E

rr
o

r 
R

a
te

 

SCface TEST − Medium distance

 

 

Landmarks manual

Proportions manual

Landmarks auto

Proportions auto

  C
hin

  L
eft 

ear

  R
ig

ht e
ar

  L
eft 

eye
bro

w

  R
ig

ht e
ye

bro
w

  B
oth

 e
ye

bro
ws

  L
eft 

eye

  R
ig

ht e
ye

  B
oth

 e
ye

s

  F
ore

head

  L
eft 

m
id

dle
 fa

ce

  R
ig

ht m
id

dle
 fa

ce

  M
outh

  F
ace

  N
ose

0

5

10

15

20

25

30

35

40

45

50

55

20.4

E
E

R
 −

 E
q

u
a

l 
E

rr
o

r 
R

a
te

 

SCface TEST − Far distance

 

 

Landmarks manual

Proportions manual

Landmarks auto

Proportions auto

  C
hin

  L
eft 

ear

  R
ig

ht e
ar

  L
eft 

eye
bro

w

  R
ig

ht e
ye

bro
w

  B
oth

 e
ye

bro
ws

  L
eft 

eye

  R
ig

ht e
ye

  B
oth

 e
ye

s

  F
ore

head

  L
eft 

m
id

dle
 fa

ce

  R
ig

ht m
id

dle
 fa

ce

  M
outh

  F
ace

  N
ose

Figure 5.28: EER values for the different facial regions extracted for the three different distances: close,

medium and far for the CCTV vs CCTV scenario.
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Results are shown in Fig. 5.28 where a similar tendency between both extractors under study

is observed. In particular it is very remarkable the similar performance for the far scenario. This

demonstrates that, the proposed simple region extractor based on only eye coordinates and face

proportions could be very useful for unconstrained scenarios at a distance.

In general terms there is a decrement of performance when the distance increases. In this

case, as expected because training and testing conditions are similar here, the performance of

the face region decreases with the distance between the subject and the camera.

The best performances are achieved for the face, forehead, nose and mouth in the three

distances. Again the forehead region reaches the best performance in the far scenario and the

second position in the medium distance scenario. This could be because 115 subjects of the

database are male and just 15 are female. Male subjects usually have short hair and therefore

the forehead is free of occlusions. Female subjects on the other hand, usually have long hair and

more occlusions which may lead to decreased performance in this region. The forehead region

reaches an important role in this uncontrolled scenario in comparison with the previous mugshot

versus mugshot scenario. While in controlled scenarios the forehead region achieved the worst

results, here this facial region outperforms the other facial regions. Even in the medium and far

scenarios this facial trait is one of the most discriminative.

5.4. Chapter Summary and Conclusions

In this chapter we have performed three studies related to the biometric variability in surveil-

lance and forensic scenarios.

The first study analyses the variability factors in face recognition at a distance. In particular,

we have conducted a data-driven analysis of three realistic acquisition scenarios at different

distances (close, medium, and far), as a first step towards devising adequate recognition methods

capable to work in less constrained scenarios. This data-driven analysis has been made for a

subset of the benchmark dataset NIST MBGC v2.0 Face Stills. Our analysis has been focused

on: i) data statistics (segmented face sizes, resolutions, quality and entropy measures), and

ii) verification performance of three systems. The results showed that the considered systems

degrade significantly in the far distance scenario, being more robust to uncontrolled conditions

the simplest approach based on DCT-GMM. Noteworthy, the scenarios considered in the present

Dissertation differ not only in the distance factor, but also in illumination and pose (being the

illumination variability much higher in far distance than in close distance).

The second study presented in Sect. 5.2 reports an study of the variability of facial landmarks

over two mugshot and CCTV databases, in controlled and uncontrolled scenarios with low quality

images and large range of variability factors. Mugshot images are taken with three distances

between the persons and the camera (1, 2, and 3 meters) showing the face, the upper body and

the full body respectively. CCTV face images are also taken with three distances between the

persons and the 5 CCTV cameras (1, 2.60 and 4.20 meters). 21 facial landmarks were defined

and the database was manually tagged imitating the procedure followed by a forensic examiner.
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Also, an automatic system was used to tag 13 out of the 21 landmarks defined. The main

conclusions are that the landmarks located in the outer part of the face have a much higher

variability compared to the landmarks placed near the eyes. A reason for this is mainly that

these areas can have more hair occlusions than other areas. This is more accentuated for the

females.

Regarding the distances between the camera and the person, the landmarking variability

increases with the distance. In mugshot scenario this effect is not very significant. In the case

considered here, images taken at 3 meters have around 100 pixels between the center of the

eyes, which is not a very small size. In case of having mugshots taken for farther distances we

believe that the landmarking variability would be much higher. Comparing the two manual and

automatic tagging approaches, the results show that the landmark variability is very similar for

the set of common landmarks; having in some cases lower variability for the automatic system.

A final comparison of both scenarios mugshot and CCTV scenarios shows that the CCTV

images present significantly higher landmark variability, which is mainly due to lower quality of

the images making very difficult to tag the facial landmarks with high precision.

Finally, last Sect. 5.3 reports an exhaustive analysis of the discriminative power of the differ-

ent regions of the human face on various forensic scenarios. We first described an experimental

framework to extract 15 different facial regions of a human face following forensic protocols with

4 variants: manual or automatic landmark detection, and then region extraction based either on

the full set of landmarks (13 and 21 for automatic and manual landmark detection, respectively)

or only the eye coordinates and general face proportions.

The comparison of the two region extractors resulted in better recognition performance for

the outer facial regions when using the extractor based on proportions. In contrast better

recognition performance is achieved for the inner facial regions when using the extractor based

on landmarks. As a result, we obtain that the extractor based on proportions can be very useful

in scenarios at a distance, where obtaining reliable landmark information with automatic systems

is very difficult. Also interestingly, similar performance is obtained with both extractors in the

far scenario where images are degraded. This means that for low quality images at a distance,

facial regions could be extracted just using two points (eye coordinates), and the recognition

result of each region would be similar to a facial landmark extractor.

Furthermore, we studied three scenarios with different distance between subject and camera

common in forensic casework. In all cases, we obtain that the recognition performance of

facial regions depends on the acquisition distance. The best three facial regions with high

discrimination power in the close distance are the face, nose, and forehead. However in far

distance, the best performance is achieved by the forehead. This facial region acquires an

important role on scenarios at a distance such as CCTV versus CCTV. It was noted that this

result could be due to the great majority of short hair males, as with females that region may

be much more reliable.

In the most common forensic scenario (mugshot vs CCTV images), variability factors have a

high importance and produce a decrement of recognition performance with respect to the more
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controlled mugshot vs mugshot scenario. In addition to be a useful background information that

can guide and help experts to interpret and evaluate face evidences, these findings can have a

significant impact on the design of face recognition algorithms.

This chapter includes novel contributions in the consistent and replicable methodology used,

the face region extraction methods developed, the scenario at a distance analysis, the facial

landmarks variability related findings, and in the findings about the discriminative power of

different facial regions extracted from a human face.
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Chapter 6

Soft Biometrics

This chapter studies the variability and discrimination power of soft biometric information

useful for forensics and video surveillance applications.

As introduced in Chapter 3, the proposed soft biometrics are either continuous or discrete.

Traits such as gender, eye color, ethnicity, etc. are discrete in nature. On the other hand, traits

like height and weight are continuous variables. Usually a system that is completely based on

soft biometric traits cannot provide the same accuracy level in the recognition of individuals

compared to more distinctive traits such as fingerprints or iris. However, soft biometric traits

can be used to improve the performance of a traditional biometric system (e.g., gait, face, etc.)

in many ways.

As described in Chapter 3, soft biometric information provides to biometric systems at a

distance a complementary information to improve the identification and recognition rates.

The use of soft biometric traits in automated human recognition systems has several benefits.

It is, therefore, essential to carefully investigate issues related to its extraction and recognition

capacity. Surveillance footage is generally of inferior quality and so traditional forms of identifi-

cation at a distance cannot be easily used. Soft biometrics for video surveillance offers a solution

in this regard but lacks the distinctiveness that is expected from biometric traits.

In forensic practice, examiners carry out a extensive morphological manual inspection of the

face images, focussing their attention not only on the full face but also on individual traits.

They carry out an exhaustive morphological comparison, analysing the face region by region

(e.g., nose, mouth, eyebrows, etc.), even examining traits such as marks, moles, wrinkles, etc.

In this sense facial features have been already analysed in the literature, but the differences

of the facial traits in a human face are not yet well understood. In the second part of this

chapter, we propose two large sets of continuous and discrete facial soft biometric features based

on the morphological analysis of forensic laboratories such as Spanish Guardia Civil (DGGC)

or Netherlands Forensic Institute (NFI). The benefits of these facial features, among others, are:

1) they are extracted automatically from the facial landmarks of a frontal face image, allowing us

to extract population statistics from large databases, 2) they are suitable for person recognition,
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and 3) they can be fused with face information in order to improve the recognition performance.

The main contributions of this chapter are:

An experimental study of the benefits of soft biometric labels as ancillary information for

challenging person recognition scenarios at a distance.

Evaluation of the proposed facial soft biometric features based on morphological face

features.

In particular, we provide experimental evidence on how the soft labels of individuals wit-

nessed at a distance can be used to improve their identification and help to reduce the effect

of variability factors in these scenarios. The value of facial soft features as a unique source of

information for person recognition is also provided.

The chapter is structured as follows. One section is dedicated to each of the studied soft

biometric feature sets for video surveillance and forensics (Sects. 6.1 and 6.2, respectively). Both

sections share a common structure: first, an introduction and description of the soft features is

given, followed by a detailed features analysis (correlation, stability, and discrimination power

of each soft feature used). Then the systems used in the evaluation are presented. The database

and experimental protocol are described in another subsection, and finally we analyse and discuss

the results, where training set size, individual and grouped features, and feature selection are

evaluated. The summary and conclusions of the chapter appear in the final section (Sect. 6.3).

This chapter is based on the publications: Tome et al. [2013b,d].

6.1. Soft Biometrics for Video Surveillance

A wide variety of biometric systems have been developed for automatic recognition of indi-

viduals based on their physiological/behavioural characteristics. These systems make use of a

single or a combination of traits like face, gait, iris, etc., for recognizing a person. On the other

hand, the use of other ancillary information based on the description of human physical features

for face recognition [Park and Jain, 2010] has not been explored in much depth.

Biometric systems at a distance have an outstanding advantage: they can be used when

images are acquired non-intrusively at a distance and other biometric modes such as fingerprint

cannot be acquired properly. Given such situations, some biometrics can experiment low per-

formance due to variability factors caused by the acquisition at a distance but they can still

be perceived semantically using human vision. In this section we analyse how these semantic

annotations (labels) are used as soft biometric signatures, useful for identification tasks.

A research line growing in popularity is focused on using this ancillary information (soft bio-

metrics) in less constrained scenarios in a non-intrusive way, including acquisition “on the move”

and “at a distance” [Li et al., 2009]. These kinds of scenarios are still in their infancy, and much

research and development is needed in order to achieve the levels of precision and performance

that certain applications require. As a result of the interest in these biometric applications at a
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distance, there is a growing number of research works studying how to compensate for the main

degradations found in uncontrolled scenarios [Robust2008, 2008].

The main contribution of this section is an experimental study of the benefits of soft biometric

labels as ancillary information for challenging person recognition scenarios at a distance. In

particular, we provide experimental evidence on how the soft labels of individuals at a distance

can be used to improve their identification and help to reduce the effect of variability factors in

these scenarios.

In order to do so, the largest and most comprehensive set of soft biometrics available in the

literature is first described. These soft biometrics labels (called from now on soft labels) are

manually annotated by several experts. These soft labels have been grouped considering three

physical categories: global, body and head. The stability of the annotations of the different

experts and their discriminative power are also studied and analysed.

Finally, the available soft biometric information in scenarios of varying distance between

camera and subject (close, medium and far) has been analysed. The rationale behind this

study is that depending on the particular scenario, some labels may not be visually present

and others may be occluded. As a result, the discriminant information of soft labels will vary

depending on the distance.

The experimental framework used in this PhD Thesis is detailed in Sect. 3.1. This section

explains how from a video at a distance of a person walking, soft labels and faces from a subject

are extracted. In this case, human annotators extract soft labels manually because this process

is still far from being implemented by an automatic system.

This section includes novel contributions in the experimental findings about the relation

between the distance and the performance of soft biometrics for recognition at a distance.

6.1.1. Soft Biometrics Data Analysis

In this section a set of soft biometrics has been used, whose main value is that it is discernible

by humans at a distance. These are detailed in Sect. 3.1.1.

These physical trait labels are obtained from the Southampton Multibiometric Tunnel Database

(TunnelDB), previously described in Chapter 4, which contains biometric samples from 227 sub-

jects for which 10 gait sample videos from between 8 to 12 viewpoints are taken simultaneously.

The TunnelDB database also contains high-resolution frontal videos to extract face information

and high-resolution still images taken to extract ear biometrics. There are roughly 10 of such

sets of information gathered for each subject.

The TunnelDB datasets were annotated against recordings taken of the individuals in lab-

oratory conditions (see Sect. 4.2.3). A range of discrete values is given to each trait label, e.g.

“Arm length” marked as 1 (very short), 2 (short), 3 (average), 4 (long), and 5 (very long).

The annotation process of each label is described in detail in [Samangooei, 2010]. A summary

of these trait labels and their associated discrete semantic terms is provided in Table 3.1 of

Chapter 3.
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As is explained there, these labels were designed based on which traits humans are able to

consistently and accurately use when describing people at a distance. The traits were grouped

in 3 classes, namely: Global, Body, and Head.

To understand the role of soft labels and their application to biometrics at a distance,

the internal correlation, the stability, and the discrimination power of the different labels with

semantic annotations is studied and analysed in the next Section. In the next experiments, a

total of 13.340 labels from 58 subjects annotated by 10 different experts are used. The remaining

subjects in TunnelDB were annotated only by just 1 or 2 different experts and were rejected for

this analysis.

6.1.1.1. Correlation Between Labels

This section reports an analysis of the correlation between the labels defined. For this

purpose the correlation between all pair of labels of the three groups defined (global, body and

head) is computed using the Pearson’s correlation coefficient:

r =
σXY

σXσY
=

∑N
i=1 (Xi −X)(Yi − Y )

√

∑N
i=1 (Xi −X)2

√

∑N
i=1 (Yi − Y )2

(6.1)

where σXY represents the covariance of the two variables X and Y divided by the product

of their standard deviations σX and σY . The variables X and Y represent numerical values

associated to the pairs of semantic terms at hand. Here each semantic term was converted to

numerical values in the range 1 to 5 if the annotation contains the semantic term (e.g. very

short, short, average, long and very long) and 0 if the annotation was left empty by the annotator

(he was not sure what to annotate). Xi and Yi are the label values across all individuals and

annotators, therefore N = 580 annotations (58 subjects × 10 annotators). The value r provides

the correlation coefficient which ranges from −1.0 to 1.0. A value of 1.0 implies that a linear

equation perfectly describes the relationship between X and Y , with all data points lying on a

line for which Y increases as X increases. A value of −1.0 implies that all data points lie on a

line for which Y decreases as X increases. A value of 0 implies that there is no linear correlation

between the variables.

The correlation matrix containing the correlation between all labels is represented graphically

in Fig. 6.1. Colours in the red range represent correlation coefficients close to 1.0 and thus a

positive correlation, while colours in the blue range represent correlation coefficients close to

−1.0 and thus a negative correlation. Pale green represents no correlation between labels.

Focusing our attention in the global labels, very small correlation between these 3 features

and all the remaining ones is observed in the graph as could be expected. On the other hand,

some body labels are very correlated between them mainly due to the proportion relationships

of the human body (e.g., the larger the arms the larger the legs). This means that physical

characteristics like the chest (3), and the figure (4) are very correlated. Therefore if we try to

recognize people just by using these correlated features the success rate won’t be very high.
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Figure 6.1: Correlation between labels based on Pearson’s coefficient r (see Eq. (6.1)). The numbering

of soft labels is detailed in Table 3.1.

Head features do not present the same correlation between them compared to body traits

(except e.g. facial hair colour (18) and facial hair length (19) or neck length (22) and neck

thickness (23) which are highly correlated).

Fig. 6.1 also shows some strong relationships between demographic traits such as ethnicity

(15) and skin colour (17), or hair colour (20), as was expected.

6.1.1.2. Stability Analysis of Annotations

This section reports an analysis of the stability of the human annotations for all soft labels.

This is done by calculating the stability coefficient, defined for label X as:

StabilityX = 1−
1

SA

S
∑

i=1

A
∑

a=1

|Xia −modea(Xia)| (6.2)

where Xia is the annotated value for subject i by annotator a, A = 10 is the total number

of annotators, S = 58 is the total number of subjects, and modea(Xia) is the statistical mode

across annotators (i.e., the value most often annotated for subject i).

The resulting stability coefficients for all labels are depicted in Fig. 6.2. Using the definitions

in chapter 11 of [Theodoridis and Koutroumbas, 2008], we can see that some of the features are

nominal, i.e., their values can not be ordered meaningfully (e.g., ethnicity (15), sex (16), skin

(17), facial hair (18) and hair colour (20)) whereas others are ordinal, i.e., their values can be
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Figure 6.2: Annotators’ stability for the 23 soft labels considered (see Table 3.1).

meaningfully ordered (e.g., arm length (1), arm thickness (2), height (4), weight (13), and hair

length(21)).

In Fig. 6.2 we can see that sex (16) (a nominal label that has just two terms, male and

female), is the most stable label due to the low variability. Other nominal features such as body

proportions (11) and skin colour (17) have also high stability. On the other hand, the stability

of ordinal features such as arm length (1), height (5), hips (6), or shoulder shape (12) is lower

due to the high variability and the different point of view of the annotators.

Although these two types of features (nominal and ordinal) may be processed differently

(e.g., using different similarity measures), here in this PhD Thesis we have processed them in

the same way as an initial approach.

6.1.1.3. Discriminative Power Analysis

In order to evaluate the discriminative power of the soft label X, we compute for it the ratio

between the inter-subject variability, and the intra-subject variability as follows:

DiscriminationX =

1
S(S−1)

∑S
i=1,i 6=j

∑S
j=1 |µi − µj|

σ
(6.3)

µi = mean
a

(Xia), µj = mean
a

(Xja), σ =
1

S

S
∑

i=1

σi, σi = std
a
(Xia) (6.4)

where i and j index subjects, and a indexes annotators.

The discrimination coefficient for the Xk labels (k = {1, ...,K = 23}) is depicted in Fig. 6.3.

There we can see that the body features (IDs 1-13) are less discriminant than the global (IDs

14-16) and head (IDs 17-23) features. The least discriminant features are the arm length (1)
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Figure 6.3: Discrimination power of the 23 soft labels considered (see Table 3.1).

and neck length (22) followed by leg direction (8) and neck thickness (23). These are ordinal

features and therefore the majority of the subjects share similar annotations.

Better results are reached for the nominal features such as ethnicity (15), or skin color

(17), and the most discriminative is the sex (16) due to the clear identification by the human

annotators in the TunnelDB database. Consequently, we can predict that global and head

features will provide better person recognition results than body features.

6.1.2. Verification Based on Soft Biometrics

This section describes a person verification system based only on soft biometrics. First, each

label in numeric form (see Sect. 6.1.1) is normalised to the range [0,1] using the tanh-estimators

described in [Jain et al., 2005]:

X̂k =
1

2

{

tanh

(

C

(

Xk − µXk

σXk

))

+ 1

}

(6.5)

where C = 0.01, Xk is the k = {1, ...,K} soft label (K = 23), X̂k denotes the normalized label,

and µXk and σXk are respectively the estimated mean and standard deviation of the label under

consideration (see Table 3.1 for the list of the labels).

Note that, depending on the scenario considered (close, medium, and far), there are K = 12,

17, or 23 labels, respectively (see Table 3.2).

Similarity scores s(x,C) are computed using the Mahalanobis distance Theodoridis and

Koutroumbas [2008] between the test vector with K labels x = [X̂1, ..., X̂K ]T and a statis-

tical model C of the client, obtained using a number of training labels (9 examples per label in
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Figure 6.4: Scenario defined based on the TunnelDB Seely et al. [2008]: close, medium and far distance

images used in the experimental work.

our experiments), as follows:

s(x,C) =
1

(

(x− µC)
T
(ΣC)−1 (x− µC)

)1/2
(6.6)

where µ
C and ΣC are respectively the mean vector and covariance matrix obtained from the

training labels, which form the statistical model of the client C = {µC,ΣC}.

6.1.3. Database and Experimental Protocol

The physical trait labels were obtained from the Southampton Multibiometric Tunnel Database

(TunnelDB) [Seely et al., 2008] as described previously in Chapter 4. Three different challenging

scenarios varying the distance between camera and subject have been defined and used in our

experiments in order to understand the behaviour of soft biometric labels and their best appli-

cation to biometrics at a distance. For this purpose, high resolution frontal face sample videos

from the TunnelDB database (see an example in Fig. 6.4) have been used together with their

corresponding physical soft labels analysed in the previous sections. This process is detailed in

Sect. 3.1.1 of the Chapter 3. The face recognition results will be presented in Chapter. 7.

Three different scenarios are defined at three different distances: i) close, including both the

face and the shoulders, ii) medium, including the upper half of the body, and iii) far, including

the full body. The rationale behind this study is the fact that depending on the particular

scenario, some labels may not be visually present and others may be occluded. As a result, the

discriminative information of the soft biometrics will vary depending on the distance. Table 3.2

in Chapter 3 shows the soft labels available for each of the scenarios defined.

The experimental protocol followed is as follows. As was introduced in Sect. 6.1.1, the dataset

selected for the soft labels from the TunnelDB was comprised of 58 subjects annotated by 10

annotators. Therefore, each user has 10 sessions, so 580 soft biometric templates per scenario

from the soft labels detailed in Table 3.1 have been used, having in total 1740 soft biometrics

templates (58 subjects × 10 sessions × 3 distances).

The database was divided into training and testing sets. For each subject a number of face
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Figure 6.5: EER (%) obtained when varying the number of training samples.

images and sets of soft labels (ranging from 1 to 9 samples) were used for the training and one

of the remaining samples was used for testing following a leave-one-out approach [Theodoridis

and Koutroumbas, 2008] generating this way 580 similarity target scores and 33640 similarity

non-target scores in all tests.

6.1.4. Results

This section describes the experimental analysis of the discrimination power of individual

and grouped soft labels and the performance of them in the three scenarios defined. Results are

reported using ROC curves, with EERs and verification rates (VR) working at different FAR

points (FAR = 0.1%, 1%, and 10%).

6.1.4.1. Analysis of Training Set Size for Soft Labels

An important parameter to be consider in soft labels systems is the size of the training

set. For this purpose, we have evaluated the system with different number of training samples

(varying between 1 to 9 samples) following a leave-one-out methodology (i.e., rotating 10 times

the selected training set with one sample in each rotation left out for testing).

Fig. 6.5 shows the different configurations analysed for the six sets of soft labels defined in the

previous section. As can be seen all soft label sets follow the same trend, the system recognition

performance (EER) improves significantly when more samples are used in the training stage.

For global, body, and head sets using more than 5 training samples the system performance

saturates. On the other hand, for close, medium, and far sets, the performance saturates for

more than 7 training samples.

It is also interesting to note that the more features are included in the set (e.g., for far labels

which include all 23 labels) the larger the performance improvement for increasing training

samples until saturation. The relative performance improvement before the saturation for small

datasets (e.g., global with only 3 labels) is much smaller.
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Figure 6.6: On the left, EER (%) obtained for each individual soft label defined in Table 3.1. On the

right, ROC curves obtained for the physical labels sets (global, body and head) and for the three defined

scenarios (close, medium and far).

6.1.4.2. Analysis of Individual Soft Labels

This section presents the discrimination power of each individual soft label following the

leave-one-out experimental protocol described in Sect. 6.1.3. As shown in Fig. 6.6 (left), hair

length (21) achieves the best results (EER = 30.27%) but it is worth noting that this was not

the most discriminative feature regarding the initial experiments shown in Fig. 6.3. Another

relevant label with a high performance and discrimination power is hair color (20) with an EER

= 35.11%. The rest of soft labels achieve similar performance, with better results in general for

head labels compared to body labels, as anticipated in Section 3.3. As can be seen, individual

labels are not very discriminative on their own.

6.1.4.3. Analysis of Grouped Soft Labels

The aim of this experiment is to study the discrimination power of the three groups of soft

labels considered in the different scenarios at a distance defined in Section 4.1. Fig. 6.6 (right)

shows the performance of each set of labels considered. Here, dashed lines represent the sets:

global, body and head, while solid lines represent all the available labels in each scenario at a

distance as defined in Table 3.2.

There is a significant difference between global, head and body regarding the performance as

can be observed. The performance of body labels is clearly lower compared to global and head

sets as predicted in Sections 3.2 and 3.3 through the stability and discrimination analysis.

Regarding the other 3 groups of labels that take into account the labels visible at the 3

distances defined the difference of performance is not that significant as can be seen in Fig. 6.6

(right). Far scenario is comprised of all available labels including body labels, therefore it

experiments a decrement of EER performance compared to the other scenarios in some regions
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of the plot (e.g., around FAR = 10% = 0.1). On the other hand, the other two scenarios have

a lower number of soft labels available but result in better EER performance.

It is important to note that although soft labels provide low recognition performance when

used as a stand alone system, they can help to improve hard biometric systems as will be shown

in Chapter 7.

6.2. Soft Biometrics for Forensics

The first system in the history that attempted to describe people for identification based on

the morphological and physiological traits was the anthropometric system developed by Bertillon

[1896]. This system was based on three sets of features: i) body measurements (anthropometry)

like height and length of the arm, ii) morphological description of the appearance and shape of

the body like eye color and anomalies of the fingers, and iii) peculiar marks observed on the

body like moles, scars, and tattoos.

More recently, most of the forensic laboratories follow methodologies based on Bertillon’s

system such as the police sketch used by Spanish Guardia Civil or NFI laboratories in the

identification of criminals. This document consists of a verbal description of specific facial traits

using the information given by a person that observed the subject/criminal.

Traits such as eyebrows height and width, interocular distance, naso-labial height, etc. are

continuous variables in nature. These continuous traits can be converted to discrete values using

thresholds in order to improve their classification and compute population statistics.

The main contribution of this section is an experimental study of the benefits of facial soft

biometric features extracted automatically from a face image for forensics. In particular, we

provide experimental evidence on how the facial soft labels of individuals can be used to reduce

the effect of variability factors in this challenging scenario.

In order to do so, the set of facial soft biometric features proposed in Chapter 3 is analysed.

These facial soft biometrics labels are automatically extracted by an automatic system based

on facial landmarks following the procedure of the morphological analysis of forensic laborato-

ries. These facial soft features have been grouped considering two categories: continuous and

discrete values. The stability of such features and their discriminative power are also studied

and analysed. Finally, we exploit the automatic extraction of these features to generate popula-

tion statistics over large databases. These statistics are important for forensic practitioners and

towards a better understanding of the facial information content.

The experimental framework used in this Thesis is introduced in Sect. 3.1.2 and detailed

in Fig. 6.7. This Section describes how from a frontal mugshot image of a subject, facial soft

biometrics features are extracted. In this case, a human examiner extracts facial landmarks

manually in order to discard the variability introduced by the system in the analysis, but the

process can be made by an automatic system.

This experimental framework implemented is based on protocols from international forensic

laboratories [Netherlands Forensic Institute (NFI); Spanish Guardia Civil (DGGC)], and allows
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Figure 6.7: Experimental framework followed to extract facial soft biometrics features. The system has

two configurations: manual or automatic for facial landmark extraction.

us the extraction of facial soft biometrics features. This procedure (summarized in Fig. 6.7) uses

the facial landmarks extracted from a human face together with an extractor based on facial

regions in order to extract all the facial soft biometric features proposed.

6.2.1. Soft Biometrics Data Analysis

In this section the proposed sets of facial soft biometrics features, described is detailed in

Sect. 3.1.2 and summarized in Table 3.3, are analysed. The proposed facial soft biometric

features are divided in continuous measures and discrete labels extracted from a face image of

a subject.

These physical trait labels are obtained from two mugshot databases ATVS Forensic DB [Vera-

Rodriguez et al., 2013a] and a subset of MORPH DB [Ricanek and Tesafaye, 2006], which contain

frontal face biometrics samples from 50 and 130 subjects, respectively. The first database pro-

vides high resolution images and the second MORPH database is comprised of low resolution

frontal images.

In the next Section we study the application of the proposed facial soft features to forensics,

their internal correlation, their stability, and their discrimination power.

6.2.1.1. Population statistics

The extraction of discrete features allows us the analysis of the population from a statistical

point of view. This means that we can automatically analyse the physical traits of the human face

across a population, which is very interesting for forensics. In forensics, the examiners usually

carry out a manual inspection of the face images, focussing their attention not only on the full

face but also on individual traits. They carry out an exhaustive morphological comparison,

analysing the face region by region (e.g., nose, mouth, eyebrows, etc.), even examining traits

such as marks, moles, wrinkles, etc. Population statistics of such traits give the examiners a

very useful information towards their decisions.

This section analyses the statistics of two populations from two databases with high and low

resolution images. For this purpose the distribution of each facial trait assigned to the discrete

features across all subjects in the databases are calculated.
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Figure 6.8: Population statistics from ATVS Forensic DB based on the discrete facial soft biometrics

features detailed in Table 3.3.
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Figure 6.9: Population statistics from MORPH DB based on the discrete facial soft biometrics features

detailed in Table 3.3.
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Fig. 6.8 and 6.9 show the population statistics for the 24 discrete values proposed in both

ATVS Forensic and MORPH databases. The first one, ATVS Forensic DB, represents a pop-

ulation of 50 European subjects (32 male and 18 female) as previously detailed in Sect. 4.2.5.

The age range in the first database is between 19–45 years captured in an academic environ-

ment while this range in the MORPH database is between 16–60 years captured in a criminal

environment.

As shown in the graphs of both databases the main differences are on forehead width (2),

eyebrows width (7, 8), horizontal opening of eyes (13, 14), nose root width (18), naso-labial height

(19), and chin height (24). The other facial traits have approximately the same distribution.

The resolution differences between both databases (see Figs. 4.10 and 4.11) can explain some of

these statistical differences.

It is important to note that these population differences can be useful to improve the iden-

tification tasks in forensics.

6.2.1.2. Correlation Between Labels

This section reports an analysis of the correlation between the soft features defined. For this

purpose the correlation between all pairs of labels of the two groups defined (continuous and

discrete) is computed using the Pearson’s correlation coefficient defined in previous Eq. (6.1):

r =
σXY

σXσY
=

∑N
i=1 (Xi −X)(Yi − Y )

√

∑N
i=1 (Xi −X)2

√

∑N
i=1 (Yi − Y )2

(6.7)

where σXY represents the covariance of the two variables X and Y divided by the product of their

standard deviations σX and σY . The variables X and Y represent numerical values associated to

the pair of continuous or discrete terms at hand. For discrete features each semantic term was

converted to numerical values in the range 1 to 3 (e.g. short, average, and long) using thresholds

trained by a subset of each database. Xi and Yi are the label values across all individuals and

images, therefore N = 400 images (50 subjects × 8 images per subject) in ATVS Forensic DB

and N = 780 in MORPH DB. The value r provides the correlation coefficient which ranges from

−1.0 to 1.0. A value of 1.0 implies that a linear equation perfectly describes the relationship

between X and Y , with all data points lying on a line for which Y increases as X increases. A

value of −1.0 implies that all data points lie on a line for which Y decreases as X increases. A

value of 0 implies that there is no linear correlation between the variables.

Results of correlation between continuous features are presented in Fig. 6.10, where both

databases are compared. Some features such as forehead height (1) and average line length (32),

eyebrows length (8 and 9), eyebrows angles (12 and 13), horizontal opening of eyes (14 and

15), ears length (28 and 29), and ears angle (30 and 31) are clearly positive correlated in both

databases as was expected. This means for example that when the forehead height increases

the average line of the face also increases. Note that there exits a notable difference for the ears

trait due to the different face image resolution of both databases.
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Figure 6.10: Correlation between continuous labels based on Pearson’s coefficient r (see Eq. (6.7)) for

ATVS Forensic DB (left) and MORPH DB (right). Numbering of facial soft biometrics is detailed in

Table 3.3.

On the other hand a negative correlation exits in traits such as eyebrows separation (3)

and length (8,9), eyebrows elevation (4) and width (10), and a remarkable negative correlation

between horizontal opening of both eyes (14,15) and interocular distance (16). This means that

for example when the eyebrows separation increases their length decreases. Note an important

inverse correlation between chin height (26) and width (27) in MORPH DB that denotes a

singularity in this population analysed.

In the same way, the correlation between discrete soft biometric features have been analysed

and is shown in Fig. 6.11. Again a positive correlation between some facial features such as

eyebrows length (5 and 6), eyebrows direction (8 and 9), eyebrows form (11, 12), horizontal

opening of eyes (13 and 14) and the nose height (17) can be observed.

The most stressed negative correlations are between horizontal opening of the eyes (13,14)

and interocular distance (15), mouth orientation (21) and mouth heart form (22). Note that

in MORPH database the difference between chin width (23) and height (24) is also presented

in discrete facial features. Another interesting negative correlation in ATVS DB is between

interocular distance (15) and nose height (17), i.e., as the interocular distance increases the

height or the nose is reduced.

6.2.1.3. Stability Analysis of Numerical Translation

This section reports an analysis of the stability of the continuous and discrete features for

all facial soft biometrics features. This is done by calculating the stability coefficient, defined
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Figure 6.11: Correlation between discrete labels based on Pearson’s coefficient r (see Eq. (6.7)) for ATVS

Forensic DB (left) and MORPH DB (right). Numbering of facial soft biometrics features is detailed in

Table 3.3.

similarly to Eq. (6.2) for label X as:

StabilityX = 1−
1

SM

S
∑

i=1

M
∑

m=1

|Xim −modem(Xim)| (6.8)

where Xim is the extracted value for subject i from its sample image m, M = 8 or M = 6 is

the total number of sample images for ATVS Forensic DB and MORPH DB, respectively, and,

S = 50 or S = 130 is the total number of subjects, also respectively, and modem(Xim) is the

statistical mode across the discrete values (i.e., the value most often value selected for subject

i). In the case of continuous features the statistical mean instead of the mode is calculated

meanm(Xim) across m values (i.e., the mean value for a given subject i).

The resulting stability coefficients for all facial soft biometrics features are depicted in

Fig. 6.12. In this figure (left) the continuous features are shown and we can see that for ATVS

Forensic DB the nose (21), forehead width (2), and chin width (27) are the most stable labels,

this is due to the normalization process. Faces are normalized based on the distance between eye

centers therefore the real horizontal width of some traits is lost. On the other hand, MORPH

DB presents stable labels such as ears labels (28-31) as a consequence of the low resolution of

the images.

The stability results of discrete features are shown in Fig. 6.12 (right). Again small differences

between both databases are observed due to the difference in quality. In general, forehead height

(1), eyebrows traits (3-12), and nose width (16) and height (17) in ATVS Forensic DB have better

stability than in MORPH DB.

As observed in Fig. 6.12, both databases (high and low resolution) present approximately

the same stability in the facial soft biometric features extracted. This demonstrates the value

of the proposed features.

123

ChapterSoftBiometrics/Figs/EPS/pearson_discreteBoth.eps


6. SOFT BIOMETRICS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ta

b
ili

ty

Forehead Eyebrows Eyes Nose Mouth Chin

H
ig

h
L

o
w

MORPH DB

ATVS F. DB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ta

b
ili

ty

MORPH DB

ATVS F. DB

H
ig

h
L

o
w

Forehead Eyebrows Eyes Nose Mouth Chin Ear Avg. Line

Continuous Facial Soft Biometric Features Discrete Facial Soft Biometric Features

Figure 6.12: Features’ stability for the 32 continuous and 24 discrete facial soft biometrics features

considered for both databases (see Table 3.3).

In this PhD Thesis these two types of features (continuous and discrete) will be processed

differently (e.g., using different similarity measures), and together in order to study the potential

of each of them.

6.2.1.4. Discriminative Power Analysis

In order to evaluate the discriminative power of the facial soft biometric feature X, we

compute for it the ratio between the inter-subject variability, and the intra-subject variability

using the previous Eq. (6.3), where the annotators are changed by the number of images per

subject as follows:

DiscriminationX =

1
S(S−1)

∑S
i=1,i 6=j

∑S
j=1 |µi − µj|

σ
(6.9)

µi = mean
m

(Xim), µj = mean
m

(Xjm), σ =
1

S

S
∑

i=1

σi, σi = std
a
(Xia) (6.10)

where i and j index subjects, and m indexes images for a given subject.

The discrimination coefficient for the Xk features (k = {1, ...,K}, K = 32 or K = 24, for

continuous or discrete values) is depicted in Fig. 6.13. There we can see that for continuous and

discrete features the eyebrows and eyes traits are less discriminant than the nose, and forehead

traits.

The least discriminant continuous facial soft features are the right eyebrow outer elevation

(7) and the chin width (26) in ATVS Forensic DB, while the eyes angles between corners (17-18)

and mouth angles (25) are in MORPH DB. In contrast the least discriminant in discrete features

are mouth heart form (22) and chin width (23), and the eyebrows direction (9-10), respectively

in ATVS Forensic DB and MORPH DB.
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Figure 6.13: Discrimination power of the 32 continuous and 24 discrete facial soft biometrics features

considered for both databases (see Table 3.3).

6.2.2. Verification Based on Facial Soft Biometrics

This section describes a person verification system based only on facial soft biometric fea-

tures. First, each continuous or discrete feature in numeric form (see Sect. 3.1.2) is normalised

to the range [0,1] using the tanh-estimators described in [Jain et al., 2005]:

X̂k =
1

2

{

tanh

(

0.01

(

Xk − µXk

σXk

))

+ 1

}

(6.11)

where Xk is the k = {1, ...,K} soft label, X̂k denotes the normalized label, and µXk and σXk are

respectively the estimated mean and standard deviation of the label under consideration (see

Table 3.3 for the list of the labels). Note that, depending on the features considered (continuous

or discrete), there are K = 32 or 24 facial labels, respectively (see Table 3.3).

In this Section three different similarity measures based on various distances Theodoridis

and Koutroumbas [2008] are compared: i) Mahalanobis, ii) Euclidean, and iii) Hamming.

Similarity scores based on the Mahalanobis distance between the test vector with K features

x = [X̂1, ..., X̂k]T and a statistical model C of the client are computed as follows:

sM (x,C) =
1

(

(x− µC)
T
(ΣC)−1 (x− µC)

)1/2
(6.12)

where µ
C and ΣC are respectively the mean vector and covariance matrix obtained from the

training labels (M = 8 and 6 training samples for ATVS Forensic DB and MORPH DB, respec-

tively), which form the statistical model of the client C = {µC,ΣC}.

Similarity scores based on the Euclidean distance are computed as follows:

sE(x,C) = −
1

M

M
∑

i=1

(

(x− yi)
T (x− yi)

)1/2
(6.13)

where yi are the M training vectors corresponding to subject C.
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The similarity measure based on Hamming distance is computed as:

sH(x,C) = −
1

MK

M
∑

i=1

#k{X̂
k 6= Ŷ k} (6.14)

where x = [X̂1, . . . , X̂K ]T , yi = [Ŷi
1
, . . . , Ŷi

K
]T are the M training vectors corresponding to

subject C, and #k{condition} indicates the number of cases across k where the condition holds.

In summary, in this section two different sets of labels (continuous and discrete) have been

evaluated using three different similarity measures (Mahalanobis, Euclidean, and Hamming dis-

tance). It is important to note that the Hamming distance only makes sense with discrete

features and it will not be applied to continuous features. Results will be presented in the next

sections.

6.2.3. Database and Experimental Protocol

The facial soft features were obtained from two databases: ATVS Forensic DB and MORPH

DB as was described previously. Two different sets of facial soft biometric features based on

continuous and discrete values have been defined and used in our experiments in order to under-

stand the behaviour of facial soft biometric features and their best application to forensics and

face recognition. For this purpose, high and low resolution frontal face samples from these two

databases (see an example in Fig. 4.10 and 4.11) have been used together with their correspond-

ing physical facial soft biometric labels analysed in the previous sections. A general description

of this process is detailed in Sect. 3.1.2 of the Chapter 3.

Two different sets of features are defined at close distance: i) continuous features, including

distances of different traits and ii) discrete features, derived from the previous continuous values

using a set of subjects to train the thresholds. Table 3.3 in Chapter 3 shows the soft labels

available for each of the sets defined.

The experimental protocol followed is based on cross-validation (leave-one-out approach) due

to the low quantity of subjects in the ATVS Forensic DB (50 subjects).

The leave-one-out approach that we have implemented first divides the data using a varying

number of training samples and one of the remaining samples not used for training is left out for

testing. We then iterate by rotating the selected training samples a number of times equal to the

total quantity of samples (M = 8 in ATVS DB and M = 6 in MORPH DB in our experiments).

6.2.4. Results

6.2.4.1. Analysis of Training Set Size for Soft Labels

An important parameter to be considered in soft biometric systems is the size of the training

set. For this purpose, we have evaluated the system with different number of training samples

following the leave-one-out methodology explained in Sect. 6.2.3.

Fig. 6.14 shows the different configurations analysed for the three following sets of soft labels:

i) continuous, ii) discrete, and iii) mixed features, which analyses both of them all together.
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Figure 6.14: EER (%) obtained when varying the number of training samples for the three set of features

considered: continuous, discrete, and mixed. On the top results from ATVS database are presented, and

on the bottom results from MORPH database. Note the different range of EER in the axes for different

plots.

The figure shows results for the three different similarity distances defined (Euclidean, Hamming,

and Mahalanobis).

As can be seen all soft label sets follow the same trend, the system recognition performance

(EER) improves significantly when more samples are used in the training stage. For Euclidean

distance in continuous set using more than 3 training samples the system performance saturates

in both databases. However, in case of the Mahalanobis distance, the system improves when

more samples are used in the training stage as was expected.

In contrast, the Hamming distance achieves the best results on discrete features in both

databases. This Hamming distance achieves a relative improvement of 12-24% and 60-70% for

MORPH and ATVS Forensic databases compared to the Euclidean and Mahalanobis distances.

Therefore the Hamming distance is suitable for the discrete features.

In the mixed-features scenario both continuous and discrete features are analysed simulta-

neously. In this case the literature [Theodoridis and Koutroumbas, 2008] recommends the use

of continuous similarity measures such as Euclidean distance. This is confirmed in Fig. 6.14

(right) in both databases the Euclidean distance achieved better performance results than the

Mahalanobis distance in contrast to the continuous-features scenario. The Mahalanobis distance

achieved the worst performance results in the discrete scenario, as was previously observed.
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Figure 6.15: Average EER (%) obtained for each individual facial soft biometric features (32 continuous

and 24 discrete) defined in Table 3.3. Average EER calculated between the three difference distances

considered: mahalanobis, hamming, and euclidean. The hamming distance is not considered to compute

the results of the continuous features.

6.2.4.2. Analysis of Individual Soft Labels

This section presents the discrimination power of each individual facial soft label following

the leave-one-out experimental protocol described in Sect. 6.2.3. As shown in Fig. 6.15 (left), the

continuous set of soft labels in both databases follow the same trend but the system performance

of ATVS Forensic DB is slightly worse in all features. This is mostly due to the difference of

resolution between both databases.

The forehead height (1) followed by nose height (20) and chin height (27) achieve the best

results (EER < 25% and EER < 35% in both databases) and it is worth noting that these were

the most discriminative features regarding the initial experiments shown in Fig. 6.13. Another

relevant label with a high performance and discrimination power is nose width (19) with an

EER = 28.84% and EER = 35.85%, respectively in ATVS Forensic DB and MORPH DB.

Discrete facial features achieve similar performance results than continuous features. Again

individual facial features of ATVS Forensic DB achieved better performance than features of

MORPH DB as was expected. The heights of forehead (1) and nose (17) continue having

a relevant role by obtaining the best performance results. The worst peformance results are

obtained by eyebrows elevation (4) in MORPH DB and eyebrow left length (5) in the case of

ATVS Forensic DB, results previously predicted in Fig. 6.13.

The remaining facial soft labels in both feature sets achieve higher performance, with better

results in general for forehead and nose labels compared to eyebrows or eye labels, as anticipated

in Sect. 6.2.1. As can be seen, individual facial labels are not very discriminative on their own.

6.2.4.3. Analysis of Grouped Soft Labels

The aim of the following experiment is to study the discrimination power of the three groups

of soft labels considered using the 3 different similarity measures defined in Sect. 6.2.3. Fig. 6.16
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ATVS F.DB Euclidean: EER = 10.59%
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Figure 6.16: ROC curves obtained for the facial soft biometric features sets: continuous, discrete, and

mixed.

shows the performance of each set of labels considered. Here, dashed lines represent the sets

(continuous, discrete, and mixed) on MORPH DB, while solid lines represent their system per-

formance on ATVS Forensic DB.

We can observe a significant difference between the continuous, discrete and mixed facial

soft biometric features regarding the performance of the different similarity measures. The per-

formance of continuous labels is clearly lower compared to discrete set as predicted in previous

sections. An important experimental finding is that the Mahalanobis and Hamming distances

computed in both databases achieved by far the best system performance results in the contin-

uous and discrete set of features, respectively.

Regarding the other set of mixed labels, the difference of performance is not that significant

as can be seen in Fig. 6.16 (right). Mixed set is comprised of all available facial labels includ-

ing continuous and discrete labels, therefore it experiments a decrement of EER performance

compared to the other individual sets in some regions of the plot (e.g., around FAR = 0.1 =

10%). On the other hand, the other two features sets have a lower number of facial soft la-

bels considered but result in better EER performance with the appropriated similarity measure.

These results are confirmed by the literature [Theodoridis and Koutroumbas, 2008] where we can

see how different types of features may be processed differently (e.g., using different similarity

measures), in order to obtain better performance.

It is important to note that although soft labels provide low recognition performance when

used as a stand alone system, they can help to improve hard biometric systems.

6.2.4.4. Analysis of Feature Selection: SFFS

In order to find the most discriminative set of facial soft biometrics-based features, and

therefore increase the performance of the biometric system, feature selection is performed. In
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Database Distance SFFS Feature Selection
# Selected

EER (%)
Features

ATVS F. DB
Euclidean (27,20,3,31,19,9,30,16,22,23,32,12,25,13) 14 7.38

Mahalanobis (27,3,31,20,30,19,8,23,9,32,12,28,13,25) 14 3.70

MORPH DB
Euclidean (19,20,27,3,1,31,23,9,30,22,28,4,8,16,32,13) 16 16.50

Mahalanobis (27,1,19,31,20,23,29,30,3,22,9,15,12,32,28,6) 16 14.01

Table 6.1: SFFS selected continuous features (defined in Table 3.3) for each system analysed. The

three most discriminative features in Fig. 6.13 (left) are bold for each database.

Database Distance SFFS Feature Selection
# Selected

EER (%)
Features

ATVS F. DB

Euclidean (17,1,24,18,19,12,3,20,22,16,7,13,4,14) 14 10.34

Hamming (17,1,15,8,18,9,3,11,16,24,20,12,4,6,14,21,7,22,19,2,23,13,10) 23 7.84

Mahalanobis (1,17,24,16,19) 5 13.34

MORPH DB

Euclidean (24,17,20,1,16,3,7,5,13,15,8) 11 21.78

Hamming (24,17,3,20,16,9,1,10,13,5,18,4,8,7,22) 15 20.89

Mahalanobis (24,16,17,1) 4 24.95

Table 6.2: SFFS selected discrete features (defined in Table 3.3) for each system analysed. The three

most discriminative features in Fig. 6.13 (right) are bold for each database.

addition, the reduction of the number of features decreases the computational cost too.

Among the different feature selection algorithms [Molina et al., 2002], the one employed

in this work is the Sequential Floating Forward Selection (SFFS) [Pudil et al., 1994]. This

suboptimal searching technique is an iterative process in which, in each iteration, a new set of

features (whose choice is based on the results of previous subsets) is used to compute a certain

criterion. This is done until the criterion does not improve. For more details see [Molina et al.,

2002; Pudil et al., 1994; Theodoridis and Koutroumbas, 2008]. In our case the criterion is related

to the performance of the system, in particular, is to minimize the value of the EER (Equal

Error Rate).

Once the features are selected, the feature vector has, depending on the experiment, between

4 and 23 components. The SFFS algorithm is able to provide the most discriminative set of

features with a dimension specified by the user or with the dimension that gives the best value

for the criterion (in that case the dimension is not specified). The latter approach was performed

in our system. Tables 6.1 and 6.2 summarize the results after applying the SFFS algorithm to

each system for both databases.

As shown in Table 6.1 in boldface, the features most frequently selected across databases

are: eyebrows separation (3), nose width (19), nose height (20), and chin height (27) , which

correspond to the features most discriminative individually (see Fig. 6.13 (left)). In the same

way, similar results can be seen for discrete features in bold in Table 6.2 and Fig. 6.13 (right): the

features most discriminant individually are always in the SFFS selected feature sets: forehead

height (1), nose width (16), nose height (17), and chin height (24).
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Database EER (%) Indiv. Results EER (%) SFFS Results

ATVS F. DB

Individual
8.09 (32 Feat. sM ) 3.70 (14 Feat. SFFS sM )

8.59 (24 Feat. sH ) 7.84 (23 Feat. SFFS sH )

Fusion
F. Sum F. Prod F. Weight F. Sum F. Prod F. Weight

5.59 5.59 4.90 3.95 4.00 3.06

MORPH DB

Individual
17.55 (32 Feat. sM ) 14.01 (16 Feat. SFFS sM )

24.58 (24 Feat. sH) 20.89 (15 Feat. SFFS sH)

Fusion
F. Sum F. Prod F. Weight F. Sum F. Prod F. Weight

16.63 16.62 15.86 14.20 14.20 12.27

Table 6.3: Fusion results of the best systems in Fig. 6.16 and SFFS results in Tables 6.1 and 6.2 for the

continuous (sMahalanobis) and discrete (sHamming) features for ATVS Forensic and MORPH databases.

Another interesting result is the number of selected features in each experiment. For contin-

uous features the selection results for both similarity measures in (14 or 16 features) depending

the database. On the other hand the number of selected discrete features is variable. For

both ATVS Forensic and MORPH database the minimum number of regions is always selected

for the Mahalanobis-based system, followed by the Euclidean-based system, and finally by the

Hamming-based system, which achieved the best EER performance results.

6.2.4.5. Fusion of Continuous and Discrete Features

This section describes the fusion of both continuous and discrete facial soft biometric features

in order to increase the system recognition performance. For these fusions we have selected the

best system in each set of features, Mahalanobis-based and Hamming-based system, respectively

for continuous and discrete sets. The comparison between all features performance and the most

discriminative features selected by SFFS is also presented.

Three different fusion rules have been evaluated: (i) sum, (ii) product, and (iii) weighted

sum fusion. The weighted sum fusion gives more weight to the most robust system, which is the

continuous system based on the EER of the systems to be fused. For the experiments, weights

of 70% and 30% have been used.

Table 6.3 shows the fusion results of these three different fusion rules. As we can see for

all the fusions the best individual system is improved, thus this demonstrates how different

similarity measures applied to different features can improve the system performance. It is also

interesting to note that all the fusions improve the system performance of the feature fusion

analysed in Fig. 6.16 (right), where continuous and discrete features are analysed together in a

mixed set.

The best results are achieved using a weighted fusion in both databases using the most

discriminant features obtained by SFFS in the previous section. Therefore the potential of these

proposed facial soft biometric features is confirmed.
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6.3. Chapter Summary and Conclusions

In this chapter we have performed two studies related to the proposed soft biometric in-

formation in scenarios at a distance and forensics. For this purpose soft biometric information

suitable for video surveillance and facial soft biometric information adequate for forensics have

been studied and evaluated. It is important to emphasize that the use of this ancillary informa-

tion is very interesting in scenarios suffering from very high variability conditions. These soft

labels can be visually identified at a distance by humans (or an automatic system) and fused

with hard biometrics (as e.g., face recognition). It is important also to note that this kind of

soft information is still a developing field in relation to its automatic extraction.

First, the stability and discriminative power of the largest and most comprehensive set of

soft labels for video surveillance available from the literature, has been studied and analysed.

The discriminative information of these labels grouped by physical categories (body, global and

head) has also been studied.

Moreover, the available soft biometric information in scenarios of varying distance between

camera and subject (close, medium and far) has been analysed. The rationale behind this

study is that depending on the scenario, some labels may not be visually present and others

may be occluded. Thus, the discriminative information of soft biometrics will vary depending

on the distance. It is worth noting that this relation between scenarios at a distance and the

performance of soft biometrics for person recognition has not been studied in this way before.

The experimental results have shown that a system that is completely based on soft biomet-

rics traits for video surveillance results in moderate accuracy in the recognition of individuals,

which will not be usually enough for demanding real-world applications. However, these soft

biometric traits can be used to improve the performance of a traditional biometric system (e.g.,

gait, face, etc.) in many ways. These approaches will be studied in the next Chapter.

A wide set of facial soft biometrics for forensics has been also introduced and evaluated in

this chapter. These features are extracted following forensic protocols based on the forensic mor-

phological analysis. The facial soft biometric traits can either be continuous or discrete. Traits

such as eyebrows height and width, interocular distance, naso-labial height, etc. are continuous

variables in nature. On the other hand, these traits can be converted to discrete values using

thresholds in order to simplify their classification and to compute population statistics.

The correlation, stability, and discriminative power of the proposed facial soft features have

been broadly studied and evaluated. The experimental results have shown that a system that

is completely based on facial soft biometric features for forensics can provide good accuracy in

person recognition tasks. Additionally, these facial soft biometric traits can be used to improve

the performance of face recognition systems as it will be studied in Chapter 7.

This chapter includes novel contributions in the experimental findings comparing different

approaches and scenarios, the consistent and replicable methodology used, and the proposed

facial soft biometric features for surveillance and forensics.
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Chapter 7

Adaptive Fusion

This chapter describes the application of the proposed adaptive score fusion schemes intro-

duced in Chapter 3 to biometric authentication at a distance. The proposed adaptive fusion

schemes are: i) scenario-based, where the acquisition distance between the subject and the cam-

era is used to adapt the system, ii) soft biometric-based that introduces how to combine the soft

biometric information with primary biometric systems, and iii) facial regions-based, approach

that uses the different facial regions extracted from a human face (including color information).

For scenario-based fusion, the score-level combination of two standard approaches are eval-

uated under variation in the acquisition distance. As was confirmed in Chapter 5, where we

studied both approaches individually (DCT-GMM and PCA-SVM), the DCT-GMM system is

found to be more robust against degradations due to the acquisition distance compared to the

PCA-SVM system. In the present Chapter we exploit this fact by introducing an adaptive score

fusion scheme based on automatic scenario estimation which is shown to improve our system in

uncontrolled environments.

In Chapter 6 we studied various soft biometrics extracted from a human body (e.g., height,

gender, skin color, hair color, etc.) that can easily distinguished at a distance and observed

that those features are not fully distinctive by themselves in recognition tasks. However, this

soft information can be fused with biometric recognition systems to improve the overall recogni-

tion when confronting high variability conditions. One significant example is visual surveillance,

where face images are usually captured in poor quality conditions with high variability and auto-

matic face recognition systems do not work properly. This chapter also presents an experimental

study of the benefits of soft biometric labels as ancillary information based on the description

of human physical features to improve challenging person recognition scenarios at a distance.

On the other hand, the combination of different regions of the human face on various forensic

scenarios is also presented in this chapter. In order to generate scientific knowledge useful for the

forensic experts three scenarios of interest are considered comparing mugshot and CCTV face

images. One of the findings achieved in Chapter 5 was that depending of the acquisition distance

the discriminative power of the facial regions changes, having in some cases better performance
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than the full face. This effect can be exploited by facial regions for face recognition, which

results in a very significant improvement of the discriminative performance compared to just

using the face.

In the same sense, an analysis of the benefits of using color information on a region-based face

recognition system is reported. Three different color spaces are analysed (RGB, Y CbCr, lαβ)

in a very challenging scenario matching good quality mugshot images against video surveillance

images. This scenario is of special interest for forensics, where examiners carry out a comparison

of two face images using the global information of the faces and where the variability is very

high. As discussed in Chapter 5 this a very complicated task where automatic systems usually

work using only grayscale images. Here we demonstrate the usefulness of considering also color

information.

The chapter is structured as follows. One section is dedicated to each of the proposed

adaptive score fusion schemes, with the scenario-based score fusion scheme being presented in

Sect. 7.1, the soft biometrics-based fusion approach in Sect. 7.2, the regions-based fusion scheme

in Sect. 7.3, and the color regions based-fusion approach in Sect. 7.4. These four sections share a

common structure, with a brief introduction to the problem, the description of the databases and

experimental protocol, the verification system used, and finally the fusion experiments, results

and discussion. The chapter summary and conclusions are presented in Sect. 7.5.

This chapter is based on the publications: Tome et al. [2010a, 2013b,c,f].

7.1. Scenario-based Fusion

The first objective in this section is to investigate the effects of acquisition distance variation

on the performance of automatic face recognition systems. This is motivated by the analysis

of the results from the past Multiple Biometric Grand Challenge (MBGC 2009) [Phillips et al.,

2009a] and the Face Recognition Vendor Test (FRVT 2006) [Phillips et al., 2009b], which show

that a large amount of research is still needed to overcome this problem. As a result, the National

Institute of Standards and Technology (NIST) proposed a new challenge called “the Good, the

Bad and the Ugly” [Phillips et al., 2011] which makes use of three partitions of the MBGC Still

Face dataset of frontal images [Phillips et al., 2009a]. This challenge was designed by NIST to

develop new face algorithms capable to match correctly difficult face pairs. In this sense, we have

studied the degradation effects in three different scenarios defined by the acquisition distance

between subject and camera, namely close, medium and far distance as previously described in

Sect. 5.1.

Li et al. [Li et al., 2009] consider the problem of Biometrics at a Distance as having no

restrictions over conditions such as scale, pose, lighting, focus, resolution, facial expression,

accessories, makeup, occlusions, background, or photographic quality. Many solutions have

been proposed in the literature to deal with these factors individually but a suitable solution to

the global problem of unconstrained environments has not been developed yet.

The effect of training and testing with images acquired at different distances using two
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Figure 7.1: Example of the estimated acquisition distance d for an example subject from MBGC

database.

classical face recognition approaches (DCT-GMM and PCA-SVM systems) is first studied. We

also investigate experimentally the effects of acquisition distance variation on a multi-algorithm

approach [Jain and Ross, 2004] based on these matchers. Then we propose a novel scenario

estimator that enables system adaptation depending on the predicted acquisition conditions.

Finally, we evaluated the proposed scenario-based fusion approach presented in Sect. 3.2.1 that

exploits this scenario estimator.

7.1.1. Acquisition Distance Estimation

The concept of estimating the acquisition distance in order to define different scenarios

has not been traditionally used in face recognition. Automatic scenario estimation gives us

knowledge about the variability level that affects the system (i.e., different scenarios usually

present different variability factors) and therefore is a valuable tool for system adaptation.

Face localization (eyes coordinates) is the first stage in face recognition systems and after

this process, images are compensated in rotation and normalized to the same width (WI). We

define the estimated acquisition distance d as:

d = 1−
IPD

WI
, (7.1)

where IPD and WI are respectively the interpupillary pixel distance and the image width cap-

tured. Therefore d is a function of the distance between eyes (IPD), which will be strongly

correlated to the acquisition distance d. The minimum possible value of d will tend to 0, when

the segmented face occupies the whole image. As the person goes away from the camera, d in-

creases, until it reaches a maximum value of 1. Fig. 7.1 shows the estimated acquisition distance

(d) from an example subject under different acquisition conditions.
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Figure 7.2: Histogram of the estimated acquisition distance (d) from MBGC database described by

Eq. (7.1).

Fig. 7.2 shows the distribution of the proposed acquisition distance d in the database used in

these experiments, where it is possible to appreciate the differences between the three scenarios

defined (see Sect. 5.1.1) by the acquisition distance.

We can note in Fig. 7.1 an important correlation of the distance estimator d with respect

to the actual acquisition distance. As we have observed in previous chapters, if the acquisition

distance increases, variability factors increase and degrade the system performance, therefore

we can use this estimator d as a predictor of the variability present in our system in each case.

7.1.2. Database and Experimental Protocol

The database used for the experimental work presented in this section is a subcorpus called

“Face Stills dataset” of the NIST Multiple Evaluation Grand Challenge (MBGC) v2.0 [Phillips

et al., 2009a] described in previous Sect. 4.2.2. The database is comprised of 3842 face images

from 147 subjects acquired at different distances. We further classify all the face images into

three acquisition distance groups as follows. We consider three different scenarios: 1) close

distance, in which the shoulders may be present; 2) medium distance, including the upper body;

and 3) far distance, including the full body.

Only subjects with at least 4 images were kept in each scenario considered. A portion of

the dataset was discarded (360 images from 89 subjects), because the face was occluded or

the illumination completely degraded the face. A reduced number of subjects (S = 13) were

completely discarded (less than 4 image per scenario) discarding a total 403 images of the whole

dataset. The data selection process is detailed in Sect. 5.1.1.2 and summarized in Table 5.2,

where we can see that the two considered subcorpora result in 134 subjects, using 484 images of

56 subjects for the development of the systems and 2595 images of 78 subjects for the evaluation.

The experimental protocol followed in the next experiments considers a number of 56 sub-

jects as development for tuning the systems and the remaining 78 subjects as evaluation (see

Table 5.2).
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The dataset was then divided according to the three acquisition distance scenarios defined

in Sect. 5.1.1. The resulting subsets are shown in Table 5.3. The development set is used to

train a PCA subspace and GMM world model per scenario (close, medium, far and mix). Here

it is important to note that we have tuned the systems with an equal number of images (130

images, given by the smaller scenario, i.e. the far one).

On the other hand, the evaluation set was equally divided into a train and a test set, the

first one for training the SVM and GMM models per user and the other to test the system

performance. Table 5.3 shows the different divisions of data in the three scenarios defined. It

is possible to appreciate that the number of images is not perfectly distributed between these

two sets (train and test) due to an imbalance in the number of samples per user. Four main

experiments are defined for verification performance assessment across scenarios:

close2x. This is designed to obtain the performance of the systems in situations where only

high quality controlled images are used to train the system. This will be considered as the

Baseline system. In this case, only the 661 images of the close training set are used to train

the GMM and SVM classifiers.

medium2x, This protocol uses 386 images as a training set from the medium distance dataset.

far2x protocol. This protocol uses 304 images as a training set from the far distance dataset.

mix2x. This is designed to study the effects of combining several kinds of information (training

with different acquisition distances). The training set consists of the three acquisition distance

datasets (1351 images).

7.1.3. Face Verification Systems

The architecture of the face recognition system used is shown in previous Fig. 3.3 of the

Chapter 3. The preprocessing stage is divided into: i) automatic localization of the face, ii)

segmentation, iii) size normalization to a constant size (64 × 80 in our experiments), and iv)

pose and illumination compensation. The preprocessing stage was executed using VeriLook SDK

v2.0 (commercial system) and the few produced errors were manually corrected as described in

previous Sect. 5.1.3.

Two approaches are used for face verification. These two matchers receive a normalized face

from the preprocessing stage:

PCA-SVM system. This verification system uses Principal Component Analysis (PCA).

The evaluated system uses normalized and cropped face images of size 64 × 80 pixels (width

× height) to train a PCA vector space where 96% of the variance is retained. This leads to

a system where the original image space of 5120 dimensions is reduced to 249 dimensions.

Similarity scores are computed in this PCA vector space using a SVM classifier with linear

kernel.
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DCT-GMM system. This verification system divides the 64 × 80 face image into 8 × 8

blocks with horizontal and vertical overlap of 4 pixels. This process results in 285 blocks

per segmented face. From each block a feature vector is obtained by applying the Discrete

Cosine Transform (DCT) from which only the first 15 coefficients (N = 15) are retained. The

blocks are used to derive a world GMM Ωw and a client GMM Ωc Galbally et al. [2010]. From

previous experiments we obtained that using M = 1024 mixture components per GMM gave

the best results. The DCT feature vector from each block is matched to both Ωw and Ωc to

produce a log-likelihood score.

To carry out the fusion stage, scores of the two systems are first normalized to the [0, 1]

range using the tanh-estimators described in Sect. 3.2. The constant C = 0.4 in Eq. (3.1) is

used for the experiments carried out in this section.

7.1.4. Fusion Results

The fusion method used is based on the combination of the two systems at the score-level

following the sum rule approach [Kittler et al., 1998]. Our basic assumption for the adaptive

scenario-based fusion approach implemented here is that the verification performance of one of

the algorithms drops significantly compared to the other one for increasing acquisition distance.

This fact is exploited with the adaptive distance-based fusion strategy described in Sect. 3.2.1

by considering from Eq. (3.2) that the function gj(di) takes the camera to person distance

estimation presented in Eq. 7.1 of Sect. 7.1.1, and outputs a confidence cji = di/2 for the system

that degrades the most with the acquisition distance (i.e., j = PCA−SVM), and cji = 1− di/2

for the other one (i.e., j = DCT −GMM).

In the following experiments we are going to analyse the particular case of considering M = 2

systems to fuse (i.e., ŝPCA−SVM
i and ŝDCT−GMM

i ) for a particular biometric input i, obtaining

confidence measures cj corresponding to the two systems following the fusion model presented in

Sect. 3.2.1. Fig. 3.3 represents the fusion scheme proposed where the proposed person to camera

distance estimator (see Sect. 7.1.1) is used in order to adjust the scenario in each situation.

The combination of these systems through the sum fusion rule, and the proposed scenario-

based weighted sum for different face acquisition distance groups is presented in Fig. 7.3. As

can be seen, the fixed fusion strategy based on the sum rule only leads to improved performance

over the best individual system in medium2x and mix2x scenarios, shown in Fig. 7.3 b) and d).

The proposed adaptive fusion approach results in improved performance for all the acquisition

distance groups, outperforming the standard sum rule approach, especially in medium2close

testing conditions in Fig. 7.3 b), where the performance of the individual matchers are very

different.

As shown in Fig. 7.3, the best results against increased acquisition distance are obtained

when the system is trained with medium distance images and the mix of acquisition distance

groups (medium2x and mix2x protocols). The baseline scenario (close distance training images)

shows less robustness, with great degradation as the acquisition distance increases.
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Figure 7.3: Verification performance of the individual matchers (DCT-GMM- and PCA-SVM- based),

their combination through the sum fusion rule, and the proposed distance/scenario-based weighted sum

for increasing the system performance at a distance. The results are displayed in the different acquisition

scenarios under study.

Training with medium distance images is a good way to control the performance degradation

due to varying distance. The DCT-GMM system generates low performance but stable results

and the PCA-SVM system provides better performance but deteriorates quickly with the dis-

tance. Here the proposed fusion provides better results for far distance where both systems have

a similar performance, and the new adaptive fusion is capable to equal the best system in closed

distance testing.

The best performance is obtained with the mix2 protocol where we are using the whole

information of different acquisition distances in the training stage. As can be observed the

fusion has an important role, increasing the system performance of the best individual system

in all the cases. Also worth noting, in far distance conditions the fusion schemas improve the

performance remarkably.
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7.2. Soft Biometrics For Video Surveillance

Soft biometric information extracted from a human body (e.g., height, gender, skin color,

hair color, etc.) is ancillary information easily distinguished at a distance but it is not usually

distinctive by itself in recognition tasks. However, this soft information can be explicitly fused

with biometric recognition systems to improve the overall recognition when confronting high

variability conditions. One significant example is visual surveillance, where face images are

usually captured in poor quality conditions with high variability and automatic face recognition

systems do not work properly. In this scenario, soft biometric information can provide very

valuable information for person recognition. This section presents an experimental study of

the benefits of soft biometric labels as ancillary information based on the description of human

physical features to improve challenging person recognition scenarios at a distance.

Experimental results based on the Southampton Multibiometric Tunnel Database (Tun-

nelDB) described in Sect. 4.2.3, show that the use of soft biometric traits is able to improve the

performance of face recognition on real and ideal scenarios by adaptive fusion rules.

The main contribution of this section is a new adaptive method for incorporating soft bio-

metrics information to this kind of challenging scenarios considering face recognition. In order

to do so, the largest and most comprehensive set of soft biometrics available in the literature

was previously described and analysed in Chapter 6.

These soft labels have been grouped considering the available soft biometric information in

scenarios of varying distance between camera and subject as (close, medium and far). The

rationale behind this study is that depending on the particular scenario, some labels may not

be visually present and others may be occluded. The process is broadly described in Sect. 6.1.

The experimental framework used in this section, shown in Fig. 3.4, describes how from

a video at a distance of a person walking, soft labels and faces from a subject are extracted.

The experiments study two configurations: i) when the primary biometric is missing (face in

this case), and only the soft biometric information considered, and ii) when both hard (face

recognition) and soft (labels) information are available and can be fused.

7.2.1. Database and Experimental Protocol

The same dataset and protocol selected for the soft labels from the TunnelDB (detailed in

Sect. 6.1) was used for the face recognition system. Each user has 10 sessions, so 580 images

per scenario from high-resolution frontal face sample videos have been used. For each of the 10

sessions of a subject, the first frame (close distance), the middle frame (medium) and the last

frame (far distance) from the frontal videos have been selected to generate the image samples

used in the experiments, having in total 1740 images (58 subjects × 10 sessions × 3 distances).

The database was divided into training and testing sets. For each subject 9 face images and

9 sets of soft labels were used for the training and the remaining session was used for testing

following a leave-one-out approach Theodoridis and Koutroumbas [2008] generating this way

580 similarity target scores and 33.640 similarity non-target scores.
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7.2.2. Face Verification Systems

For the face recognition experiments, two different systems have been used and compared

(one commercial and one proprietary): i) Luxand FaceSDK 4.0, and two face recognition systems

based on SRC [Wright et al., 2009], ii) VJ-SRC, using automatic face detection based on Viola

Jones [Viola and Jones, 2004], and iii) ID-SRC using ideal face detection marked manually.

FaceSDK by Luxand1 is a high-performance and multi-platform face recognition solution

based on facial fiducial feature recognition.

A proprietary VJ-SRC face recognition system based on Viola Jones to detect faces and

using a matcher based on SRC [Huang and Aviyente, 2006; Wright et al., 2009] is also used. Face

segmentation and location of the eyes are two of the main problems in face recognition systems

at a distance. For our experiments, we have also manually tagged the eyes’ coordinates which

allows us to consider an ideal case of face detection in the ID-SRC face recognition system.

This way, we can compare the behaviour of soft labels when fused with face images on real

(VJ-SRC) and ideal (ID-SRC) scenarios at a distance free of segmentation errors.

The SRC matcher is a state-of-the-art system based on recent works in sparse representation

for classification purposes. Essentially, this kind of systems span a face subspace using all known

training face images, and for an unknown face image they try to reconstruct the image sparsely.

The motivation of this model is that given sufficient training samples of each person, any new

test sample for this same person will approximately lie in the linear span of the training samples

associated with the person.

7.2.2.1. Analysis of Face Detection Errors

This section presents an analysis of the three scenarios considered: close, medium, and far.

Two face detection systems have been evaluated: i) proprietary based on Viola Jones, and ii) a

commercial system (FaceSDK) based on facial landmarks.

Two different detection errors have been defined and analysed:

Fail To Acquire (FTA): when there is a face in the image, but it is not detected.

Fail To Detect (FTD): when the face detector finds an object in the image, but it is not a

face.

The first error FTA will be a feedback report for the systems but the second error FTD

has to be analysed manually by an operator or automatically by an error detector system. In

this PhD Thesis the FTD error was evaluated manually observing the faces detected by both

systems.

Table 7.1 shows the detection errors for the two systems evaluated. Firstly, Viola Jones

approach achieves less FTA errors than FaceSDK system, but introduces a high number of FTD

errors, which will affect the system recognition performance. The FTA errors in close scenario

are due to short people whose middle part of the face is outside of the vision plane of the camera.

1http://www.luxand.com/facesdk/
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Scenario FTA FTD TotalE=FTA+FTD

V
io
la

J
o
n
e
s Close 11 (1.89%) 11 (1.89%) 22 (3.79%)

Medium 2 (0.34%) 116 (20.00%) 118 (20.34%)

Far 96 (16.55%) 304 (52.40%) 400 (68.96%)

F
a
c
e
S
D
K

Close 5 (0.86%) 20 (3.44%) 25 (4.31%)

Medium 365 (62.93%) 66 (11.37%) 431 (74.31%)

Far 571 (98.44%) 9 (1.55%) 580 (100%)

Table 7.1: Face detection errors in the three scenarios at a distance for Viola Jones and FaceSDK

systems. FTA and FTD error percentages are calculated for the total number of face images (N=580).

As can be seen, the scenarios at a distance analysed are very challenging. Analysing the

results both systems work poorly at medium and far distances due to the high variability and

the low quality of face images. The Viola Jones approach achieves a reasonable FTA error in

these distances but a large number of detections are not faces (FTD error is very high). On the

other hand, the FaceSDK system has a higher FTA with lower FTD. The total error is so large

for FaceSDK (74.31% and 100% for medium and far, respectively)) that was discarded for the

following experiments.

7.2.2.2. Analysis of Face Recognition Systems

The results achieved for VJ-SRC and ID-SRC systems with automatic and manual (FTA

= 0% and FTD = 0%) face detection are presented in Fig. 7.4. As can be seen in the manual

face detection (ID-SRC system, solid lines), the database analysed is very challenging and the

system performance decreases quickly when the acquisition distance increases. On the other

hand, poor results are achieved for the case of using the automatic Viola Jones face detector

(VJ-SRC) due to the high number of FTD errors but also because in this case there is no pose

compensation and normalization regarding the position of the eyes as in the ideal case.

Therefore, a large improvement in the EER is achieved for all distances by considering

manual face detection compared to Viola Jones in the SRC system. On the other hand, the

system performance with automatic face detection is very poor in a FAR = 0.001 = 0.1% with

VR lower than 5%. It is important to note that for far scenario with ideal face detection (ID-SRC

system) the VR is lower than 30%, which shows the complexity of the database analysed.
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ID-SRC Close (FTA = 0%, FTD = 0%): EER = 4.31%

VJ-SRC Close (FTA = 1.89%, FTD = 1.89%): EER = 19.81%

ID-SRC Medium (FTA = 0%, FTD = 0%): EER = 6.40% 

VJ-SRC Medium (FTA = 0.34%, FTD = 20%): EER = 27.77%

ID-SRC Far (FTA = 0%, FTD = 0%): EER = 15.96%

VJ-SRC Far (FTA = 16.55%, FTD = 52.4%): EER = 41.21% 

Figure 7.4: ROC curves of SRC systems obtained using two configurations: automatic (VJ-SRC, dashed

lines) and manual (ID-SRC, solid lines, FTA = 0%, FTD = 0%).

7.2.3. Fusion Results

Soft biometrics offers several benefits over other forms of identification at a distance as they

can be acquired from low resolution and low frame rate videos, and from an arbitrary viewpoint

of the subject. This allows for the use of soft biometrics when primary biometric identifiers

cannot be obtained or when only a description of the person is available.

This section analyses how soft labels can improve the face recognition system performance

through the fusion of both biometric systems. The fusion method used is based on the combi-

nation of the systems at the score-level described in Sect. 3.2.2. In particular, we compare here:

i) the sum rule, ii) an adaptive switch fusion rule, and iii) a weighted fusion rule. We obtain a

switch fusion from the general fusion model presented in Sect. 3.2.2 by considering from Eq. (3.3)

that gface(FTAface) = 0 when FTAface = 1 and gface(FTAface) > 0 when FTAface = 0, i.e.,

considering only the soft biometrics score if the face is not detected, and both face and soft

biometrics scores if the face is detected.
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7. ADAPTIVE FUSION

In the following experiments FTAsoft = 0 always (we only use the soft biometrics available

in each scenario) and gface(FTAface) = gsoft(FTAsoft) = c = 0.5 when the face is detected. As

discussed in the next sections, other confidences 0 < cj < 1 for j = {face, soft} and
∑

j c
j = 1

are also tried, which result in weighted sum approaches.

To carry out the fusion stage of the two biometric modalities, scores of the different systems

were first normalized to the [0, 1] range using the tanh-estimators described in previous Sect. 3.2.

Experiments are carried out by fusing the soft labels with VJ-SRC and ID-SRC face recog-

nition systems over the three acquisition distances: close, medium and far. First, we consider

the case of the fusion of soft labels with automatic face detection, and then the case of their

fusion with an ideal face recognition using manual face detection.

7.2.3.1. Fusion with Automatic Face Detection Errors

This experiment studies the fusion of soft labels with the VJ-SRC system with automatic face

detection carried out using a switch fusion. In case the face recognition system fails to acquire

(FTA) a face due to variability factors, soft labels can help to improve the system performance.

Fig. 7.5 shows 4 ROC profiles in each graph: the VJ-SRC face recognition system, the soft

labels system and two (sum and switch sum) fusions. This graph (bottom) also shows the VR

and EER based on weight distribution for the weighted and switch weighted fusion. The first

fusion applies a sum rule of the scores from the two systems only if both of them are available,

otherwise it emits a FTA. As a result using this sum fusion FTA is non-zero. On the other

hand, the switch fusion always results in an output score as described above, reducing the FTA

error to 0 in this case. Detection errors showed in Table 7.1 correspond to the cases in which

the switch fusion selects only the soft labels for the three scenarios defined.

The sum fusion of the two systems achieves relative improvements of 50.05%, 53.33%, and

59.88% of EER for close, medium, and far scenarios, respectively compared to the VJ-SRC face

recognition system. As it is shown, soft labels improve the system performance and allow to

keep the system robust in a far scenario. The same conclusion is confirmed for the switch fusion

of the systems, which achieves relative improvements of 45.05%, 54.95%, and 60.03% of EER

for close, medium, and far scenarios, respectively, compared to the VJ-SRC face recognition

system.

As can be seen, the EERs for sum or weighted and switch fusion are similar, with the

advantage of switch fusion of eliminating all FTA errors.

In these scenarios various weighted sum fusion functions have been also evaluated. As shown

in Fig. 7.5 (bottom) the results are very similar compared to the sum and switch sum fusion

and therefore those results are not present in the top graphs.

In conclusion, as the results show, a real face recognition system, which do not have a

good performance due to the variability factors derived from acquisition at a distance, could be

improved using soft biometric labels visually available in the scene, both increasing its verification

performance and reducing its FTA errors.
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VJ−SRC Medium (FTA = 0.34%, FTD = 20%): EER = 27.77%
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VJ−SRC Far (FTA = 16.55%, FTD = 52.4%): EER = 41.21%
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Figure 7.5: ROC curves for the VJ-SRC system (automatic face detection errors) together with the corresponding improvement by sum and switch

fusion for the three scenarios defined: close (left), medium (center), and far (right). On the bottom, the VR and EER based on weight distribution.

145

ChapterAdaptiveFusion/Figs/EPS/fusion1_3escenarios.eps


7. ADAPTIVE FUSION

7.2.3.2. Fusion with Manual Face Detection

This experiment focuses on use of the soft labels in order to improve the ID-SRC system

with ideal face detection (FTA = 0% and FTD = 0%). Fig. 7.6 shows the ROC curves of both

systems and two fusions (sum and weighted fusion rules) for different FAR points.

In this case the incorporation of soft labels improves the face recognition system performance.

The sum fusion achieves significant relative improvements of 30.16%, 33.90%, and 49.87% in the

EER for close, medium, and far scenarios respectively. On the other hand analysing the Verifi-

cation Rate (VR) in a high security point such as FAR = 0.001 (0.1%), the system performance

deteriorates. A relative decrement of about 10% in the VR for close and medium scenarios is

obtained but in far scenario the VR increases moderately. These results are confirming that the

soft biometric labels have a poor performance in a high security working point.

A weighted fusion has been proposed in order to solve the problem of the VR deterioration.

The fusion gives more weight to the most robust system which is the face recognition system in

FAR = 0.1%. Different weights have been tuned for the 3 distances based on the EER perfor-

mance of the systems. Fig. 7.6 (bottom) shows the VR and EER based on weight distribution.

In particular, we have used cface = 0.8 and csoft = 0.2 for close and medium distance, and finally

cface = 0.7 and csoft = 0.3 for far distance. Using this configuration we achieved a significant

increment in VR of 92.4%, 80%, and 45%, for close, medium, and far scenarios, respectively.

Therefore, the usage of soft labels can still help to improve the systems in these challenging

high security conditions. The face detection stage is a key factor in order to achieve good results

in scenarios at a distance. Consequently a single weighted fusion rule combining soft biometrics

allows to improve the system performance where the primary biometrics are not working due to

variability factors in the scenarios at a distance.

7.3. Facial Regions-based Fusion

Automatic face recognition systems are generally designed to match images of full faces.

However, in practice, the full face is not always available, e.g., due to occlusions and other

variability factors. This is one of the reasons why forensic examiners carry out an exhaustive

morphological comparison, analysing the face region by region (e.g., nose, mouth, eyebrows,

etc.), even examining traits such as marks, moles, wrinkles, etc.

This section is focused on the regions normally considered by forensic experts. In this PhD

Thesis facial regions have been extracted following forensic protocols from law enforcement

laboratories, allowing us to study individually the different facial regions from a human face as

was presented in Sect. 5.3. In particular, we address in this section the problem of combining the

most discriminative areas of the face for recognition on different acquisition scenarios following

the scheme proposed in Sect. 3.2.3.

Understanding how different facial regions are combined on different forensic scenarios has

some remarkable benefits, for example: i) allowing investigators to work only with particular

regions of the face, or ii) preventing that incomplete, noisy, and missing regions degrade the
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ID−SRC Medium (FTA = 0%, FTD = 0%): EER = 6.40%

Soft Labels Medium: EER = 14.60%

Sum Fusion: EER = 4.23%
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ID−SRC Far (FTA = 0%, FTD = 0%): EER = 15.96%
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Figure 7.6: ROC curves for the ID-SRC system (manual face detection) and its corresponding improvement by sum and weighted fusion rule for the

three scenarios defined. On the bottom, the VR and EER based on weight distribution.
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Figure 7.7: The 15 facial regions obtained with the extractor based on facial landmarks (red dots).

recognition accuracy. Further, a better understanding of the combination of facial regions should

facilitate the study of facial regions-based face recognition. Therefore the fusion of the different

facial regions is performed achieving significant improvements of performance compared to a

traditional face recognition system based only on the face as a whole.

7.3.1. Facial Regions Extraction

The proposed facial regions extraction framework is described in detail in Sect. 5.3. In this

framework, two kinds of region extraction are defined: i) based on human facial proportions, and

ii) based on facial landmarks. The first one extracts the considered facial areas of interest of the

face (eyebrows, eyes, nose, mouth, etc.) using as input information just the two eye coordinates,

and simple facial proportions rules. The mentioned extractor would be of interest in challenging

uncontrolled scenarios where landmarks are very difficult to be extracted automatically. On the

other hand, the second extractor, based on facial landmarks correctly located (either manually

or automatically), allows to extract the facial regions with high precision. The final region

extraction result is the set of 15 facial regions based on forensic laboratories protocols (Spanish

Guardia Civil DGGC) and Netherlands Forensic Institute (NFI)) as shown in Fig. 7.7.

Both extractors have two different configurations in order to find the initial facial landmarks:

i) automatic (in our experiments we used Luxand FaceSDK 4.0), and ii) manual, carried out

by a human examiner.
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7.3 Facial Regions-based Fusion

7.3.2. Databases and Experimental Protocol

The experimental work described in this section has been carried out using a collection of

mugshot and CCTV face images of 130 subjects from two different databases: SCface [Grgic

et al., 2011] and MOPRH [Ricanek and Tesafaye, 2006] described and studied in Chapters 4

and 5.

Once each facial region has been extracted, eigen-regions (Principal Component Analysis,

PCA) from each facial region are computed. Then, similarity scores are computed in this PCA

vector space (dimension 200, retaining 98% of the energy of the original eigen-region space) using

a Support Vector Machine (SVM) classifier with a linear kernel. The experimental protocol

followed is described with more detail in Sect. 5.3.2. Both databases used in our experiments

(SCface and MORPH described in Sect. 4.2.4 and 4.3.1), were divided into 3 subsets based

on the subject ID: development (1-43), SVM training (44-87), and test (88-130). These three

subsets were used for training the PCA features, as impostors in the training of SVMs, and for

testing the final system performance, respectively.

In this work three different scenarios are studied considering the different cases that a forensic

examiner can find in practice: i) mugshot vs mugshot, ii) mugshot vs CCTV, and iii) CCTV vs

CCTV. In addition, three distances between subject and camera typical in practical applications

are analysed: close, medium and far distance. This process is detailed in Sect. 5.3.2.

7.3.3. Fusion Results

The fusion of the R = 15 forensic facial regions in comparison with the performance of

the whole face region is performed. The fusion is carried out at the score-level for various

combinations of regions obtained via sequential search (detailed in Sect. 3.2.3). In particular,

the R facial regions are fused using a parallel fusion (sequential search) approach based on the

sum rule [Fierrez, 2006], starting from the most discriminative, then fusing this trait with the

rest and keeping the best fusion of two regions, and continuing this process until all the regions

are fused (i.e., using the fusion model in Sect. 3.2.3 and Eq. (3.4) where gr(Bi) = 1/R for all the

R selected regions to fuse). This methodology can also be used by other fusion schemes such

as: product, max-min, and weight. The fusion results are reported only for the case of manual

landmark tagging with an extractor based on facial landmarks. Results with similar trends are

obtained for the other configurations described.

Before carrying out the fusion, scores of the different facial regions are first normalized to

the [0, 1] range using the tanh-estimators described in Sect. 3.2 in Eq. (3.1), with C = 0.01, and

µSD and σSD are respectively the estimated mean and standard deviation of the genuine score

distribution using the development and SVM training sets.

Fig. 7.8 shows the results of the fusion approach for the three scenarios analysed, which will

be studied in the next sections.
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7.3.3.1. Mugshot vs Mugshot

This experiment presents the fusion results in the mugshot versus mugshot scenario using

the MORPH database [Ricanek and Tesafaye, 2006]. Results of this fusion process can be seen

in Table 7.2.

The best fusion is reached using the full face and the following 6 facial regions: inner facial

traits (both eyebrows, nose, and left/right eye) and the two middle faces. A relative improvement

of 51.5% in the EER is obtained with the fusion (from 13.5% to 6.61% EER) compared to only

using the face region.

Similarly in previous Sect. 5.3, using the inner facial traits provides good performance in

the mugshot versus mugshot scenario. Hence, the fusion of the whole face with the inner facial

regions produces the best recognition performance.

7.3.3.2. Mugshot vs CCTV

This scenario is analysed using the SCface database [Grgic et al., 2011]. The fusion results

obtained for the three distances are shown in Table 7.2. Similar to the previous case the system

performance improves fusing several facial regions compared to just using the full face region.

Close and medium distance scenarios combine 7 facial regions to achieve the best result, but

the far scenario needs to combine a total of 10 facial regions to obtain it.

It is interesting to note that in the close scenario the best result is obtained with the fusion

of inner and outer facial traits together with the full face (relative improvement of 56.7% in the

EER with respect to using only the full face).

Similarly, in the two other distances considered, the best fusion includes inner and outer

parts of the face, and relative improvements of over 40% in the EER are obtained with the

fusion of regions compared to using only the full face.

As can be seen in the fusion EER, this scenario results in significantly worse performance

compared to the previous and following scenarios. This is mainly due to the differences between

gallery (mugshot) and probe images (CCTV).

7.3.3.3. CCTV vs CCTV

Table 7.2 shows the fusion results obtained for the three distances analysed for the CCTV

vs CCTV scenario (using the SCface database [Grgic et al., 2011]). As can be seen, when the

acquisition distance increases more facial regions need to be fused with the full face region in

order to achieve the best performance. Thus, an increment of variability and complexity involves

more information to be fused, as could be expected.

A combination of inner (mouth, nose, and right eyebrow) and outer (forehead, chin, and

right ear) facial regions are the best combination in this case. Close and medium scenarios just

need 7 facial regions to achieve the best performance. On the other hand, the far scenario again

needs a bigger number of facial regions to reach the best fusion result as also happened in the

previous section in far distance.
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Figure 7.8: EER for sequential sum fusion of the best combination of different facial regions for the

three scenarios: mugshot versus mugshot, mugshot versus CCTV, and CCTV versus CCTV. For the last

two scenarios the three distance are represented: close, medium and far.

In this case, relative improvements of 70.6%, 83.4%, and 65.3% in the EER for the close,

medium, and far scenarios are achieved respectively for the proposed fusion of regions compared

to only using the full face for recognition.

Therefore, the combination of different facial regions can help to improve the system perfor-

mance in challenging forensics scenarios and at a distance. The variability considered in train

and test sets is a key factor in order to achieve good results in these conditions. Consequently

a single parallel fusion rule combining some of these facial regions allows improving the system

performance, where the traditional face recognition systems are not working with a desirable

performance.
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7
.
A
D
A
P
T
IV

E
F
U
S
IO

N

(Best Combination)

Scenarios
Full Best Individual Facial Regions Fused via Sequential Search # Regions Fusion Relative Improvement

Face EER EER (Region Id) (Best Combination) Fused EER Over Full Face

Mugshot vs Mugshot 13.50% 13.50 % (10) (10,6,12,15,13,8,7),5,3,9,11,14,4,2,1 7 6.61% 51.5%

M
u
g
sh

o
t
v
s
C
C
T
V

1. Close 33.10% 22.89% (15) (15,14,8,2,3,11,10),13,1,5,12,9,6,7,4 7 14.30% 56.7%

2. Medium 31.20% 27.08% (14) (14,11,12,2,15,3,1),10,8,4,13,7,6,9,5 7 12.90% 58.6%

3. Far 28.90% 27.49% (11) (11,2,10,1,3,5,12,6,14,15),13,7,4,8,9 10 16.80% 41.8%

C
C
T
V

v
s
C
C
T
V

1. Close 8.24% 8.24% (10) (10,14,11,5,15,1,13),3,12,9,4,2,6,7,8 7 2.42% 70.6%

2. Medium 15.20% 15.20% (10) (10,11,14,15,1,3,5),12,4,2,13,6,9,7,8 7 2.52% 83.4%

3. Far 20.40% 17.25% (11) (11,10,1,12,2,6,14,15,5),13,4,8,7,9,3 9 7.07% 65.3%

Table 7.2: Overview of EER results obtained for the full face, the best individual facial region, and the proposed fusion. This is given for the three

scenarios considered: Mugshot versus Mugshot, Mugshot versus CCTV, and CCTV versus CCTV scenarios. Fig. 7.7 shows the facial regions with

their corresponding id number (e.g. the id numbers: 10, 6, 12, correspond to full face, both eyebrows, and left middle face, respectively).
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Figure 7.9: Experimental framework diagram description for facial region fusion considering color

information.

7.4. Facial Regions-based Fusion using Color Information

Automatic face recognition systems are generally designed to match grayscale images of full

faces. In most cases color information is discarded to decrease the computational cost of the

algorithms and therefore additional discriminative information may be lost.

There are some previous works where grayscale facial region-based recognition is stud-

ied [Bonnen et al., 2013; Ocegueda et al., 2011; Tome et al., 2013e] but non of them focus

their attention in the color regions normally considered by forensic experts. In this work, we

have considered the facial regions proposed in previous Sect. 5.3 following forensic protocols

from law enforcement laboratories, allowing us to study individually the different facial regions

normally considered in current practice of forensic examiners. In particular, we address in this

section the problem of combining the most discriminative areas of the face for recognition using

the available color information on a very challenging video surveillance scenario.

In contrast to traditional grayscale systems presented in previous sections, this section studies

the discriminative power of each facial region using three color spaces: RGB, Y CbCr, and lαβ.

Fig. 7.9 summarizes the experimental framework followed.

The main objective here is therefore to understand to what extent the color information can

help in region-based face recognition.

7.4.1. Extraction and Color Methodology

The proposed facial regions extraction framework is described in detail in previous Sect. 7.3.

In this framework, two kinds of regions extraction are defined: i) based on human facial pro-

portions, and ii) based on facial landmarks. For this section, the second extractor based on

facial landmarks has been adopted. This extractor, based on facial landmarks manually located,

allows to extract the facial regions with high precision. The final region extraction result is the
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Figure 7.10: (Top) Grayscale intensity values of faces for each color space analysed. (Bottom) Facial

regions extraction based on facial landmarks extractor. The regions are extracted for the 9 color channels

considered here.
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7.4 Facial Regions-based Fusion using Color Information

Color Channel 1 Color Channel 2 Color Channel 3 Facial Facial Region

Id Num. Id Num. Id Num. Region Size (h × w)

1 16 31 Chin 75x181

2 17 32 Left ear 75x51

3 18 33 Right ear 75x51

4 19 34 Left eyebrow 51x75

5 20 35 Right eyebrow 51x75

6 21 36 Both eyebrows 51x151

7 22 37 Left eye 51x51

8 23 38 Right eye 51x51

9 24 39 Both eyes 51x151

10 25 40 Full face 192x168

11 26 41 Forehead 101x151

12 27 42 Left middle face 173x106

13 28 43 Right middle face 173x106

14 29 44 Mouth 51x101

15 30 45 Nose 101x75

Table 7.3: Facial regions id for each color channel and their sizes for extractor based on facial landmarks

(height × width in pixels).

set of 15 facial regions (see Table 7.3) based on forensic laboratories protocols such as Spanish

Guardia Civil (DGGC) or Netherlands Forensic Institute (NFI) as shown in Fig. 7.10.

There are some previous works where color spaces such as RGB or Y CbCr have been used

for face recognition [de Dios and Garcia, 2004; Liu and Liu, 2009; Singh et al., 2003]. But, to the

best of our knowledge, this is the first work where color information is used for face recognition

using 15 facial regions.

When dealing with color images, the RGB color space is commonly used. This color space

is composed by three channels (red, green, and blue), which are correlated among them. The

components that form the second color space considered Y CbCr are as follows: Y , luminance

component, Cb, blue component (B−Y ), and Cr, red component (R−Y ) [Gonzalez and Woods,

2006].

Both RGB and Y CbCr color spaces have correlated color channels among them. We also

consider the lαβ color space [Ruderman et al., 1998], which minimizes the perceptual correlation

among the channels of an image. The parameter l represents the luminance or brightness of

the image and α and β represent the chromatic content, i.e., the color information. Fig. 7.10

(top) shows an example of each color channel for these three color spaces considered in the

experiments.

7.4.2. Database and Experimental Protocol

The database used in our experiments SCface [Grgic et al., 2011] (see Sect. 4.2.4). The

experimental procedure followed corresponds to the mugshot versus CCTV scenario studied in

Sect. 5.3.2, in this case also considering the color information of the facial regions.
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7.4.3. Fusion Results

This section describes the fusion of the 15 forensic facial regions extracted from a human face

in comparison with the performance of the whole face region normally used in face recognition

systems. The fusion is carried out at score–level combining the facial regions for the color

channels considered here.

Before carrying out the fusion, scores of the different facial regions are first normalized to

the [0, 1] range using the tanh-estimators described in Sect. 3.2, and then they are combined

using sum fusion (i.e., using the fusion model in Sect. 3.2 and Eq. (3.1) where gr(Bi) = 1/R for

all the R selected regions to fuse).

For this Thesis three different experiments were defined in order to analyse the potential of

color information in a face recognition system: i) Exp.1 Grayscale baseline system, where the

grayscale facial regions are fused as the traditional face recognition systems. ii) Exp.2 Fusion

of color channels from each color space, (e.g. for RGB color space, the channels {R,G,B} are

fused for each facial region considered). iii) Exp.3 Fusion of all color channels, where all 9

available color channels are fused for each face region.

7.4.3.1. Exp.1 : Grayscale (Baseline System)

The baseline system is described in previous Sect. 7.3 where the fusion is carried out at the

score–level for various combinations of grayscale regions.

The fusion results obtained for the three distances are summarized in Table 7.4 (Exp.1 ).

As can be seen the system performance improves fusing several facial regions compared to just

using the full face region.

Close and medium distance scenarios combine 7 facial regions to achieve the best result, but

the far scenario needs to combine a total of 10 facial regions to obtain it. It is interesting to

note that in the close scenario the best result is obtained with the fusion of inner and outer

facial traits together with the full face (relative improvement of 56.7% in the EER with respect

to using only the full face).

Similarly, in the two other distances considered, the best fusion includes inner and outer

parts of the face, and relative improvements of over 40% in the EER are obtained with the

fusion of regions compared to using only the full face.

7.4.3.2. Exp.2 : Fusion of Three Color Channels

For the Exp.2, the score–level fusion is carried out fusing the three channels in a color space,

i.e., 15 × 3 = 45 facial regions (as Table 7.3 shows) using a parallel fusion approach as in the

previous experiment.

Table 7.4 (Exp.2 ) shows the fusion results for the three distances analysed. Fig. 7.11 shows

the sequential fusion results obtained for the three distances and their corresponding color space

with best performance (lαβ for close and far distance, and RGB for medium distance). Similar

to the previous case the system performance improves fusing several facial regions compared
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Figure 7.11: EER for sum sequential fusion of the best combination of different facial regions for the

best individual color space in each distance scenario: close (lαβ), medium (RGB) and far (lαβ).
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7. ADAPTIVE FUSION

Color Close Distance Medium Distance Far Distance

Space Fusion (# Regions) – Full face Fusion (# Regions) – Full face Fusion (# Regions) – Full face

Exp.1 Grayscale 14.30% (7) – 33.10% 12.90% (7) – 31.20% 16.80% (10) – 28.90%

RGB 11.58% (12) – 32.19% 10.79% (13) – 30.21% 14.61% (15) – 29.96%

Exp.2 Y CbCr 12.89% (16) – 29.50% 12.65% (8) – 33.35% 16.37% (21) – 31.72%

l α β 10.79% (12) – 31.82% 11.20% (16) – 31.09% 14.50% (18) – 28.93%

Exp.3 ALL 9.03% (27) – 29.96% 10.33% (22) – 30.33% 13.12% (39) – 28.93%

Table 7.4: EER results for the score–level fusion obtained for sequential region fusion and the full face

for the color channels of the three color spaces. In brackets we indicate the number of regions fused.

to just using the full face region. It is interesting to note that the number of regions fused to

obtain the best performance increases with the distance between the subject and the camera.

Comparing the fusion results with the baseline system based on grayscale facial regions,

relative improvements of performance of 24.5%, 16.3%, and 13.7% for close, medium and far

distance, are achieved respectively. These results support the utility of color information using

facial regions to improve the performance of traditional face recognition systems.

7.4.3.3. Exp.3 : Fusion of All Color Channels

In this case, all facial regions from all color channels are combined following the same fusion

methodology. In this case, we combine the 3 sets of 45 facial regions considered in the previous

experiment, i.e., 135 facial regions in total.

Table 7.4 (Exp.3 ) shows the fusion results for this experiment. As can be seen this experi-

ment achieves the best EER results for the three distances compared to the previous experiment.

However this case needs to fuse more facial regions to achieve the best performance (approxi-

mately double than Exp.2 ), and just around 1% EER of improvement is achieved compared to

Exp.2. Again, the increment of the acquisition distance increases the number of facial regions

to be combined to achieve the best performance.

Similarly, in the three distances considered, the best fusion includes inner and outer parts

of the face, and relative improvements of over 66% in the EER are obtained with the regions

fusion compared to only using the full face.

7.5. Chapter Summary and Conclusions

In this chapter we have evaluated the adaptive fusion schemes presented in Chapter 3. This

study has compared scenario-based, soft biometrics-based, facial regions-based, and an extension

of the last one using color facial regions-based schemes of score–level fusion and has studied their

benefits in systems at a distance.

Regarding the scenario-based fusion, the effects of face acquisition distance on the perfor-

mance of two common approaches for face verification have been studied using a new scenario

estimator presented in Sect. 3.2.1. It has been found that the approach based on PCA subspace
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information and SVM classifier outperforms the DCT-GMM-based approach in close acquisi-

tion distance conditions but the approach based on DCT and GMM classifier is more robust to

increasing acquisition distance.

We have also shown how the proposed acquisition distance estimator can be used in an

adaptive score-level fusion approach to control the degradation observed in scenarios of varying

acquisition distance. The proposed scheme leads to enhanced performance over the best matcher

and the standard sum fusion rule over a wide range of face acquisition distances.

Regarding the usage of soft biometrics, this chapter also reports an study of how the usage of

soft labels can help to improve a biometric system for challenging person recognition scenarios

at a distance. It is important to emphasize that the use of this ancillary information is very

interesting in scenarios suffering from very high variability conditions. These soft labels can

be visually identified at a distance by humans (or an automatic system) and fused with hard

biometrics (as e.g., face recognition).

A soft biometric-based fusion has been proposed and studied to incorporate soft biometrics to

these kinds of challenging scenarios at a distance considering a state-of-the-art face recognition

system. Experiments are carried out considering both automatic and manual face detection.

Results have shown the benefits of the soft biometrics information keeping robust the face

recognition performance and also improving the performance on a high security level.

Regarding the facial regions-based fusion, this chapter reports an study of the combination

of 15 human facial regions on various forensic scenarios. The best fused performance of facial

regions is compared with the full face region, which is the normal case in face recognition. Re-

sults show that a combination of a set of facial regions can significantly improve the system

performance by total average improvements of 51.5%, 52.3%, and 73.1% in the three scenar-

ios considered, namely: mugshot vs mugshot, mugshot vs CCTV, and CCTV vs CCTV. Facial

region-based fusion on these scenarios has been demonstrated to significantly improve a tradi-

tional full face recognition. In addition to be a useful background information that can guide

and help experts to interpret and evaluate face evidences, these findings can have a significant

impact on the design of face recognition algorithms. In particular, the approach followed for

combining the information provided by the different regions can be significantly improved us-

ing more sophisticated fusion approaches (e.g., quality-based, user-dependent), and using more

robust facial features descriptors.

Finally, the previous study was extended considering also color information by considering

the 15 human facial regions previously extracted in three different color spaces. The best fused

performance of facial regions is compared with the full face region, which is the normal case

in face recognition. Experimetnal results show that a combination of a set of facial regions in

different color spaces can significantly improve the system performance by a relative average

improvement of over 66% for the three distances considered.

This chapter includes novel contributions in the application of adaptive fusion schemes (based

on scenario, soft biometrics, face regions, and color information) to various scenarios at a distance

but not in the individual systems used.
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Chapter 8

Conclusions and Future Work

This Thesis has considered the problem of dealing with the variability factors affecting bio-

metric systems at a distance through the use of soft biometric information and adaptive fusion.

After a summary of the state-of-the-art in variability assessment, we have then defined what

we understand by the scenario at a distance, and explained the evaluation methodology fol-

lowed in the Thesis. These procedural guidelines for the systematic and objective evaluation of

variability factors have been applied in the experimental studies described in the last chapters

of the Dissertation to systems at a distance in three blocks: 1) first we have studied various

variability sources in surveillance and forensic scenarios, 2) we have then studied the application

of stand-alone soft biometrics to these scenarios, and 3) finally we have applied soft biometrics

in such scenarios in combination to face recognition using various types of adaptive fusion.

8.1. Conclusions

Chapter 1 introduced the basics of biometric systems, biometric modalities, our perspective of

the variability assessment problem in biometrics at a distance, the motivation of the Thesis, and

the research contributions originated from this Thesis. Chapter 2 defined what we understand by

scenario at a distance and summarized the most relevant works related to the different research

lines developed in the Dissertation. The proposed methods were presented in Chapter 3, which

are later studied in the experimental chapters. These new methods proposed and studied for

overcoming the degradation found in biometric systems under uncontrolled variability factors

are: 1) soft biometrics with application to video surveillance and forensics, and 2) adaptive

fusion schemes based on the acquisition distance, soft biometric information, and facial regions.

The first part of the Dissertation concluded with the description of the evaluation methodology

followed in the Thesis, which also described the state-of-the-art in biometric databases at a

distance and the most relevant datasets used in the Thesis.

The experimental part of the Thesis started in Chapter 5 studying the variability factors

related to biometric scenarios at a distance. First, an exhaustive data-driven analysis was con-

ducted on three realistic acquisition scenarios at different distances (close, medium, and far), as
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a first step towards devising adequate recognition methods capable to work in less constrained

scenarios. Then, the effects of the face acquisition distance on the performance of two com-

mon approaches for face verification were studied using the new scenario estimator proposed in

Chapter 3. The results demonstrated that the variability present in scenarios at a distance can

be used in the training stage in order to stabilize the system performance degradation occurring

in varying acquisition conditions. Moreover, a study of the variability of facial landmarks over

two mugshot and CCTV databases have been reported, analysing both controlled and uncon-

trolled scenarios with low quality images and a large range of variability factors, finding that the

landmarking variability increases with the distance, as expected. Comparing the two manual

and automatic tagging approaches, the results show that the landmark variability is very similar

for the set of common landmarks. The chapter concludes reporting an exhaustive analysis of

the discriminative power of the different facial regions of the human face on various forensic

scenarios. The comparison is carried out using two different region extractors based on facial

landmarks and proportions, which are evaluated with automatic and manual landmarks. In all

cases, we obtained that the recognition performance of facial regions depends on the acquisition

distance. The best three facial regions with high discrimination power in the close distance are

the face, nose, and forehead. However, in far distance, the best performance is achieved by

the forehead. This facial region acquires an important role on scenarios at a distance such as

CCTV versus CCTV. In addition to be a useful background information that can guide and help

experts to interpret and evaluate face evidences, these findings can have a significant impact on

the design of face recognition algorithms for these challenging scenarios at a distance.

Chapter 6 proposed and studied various types of soft biometric information suitable for video

surveillance and forensics applications. It is important to emphasize that the use of this ancillary

information is very interesting in scenarios suffering from very high variability conditions. These

soft labels can be visually identified at a distance by humans (or automatic systems) and fused

with hard biometrics (as e.g., face recognition). It is important to note that this kind of soft

information is still a developing field in relation to its automatic extraction. A novelty in our

study of soft biometrics is the treatment we have carried out depending on the acquisition

distance. For that, we have defined and used three scenarios with different acquisition distance:

close, medium, and far. The rationale behind this study is that depending on the scenario,

some labels may not be visually present and others may be occluded. Thus, the discriminative

information of soft biometrics will vary depending on the distance. It is worth noting that

this relation between scenarios at a distance and the performance of soft biometrics for person

recognition has not been studied in this way before. Regarding the soft biometrics proposed

for forensics, we have followed forensic protocols based on the forensic morphological analysis.

The resulting facial soft biometric traits can be either continuous or discrete. Traits such as the

eyebrows height and width, interocular distance, naso-labial height, etc. are continuous variables

in nature. On the other hand, these traits can be converted to discrete values using thresholds

in order to simplify their classification and to compute population statistics. The experimental

results have shown that a system that is completely based on facial soft biometrics features for
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forensics can provide good accuracy in person recognition tasks.

Chapter 7 evaluated the adaptive fusion schemes presented in Chapter 3. This study com-

pared scenario-based, soft biometrics-based, facial regions-based, and color facial regions-based

schemes of score–level fusion and studied their benefits in systems at a distance. As demon-

strated, the variability present in scenarios at a distance can be used in the training stage in order

to stabilize the system performance degradation occurring in varying acquisition conditions. In

particular, we have shown how the proposed distance estimator can be used in an adaptive

score-level fusion approach to control this degradation. The proposed scenario-based scheme

leads to enhanced performance over the best matcher and the standard sum fusion rule over

a wide range of face acquisition distances. This chapter also presented a soft biometric-based

fusion and studied how to incorporate soft biometrics to these kinds of challenging scenarios

at a distance considering a state-of-the-art face recognition system. Experiments were carried

out considering both automatic and manual face detection. Results have shown the benefits of

the soft biometrics information improving the performance on a high security level. Moreover,

this chapter reports an study of the combination of 15 human facial regions on various forensic

scenarios. The best fused performance of facial regions is compared with the full face region,

which is the normal case in face recognition. Preliminary results show that a combination of

a set of facial regions can significantly improve the system performance by a total average im-

provement of 51.5%, 52.3%, and 73.1% in the three scenarios considered, namely: mugshot vs

mugshot, mugshot vs CCTV, and CCTV vs CCTV. Facial region-based fusion on these scenarios

has been demonstrated to significantly improve a traditional full face recognition. In addition,

the combination of facial regions with color information allows to improve the system perfor-

mance with a relative improvement of over 20% comparing with the traditional face recognition

systems using only grayscale information.

In summary, the main results and contributions obtained from this Thesis are:

The evaluation methodology of biometric systems at a distance followed throughout the

Dissertation

The relationship between the acquisition distance and the variability factors in order to

define different scenarios, each of which can be analysed and processed differently.

The new algorithms developed and used for dealing with variability factors in biometric

systems at a distance: 1) soft biometrics for video surveillance and forensics, and 2)

scenario-based and region-based fusion.

The individual facial regions extractors developed, suitable for video surveillance systems.

The landmarks and mugshot biometric data acquired, which is now available for research

purposes.

The experimental evidence and findings of the incorporation of soft biometrics information

through adaptive fusion to person recognition systems working at a distance.
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8.2. Future Work

A number of research lines arise from the work carried out in this Thesis. We consider of

special interest the following ones:

One promising direction for future research is the idea of using an “enhanced” enrollment

including multiple images with lighting, pose, and expression variations for applications

that allow it (e.g. some access control applications and some surveillance camera applica-

tions). The motivation for this approach comes from research on human face recognition

(in other words the ability of people to recognize faces). One of the findings of this re-

search is that people are much better at recognizing faces of familiar people. It appears

that people build very good models of familiar faces and so can recognize such faces well

even from very low resolution images. A computer algorithm could similarly take advan-

tage of a good model of each face built at enrollment time. A single query image may then

be compared to the detailed model for each enrolled face.

Several works have already been published where the authors study the effects of different

variability factors individually, such as [Phillips et al., 2009a, 2005] or [Lui et al., 2009].

The development of evaluation guidelines to analyse these effects jointly would help to

build a better understanding about the real magnitude of the actual variability factors in

operational face recognition systems at a distance.

Li et al. [2009] consider realistic biometric at a distance environments without restrictions

over environmental conditions such as scale, pose, lighting, focus, resolution, facial expres-

sion, accessories, makeup, occlusions, background, or photographic quality. Many algo-

rithms do deal with these factors individually have been proposed in the literature [Chen

et al., 2006; Gross et al., 2004; Lee et al., 2005; Li et al., 2007; Wang et al., 2003; Zhou

et al., 2007]. Following the methodology used in this Thesis (based on scenario definition

and characterization), one can group the various variability factors present in real-world

application-oriented scenarios, and deal with them as a whole. This is source for future

research.

Searching for new variability compensation approaches for face recognition systems. For

instance, Factor Analysis [McCool et al., 2013; Prince et al., 2008], a statistical method

used to describe variability among observed variables in terms of a potentially lower number

of unobserved variables called factors. This compensation method would try to model the

observed variables as a linear combination of potential factors in order to compensate the

challenging variability factors produced by the increment of the acquisition distance in

face recognition systems at a distance or on the move.

Searching for new face recognition approaches for biometric systems at a distance. For

instance, the Scale-Invariant Feature Transform (or SIFT) [Lowe, 1999], is an algorithm

used in computer vision to detect and describe local features in images. Despite being
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an approach with initial target different to biometric recognition, several works have been

published where the authors use this approach for carrying out biometric recognition sys-

tems on different traits, such as face [Križaj et al., 2010], iris [Alonso-Fernandez et al.,

2009] or fingerprint [Park et al., 2008]. This would give an interesting approach for bio-

metric recognition at a distance, alternative to the actual methods, most of them not

independent to scale.

Combine the proposed facial regions with other existing face recognition approaches suit-

able for video surveillance such as [Sanderson and Lovell, 2009], where the feature extrac-

tion process in based on dividing the face on nine fixed regions.

Searching for new methodologies to incorporate soft biometrics to compensate the variabil-

ity in biometric systems at a distance. For instance, the development of reliable automatic

systems able to extract soft biometrics information from the object of interest and from

the scene where it is immersed. These systems would be very useful in surveillance and

forensics helping the examiners to give informed decisions and the research community the

opportunity to improve the systems recognition performance.

Evaluating the robustness of other biometric traits suitable at a distance. Face recogni-

tion [Zhao et al., 2003] is the more suitable trait used in biometric at a distance but there

are important advances in sensor development capable to extract iris at a distance [Matey

et al., 2006]. The study of these techniques in combination with face or gait (when is

available) may lead to enhanced multimodal approaches capable to work in demanding

applications beyond the current state-of-the-art.
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Apéndice A

Resumen Extendido de la Tesis

Tratamiento de Factores de Variabilidad y

su Aplicación en Biometŕıa a Distancia

Se denomina reconocimiento biométrico al proceso que permite asociar una identidad con un

individuo de forma automática, mediante el uso de alguna caracteŕıstica personal que le sea

inherente [Jain et al., 2011b]. Aunque en el ámbito forense (judicial, policial y pericial), el

análisis cient́ıfico de evidencias biométricas se ha venido usando desde hace más de un siglo,

el reconocimiento biométrico como medio automático de autenticación personal en aplicaciones

comerciales o civiles es un área de investigación y desarrollo reciente.

Hoy en d́ıa el reconocimiento biométrico se puede considerar como un campo de investigación

asentado, con libros de referencia [Jain et al., 2008, 2011b; Ratha and Govindaraju, 2008; Ross

et al., 2006; Tistareli et al., 2009], conferencias espećıficas en el área [Bowyer et al., 2008a; Fierrez

et al., 2013; Tistarelli and Maltoni, 2007; Vijaya-Kumar et al., 2008], evaluaciones y pruebas

comparativas [Beveridge et al., 2013; Phillips, 2006; Phillips et al., 2011, 2009a,b], proyectos

internacionales [BBfor2, 2010; BioSec, 2004; Biosecure, 2004; COST, 2007; MTIT, 2009; Tabula

Rasa, 2010], consorcios espećıficos dedicados al reconocimiento biométrico [BC, 2005; BF, 2009;

BI, 2009; EBF, 2009], esfuerzos de estandarización [ANSI/NIST, 2009; BioAPI, 2002; ISO/IEC

JTC 1/SC 27 , 2009; SC37, 2005], y un creciente interés tanto por parte de gobiernos [BWG,

2009; DoD, 2005] como del sector comercial [IBIA, 2009; International Biometric Group, 2006].

Pese a la madurez de este campo de investigación, con trabajos que se remontan más de tres

décadas en el tiempo [Atal, 1976; Bertillon, 1896; Kanade, 1973], el reconocimiento biométrico

sigue siendo un área muy activa de investigación, con numerosos problemas prácticos aún por

solucionar [Jain et al., 2004c]. Estos problemas prácticos han hecho que, pese al interés de las

aplicaciones biométricas, la integración en el mercado de estas nuevas tecnoloǵıas sea más lenta

de lo esperado.
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A.1. Resumen

Esta Tesis se centra en el tratamiento de los factores de variabilidad que afectan a siste-

mas de reconocimiento biométrico y aplicaciones biométricas a distancia. En particular, esta

Tesis Doctoral explora el problema de la evaluación de los factores de variabilidad y cómo lidiar

con ellos mediante la incorporación de información biométrica complementaria (del inglés “soft

biometrics”) con el fin de mejorar los sistemas de reconocimiento de personas a distancia. Los

métodos propuestos apoyados por los resultados experimentales muestran los beneficios de la

adaptación del sistema teniendo en cuenta la variabilidad de la muestra considerada.

A pesar de ser relativamente joven en comparación con otras tecnoloǵıas de seguridad ma-

duras y ampliamente utilizadas, el reconocimiento biométrico ha surgido en la última década

como una alternativa para aplicaciones donde se necesita el reconocimiento automático de per-

sonas. Ciertamente, el reconocimiento biométrico es muy atractivo y útil para los sistemas de

v́ıdeo vigilancia a distancia, ampliamente distribuidos en nuestro entorno, y para el usuario final

(olv́ıdese de PINs y contraseñas, usted es su propia llave). Sin embargo, no podemos olvidar

que, como cualquier tecnoloǵıa destinada a proporcionar un servicio de seguridad, los sistemas

biométricos deben garantizar un rendimiento fiable en cualquier situación. Por lo tanto, es de

especial relevancia comprender y analizar los factores de variabilidad a los que están sometidos

dichos sistemas con el fin de asegurar su adecuado funcionamiento y aumentar sus beneficios

para los usuarios.

En este contexto, la presente Tesis Doctoral da una idea del dif́ıcil problema de la evaluación

de los factores de variabilidad a través del estudio sistemático de los escenarios biométricos a

distancia y el análisis de las metodoloǵıas de compensación eficaces que pueden reducir al mı́nimo

los efectos de los mismos. Por lo tanto, se persigue el objetivo de aumentar el rendimiento

del reconocimiento de personas a distancia en esta próspera tecnoloǵıa. De esta manera, los

estudios experimentales presentados en esta Tesis Doctoral pueden ayudar a desarrollar aún

más los esfuerzos tecnológicos de compensación variabilidad en curso, y pueden ser utilizados

como gúıa para adaptar los sistemas existentes en reconocimiento biométrico a distancia para

hacerlos más seguros y estables.

El problema de la compensación de la variabilidad en los sistemas biométricos ya hab́ıa sido

tratado en algunos trabajos anteriores, pero en la mayoŕıa de los casos no se utiliza la relación

de la distancia de adquisición con los factores de variabilidad, a fin de identificar y definir los

escenarios de aplicación. En este trabajo, después de resumir y clasificar las obras más relevantes

de la Tesis y definir lo que entendemos como escenario a distancia, se describen los métodos

propuestos y se evalúan a lo largo de los caṕıtulos experimentales. Estos caṕıtulos experimentales

se dedican primero al estudio de los factores de variabilidad (análisis de escenarios), y después

a la aplicación de las técnicas propuestas para compensar los mismos (soft biometrics y fusión

adaptativa). Todos los experimentos se llevaron a cabo utilizando bases de datos biométricas

estándar de facto.
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La parte experimental de la Tesis Doctoral comienza con la evaluación de los factores de

variabilidad que se encuentran en los escenarios de los sistemas de reconocimiento facial. Eva-

luamos, entre otros: i) la relación entre los factores de variabilidad y la distancia en la adquisición

de este tipo de sistemas, ii) la variabilidad de los puntos de referencia faciales sobre imágenes

de la ficha policial y de circuito cerrado de televisión (CCTV), y iii) la variabilidad del rendi-

miento de diferentes regiones faciales del rostro humano en varios escenarios forenses a distancia.

Dichos hallazgos pueden tener un impacto significativo en el diseño de algoritmos de reconoci-

miento facial además de ser una información útil que puede guiar y ayudar a los expertos en la

interpretación y evaluación de evidencias faciales.

A continuación, estudiamos varios tipos de información complementaria (soft biometrics)

disponible en el reconocimiento biométrico a distancia y adecuada para aplicaciones de v́ıdeo

vigilancia y forenses. Estas etiquetas soft pueden ser identificadas visualmente a distancia

por los seres humanos (o un sistema automático) y su información discriminante puede variar

dependiendo de la distancia. Es de interés señalar que esta relación entre los escenarios a

distancia y el rendimiento de los sistemas soft biometrics para el reconocimiento de personas no

se ha estudiado de esta manera antes. Por otra parte, también se introduce y evalúa un gran

conjunto de caracteŕısticas morfológicas biométricas faciales soft, extráıdas siguiendo protocolos

forenses. Los resultados experimentales que utilizan este conjunto de caracteŕısticas demuestran

que un sistema que se basa totalmente en las caracteŕısticas faciales biométricas soft es factible

para el análisis forense.

Por último, se estudian experimentalmente varios esquemas de fusión adaptativa que hacen

uso de los sistemas soft biometrics. En particular, se estudian esquemas de fusión a nivel de

puntuación basados en: identificación de escenario, soft biometrics, regiones faciales, y en regio-

nes faciales combinadas en diferentes espacios de color. Los esquemas de fusión de adaptación

propuestos logran mejoras notables que demuestran su utilidad en el reconocimiento biométrico

a distancia.

El trabajo de investigación descrito en esta Tesis Doctoral ha dado lugar a aportaciones

novedosas, que incluyen el desarrollo de dos nuevos métodos para hacer frente a los factores

de variabilidad en los sistemas de reconocimiento biométrico a distancia, denominados: i) soft

biometrics adecuados para v́ıdeo vigilancia y el análisis forense, y ii) esquemas de fusión adap-

tativa a nivel de puntuación basados en el escenario de adquisición, soft biometrics, regiones

faciales, y las regiones faciales usando información de color. Por otra parte, diferentes estudios

experimentales originales se han llevado a cabo durante el desarrollo de la Tesis (por ejemplo,

relación entre los escenarios a distancia y los factores de variabilidad). Además, el trabajo de

investigación realizado a lo largo de la Tesis incluye la generación de diversas revisiones de la

literatura y la generación de nuevos recursos biométricos.
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A.2. Conclusiones

Esta Tesis Doctoral ha considerado el problema del tratamiento de los factores de variabi-

lidad que afectan a sistemas biométricos a distancia a través del uso de información biométrica

complementaria (“soft biometrics”) y fusion adaptativa. Después de resumir el estado del arte

en evaluación de la variabilidad, hemos entonces definido lo que entendemos por un escenario a

distancia, y explicado la metodoloǵıa de evaluación utilizada a lo largo de la Tesis. Estas direc-

trices de procedimiento para la evaluación sistemática y objetiva de los factores de variabilidad

se han aplicado en los estudios experimentales, descritos en los últimos caṕıtulos de la Diserta-

ción, a los sistemas a distancia en tres bloques: 1) primero hemos estudiado diversas fuentes de

variabilidad en escenarios de v́ıdeo vigilancia y forenses, 2) a continuación, se ha estudiado la

aplicación del soft biometrics de forma independientes a estos escenarios, y 3) finalmente hemos

aplicado esta biometŕıa complementaria (soft biometrics) en dichos escenarios en combinación

con el reconocimiento facial utilizando diversos tipos de fusión adaptativa.

El Caṕıtulo 1 introdujo los conceptos básicos de los sistemas biométricos, las modalidades

biométricas, nuestra perspectiva del problema de la evaluación de la variabilidad en la biométrica

a distancia, la motivación de la Tesis, y las contribuciones de investigación originadas a partir de

esta Tesis Doctoral. En el Caṕıtulo 2 se definió lo que entendemos por escenario a una distancia

y se resumieron los trabajos más relevantes relacionados con las diferentes ĺıneas de investigación

desarrolladas en la Tesis. Los métodos propuestos fueron presentados en el Caṕıtulo 3, los cuales

fueron estudiados posteriormente en los caṕıtulos experimentales. Los métodos propuestos y

estudiados para hacer frente a la degradación encontrada en sistemas biométricos con factores

de variabilidad no controlados son los siguientes: 1) soft biometrics con aplicación en v́ıdeo

vigilancia y análisis forense, y 2) esquemas de fusión adaptativa basados en la distancia de

adquisición, la información complementaria (soft), y las regiones faciales. La primera parte de

la Tesis concluye con la descripción de la metodoloǵıa de evaluación utilizada en la Tesis, la cual

también describe el estado del arte en bases de datos biométricas a distancia y los conjuntos de

datos de mayor relevancia utilizadas en esta Tesis Doctoral.

La parte experimental de la Tesis comenzó en el Caṕıtulo 5 estudiando los factores de va-

riabilidad relacionadas con escenarios biométricos a distancia. En primer lugar se llevó a cabo

un análisis exhaustivo de datos en tres escenarios de adquisición realistas a diferentes distancias

(cerca, medio, y lejos), como un primer paso hacia la elaboración de los métodos de recono-

cimiento adecuados capaces de trabajar en escenarios menos controlados. A continuación, se

estudiaron los efectos de la distancia adquisición en los sitemas de reconocimiento facial cara

en base al rendimiento de los sistemas mediante el nuevo estimador escenario propuesto en el

Caṕıtulo 3. Los resultados demostraron que la variabilidad presente en escenarios a distan-

cia se puede utilizar en la etapa de entrenamiento con el fin de estabilizar la degradación del

rendimiento del sistema en diferentes condiciones de adquisición.

Además, se ha realizado un estudio de la variabilidad de los puntos de referencia faciales

sobre dos bases de datos con imágenes mugshot y de circuito cerrado de televisión (CCTV).
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Este análisis se ha llevado a cabo en escenarios tanto controlados y no controlados con imágenes

de baja calidad y una amplia gama de factores de variabilidad, encontrando que la variabilidad

en el marcado aumenta con la distancia, como se esperaba. Los resultados muestran que la

variabilidad punto de referencia es muy similar para el conjunto de puntos de referencia comunes

comparando enfoques manuales y automáticas de marcado.

El caṕıtulo concluye con el análisis exhaustivo del poder discriminante de las distintas regio-

nes faciales del rostro humano en varios escenarios forenses. La comparación se realiza mediante

dos extractores regiones diferentes basados en puntos de referencia y en proporciones faciales,

que son evaluados con los puntos de referencia extráıdos de forma automática y manual. En

todos los casos, se obtuvo que el rendimiento del reconocimiento de las regiones faciales depende

de la distancia de adquisición. Los tres mejores regiones faciales mejor poder de discriminación

en la distancia cerca son la cara, la nariz, y la frente. Sin embargo, en la distancia media, el me-

jor rendimiento se logra por medio de la frente. Esta región facial adquiere un papel importante

en escenarios a distancia tal como CCTV frente a CCTV. Además de ser una información de

base útil que puede guiar y ayudar a los expertos para la interpretación y evaluación de las evi-

dencias faciales, estos hallazgos pueden tener un impacto significativo en el diseño de algoritmos

de reconocimiento facial en escenarios complejos como son los escenarios a ditancia.

En el Caṕıtulo 6 se propuso y estudió diversos tipos de información biométrica complemen-

taria decuado para v́ıdeo vigilancia y aplicaciones forenses. Es importante destacar en que el

uso de esta información auxiliar es muy interesante en escenarios que sufren condiciones de alta

variabilidad. Estas etiquetas soft pueden ser identificadas visualmente a distancia por los seres

humanos (o mediante sistemas automáticos) y pueden ser fusionadas con los sistemas tradicio-

nales de reconocimiento biométrico (como por ejemplo, el reconocimiento facial). Es importante

señalar que la extracción automática de este tipo de información complemetaria es todav́ıa un

campo en desarrollo. Una novedad en nuestro estudio de soft biometrics es el tratamiento que

hemos llevado a cabo en función de la distancia de adquisición. Para ello, se han definido y

utilizado tres escenarios con diferentes distancias de adquisición: cerca, medio, y lejos. La lógica

detrás de este estudio es que, dependiendo del escenario de aplicación, algunas etiquetas soft no

se encuentran visualmente presentes y otras pueden estar ocluidas. Por lo tanto, la información

discriminate de los sistemas de soft biometrics variará dependiendo de la distancia. Vale la

pena señalar que esta relación entre los escenarios a distancia y el rendimiento de los sistemas

de soft biometrics para el reconocimiento personas no se ha estudiado de esta manera antes.

Por otro lado se han propuesto y analizado un conjunto de datos faciales biométricos soft ex-

tráıdos siguiendo protocolos forenses basadas en el análisis morfológico. Los rasgos biométricos

faciales soft resultantes son dos conjuntos de datos: 1) continuos (como por ejemplo, la altura

y la anchura cejas, distancia interocular, altura naso-labial, etc) y 2) discretos. Dichos rasgos

continuos han sido utilizados para extraer otro conjunto de valores discretos utilizando umbrales

con el fin de simplificar su clasificación y para calcular estad́ısticas de población. Los resultados

experimentales han demostrado que un sistema basado totalmente en las caracteŕısticas faciales

biométricas soft propuestas para análisis forense puede proporcionar una buena precisión en
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tareas de reconocimiento de persona.

Por último en el Caṕıtulo 7 se ha evaluado los esquemas de fusión adaptativa que se presen-

tarón en el Caṕıtulo 3. Dichos esquemas de fusión a nivel de puntuación fueron los basados en:

distancia de acquisición, soft biometrics, regiones faciales y regiones faciales utilizando informa-

ción de color, para los cuales se estudió los beneficios que aportaban a los sistemas a distancia.

Como se demostró el estimador de distancia de adquisición puede ser utilizado en el esquema

propuesto de fusión basada en escenario como enfoque para controlar la degradación de los sis-

temas a distancia. Dicho esquema basado en escenario conduce a un rendimiento mejorado del

sistema mateniendo su robustez en un amplio rango de distancias de adquisición de la cara.

Este caṕıtulo también analizó la fusión basada en soft biometrics y estudió la manera de incor-

porar la información complementaria a escenarios complejos a distancia considerando sistemas

de reconocimiento facial del estado del arte. Los experimentos se llevaron a cabo teniendo en

cuenta detección facial automática y manual. Los resultados han demostrado los beneficios de la

información biométrica complementaria mejorando el rendimiento de los sistemas en un punto

de trabajo de seguridad.

Además, este caṕıtulo informa de un estudio de la combinación de 15 regiones faciales del

rostro humano en diversos escenarios forenses. El mejor rendimiento de la combinación de las

distintas regiones faciales se compara con la región completa de la cara, región habitualmente

utilizada en los sistemas de reconocimiento facial. Los resultados muestran que la combinación

de un conjunto de regiones faciales puede mejorar significativamente el rendimiento del sistema

obteniendo una mejora promedio de 51.5%, 52.3%, and 73.1% en los tres escenarios considerados,

denominados: mugshot vs mugshot, mugshot vs CCTV, and CCTV vs CCTV. Demostrando por

tanto que la fusión basada en regiones faciales en este tipo de escenarios mejora significativamente

los sistemas tradicionales de reconocimiento facial que utilizan la cara completa. Adicionalmente,

se ha demostrado que la combinación de las regiones faciales con información de color permite

mejorar el rendimiento del sistema con una mejora relativa de más del 20% en comparación con

los sistemas de reconocimiento facial tradicionales que trabajan sólo con imágenes en escala de

grises.

En resumen, los principales resultados y contribuciones obtenidos en esta Tesis Doctoral son:

La evaluación metodológica de los sistemas biométricos a distancia seguida a lo largo de

toda esta disertación.

La relación entre la distancia de adquisición y los factores de variabilidad con el fin de

definir escenarios, de forma que cada uno de los cuales pueda ser analizado y procesado

de forma diferente.

El desarrollo y uso de nuevos algoritmos para el tratamiento con los factores de variabilidad

en sistemas de reconocimiento biométrico a distancia: 1) información complementaria (soft

biometrics) aplicada a v́ıdeo vigilancia y el análisis forense, y 2) fusión basada en escenario

y en regiones faciales.
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Los extractores de regiones faciales individuales desarrollados, adecuados para sistemas de

v́ıdeo vigilancia.

Los puntos de referencia faciales etiquetados sobre imágenes mugshot y CCTV de bases

de datos del estado del arte, los cuales ahora están disponibles para propósitos de investi-

gación.

Las evidencias y hallazgos experimentales de la incorporación de información complemen-

taria a través de fusión adaptativa para los sistemas de reconocimiento de personas a

distancia.

A.3. Ĺıneas de Trabajo Futuro

Se proponen las siguientes ĺıneas de trabajo futuro relacionadas con el trabajo desarrollado

en esta Tesis Doctoral:

Una interesante ĺınea de investigación futura es la idea de usar un registro “mejorado”,

incluyendo varias imágenes con variaciones de iluminación, pose, y expresión para las

aplicaciones que lo permiten (aplicaciones de control de acceso y v́ıdeo vigilancia). La

motivación de este enfoque proviene de la investigación sobre como el ser humano es capaz

de reconocer rostros. Uno de los hallazgos de esta investigación es que las personas son

mucho mejores reconociendo rostros de personas conocidas, es decir, construimos modelos

robustos con gran cantidad de caras conocidas aumentando aśı la precisión, incluso a

partir de imágenes de muy baja resolución. Por lo tanto, un algoritmo informático podŕıa

aprovechar dicha ventaja construyendo un buen modelo de cada cara en el momento del

registro. De forma que una simple imagen pueda ser comparada con un modelo robusto y

detallado para cada cara registrada en el sistema.

Varios trabajos han sido publicados [Phillips et al., 2009a, 2005] or [Lui et al., 2009]

donde los autores estudian los efectos de los diferentes factores de variabilidad de forma

individual. El desarrollo de pautas de evaluación para analizar estos efectos de forma

conjunta ayudaŕıa a construir un mejor entendimiento acerca de la influencia real de dichos

factores de variabilidad en sistemas de reconocimiento facial a distancia.

Li et al. [2009] consideran el reconocimiento biométrico real en entornos a distancia sin

restricciones sobre las condiciones ambientales como la escala, la pose, la iluminación, el en-

foque, la resolución, la expresión facial, los accesorios, el maquillaje, las oclusiones, fondo,

o la calidad fotográfica. Muchos algoritmos han sido propuestos en la literatura para hacer

frente a estos factores de forma individual [Chen et al., 2006; Gross et al., 2004; Lee et al.,

2005; Li et al., 2007; Wang et al., 2003; Zhou et al., 2007]. Siguiendo la metodoloǵıa usada

en esta Tesis (basada en la definición de escenarios y caracterización), se pueden agrupar

los diversos factores de variabilidad presentes en los escenarios de aplicación orientados al
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mundo real, y tratar con ellos como un conjunto no individual. Esto es una interesante

ĺınea de investigación futura.

La búsqueda de nuevos enfoques de compensación variabilidad para los sistemas de reco-

nocimiento facial. Por ejemplo, Factor Analysis [McCool et al., 2013; Prince et al., 2008],

un método estad́ıstico utilizado para describir la variabilidad entre las variables observa-

das en términos de un número potencialmente menor de variables no observadas llamadas

factores. Este método de compensación trataŕıa de modelar las variables observadas como

una combinación lineal de los factores potenciales con el fin de compensar los factores de

variabilidad desafiantes producidos por el incremento de la distancia de la adquisición en

sistemas de reconocimiento facial a distancia o en el movimiento.

La búsqueda de nuevos métodos de reconocimiento facial para sistemas biométricos a dis-

tancia. Por ejemplo, Scale-Invariant Feature Transform (or SIFT) [Lowe, 1999], es un

algoritmo utilizado en la visión artificial para detectar y describir las caracteŕısticas lo-

cales de las imágenes. A pesar de ser un algoritmo con un enfoque inicial diferente al

reconocimiento biométrico, podemos encontrar varios trabajos publicados donde los au-

tores utilizan este enfoque para la realización de sistemas de reconocimiento biométrico

utilizando diferentes caracteŕısticas, tales como la cara [Križaj et al., 2010], el iris [Alonso-

Fernandez et al., 2009] o la huella dactilar [Park et al., 2008]. Este podŕıa ser un enfoque

interesante para el reconocimiento biométrico a distancia, alternativa a los métodos ac-

tuales donde la mayoŕıa de ellos no son independientes a escala.

Combinar las regiones faciales propuestas con otros enfoques de reconocimiento facial

existentes adecuados para la v́ıdeo vigilancia, como [Sanderson and Lovell, 2009], donde el

proceso de extracción de caracteŕısticas se realiza en base a la división de la cara en nueve

regiones fijas.

Búsqueda de nuevas metodoloǵıas para incorporar datos biométricos soft para compensar

la variabilidad en los sistemas de reconocimiento biométricos a distancia. Por ejemplo,

el desarrollo de sistemas automáticos fiables capaces de extraer información biométrica

complementaria del objeto de interés y de la escena en la que éste está inmerso. Estos

sistemas seŕıan muy útiles en la v́ıdeo vigilancia y el análisis forense ayudando a los expertos

a emitir decisiones y dando a los investigadores la oportunidad de mejorar el rendimiento

de los sistemas de reconocimiento.

La evaluación de la robustez de otros rasgos biométricos adecuados para sistemas a dis-

tancia. El reconocimiento facial [Zhao et al., 2003] es el rasgo más adecuado usado en el

reconocimiento biométrico a distancia, pero hay importantes avances en el desarrollo de

sensores capaces de extraer rasgos tales como el iris a distancia [Matey et al., 2006]. El

estudio de estas técnicas en combinación con la cara o la forma de andar (cuando esté

disponible) puede conducir a enfoques mejorados multimodales capaces de trabajar en las

aplicaciones más exigentes más allá del actual estado del arte.
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