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a b s t r a c t

In certain applications based on multimodal interaction it may be crucial to determine not only what the
user is doing (commands), but who is doing it, in order to prevent fraudulent use of the system. The
biometric technology, and particularly the multimodal biometric systems, represent a highly efficient
automatic recognition solution for this type of applications.

Although multimodal biometric systems have been traditionally regarded as more secure than uni-
modal systems, their vulnerabilities to spoofing attacks have been recently shown. New fusion tech-
niques have been proposed and their performance thoroughly analysed in an attempt to increase the
robustness of multimodal systems to these spoofing attacks. However, the vulnerabilities of multimodal
approaches to software-based attacks still remain unexplored. In this work we present the first software
attack against multimodal biometric systems. Its performance is tested against a multimodal system
based on face and iris, showing the vulnerabilities of the system to this new type of threat. Score quan-
tization is afterwards studied as a possible countermeasure, managing to cancel the effects of the pro-
posed attacking methodology under certain scenarios.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multimodal systems represent a new direction for computing
that embraces users’ natural behaviour as the center of human–
computer interaction (Oviatt and Cohen, 2000). As with any other
novel discipline, the research community is just beginning to
understand how to design robust and well integrated multimodal
systems. But only trough multidisciplinary cooperation among
those with expertise in individual component technologies can
multimodal systems reach its final aim: building more general
and robust systems that will reshape daily computing tasks and
have significant commercial impact (Oviatt, 1999).

One of the main areas of research in multimodal interaction,
where specific expertise is needed, is recognition, generally re-
garded as a form of processing users’ commands. However, for cer-
tain applications based on multimodal interaction, a second form
of recognition is crucial: it is not only necessary to distinguish what
the user is doing, but who is doing it, so that non-authorized indi-
viduals cannot use the system. For these cases, a robust personal
automatic recognition solution such as the one provided by

biometrics is required. Although being relatively young compared
to other mature and long-used security technologies, biometrics
have emerged in the last decade as a pushing alternative for appli-
cations where automatic recognition of people is needed. Certainly,
biometrics are very attractive and useful for the final user: forget
about PINs and passwords, you are your own key (Jain et al.,
2006; Wayman et al., 2005). However, we cannot forget that as
any technology aimed to provide a security service, biometric sys-
tems are exposed to external attacks which could compromise
their integrity (Schneier, 1999). Thus, it is of special relevance to
understand the threats to which they are subjected and to analyse
their vulnerabilities in order to prevent possible attacks and in-
crease their benefits for the users.

External attacks to biometric systems are commonly divided
into: direct attacks (also known as spoofing attacks), carried out
against the sensor, and indirect attacks, directed to some of the in-
ner modules of the system. In the last recent years important re-
search efforts have been conducted to study the vulnerabilities of
biometric systems to both direct and indirect attacks (Galbally
et al., 2010, 2011; Matsumoto, 2004; Uludag and Jain, 2004).

This new concern which has arisen in the biometric community
regarding the security of biometric systems has led to the appearance
of several international projects, like the European Tabula Rasa (2010),
which base their research on the security through transparency princi-
ple (Schneier, 2000; Kerckhoffs, 1883): in order to make biometric
systems more secure and reliable, their vulnerabilities need to be
analysed and useful countermeasures need to be developed.
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In this scenario, biometric multimodality has been regarded as
an effective way of increasing the robustness of biometric-based
security systems to external attacks. Combining the information
offered by several traits would force an eventual intruder to suc-
cessfully break several unimodal modules instead of just one.
However, it has already been proven that this is not necessary in
spoofing attacks: breaking into the module based on the most
accurate biometric trait grants access to the multimodal system
in many occasions (Akhtar et al., 2011; Chetty and Wagner,
2005; Rodrigues et al., 2009).

In addition to research works which address the vulnerabilities
of multimodal systems to spoofing attacks (Akhtar et al., 2011;
Chetty and Wagner, 2005; Rodrigues et al., 2009, 2010; Akhtar
and Alfarid, 2011; Hämmerle-Uhl et al., 2011; Johnson et al.,
2010; Marasco, 2010), different studies may be found in the liter-
ature regarding the analysis of indirect attacks against unimodal
systems (Galbally et al., 2010; Uludag and Jain, 2004; Martinez-
Diaz et al., 2011). However, the problem of whether multimodal
approaches are vulnerable or not to software-based attacking
methodologies still remains unexplored.

In the present work we propose and analyse a general multi-
modal indirect attack, which can be used to study the vulnerabili-
ties of biometric systems based on different number of traits,
different fusion strategies and different types of templates (e.g.,
real valued, binary). Without loss of generality, the attack is ap-
plied to the particular case of a face- and iris-based recognition
system. This trait combination is regarded as one of the most pop-
ular and user-friendly, since the acquisition of both traits can be
transparent to the user (Wang et al., 2003; Zhang et al., 2010;
Gan and Liu, 2009; Gan and Liang, 2006). This provides a
straight-forward integration of both modalities, a complex topic
on multimodal computation (Oviatt et al., 2003). Furthermore,
the experimental protocol used is fully replicable, so that the
results obtained can be fairly compared.

Score quantization is studied afterwards as a possible counter-
measure against the proposed attack. Two different approaches are
analysed: quantizing the score before and after the fusion of the
partial face and iris scores. While the second scheme barely
reduces the success rate and efficiency of the attack, the first one
succeeds in preventing an intruder from breaking into the system.

Thus, following the same transparency principle which is start-
ing to prevail in the biometric community through European Pro-
jects such as Tabula Rasa (Schneier, 2000; Kerckhoffs, 1883), the
main objectives and contributions of the present work are: (i) pro-
posal of a fully novel software-based attacking methodology
against multimodal systems, (ii) study of the vulnerabilities of a
realistic multimodal system to the previous attack under a replica-
ble scenario, (iii) comparison of the performance of the attack to
that obtained against the unimodal modules in order to determine
if the multimodal approach increases the security of the system
against this type of threat, and (iv) study of some biometric-based
countermeasures which may prevent such an attack.

The paper is structured as follows. Related works are summa-
rised in Section 2. The novel multimodal attacking algorithm used
to evaluate the system is presented in Section 3. Then the multi-
modal verification system evaluated is described in Section 4.
The database and experimental protocol followed are presented
in Section 5. In Section 6 we describe and analyse the results ob-
tained. Score quantization is studied as a possible countermeasure
in Section 7. Conclusions are finally drawn in Section 8.

2. Related works

In 2001, Ratha et al. identified and classified in a biometric rec-
ognition system eight possible points of attack (Ratha et al., 2001).

These vulnerable points can be broadly divided into direct and
indirect attacks.

2.1. Direct attacks

Also known as spoofing-attacks, these are attacks at the sensor
level, carried out with synthetic biometric traits, such as gummy
fingers or high quality printed iris images, and thus requiring no
knowledge for the attacker of the inner parts of the system (match-
ing algorithm used, feature extraction method, template format,
etc.) Some research regarding the vulnerabilities of multimodal
systems to these attacks has been carried out over the last recent
years: in 2005, Chetty and Wagner (2005) tested the performance
of spoofing attacks against a novel multimodal system based on
face and voice; in 2009, Tan (2009) investigated methods for
increasing the security of multimodal systems based on face and
voice against spoofing attacks; in 2010, Rodrigues et al. (2010)
and 2011, Rodrigues et al. (2009), evaluated the vulnerabilities of
a multimodal system based on face and fingerprint, using different
fusion techniques and proposing new ones; in Johnson et al. (2010)
analysed the effect of spoofing attacks against a multimodal sys-
tem based on face and iris, proposing a method for the vulnerabil-
ities assessment of these systems; later in 2010, Marasco (2010)
analysed the security risks in multimodal biometric systems based
on face and fingerprint coming from spoofing attacks; in 2011,
Akhtar et al. (2011) and Akhtar and Alfarid (2011) used real rather
than simulated spoof samples for the evaluation of the vulnerabil-
ities of a multimodal system based on fingerprint, face and iris,
proposing a new learning algorithm able to improve the security
offered by the system against spoofing attacks. All these works
have proven that combining several traits in one system for person
authentication does not necessarily increment the security offered
against spoofing attacks, since the system can be bypassed by
breaking only one of the unimodal traits.

2.2. Indirect attacks

These attacks are directed to the inner modules of the system
and can be further divided into three groups, namely: (i) attacks
to the communication channels between modules of the system,
extracting, adding or changing information; (ii) attacks to the fea-
ture extractor and the matcher may be carried out using a Trojan
Horse that bypasses the corresponding module; and (iii) attacks
to the system database which manipulate it in order to gain access
to the application, by changing, adding or deleting a template.
While for direct attacks the intruder needed no knowledge about
the inner modules of the system, this knowledge is a main requi-
site here, together with access to some of the system components
(database, feature extractor, matcher, etc.). Most of these indirect
attacks are based on some variation of a hill-climbing algorithm,
consisting on iteratively changing some synthetically generated
templates until access to the system is granted. Even though some
research has been done in this area using unimodal systems
(Galbally et al., 2010; Uludag and Jain, 2004; Martinez-Diaz et al.,
2011; Adler, 2004), to the best of our knowledge there is no previ-
ous analysis of the vulnerabilities of multimodal biometric systems
to this kind of attacks.

3. Proposed attack

Until now, only the vulnerabilities of unimodal systems to indi-
rect attacks have been analysed. In this section we present the first
algorithm for the evaluation of the vulnerabilities of multimodal
systems to this type of threat. As can be observed in Fig. 1 (top),
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the input to the algorithm are the scores given by the matcher, and
the output the templates to be compared to the client account.

For simplicity, the attacking methodology is described here for
the particular case of a multimodal system based on the score fu-
sion of a real valued (e.g. face) and a binary (e.g. iris) matcher.
However, the proposed approach is general and may be applied
with very small modifications to attack multimodal systems work-
ing on: (i) more than two traits represented with real-valued or
binary templates (by adding new blocks after the switch in
Fig. 1), or (ii) feature-based fusion strategies (by rearranging the
template disposition).

In order to attack a multimodal biometric system where one of
the biometric traits is represented with real values and the other is
binary (most iris recognition systems work on binary templates),
the algorithm here presented combines two sub-algorithms. Each
of them attacks one segment of the template: the real-valued or
the binary segment. In the following subsections, each of the indi-
vidual sub-algorithms is described. Finally, the multimodal attack-
ing algorithm based on the previous two models is presented.

3.1. Sub-Algorithm 1: hill-climbing based on the Uphill Simplex
Algorithm

3.1.1. Problem statement
Consider the problem of finding a K-dimensional vector of real

values xface which, compared to an unknown template Cface (in
our case related to a specific client), produces a similarity score
bigger than a certain threshold dface, according to some matching
function Jface, i.e., JfaceðCface; xfaceÞ > dface. The template can be an-
other K-dimensional vector or a generative model of K-dimensional
vectors.

3.1.2. Assumptions
Let us assume:

� That there exists a statistical model G (K-variate Gaussian with
mean lG and a diagonal covariance matrix RG, with
r2

G ¼ diagðRGÞ), in our case related to a background set of users,
overlapping to some extent with Cface.

� That we have access to the evaluation of the matching function
JfaceðCface; xfaceÞ for several trials of xface.

3.1.3. Algorithm
The problem stated above can be solved by adapting the Down-

hill Simplex algorithm first presented in Nelder and Mead (1965)
to maximize instead of minimize the function Jface. We iteratively
form new simplices by reflecting one point, xl

face, in the hyperplane
of the remaining points, until we are close enough to the maximum
of the function. The point to be reflected will always be the one
with the lowest value given by the matching function, since it is
in principle the one furthest from our objective. Thus, as can be ob-
served in Fig. 2, the different steps followed by the sub-Algorithm 1
are:

1. Compute the statistical model GðlG;rGÞ from a development
pool of users.

2. Take K þ 1 samples (xi
face) defining the initial simplex from the

statistical model G and compute the similarity scores
JfaceðCface; xi

faceÞ ¼ si
face, with i ¼ 1; . . . ;K þ 1.

3. Compute the centroid �xface of the simplex as the average of
xi

face : �xface ¼ 1
Kþ1

P
ix

i
face.

4. Reflect the point xl
face according to the next steps, adapted from

the Downhill Simplex algorithm (Nelder and Mead, 1965). In
the following, the indices l and h are defined as
h ¼ arg maxiðsi

faceÞ; l ¼ arg miniðsi
faceÞ.

(a) Reflection: Given a constant a > 0, the reflection coefficient,
we compute:

a ¼ ð1þ aÞ�xface � axl
face:

Thus, a is on the line between xl
face and �xface being a the ratio be-

tween the distances ½a�xface� and ½xl
face

�xface�. If sl
face < sa

face < sh
face we re-

place xl
face by a. Otherwise, we go onto step 4b.

(b) Expansion or contraction.
i. Expansion: If sa

face > sh
face (i.e., we have a new maximum)

we expand a to b as follows:

b ¼ caþ ð1� cÞ�xface;

Fig. 1. Diagram of a general hill-climbing attack (top), with the specific modification scheme for the combined algorithm (bottom).
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where c > 1 is another constant called expansion coefficient, which
represents the ratio between the distances ½b�xface� and ½s�xface�. If
sb

face > sh
face, we replace xl

face by b. Otherwise, we have a failed expan-
sion and replace xl

face by a.
ii. Contraction: If we have reached this step, then sa

face 6 sl
face

(i.e. replacing xl
face by a would leave sa

face as the new min-
imum). We compute

b ¼ bxl
face þ ð1� bÞ�xface;

where 0 < b < 1 is the contraction coefficient, defined as the
ratio between the distances ½b�xface� and ½xl

face
�xface�. If sb

face >

maxðsl
face; s

a
faceÞ, then we replace xl

face by b; otherwise, the contracted
point is worse than xl

face, and for such a failed contraction we replace
all the xi

face’s by ðxi
face þ xh

faceÞ=2.

5. With the new xl
face value, update the simplex and return to step

3.

3.1.4. Stopping criteria
The algorithm stops when: (i) the maximum similarity score of

the simplex vertices is higher than the threshold dface (i.e., the ac-
count is broken), (ii) the variation of the similarity scores obtained
in a number of iterations is lower than a certain threshold or (iii) a
maximum number of iterations is reached.

3.1.5. Additional note
It is important to notice for the computation of the Efficiency

(defined in Section 5.3) of this sub-algorithm that at each iteration
(except for the initial one) a maximum of 2 matchings will be
performed (i.e., sa

face + sb
face). On average, the number of matchings

computed per iteration will be lower than 2 and greater than 1.
The hill-climbing based on the Uphill Simplex algorithm was

first presented in Gomez-Barrero et al. (2011), where it was used
to successfully attack a signature verification system. The perfor-
mance of the proposed algorithm showed a clear improvement in
the attacking capabilities with respect to previously proposed
state-of-the-art approaches, which motivated its choice for the
present multimodal vulnerability study.

3.2. Sub-Algorithm 2: indirect attack based on a genetic algorithm

3.2.1. Problem statement
Consider the problem of finding an L-dimensional binary vector

xiris which, compared to an unknown template Ciris (in our case re-
lated to a specific client), produces a similarity score bigger than a
certain threshold diris, according to some matching function Jiris, i.e.,

JirisðCiris; xirisÞ > diris. The template can be another L-dimensional
vector or a generative model of L-dimensional vectors.

3.2.2. Assumptions
Let us assume:

� That we have access to the evaluation of the matching function
JirisðCiris; xirisÞ for several trials of xiris.

3.2.3. Algorithm
The problem stated above may be solved by using a genetic

algorithm, which has shown a remarkable performance in binary
optimization problems (Brindle, 1981), to optimize the similarity
score given by the matcher, that is, the fitness value for an individ-
ual is siris ¼ J irisðxiris; CirisÞ. As can be seen in Fig. 3 the steps fol-
lowed by the sub-Algorithm 2 are:

1. Generate an initial population Pi with N individuals of length
L; L being the length of the iris code.

2. Compute the similarity scores si of the individuals (xi
iris) of the

population Pi; si ¼ Jðxi
iris; CirisÞ with i ¼ 1; . . . ;N.

3. Four rules are used at each iteration to create the next genera-
tion Pn of individuals from the current population:
(a) Elite: the two individuals with the maximum similarity

scores are kept unaltered for the next generation.
(b) Selection: certain individuals, the parents, are chosen by sto-

chastic universal sampling (Baker, 1987). This way, the indi-
viduals with the highest fitness values (similarity scores)
are more likely to be chosen as parents for the next gener-
ation: one subject can be selected from 0 to many times.
From the original N individuals, N=2� 1 fathers and
N=2� 1 mothers are chosen.

(c) Crossover: parents are combined to form the N � 2 children
of the next generation, following a scattered crossover
method. A random binary vector is created and the genes
(bits) of the child are selected from the first parent where
the value of the random vector is 1, and from the second
when it is 0 (vice versa for the second child).

(d) Mutation: random changes are applied to the bit values of
the new children with a mutation probability pm.

4. Redefine Pi ¼ Pn and return to step 2.

3.2.4. Stopping criteria
The algorithm stops when: (i) the best fitness score is higher

than the threshold diris (i.e., the account is broken), (ii) the variation
of the similarity scores obtained in a number of generations is

Fig. 2. Diagram of the modification scheme for the Sub-Algorithm 1, based on the Uphill-Simplex.
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lower than a previously fixed value, or (iii) when the maximum
number of generations is reached.

3.2.5. Additional note
It is important to notice for the computation of the Efficiency

(defined in Section 5.3) of this sub-algorithm that at each iteration
(i.e., generation) N matchings are performed (one for each of the
members of the population).

This particular implementation of a genetic algorithm was first
presented in Gomez-Barrero et al. (2012), where it was used to
analyse the vulnerabilities of the same iris recognition system con-
sidered in this work. The performance of the proposed algorithm
showed a very high attacking potential with very encouraging re-
sults and was the first one, to our knowledge, working on a binary
input (such as the iriscodes). Therefore, its use as part of the global
multimodal attack presented here seemed like a promising choice.

3.3. Multimodal attack: combination of Sub-Algorithms 1 (Uphill-
Simplex) and 2 (Genetic-Algorithm)

3.3.1. Problem statement
Consider the problem of finding a ðK þ LÞ-dimensional vector x

of real and binary values which, compared to an unknown tem-
plate C (in our case related to a specific client), produces a similar-
ity score bigger than a certain threshold d, according to some
matching function J, i.e., JðC; xÞ > d. The template can be another
ðK þ LÞ-dimensional vector or a generative model of ðK þ LÞ-
dimensional vectors.

3.3.2. Assumptions
Let us assume:

� That we know the distribution of the two subtemplates (real-
valued xface and binary xiris) within the multimodal template x.
� That we have access to the evaluation of the matching function

JðC; xÞ for several trials of x.

3.3.3. Algorithm
The problem stated above may be solved by dividing the tem-

plate x into its real-valued (xface) and binary parts (xiris) and alter-
nately optimize each of them as can be seen in Fig. 1. In order to
optimize each of the parts, the algorithms described in the previ-
ous subsections are used: the Sub-Algorithm 1 for the real-valued
segment (face) and the Sub-Algorithm 2 for the binary segment
(iris). Thus, the steps followed are:

1. Generate a synthetic template (x) randomly initializing the real-
valued (xface) and binary (xiris) segments, and compute the sim-
ilarity score S ¼ JðC; xÞ, which will be used as optimization
criterion.

2. Leaving one of the segments unaltered, optimize the other seg-
ment of the template using the appropriate sub-algorithm until
one of the stopping criteria of the sub-algorithm is fulfilled.

3. Change the optimization target to the segment which was
previously left unaltered and go back to step 2.

3.3.4. Stopping criteria
The algorithm stops when: (i) the verification threshold is

reached (i.e., access to the system is granted) or (ii) the total num-
ber of iterations (i.e., changes between the optimized segments)
exceeds a previously fixed value (i.e., the attack has failed).

3.3.5. Additional note
As will be analysed in the experimental section this algorithm

may present different results depending on whether it starts
attacking the real-valued or binary part of the template.

It is very important to notice that the multimodal attacking
algorithm does not have access at any point to the partial scores
of the unimodal modules (sface and siris) but only uses the final fused
score given by the system (S). This way, in the description of the
previous two sub-algorithms, sface ad siris should be changed by S
when they are used as part of the multimodal attack and not
individually.

Both attacking sub-algorithms stop when the improvement of
the final multimodal score saturates (i.e., the variation of the mul-
timodal similarity scores obtained in a number of iterations or gen-
erations is lower than a certain threshold). This ‘‘switching’’
methodology is preferred over a ‘‘sequential’’ approach based on
the assumption that once the algorithm has saturated attacking
one of the unimodal subsystems, further changes in the other
modality will lead to new improvements in the final multimodal
score.

4. Multimodal verification system attacked

The multimodal verification system evaluated in this work is
the fusion of two unimodal systems, namely: (i) a modified version
of the iris recognition system developed by Masek and Kovesi
(2003),2 which is widely used in many iris related publications;
and (ii) an Eigenface-based face verification system (Turk and
Pentland, 1991), used to present initial face verification results for
the recent Face Recognition Grand Challenge (Phillips et al., 2005).

Fig. 3. Diagram of the modification scheme for the Sub-Algorithm 2, based on a Genetic Algorithm.

2 The source can be freely downloaded from www.csse.uwa.edu.au/pk/student-
projects/libor/sourcecode.html.
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4.1. Face verification system

The system evaluated uses Multi-Layer Perceptron (MLP) and a
cascade of Haar-like classifiers in order to segment the faces in the
images, together with the position of the eyes on them. Principal
Component Analysis (PCA) is used afterwards so that face images
can be represented in a lower dimensional space (Galbally et al.,
2010). 80% of the variance is retained when training the PCA vector
space with cropped face images of size 64� 80, reducing the origi-
nal 5120-dimensional space to only 100 dimensions or
eigenvectors.

Finally, the similarity scores are computed in this PCA vector
space using the Euclidean distance.

4.2. Iris verification system

The system comprises four different steps, namely: (i) segmen-
tation, where the method proposed in Ruiz-Albacete et al. (2008)
is followed, modelling the iris and pupil boundaries as circles; (ii)
normalization, using a technique based on Daugman’s ruber sheet
model that maps the segmented iris region into a 2D array
(Daugman, 2004); (iii) feature encoding, which produces a binary
template of 20� 480 ¼ 9600 bits and the corresponding noise
mark (representing the eyelids areas) by convolving the normal-
ized iris patter with 1D Log-Gabor wavelets; and (iv) matching,
where the inverse of a modified Hamming distance is used, which
takes into account the noise mask bits.

This way, the similarity score between two templates is com-
puted as 1=HD (so that a higher score implies a higher degree of
similarity):

HD ¼
PL

j¼1XjðXORÞYjðANDÞ�XnjðANDÞ�Ynj

L�
PL

k¼1XnkðORÞYnk

where Xj and Yj are the two bitwise templates to compare, Xnj and
Ynj are the corresponding noise masks for Xj and Yj, and L is the
number of bits comprised in each template. Xnj denotes the logical
not operation applied to Xnj.

4.3. Multimodal verification system

Given an input vector x, the system performs the following
tasks in order to obtain the final score, S, as can be seen in Fig. 4:

1. Compute the similarity scores obtained by the face (sface) and
iris (siris) traits, as given by the matchers described in Sections
4.1 and 4.2.

2. Normalize the scores sk, with k ¼ face; irisf g, using hyperbolic
tangent estimators (its robustness and high efficiency are pro-
ven in Jain et al. (2005)):

s0k ¼
1
2

tanh 0:01
sk � l

r

� �
þ 1

n o

where sk is the original similarity score obtained by the iris (respec-
tively face) section of the template, l and r the mean and standard
deviation of the scores distribution of the iris (respectively face),
and s0k the normalised score. This way, both partial scores (face
and iris) lie in the interval [0,1].
3. Finally, both normalised scores are fused with a sum, given the

very good results that this fusion rule has presented even when
compared with more sophisticated methods like decision trees
(Ross and Jain, 2003) or neural networks (Wang et al., 2003):

S ¼ s0iris þ s0face

There may be other fusion strategies that can improve the perfor-
mance of the multimodal system. However, simple summation

gives very good results, and it is not the scope of the paper to find
the optimal fusion strategy.

5. Database and experimental protocol

Prior to any vulnerability assessment study a performance eval-
uation of the systems being attacked should be carried out. The
performance evaluation will permit to determine how good is
the system and, more important, the operating points where it will
be attacked as the success chances of this kind of attacking algo-
rithms are, in principle, highly dependent on the False Acceptance
and False Rejection rates of the system. While the FRR measures
the probability of rejecting a genuine user, the FAR gives a measure
of the probability of an impostor being taken as a genuine user.
Therefore, in general, the higher the FAR, the easier for an eventual
attacker to break into the system. Moreover, for the particular case
of the proposed method, attacking the system at a lower FAR im-
plies reaching a higher threshold, which leads to a decrease on
the success chances of the algorithm.

Furthermore, defining the operating points will enable us to
compare, in a more fair fashion, the vulnerabilities of the different
systems to the same attack (i.e., we can determine for a given FAR
or FRR which of them is less/more robust to the attacking
approach).

Both the database and the protocol used for the performance
and security evaluations of the multimodal system are the same
ones used for the evaluation of the unimodal subsystems, so that
the results are fully comparable. This way, we will be able to deter-
mine whether the multimodality enhances the system security
against the proposed attacking approaches with respect to the
unimodal traits.

5.1. Database

The experiments are carried out on the face and iris subcorpora
included in the Desktop Dataset of the multimodal BioSecure data-
base (Ortega-Garcia et al., 2010), which comprises voice, finger-
prints, face, iris, signature and hand of 210 users, captured in
two time-spaced acquisition sessions. This database was acquired
thanks to the joint effort of 11 European institutions and has be-
come one of the standard benchmarks for biometric performance
and security evaluations (Mayoue et al., 2009). It is publicly avail-
able through the BioSecure Foundation.3

The database comprises three datasets captured under different
acquisition scenarios, namely: (i) Internet Dataset (DS1, captured
through the Internet in an unsupervised setup), (ii) Desktop Data-
set (DS2, captured in an office-like environment with human
supervision), and (iii) the Mobile Dataset (DS3, acquired on mobile
devices with uncontrolled conditions). The face subset used in this
work includes four frontal images (two per session) with an homo-
geneous grey background, and captured with a reflex digital cam-
era without flash (210� 4 ¼ 840 face samples), while the iris
subset includes four grey-scale images (two per session as well)
per eye, all captured with the Iris Access EOU3000 sensor from
LG. In the experiments only the right eye of each user has been
considered, leading this way as in the face case to 210� 4 ¼ 840
iris samples.

5.2. Performance evaluation

As the iris and face subcorpus present identical sample distribu-
tions, the protocol followed for the performance evaluation of the
unimodal modules and the multimodal system is the same. As can

3 http://biosecure.it-sudparis.eu/AB.
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be seen in Fig. 5, each subcorpus of the database is divided in two
sets, namely: (i) a training set comprising the first three samples of
170 clients, used as the enrolment templates; (ii) a test set formed
by the fourth image of the 170 clients above (used to compute the
genuine scores) and the 4 images of the remaining 40 users (used
to compute the impostor scores).

As a result of: (i) using the same subjects for PCA training and
client enrolment for the face verification subsystem, and (ii) man-
ually segmenting those eyes that were not successfully segmented
automatically (3.04%), the system performance is optimistically
biased, and therefore harder to attack than in a practical situation
(in which the enrolled clients may not have been used for PCA
training and the image segmentation would be fully automatic).
This means that the results presented in this paper are a conserva-
tive estimate of the attack’s performance.

The final score given by the system is the average of the scores
obtained after matching the input template to the three face and
iris templates of the client model C. Table 1 shows that the ERR
of the unimodal face and iris modules and of the whole multimodal
system computed according to the protocol described above. In
this chart we can observe that: (i) the performance of the unimodal
modules is not noticeably affected by score normalization (i.e., the
EER barely changes after normalising the scores), and (ii) the per-
formance of the multimodal system (0.83% EER) clearly improves
that of the unimodal systems (4% and 6% respectively). In Fig. 6
the Detection Error Tradeoff (DET) curves of the unimodal and
multimodal systems obtained using the described protocol are
shown. As can be seen, the multimodal system clearly outperforms
both unimodal systems at all points.

5.3. Experimental protocol for the attacks

The user accounts to be attacked by the algorithm are generated
with the training set defined in the performance evaluation proto-
col (i.e., the first three samples of the 170 users in Fig. 5). The per-
formance of the attack is evaluated in terms of: (i) its Success Rate
(SR) or expected probability of bypassing the system, computed as
the ratio SR ¼ AB=AT , where AB is the number of broken accounts
and AT is the total number of attacked accounts; and (ii) its Effi-
ciency (Eff), or inverse of the average number of comparisons

needed to break an account, Eff ¼ 1=
PAB

i¼1ni=AB

� �
, where ni is the

number of comparisons made to bypass the ith account, with
i ¼ 1; . . . ;AB.

It has to be emphasized that the Eff is computed in terms of the
number of matchings performed by the attacking algorithm and not
according to the number of iterations needed (i.e., two algorithms

Fig. 4. Similarity score obtained from one multimodal template (x) consisting of two different segments, containing: face features (xface, real values) and the iris code (xiris ,
binary). The unimodal verification subsystems give the corresponding scores (sface; siris), which are then normalised (s0face; s

0
iris) and fused to obtain the final output of the global

system: S.

Fig. 5. Partition of the BioSecure DS2 DB according to the performance evaluation protocol defined.

Table 1
EER of the unimodal and multimodal systems, based on face and iris, before and after
the normalization of the scores.

EER (%)

Face Iris Multimodal

Before norm. 6.55 4.11 –
After norm. 6.61 4.04 0.83

Fig. 6. DET curves of the unimodal and multimodal systems.

M. Gomez-Barrero et al. / Pattern Recognition Letters 36 (2014) 243–253 249



Author's personal copy

performing the same number of iterations to break an account do
not necessarily have the same Eff).

The SR gives an estimation of how dangerous the attack is: the
higher the SR, the bigger the threat. On the other hand, the Eff tells
us how easy it is for the attack to bypass the system in terms of
speed: the higher the Eff, the faster the attack.

The different attacks have been evaluated at three operating
points which correspond to FAR = 0.1%, FAR = 0.05% and
FAR = 0.01%, which, according to ANSI (2001), offer a low, medium
and high security level.

6. Results: attack performance

The objectives of this first study of the vulnerabilities of a mul-
timodal system to an indirect attack are: (i) to evaluate the perfor-
mance of the proposed attacking methodology, and (ii) to test
whether the use of two different biometric traits increments the
security level and robustness of the system to this kind of attacks.

In the first set of experiments, the performance of the two
attacking sub-algorithms against the unimodal systems is studied,
so that later a comparison between the unimodal and the multi-
modal systems can be established. In the second set, the perfor-
mance of the attack against the multimodal system is tested.
Score quantization is afterwards analysed as a possible counter-
measure, studying its impact in the SR and the Eff of the multi-
modal attacking scheme.

6.1. Sub-Algorithm 1 vs face verification system

The performance of the Sub-Algorithm 1 against the unimodal
system based on eigenfaces is tested at the three operating points
mentioned before, namely: (i) FAR = 0.10%, (ii) FAR = 0.05%, (iii)
FAR = 0.01%. The results of the experiments are detailed in Table 2,
where we can observe that the algorithm successfully breaks all
the attacked accounts. Also worth noting that for this attack the
efficiency remains almost invariant, regardless of the operating
point considered.

It should also be emphasized that in the present work the hill-
climbing attack is initialized from a normal distribution of zero
mean and unit variance, that is, the first simplex is generated with-
out needing any training faces, contrary to what happened in other
state of the art attacking methods (Galbally et al., 2010). Further-
more, the parameters a, b and c used here are the same that were
optimized in Gomez-Barrero et al. (2011) to break a signature ver-
ification system, which proves the robustness of the algorithm: it is
able to break totally heterogeneous systems working on different
biometric traits without adjusting its parameters.

6.2. Sub-Algorithm 2 vs iris verification system

As before, the performance of the Sub-Algorithm 2 against the
unimodal system based on iris is tested at the three operating
points mentioned before, namely: (i) FAR = 0.10%, (ii) FAR = 0.05%,
(iii) FAR = 0.01%. The results of the experiments are also shown in

Table 2, where we can observe that the algorithm is able to
successfully break more than 90% of the accounts for the point of
operation corresponding to a low security level, and more than
60% for the point corresponding to a high security level. As in the
previous case the efficiency of the attack remains almost invariant,
slightly decreasing, as would be expected, for higher security
points where the attack needs more iterations to break the system
(i.e., it becomes slower).

6.3. Combined attack vs multimodal system

We run two sets of experiments, namely: (i) the algorithm
starts attacking the face section of the template (Sub-Algorithm
1), and (ii) the algorithm starts attacking the iris section (Sub-Algo-
rithm 2). Between 40% and 60% of the times that the algorithm
starts attacking the iris section of the template it is able to break
the account without changing to the face segment. This does not
happen when the algorithm starts attacking the face segment. This
way, as it was already proven for spoofing attacks in Akhtar et al.
(2011), Rodrigues et al. (2009) and Johnson et al. (2010), attacking
only the best individual matcher (i.e., the unimodal system with
the lowest EER, the iris one in our case) grants in many cases access
to the system under attack.

Secondly, in Table 2 we also show the results obtained by the
multimodal approach when it starts attacking the face segment
(randomly initializing the iris section) or iris segment (randomly
initializing the face section). As can be observed, in both cases
the SR is as high as 100% for all the operating points tested. How-
ever, the Eff of the attack decreases about 25% when starting with
the Sub-Algorithm 2 (Genetic Algorithm) compared to the case of
starting with the Sub-Algorithm 1 (Uphill-Simplex). The reason lies
on the Eff of the individual Sub-Algorithms. On the left columns of
Table 2 (Unimodal Attacks) we can observe that the Eff of the Sub-
Algorithm 1 is between 15 and 20 times higher than the Eff of Sub-
Algorithm 2 (for a similar number of iterations performed to break
an account the number of matchings carried out is significantly
higher for the binary attack as was presented in Sections 3.1 and
3.2). When the multimodal algorithm starts attacking the iris seg-
ment, in many occasions it is able to break the system without
changing to the face segment. This way, the multimodal attacking
algorithm can not benefit from the higher Eff of the Sub-Algorithm
1, and has a lower Eff than that achieved when the attack is started
against the face section.

From the previous observations none of the two main vulnera-
bility scenarios considered for the multimodal attack is clearly bet-
ter than the other. On the one hand, when it starts attacking the
face segment, it is faster but it needs to use both sections of the
template to break the system (i.e., face and iris). On the other hand,
when it starts attacking the iris segment, it becomes slower but it
has a good chance of gaining access to the system using just one of
the template sections (i.e., iris) with the advantage that this may
entail in terms of simplification of the attack.

In Table 2 we can also observe that the most robust system in
terms of Eff and SR is the unimodal system based on iris and not

Table 2
Eff and SR for the Sub-Algorithm 1 (Uphill-Simplex) and Sub-Algorithm 2 (Genetic Algorithm) attacks carried out against the corresponding unimodal systems, and for the
multimodal attack against the multimodal system.

FAR (%) Unimodal attacks Multimodal attack

Sub-Alg. 1 vs face Sub-Alg. 2 vs iris Starts face Starts iris

SR (%) Eff (�10�4) SR (%) Eff (�10�4) SR (%) Eff (�10�4) SR (%) Eff (�10�4)

0.10 100 22.472 91.18 1.400 100 1.9372 100 1.4180
0.05 100 22.124 80.89 1.255 100 1.8218 100 1.3585
0.01 100 21.930 62.36 1.102 100 1.3702 100 1.1112
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the multimodal approach as would be expected. This shows that,
as already demonstrated for spoofing attacks (Akhtar et al.,
2011; Rodrigues et al., 2009; Johnson et al., 2010), although in
general multimodal systems offer a better performance than
their unimodal subsystems (for our particular case the EER de-
creases from 5% to 0.8%), they are not necessarily less vulnerable
to software attacks. These results reinforce the importance of
reporting the SR of the attack always in terms of the operating
point at which it was evaluated (i.e., FAR), so that a fair compar-
ison across different recognition systems may be established.

Finally, in Fig. 7 the evolution of the score for each iteration of the
algorithm can be observed. On the left, the face section of the tem-
plate is first attacked, and several areas with different slopes can
be observed (marked with letters A, B, C and D), depending on what
part of the template is being attacked. In segments A and C, it can also
be observed that the algorithm switches to attack the other section
of the template after the score remains almost constant for a fixed
number of iterations. On the other hand, on the graph on the right,
no ‘‘steps’’ can be observed on the curve: the attack started attacking
the iris section and never changed to the face segment as the tem-
plate was successfully broken using only the iris part.

7. Countermeasuring the attack: score quantization

Given the high vulnerability of the multimodal system evalu-
ated to the combined attacking algorithm proposed, some attack
protection needs to be incorporated in order to increase the
robustness of the system. When a countermeasure is introduced
in a biometric system to reduce the risk of a particular attack, it
should be statistically evaluated considering two main
parameters:

� Impact of the countermeasure in the system performance. The
inclusion of a particular protection scheme might change the
FAR and FRR of a system, and these changes should be evaluated
and reported (other performance indicators such as speed or
computational efficiency might also change, but are not consid-
ered here).
� Performance of the countermeasure, i.e. impact of the counter-

measure in the SR and Eff of the attack.

It is often argued that a simple account lockout policy (i.e.,
blocking the user accounts after a number of consecutive

unsuccessful access attempts) would be enough to prevent an at-
tack such as the one proposed in the present work. However, such
countermeasures still leave the system vulnerable to a spyware-
based attack that interlaces its false attempts with the attempts
by genuine users (successful attempts) and collects information
over a period of time (i.e. piggyback attack). Furthermore, it may
be used by the attacker to perform an account lockout attack
(i.e., the intruder tries to illegally access a great amount of accounts
blocking all of them and collapsing the system).

In this scenario, a specific design of the matching algorithm can
also be implemented in order to reduce the effects of this type of
threats, providing this way an additional level of security through
a biometric-based protection scheme complementary to other pos-
sible non-biometric countermeasures.

Among the biometric-based approaches to reduce the effects of
hill-climbing attacks, score quantization has been proposed as an
effective countermeasure (Adler, 2004). In fact, the BioApi Consor-
tium (BioAPI, 2009) recommends that biometric algorithms emit
only quantized matching scores. Such quantization means that
small changes in the randomly generated templates will normally
not result in a modification of the matching score, so that the at-
tack does not have the necessary feedback from the system to be
carried out successfully.

With this precedents, in this section we analyse the perfor-
mance of score quantization as a possible countermeasure against
the proposed attack. In the experiments we will consider the mul-
timodal system operating at a medium security operating point
(FAR = 0.05%). For the combined attack we will assume the same
configuration used in the vulnerability assessment experiments.

Since the global score in this multimodal system is obtained
from two previous partial (face and iris) scores that are normalised
and then fused, the quantization can take place either before or
after this sum or fusion. Both possible schemes are studied in this
section.

In order to select the appropriate quantization step according to
the trade-off that should be met in terms of its impact on the sys-
tem performance (ideally as small as possible) and on the attack
performance (as big as possible), several Quantization Steps (QS)
are tested in terms of their corresponding Positive Increment, PI
(i.e., percentage of iterations that produced an increase in the sim-
ilarity score higher than the quantization step considered). The EER
of the system with the different QS is computed when the quanti-
zation is applied before and after the score fusion. The QS

Fig. 7. Evolution of the score in each iteration for two broken accounts in the two different scenarios studied: the algorithm starts attacking the face section of the template
(left) or the iris section (right). The verification threshold is represented with a dashed horizontal line. In the left plot, the different phases of the algorithm, alternatively
attacking the face and iris sections, are marked with letters A–D.
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considered range from 10�8 and 10�1. For the last QS (10�1), the
EER increases considerably (i.e., the QS is too big), while for the
remaining values the performance of the system is not significantly
affected. The multimodal attack is therefore repeated applying four
QS values, namely: (i) QS = 10�4, (ii) QS = 10�3, (iii) QS = 10�2, and
(iv) QS = 10�1. The first three QS values guarantee a similar perfor-
mance of the system, while the last one can be useful for very high-
security applications, when a lower performance of the system
might be acceptable if it leads to a much higher protection against
the analysed attacks.

In Table 3 the results of these experiments are shown. As can be
seen, the quantization of the scores is effective as a countermea-
sure against the combined attacking algorithm presented in this
work when it is applied:

� Before the fusion with a QS = 10�2. Since the rounding effect of
quantizing the scores and then summing them is bigger than
that obtained when fusing the scores before applying the quan-
tization, the performance of the attack decreases more when
applying the quantization before the fusion. This leads to a
SR = 0% for the QS = 10�2 when the partial scores are quantized
before fusing them.
� Before or after the fusion with a QS = 10�1. With this QS, the

system is able to stop the attack regardless of the point where
the scores are quantized. As in the previous case, the attack does
not receive the necessary feedback from the system on whether
it has managed to increase or not the similarity score, and thus
fails to achieve its objective.

In both cases listed above, no account is broken, while for the
remaining trials the SR of the attack is still 100%, only decreasing
its Eff (i.e., more comparisons are needed to break an account).
However, while the performance of the system is not considerably
affected in the first case (EER = 1.37%), it is barely acceptable with
a QS = 10�1: the EER is as high as 32.06%.

8. Conclusions

In this work, we have presented and evaluated the first software
attack against multimodal biometric systems. As case study, we
have tested it on a system based on face and iris, a trait combination
regarded as user-friendly: the features of both traits may be ex-
tracted from images the can be captured at the same time, being
the acquisition process transparent to the user. The attacking algo-
rithm shows a remarkable performance, thus proving the vulnera-
bilities of multimodal systems to this type of attacks. Furthermore,
the multimodal system has not presented an improvement in the
security level against this kind of attack compared to the face and iris
modules on their own. This fact confirms what previous studies on
spoofing attacks pointed out: even though multimodal systems rec-
ognition performance is higher, they do not necessarily increase the
robustness of unimodal approaches to external attacks.

The quantization of the scores given by the matcher is analysed
as a possible countermeasure. Two different approaches are stud-

ied and compared: the partial scores can be quantized before
fusing them, or the final score can be quantized after the fusion.
The first scenario leads to a null success rate without affecting
the verification performance of the system, being thus a suitable
countermeasure for the proposed attack. The second case also pro-
tects the system against the attack but at the cost of drastically
reducing its verification performance.

Research works such as the one presented in this article pretend
to bring some insight into the difficult problem of biometric secu-
rity evaluation through the systematic study of biometric systems
vulnerabilities and the analysis of effective countermeasures that
can minimize the effects of the detected threats, in order to in-
crease the confidence of the final users in this rapidly emerging
technology.
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