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a b s t r a c t

On-line signature verification still remains a challenging task within biometrics. Due to their behavioural
nature (opposed to anatomic biometric traits), signatures present a notable variability even between
successive realizations. This leads to higher error rates than other largely used modalities such as iris or
fingerprints and is one of the main reasons for the relatively slow deployment of this technology. As a
step towards the improvement of signature recognition accuracy, the present paper explores and
evaluates a novel approach that takes advantage of the performance boost that can be reached through
the fusion of on-line and off-line signatures. In order to exploit the complementarity of the two
modalities, we propose a method for the generation of enhanced synthetic static samples from on-line
data. Such synthetic off-line signatures are used on a new on-line signature recognition architecture
based on the combination of both types of data: real on-line samples and artificial off-line signatures
synthesized from the real data. The new on-line recognition approach is evaluated on a public
benchmark containing both real versions (on-line and off-line) of the exactly same signatures. Different
findings and conclusions are drawn regarding the discriminative power of on-line and off-line signatures
and of their potential combination both in the random and skilled impostors scenarios.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Among the different biometric traits that have been proposed
and studied in the literature, automatic handwritten signature
verification stands out as one of the most attractive due to its
social and legal acceptance, derived from the widespread use that
has traditionally been given as a personal authentication method.
In addition, handwritten signature also presents the appealing
feature of being easily acquired either with an inking pen over a
sheet of paper or by electronic means with a number of existing
pointer-based devices (e.g., pen tablets, PDAs, mobile phones, and
touch screens). As a consequence, signature recognition has been a
very consistent and active field of research over the last three
decades, with multiple works being published in this lapse of time.
All these research efforts have been compiled in a number of
comprehensive surveys that give a clear overview of the state of

the art evolution from the first pioneering works in the 80 s to
date [1–6].

However, in spite of its advantages, the practical deployment of
this technology has been slower than what was foreseen some
years ago, as its performance remains a step behind other largely
used traits like fingerprint or iris. Such a poorer performance is
mainly explained by three aspects that are typical of behavioural
biometrics (i.e., biometric traits that we learn to produce): (i) due
to its behavioural nature, the intra-class variability (i.e., difference
among samples of the same individual) is in general higher than
that of physiological biometrics (i.e., traits we are born with); (ii)
also, learned traits such as the signature present a relatively low
permanence over time, which decreases the accuracy of recogni-
tion systems [7]; (iii) finally, the fact that a signature is something
that we can learn to produce opens two different impostor
scenarios:

� Random impostors, also known as zero-effort impostors, are
common to all biometrics, and refer to the case where the
attacker tries to access the verification system with his own
trait, while claiming a different user's identity. This is the most
usual operating scenario defining the baseline performance
of applications related to areas such as access control or
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commercial transactions. As such, biometric verification sys-
tems are almost in all cases tuned to achieve a certain required
performance in this scenario (i.e., the decision threshold is
fixed considering random impostors).

� Skilled impostors: this scenario is unique for behavioural bio-
metrics. This type of traits allows a different person to learn
how to produce the genuine user's biometric identifier (e.g., the
signature). In this scenario, the attacker has some knowledge of
the genuine trait and tries to access the system imitating it.
Such skilled forgeries usually lie inside the subject's intraclass
variability leading to a significant decrease of the recognition
performance. This operational framework is specially relevant
in forensic related applications (e.g., signature forgery detection
in checks or official documents).

The previous three behavioural-related aspects turn automatic
verification of the handwritten signature into a very challenging
research area. Such authentication task may be divided into two
different but related modalities, according to the input information
available: (i) On-line or dynamic signature recognition, which is
based on the time functions produced during the signing process
(e.g., position trajectories or pressure versus time), acquired using
devices like touch screens or digitizing tablets; and (ii) off-line or
static signature recognition, based on the static image of the
signature, usually digitalized from a hard copy document.

Traditionally, on-line signature has been regarded as more accurate
than its off-line version due to the greater amount of information
available [6]. As already pointed out, off-line verification is based
mainly on the geometric characteristics of the signature, while for the
dynamic problem recognition algorithms can use not only the
geometry but also how this geometry was generated and, therefore,
should yield better performance rates. However, in the case of
dynamic signature some information, such as the grey level distribu-
tion, the ink deposition model, or the geometric dependencies, could
be difficult to exploit. Consequently, it is reasonable to assume, as it
has already been shown in different works [8], that the optimal
scenario in terms of recognition accuracy is to perform authentication
based on both versions of the same signature (dynamic and static) and
not on just one of them.

Unfortunately, in real applications this is very rarely the case,
since the simultaneous acquisition of dynamic and static instances
from the same signature is considerably time consuming, essen-
tially due to the postprocessing steps required by off-line samples
(e.g., digitalization and segmentation of the image). Due to these
practical impediments, and in spite of their superior performance,
fusion recognition approaches based on dynamic and static data
have been largely neglected. As a consequence, for most real-time
authentication applications, research has been focused on
dynamic signature recognition thanks to its simple and fast
automatic acquisition and its higher recognition performance
compared to its off-line counterpart.

In the present work, we propose a novel strategy to overcome
the above-mentioned reality, i.e. non-availability of both on-line
and off-line versions of the same signature for recognition pur-
poses. In particular, we describe a new method for the synthetic
generation of static samples from their real dynamic instances.
This method allows us to incorporate certain on-line information
from the real signature (e.g., the speed, the pressure or the pen-
ups trajectory), to the synthetic static image in order to increase its
discriminative power specially in the presence of skilled forgeries.
Then, synthetically generated off-line data are used within a novel
on-line recognition architecture to enhance the performance of
current top-ranked dynamic signature verifiers, comparing the
accuracy of the new proposed approach with traditional fusion
techniques based only on real data.

Such a study has been motivated by three facts, already high-
lighted above, which may be observed in the current general
signature context in biometrics, namely

� Signature performance rates are still below the accuracy
demanded by industry for many real-world applications and,
therefore, new improved recognition algorithms and appro-
aches are required.

� There is still not enough understanding of the relationship
between on-line and off-line handwritten data and their
potential synergy.

� Although some studies already exist both on on-line and off-
line synthetic signature generation [9–11], the potential appli-
cations of synthetic biometric data are still largely unexplored.

With the previous motivations in mind, the questions raised in
the present article include the following: under the experimental
setup considered in the work, does the on-line modality outper-
form off-line recognition systems? Although both types of data
(static and dynamic) are extracted from the same signature, what
is their level of complementary? Can the fusion of both types of
systems improve the best overall individual performance? Is it
possible to generate synthetic off-line data from real dynamic
signatures which improve the performance of the on-line based
systems? How does synthetic off-line signature perform compared
to real off-line data? Does the synthetic generation of off-line data
allow creating enhanced signature static images in terms of their
recognition performance? What other advantages can be obtained
through the synthetic generation of off-line data from real on-line
signatures?

The main objectives and contributions of the present work are
directly derived from the previously raised questions and may be
summarized as follows:

� Performance comparison on the exact same public benchmark
(i.e., database and evaluation protocol) of top ranked state of
the art on-line and off-line systems, both in the random and
skilled-forgery scenarios. This way, valuable findings are
extracted regarding the accuracy of both modalities.

� Analysis of the complementarity of on-line and off-line signa-
ture both in the random and skilled-forgery scenarios.

� Development and analysis of a dynamically enhanced method
for the automatic generation of synthetic off-line data from real
on-line signatures.

� Proposal of a new on-line signature recognition architecture
based on the combination of real dynamic data and automati-
cally generated synthetic off-line data (from those same real
on-line samples).

The rest of the paper is structured as follows. A summary of the
closest related works is given in Section 2. The novel approach for
the generation of enhanced synthetic off-line signatures from on-
line data is described in Section 3. The experimental protocol
including databases, recognition systems and tests is presented in
the following two sections, Sections 4 and 5. Validation and
experimental results, as well as the new proposed on-line recog-
nition architecture are given in Section 6. Conclusions are finally
drawn in Section 7.

2. Related work

The present research work is related to a number of different
areas within signature biometrics such as on-line and off-line
monomodal signature verification [4,5] or synthetic handwritten
signature generation [10,12,13]. Each of these fields presents a
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solid research background with multiple studies impossible to
cover here extensively. For this reason, the current section only
refers to those works which are thematically closer to the
objectives mentioned in Section 1. In particular, we will focus on
past research which addresses the direct comparison of on-line
and off-line signature verification performance and the feasibility
of combining them in order to improve their overall recognition
accuracy. Accordingly, other works that may be found in the
literature which exploit certain common features between
dynamic and static samples with different goals such as improving
off-line signature segmentation [14], or aiding off-line signature
recognition based on previous on-line enrolment [15], will not be
covered here.

The fusion of static and dynamic signature to enhance the
performance of automatic recognition systems has already been
studied in several works, where it has been shown that such a
fusion approach can yield a significant decrease in the error rates
[8,16–18]. Although all of them represent very valuable research
efforts, in most of these previous approaches, experiments are
carried out on small proprietary databases which do not contain
real off-line data (static signatures are generated as single stroke
images from the on-line version) or where on-line and off-line
samples were not acquired simultaneously but on different ses-
sions. This way, such studies rely on experimental protocols where
both versions (static and dynamic) of the exact same signatures
are not available. In the present work all validation experiments
have been carried out on the same public benchmark which
comprises the on-line and off-line information for the same
signatures of 132 users.

One of the first efforts that considered the combination of on-
line and off-line features was conducted in [18]. The tests were
carried out over a very limited database comprising 20 signatures
per subject of 14 individuals. As many as 16 of those signatures
were used to train user specific classifiers based on Hidden
Markov Models (HMM). Only 40 skilled forgeries and 20 random
forgeries were considered in the experiments. Although this work
set the path for later research on on-line and off-line signature
performance comparison, it does not strictly study the fusion of
both types of systems, but rather analyses the complementarity of
different static- and dynamic-based sets of features extracted from
on-line samples. Competitive results were achieved in the work
after combining the static and dynamic descriptors with a relative
performance increase of around 3% with respect to the best
individual feature set. Such a feature-based strategy was later
followed in the literature by more comprehensive studies [19,20].

The first work that effectively studied the potential fusion
between on-line and off-line signature verification systems was
reported in [16]. The authors used a proprietary database captured
with a digitizing tablet to analyse the performance of (i) an on-line
verifier based on the pressure, pen-ups and total duration of the
signature; and (ii) an off-line authentication system based on a
feature vector extracted applying 1D-Log Gabor wavelets and
Euler numbers. Then, score level fusion of the two approaches
was applied, reporting a small performance improvement of
around 1% with respect to the best monomodal system. One of
the limitations of this study is that no off-line real data was
acquired. All static samples were synthetically generated as simple
single stroke images from the on-line versions. Therefore, it is not
possible to establish a fair comparison between the performance
of real and synthetic off-line signatures or whether their fusion
with the dynamic data yields similar results.

In [17] the authors also analyse the benefits of combining static-
and dynamic-based classifiers. However, no real off-line signatures are
used in the experiments. As in the previous case, in this work the on-
line signature is converted into a simple static image from which two
rotation and scaling invariant features were extracted: the Normalized

Fourier Descriptors (NFD) and the Normalized Central Moment (NCM).
The speed signal was used to model the on-line sample. The authors
claim that the combination of the three descriptors (speed, NFD and
NCM) using a one hidden-layer perceptron, achieved an error rate of
0%, on the random forgery scenario evaluated over a proprietary
database of 100 users with 10 repetitions per signer. The skilled
forgery scenario was not considered.

Probably the most comprehensive work published to date in
the field of on-line and off-line signature fusion was reported in
[8]. In this case, experiments are carried out on a subset of the
BiosecurID database which contains both on-line and off-line
versions of the same samples for 132 users with 16 genuine
signatures and 12 skilled forgeries per signer [21]. Different
enrolment scenarios are considered (with four and 12 signatures,
respectively) where it is shown that the combination of both
modalities clearly outperforms the individual results, with an
average relative improvement of around 50%, which is specially
significant for the skilled forgeries case.

3. Enhanced off-line signature generation from dynamic
signature sequences

The present section describes the new method for the genera-
tion of “dynamically enhanced” synthetic off-line signatures. The
proposed technique will be evaluated later in Section 6 and used
to improve the overall performance of on-line recognition
systems.

The basis behind this novel approach and the contribution with
respect to other previously proposed methods [10,11] is the
integration of on-line information not present in regular static
signatures (e.g., pressure, speed or trajectory during pen-ups), in
order to produce enriched synthetic off-line samples that are
expected to be more discriminative than those obtained by simply
linking the dynamic trajectory points.

Although other signals such as the azimuth and elevation angles of
the input pen might be taken into account, in this work we consider
that an on-line signature is defined by three time sequences {xt ½m�,
yt ½m�, pt ½m�}, specifying, respectively, the x and y coordinates, and the
pressure applied during the signing process at the time instants
m¼ 1;…;M. Azimuth and elevation are discarded for two main
reasons: (i) not all acquisition sensors capture these signals (e.g.,
usually mobile or hand-held devices such as tablets or smart phones
do not detect them); (ii) these functions usually present a high level of
intravariability and their use for signature recognition purposes is at
least unclear [19].

The whole generation approach is illustrated in Fig. 1, where it
can be seen that the method takes as input an on-line signature
(defined by the sequences xt, yt and pt) and returns as output a
synthetic off-line signature defined by two images: (i) Ienhanced,
which embeds in its grey level distribution and its stroke thick-
ness, pressure and speed information contained in the original on-
line signature; and (ii) Ipen�ups, which is generated from the
trajectory information captured by the on-line digitizing device
when the pen is not in contact with the paper.

The different successive steps included in the generation
process of each of the two synthetic static images, Ienhanced and
Ipen�ups, are described in the following sections.

3.1. Scaling and interpolation

Real dynamic signatures are usually captured with digital devices
such as tablets, smart-phones or PDAs, which generate discrete time
sequences (i.e., xt, yt, pt). On the other hand, real static signatures are
acquired with commercial scanners that produce images defined in
the 2-D spatial domain (Iðx; yÞ). Therefore, some pre-processing of the
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real on-line data is required to be able to generate synthetic off-line
images compatible with the real ones. In particular

� Scaling: In the present work, real off-line signatures were
scanned at RScan � 600 dpi (see the database description in
Section 4.1). On the other hand, the on-line acquisition device
used in the acquisition had a resolution of RTab � 2540 dpi.
Therefore, in order to generate synthetic off-line samples with
the same resolution as the real static data, on-line coordinates
are scaled by a factor κ ¼ RScan=RTab.� Interpolation: Since static signatures are continuous, the scaled
discrete time on-line sequences (xt, yt, pt) are linearly inter-
polated using Bresenham's line algorithm to obtain 8-
connected sequences of length L: xc½n�; yc½n�; pc½n�

� �L
n ¼ 1.

3.2. Enhanced static signature image: Ienhanced

In order to obtain the signature initial simple-stroke image (Is in
Fig. 1), the scaled and interpolated coordinate sequences,
xc½n�; yc½n�
� �L

n ¼ 1, are plotted on a white background for
pc½n�
� �L

n ¼ 140 resulting in a black and white bitmap image.
The enhanced signature image is obtained by convolving each

pixel from the simple-stroke image with a specific kernel. These
kernels model the pen-tip spot at the different pixels using a
different 2-D Gaussian for each pixel.

Let us define the sequence of images Inðx; yÞ
� �L

n ¼ 1 as follows:

Inðx; yÞ ¼
1 if ðx� xc½n�Þ and ðy� yc½n�Þ and ðpc½n�40Þ
0 otherwise

�
ð1Þ

Then, the intermediate static signature Iint (see Fig. 1) is
computed as

Iintðx; yÞ ¼
XL
n ¼ 1

Inðx; yÞnGnðx; yÞ; ð2Þ

where Gnðx; yÞ is defined as the following 2-D Gaussian function:

Gnðx; yÞ ¼ A½n� � exp � x2

2ϕx½n�
þ y2

2ϕy½n�

 ! !
: ð3Þ

This Gaussian function comprises the pressure and speed
information from the on-line signature as follows:

� Pressure information: The Gaussian amplitude is computed as
A½n� ¼ pc½n� �Δpþpmin, where Δp and pmin are parameters to
normalize A½n� in the range ½0:2–2:2�. Such normalization
margin has been empirically selected in order to allow a wide
range of grey-scale values related to the pressure signal, while
avoiding any loss of information (i.e., grey points normalized to
white) that could be potentially produced by a null Gaussian
amplitude (for instance in the case of selecting a normalization
range [0–1]).

� Speed information: One of the most discriminant on-line
features is the signing time, which depends on the speed and
the signature length. The horizontal and vertical speed func-
tions (vxt ; vyt) can be obtained as the first derivative of the
original coordinate signals (xt ; yt), with vxt ½1� ¼ vyt ½1� ¼ 0. As
described in Section 3.1, the speed signal is then linearly
interpolated to obtain vxc½n�; vyc½n�

� �L
n ¼ 1.

Signature strokes are directly affected by speed: The higher the
signing speed, the thinner the strokes become. To approximate
this concept, the speed information is introduced in the 2-D

Fig. 1. Diagram of the enhanced off-line signature generation approach used in the work and described in Section 3.
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Gaussian changing the blob width as part of the standard
deviations (ϕx½n�;ϕy½n�). When these standard deviations
(spread of the elliptical blob) take high values, the spot width
is enlarged (i.e., corresponding to low speed). On the other
hand, the width becomes narrower for low values of the
standard deviations (i.e., high speed). Such standard deviations
are defined as

ϕx½n�;ϕy½n�
h i

¼ϕpen � RScan

δ
� cos vnx½n�ð Þ; cos vny½n�

� �� � ð4Þ

where

vnx½n�; vny½n�
� �¼ π=2

maxn fvxc½n�; vyc½n�g
� � � vxc½n�; vyc½n�

� � ð5Þ

RScan is defined as the spatial resolution of the static images
(600 dpi in this work, as described in Section 3.1), δ is the
conversion factor from mm to inches (δ¼ 2:54) and ϕpen is
empirically fixed to 3 mm in order to highlight the speed effect
in the stroke. Given the equations above, it is possible to have
null standard deviations, i.e. (ϕx½n�;ϕy½n�)¼0, which lead to
some points in the signature with no width. To avoid such
situation, for those points in which cos vnx½n�ð Þ;½ cos vny½n�

� �� ¼
0, the value of the cosine is substituted by ϵ¼ 10�6.

Although both modulations, pressure (i.e., stroke grey level)
and speed (i.e., stroke width), are applied at the same time
through the use of G, for illustrative purposes, the two effects
have been depicted separately in Fig. 1 (see diagrams “Isþpres-
sure” and “Isþspeed”).

After the pressure and speed information have been included
in the synthetic sample Iint, a virtual viscous ink profile is applied
to produce the final image Ienhanced (see Fig. 1). It is based on the
overlapping of each consecutive individual spot so as to make
them correspond to the rolling action of the ballpoint pen. Then,
the histogram of the virtual trajectory is equalized to a real
histogram of viscous ink. A similar approach is described in [11],
in order to obtain a final realistic output in terms of the stroke
texture.

3.3. Pen-ups static signature image: Ipen�ups

On-line devices are usually able to recognize the movement of
the pen tip when it is close to the device, even if it is not in contact
with the writing surface. This contactless movement is known as
the pen-up trajectory, and corresponds to the time sequences
when the pressure is null.

Since the pen does not deposit ink during pen-ups, they are not
depicted in real static signature images. These trajectories, how-
ever, present some discriminative features that could be exploited
in the skilled forgeries scenario, as impostors tend to imitate the
inked image omitting the non-visible pen-up trajectory. The use of
this information in off-line signature verification could therefore
improve the accuracy of static synthetic signatures compared to
their real versions, at a low computational cost.

The pen-up trajectory can either be added to Ienhanced, or
generated as a new image. Given the relevance of pen-up informa-
tion and that its combination with the inked strokes could occlude
its discriminative ability (in general pen-up strokes are much
shorter than inked ones), a new image with just the pen-ups is
generated, Ipen�ups.

As a first step, an initial simple stroke pen-ups image Ispu is
generated considering only the values xc½n�; yc½n�

� �L
n ¼ 1 where

pc½n�
� �L

n ¼ 1 ¼ 0, after the scaling and interpolation process.

Then, this initial image Ispu is transformed following a similar
process to that described in Section 3.2 to generate Ienhanced.
However, in this case the Gaussian function G presents an
amplitude A½n� equal to one (independent of the pressure signal),
so that only the stroke width is modulated according to the speed
information, while the grey level remains constant.

Finally, the same ink deposition model as in the case of Ienhanced
is applied, resulting in a new image Ipen�ups, which takes advant-
age solely of the trajectory and the dynamic information found in
pen-ups.

4. Databases and recognition systems

To fulfil the objectives set in the introduction of the present
article, two databases of on-line and off-line signatures as well as
three state of the art signature recognition systems are used. Both,
databases and systems, are described next.

4.1. On-line and off-line signature databases: Real and synthetic

Two complementary databases are used in the experimental
protocol: (i) a real database containing on-line and off-line
versions of the exact same signatures, and (ii) a synthetic database
of off-line signatures generated according to the method described
in Section 3 based on the dynamic signatures of the real database.

As real evaluation database a subcorpus of the signature data in
the BiosecurID multimodal database was used. BiosecurID was
acquired in five different Spanish universities and comprises eight
different biometric traits of 400 users captured in four sessions
over a six month time span [21].

Handwritten signatures were acquired with the Intuos3 A4/
Inking pen tablet placing a predefined paper template over the
digitizing device as shown in Fig. 2. The users were told to sign
inside a delimited grid in order to reduce the rotation and size
variations (25 mm � 120 mm). Signatures were performed on the
marked area with a special inking pen which also captured the x
and y trajectories and the pen pressure during the signing process,
with a sampling frequency of 100 Hz. This way, both versions,
dynamic and static, of the same samples were captured simulta-
neously. In order to obtain the final off-line digitized samples, the
grid-templates used to capture the static signatures were scanned
at 600 dpi into png grey level files, which were then processed to
automatically segment the signature images, stored with the same
codename as their on-line versions.

Consequently, the database contains the off-line (on paper) and
on-line versions of the exact same real signatures. This character-
istic makes BiosecurID the ideal benchmark for the study con-
sidered in this work.

Although, as highlighted above, the dynamic and static data of
the database come from the exact same real signatures, some
small variations may exist between both versions of one signature,
mainly due to acquisition errors, e.g. (i) the user signed outside the
predefined area, therefore, during the automatic segmentation
process of the off-line sample, part of the signature is lost (i.e.,
strokes falling outside the paper signing grid); (ii) during the
acquisition there was a misalignment between the tablet and the
paper template placed on it, leading to a slight rotation difference
between the static and dynamic versions of the signature; and (iii)
also, in some cases, due to a short malfunction of the dynamic
acquisition device, part of the on-line information is lost or
incomplete.

As the database was acquired in five different venues, five
different inking pens were used. Such ink variability among off-
line samples could entail a performance deviation difficult to
estimate and which falls out of the scope of the present work.
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To avoid this bias in the results, only the signature subcorpus
captured at one of the venues, the Universidad Autonoma de
Madrid, which is the largest within the database, will be con-
sidered in the work.

The BiosecurID-Signature UAM subcorpus comprises 132 users,
with 16 genuine signatures (four per session) and 12 skilled
forgeries (three per session) for every subject. Hence, the database
contains the on-line and off-line data of 16� 132¼ 2112 genuine
signatures and of 12� 132¼ 1584 skilled forgeries.

Genuine and skilled forgery real samples of the same user are
shown in the first two rows of Fig. 3, where both the dynamic and
static versions of the same signatures are depicted. In the second
row, it may be noticed that the lowest part of the first off-line
genuine signature image, as well as the top and bottom parts of
the skilled forgery, is missing. As explained above, this is due to
the automatic segmentation process that removes signature seg-
ments that fall outside the designated signing grid.

The synthetic off-line data used in the experiments was
generated taking as input the on-line real signatures of the
BiosecurID-Signature UAM database. That is, for each real on-line
signature in the BiosecurID-Signature UAM DB (genuine or skilled
forgery), its off-line synthetic version is produced following the
methodology described in Section 3. Therefore, the synthetic off-
line dataset presents exactly the same structure as the real version,
that is 4 sessions, 132 users, 4 genuine signatures and 3 skilled
forgeries per session and user.

Last row in Fig. 3 shows the synthetic static samples corre-
sponding to the three real signatures depicted in the first two
rows. As described in Section 3, synthetic signatures are defined by
two different images: Ienhanced (third row, top), which incorporates
pressure and speed information from the real dynamic signature;

and Ipen�ups (third row, bottom), obtained from the signature
trajectory during pen-ups. We can observe the high similarity
existing between real (second row) and synthetic (third row) off-
line samples.

Therefore, as presented in the current section, the experimental
protocol described in Section 5 and depicted in Fig. 4, comprises
three different versions of the exact same signatures: (i) real on-
line version, (ii) real off-line version, and (iii) synthetic off-line
version. The three complementary signature subsets are publicly
available from the Biometric Recognition Group-ATVS webpage1.

4.2. On-line and off-line signature recognition systems

In the experiments, two different on-line signature verification
systems and one off-line signature system are used. All three
systems have been selected from representative technologies
available nowadays in the signature recognition state of the art.

The two dynamic signature recognition algorithms are based
on totally different features and matchers. This way, as one of the
main objectives set for the study, it will be possible to establish the
impact that the fusion of a top-performing off-line signature
verification system has on the overall accuracy of different on-
line authentication strategies. These two systems are

� On-line system A: function-based þ DTW. This function-based
local approach uses a subset of nine time sequences selected
using the Sequential Forward Floating Selection (SFFS) algo-
rithm from the total set of functions defined in [22] (which
includes, among others, the first and second order derivatives
of x and y). The nine signals are directly matched using
Dynamic Time Warping (DTW) [23]. The goal of DTW is to
find an elastic match among samples of a pair of time
sequences of different lengths that minimize a given distance
measure. In this particular implementation, which is thor-
oughly described in [22], we use the Euclidean distance as
the measure to be optimized and only three correspondences
among samples of the compared sequences are allowed. The
final score is computed as the average of the scores obtained
between the test signature and the enrolled samples. This
system ranked among the top three algorithms in all the tasks
of the recent BioSecure Signature Evaluation Campaign BSEC-
2009 [24].

� On-line system B: feature-based þ Mahalanobis distance. This
system models the signature as a holistic multidimensional
vector composed of the best performing 40-feature subset
extracted in [20] from the total set of 100 global features
described in [19]. In the present study, we used this 40-feature
representation of the signatures normalizing each of them to
the range [0,1] using tanh-estimators [25]. Finally, the similar-
ity scores are computed using the Mahalanobis distance
between the input vector and a statistical model of the attacked
client estimated using a number of training signatures.

The offline signature verifier used in the experimental protocol
is based on texture descriptors and a Support Vector Machine
Classifier (SVM), as described below:

� Off-line system C: LBP þ SVM. The system used for the evalua-
tion of the real and synthetic signatures is a fusion of two LS-
SVM classifiers [26], trained to work with Local Binary Patterns
(LBP) and Local Directional Patterns (LDP), respectively. Signa-
ture images are divided into twelve overlapping blocks and the
corresponding features are extracted. Dimensionality is then

Fig. 2. Diagram of the BiosecurID DB acquisition process. Users signed on a paper
template that limited the scaling and rotation variability, placed over a digitizing
tablet. This way, the on-line and off-line versions of the same signature were
acquired simultaneously.

1 http://atvs.ii.uam.es/index
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reduced using the Discrete Cosine Transform, and the final
score is computed as the sum of the two partial scores coming
from each of the classifiers. This system would have ranked
second with an overall error (OE) of 11.4% at the very challen-
ging off-line signature verification competition 4NSig-
Comp2010 [27] (the winning system had a 8.9% OE, while all
other algorithms presented an OE over 16%).
In the present work, the previous LS-SVM system is adapted to
work with the dynamically enhanced synthetic off-line signa-
tures generated according to the method described in Section
3. As shown in Fig. 1, each synthetic sample is represented by
an enhanced image, Ienhanced, and an image comprising only the
pen-up information Ipen�ups. Both images are parameterized
separately and their LBP and LDP features concatenated to feed
each of the two LS-SVM classifiers.

5. Experimental protocol

The experimental protocol has been designed to comply with
the objectives set in the introduction of the work. For this purpose,
it uses the databases and systems described in Section 4 in order
to carry out three different experiments as depicted in Fig. 4. Each
of the three evaluation experiments has been defined to fulfill
some specific goals:

� Experiment 1: monomodal. The main objective of this experi-
ment is to assess the individual performance of the three on-
line and off-line verification systems described in Section 4.2.
The off-line recognition algorithm is evaluated both on the real
and synthetic static data. This way, a total of four performance
results are obtained for this experiment (in blue in Fig. 4),

Fig. 3. Real on-line, real off-line and synthetic off-line versions of typical signature examples that can be found in the BiosecurID-Signature UAM database used in the
experiments. Two genuine samples (first two columns) and a skilled forgery (last column) of the same user are shown. On-line samples are depicted with their
corresponding time functions (x and y trajectories and pressure function p). Synthetic samples were generated following the method described in Section 3. Each synthetic
signature is defined by two images: Ienhanced (third row, top) and Ipen�ups (third row, bottom). The whole database (real on-line, real off-line and synthetic off-line) is publicly
available from the Biometric Recognition Group-ATVS webpage.
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named according to the type of data used (on-line real, off-line
real or off-line synthetic) and the recognition system evaluated
(A, B or C): on-line real A, on-line real B, off-line real C and off-
line synthetic C.
For each of the four performance results mentioned above,
three sets of scores are computed: genuine, impostor random
and impostor skilled. As depicted in Fig. 4, all users are enrolled
to the system using their 4 first session signatures. Genuine
scores are computed comparing the enrolled model to the 12
remaining genuine samples from the other three sessions,
leading to 132� 12¼ 1584 genuine scores. Impostor scores
for the random scenario are computed comparing the enrolled
models to the 12 samples of sessions 1–3 from the remaining
users, which makes a total of 132� 131� 12¼ 207;504 ran-
dom impostor scores. While, finally, impostor scores for the
skilled scenario are obtained matching the enrolled model to
all 12 skilled forgeries available for that user, producing 132�
12¼ 1584 skilled impostor scores.
For the case of the genuine and skilled impostor scores, the
protocol described above is repeated four times, using each

time as enrollment samples the four genuine signatures corre-
sponding to each of the four sessions. This way, the final
number of scores is 4� 1584¼ 6336 genuine scores, 1�
207;504¼ 207;504 random impostor scores and 4�
1584¼ 6336 skilled impostor scores. These sizes of the three
score sets are maintained in the following two experiments (i.
e., fusion 2 and fusion 3).
This experiment will allow reaching the following objectives:
(i) fairly compare the performance of on-line and off-line
verification systems under the exact same benchmark (data-
base and protocol) for the random and skilled scenarios; (ii)
compare the performance of the off-line verification system on
real and synthetic data as a way to validate the synthetic
generation approach proposed; and (iii) set the baseline results
to be compared with experiments 2 and 3.

� Experiment 2: fusion 2. In this case, as shown in red in Fig. 4,
results from experiment 1 are combined on a two by two basis.
The new scores are named according to the two fused results.
The fusion rule selected is the largely used weighted sum
[28,29], which is applied after normalizing the scores to the

Fig. 4. Diagram of the experimental protocol followed in the work. The protocol together with the objectives of each of the three experiments, highlighted in the figure, is
described in Section 5. Further details on the databases and the on-line and off-line recognition systems may be found, respectively, in Section 4.1 and 4.2. For each
experiment the EER is given in percentage for the random forgeries EERrd and the skilled forgeries EERsk scenarios. In the fusion experiments, the percentage to the right of
each EER refers to the performance improvement with respect to the best of the individual on-line verification systems fused. The higher weight of the fusion rules always
corresponds to the best of the two combined systems. All results and figures are further explained in Section 6. (For interpretation of the references to colour in this figure,
the reader is referred to the web version of this paper).
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[0,1] range. Weight selection has been based on some pre-
liminary development experiments, finally setting them to the
values shown in Fig. 4 (the higher weight always corresponds
to the best of the two fused systems).
The goals targeted with this experiment are (i) evaluate the
complementarity of state of the art on-line and off-line ver-
ification approaches by assessing the performance improve-
ment that can be achieved through their fusion (Fusion Real AC,
BC); (ii) evaluate whether the performance reached combining
on-line real data with off-line real data is similar to that
obtained when static synthetic data is used (Fusion Real AC,
BC vs Fusion Synthetic AC, BC); (iii) compare the fusion of on-
line and off-line systems to the case of combining two different
on-line recognition algorithms (Fusion Real AC, BC vs Fusion
Real AB).

� Experiment 3: fusion 3. This scenario is similar to the one studied
in experiment 2. However, in this test all three systems
considered in the experimental protocol are combined using
only real data in one case and synthetic off-line samples in the
other. Again, the fusion strategy and name convention followed
to obtain the results are the same used in experiment 2 (in
green in Fig. 4).
Similar to experiment 2, these tests are thought to (i) deter-
mine if off-line verification can improve the performance of
already fused on-line systems (Fusion Real ABC); and (ii) if real
and synthetic static data also behave in a similar manner in this
scenario (Fusion Real ABC vs Fusion Synthetic ABC).

6. Results

In this section the results from the three experiments described
in the experimental protocol (Section 5) are presented. Figs. 5 and 6
are introduced to graphically illustrate two of the main objectives
set for the work:

� Assess the efficiency of the synthetic off-line signature generation
method presented in Section 3. For this purpose, in Fig. 5 we

compare the performance of the off-line system C described in
Section 5, working with real off-line signatures and with synthetic
static samples. Both the random forgeries (left) and the skilled
forgeries (right) scenarios are shown. The results are depicted in
terms of the Detection Error Trade-off (DET) curves which
represent in one plot the two types of errors that may occur in
biometric verification systems: the False Acceptance Rate (FAR)
and the False Rejection Rate (FRR). As a meaningful performance
metric, the Equal Error Rate (i.e., EER, operating point where both
the FAR and FRR are equal) also appears in each of the DET plots.

� Determine whether on-line signature recognition can be
improved through the use of synthetic off-line data. For this
purpose, the performance of the on-line systems considered in
the experiments (i.e., systems A, B and AB) is directly compared to
the performance of their fusion with synthetic static signatures (i.
e., systems AC, BC and ABC synthetic). In order to establish such
comparison in an easy manner and to be able to extract mean-
ingful conclusions, results for the random and skilled scenarios
are depicted in Fig. 6 using as before DET curves.

All the EERs corresponding to the DET plots shown in
Figs. 5 and 6 are summarized in Table 1 together with their 95%
confidence intervals.

For a detailed description of the experiment and its objectives e see
Section 5. A visual representation of the experiments can be found in
Fig. 4. Also in Fig. 4, the EER for all the tests may be consulted as a tool
for quick reference and comparison among tests. The EER appears in
percentage for the random forgeries EERrd and the skilled forgeries
EERsk scenarios. In the fusion experiments in Fig. 4, the percentage to
the right of each EER refers to the performance improvement with
respect to the best of the individual on-line verification systems fused.

6.1. Experiment 1 – monomodal: results

For this experiment we will focus on the analysis of (i) the DET
curves shown in Fig. 5 corresponding to the evaluation of the off-
line signature verification system C; and (ii) the EERs shown in
Table 1 corresponding to the individual on-line systems A and B
and off-line system C. Several interesting conclusions may be

Fig. 5. Comparative DET curves for the off-line system C working with real off-line signatures and synthetic off-line signatures. Both the random (left column) and skilled
(right column) impostors scenarios are shown. Results are interpreted and conclusions extracted in Section 6.
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Fig. 6. Comparative DET curves for the on-line systems considered in the experiments (i.e., A, B and AB) and their fusion with synthetic off-line data (i.e., AC, BC and ABC).
Both the random (left column) and skilled (right column) impostors scenarios are shown. Results are interpreted and conclusions extracted in Section 6.

Table 1
Comparative table of the EERs for the DETs shown in Figs. 5 and 6. Both the random and skilled forgeries scenarios are considered. The 95% confidence intervals of the EERs
are shown in parenthesis.

Scenario Comparison: EER in % (795% confidence interval in %)

C-real C-synth. A AC B BC AB ABC

Random 4.81 (7 0.53) 4.89 (7 0.53) 1.85 (7 1.33) 1.46 (7 0.3) 19.15 (7 0.97) 4.15 (7 0.49) 0.74 (7 0.21) 0.63 (7 0.19)
Skilled 20.26 (7 0.99) 17.41 (7 0.93) 6.94 (7 0.63) 6.30 (7 0.6) 21.48 (7 1.01) 12.04 (7 0.8) 4.91 (7 0.53) 5.09 (7 0.54)
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extracted from these results when they are compared on a two by
two basis:

� “Off-line Real C” vs “On-line Real A”: These results confirm on a
public, replicable and objective benchmark, what was already
pointed out in several previous works [8,18]: dynamic signature
contains more information than its static version and, therefore, can
lead to lower error rates when two highly competitive on-line and
off-line recognition algorithms (systems A and C) are compared.

� “Off-line Real C” vs “On-line Real B” random scenario: The
previous observation does not hold in the random impostor
scenario if the selected on-line recognition system is medium-
or low-performing (system B). That is on-line verification
algorithms have the potential to, but do not necessarily outper-
form static-based ones. This depends on the algorithms
compared.

� “Off-line Real C” vs “On-line Real B” skilled scenario: In the case of
skilled forgeries, even top-ranked off-line algorithms (system C)
fail to achieve lower error rates than medium- or low-
performing on-line systems (system B). Such an observation
reinforces the largely extended belief that forgers tend to imitate
the shape and geometry of the signatures in order to produce a
similar “drawing”, paying less attention to how that drawing
was produced (i.e., the dynamics of the signature). Furthermore,
in general it is easier to obtain the geometric information of a
signature (i.e., off-line version) than its dynamic features (i.e.,
on-line version). For the latter case, the attacker would need to
be present at the moment of the signing and, even in that case,
he would only be able to witness the process once. Therefore, for
the skilled forgeries scenario, on-line signature recognition
appears to be, almost independent of the system considered, a
more reliable technology than static-based recognition.

� “Off-line Real C” vs “Off-line Synthetic C”: The DET curves
corresponding to these two experiments are almost superim-
posed (see Fig. 5), which means that the tested off-line recogni-
tion system (system C) performs almost identically on real and
synthetic static data for both impostor scenarios (random and
skilled). Such a result implies that the proposed synthetic off-
line signature generation approach produces synthetic data with
very similar variability to real samples and, hence, can poten-
tially be used to assess the performance of off-line recognition
systems. It is also worth noting that the additional dynamic
information integrated in the synthetic data (i.e., pen-ups and
speed) results in a non-negligible performance improvement in
the skilled impostors scenario where the EER decreases from
20.28% with real signatures to 17.41% with synthetic samples (a
relative improvement of 17%). This sustains the hypothesis that
forgers try to imitate the signature shape, while neglecting the
dynamics or the pen-up information for which, in general, they
do not posses any information.

6.2. Experiment 2 – fusion 2: results

In this case we will focus on the analysis of the DET curves
shown in the first row of Fig. 6 where the individual on-line
systems (real A and real B) are compared to their fusion with
synthetic off-line data (synthetic AC and synthetic BC). Several
observations can be made in view of these results:

� “On-line Real X” vs “Fusion Synthetic XC” random: Here XC is used
as a generic name to refer to both on-line systems A and B. These
results show that synthetic off-line signature data (fused systems
AC and BC) can significantly improve the performance of on-line
signature verification algorithms (systems A and B), in this case
the increase is as high as 33% and 79% in terms of the EER. This

observation should be highlighted as one of the most important
findings of the present article: synthetic static signature and real
dynamic information present a large degree of complementarity
that can be exploited to improve the accuracy of even top-
performing dynamic-based algorithms (e.g., system A).

� “On-line Real X” vs “Fusion Synthetic XC” skilled: As before, XC is
used as a generic name to refer to both on-line systems A and B.
The previous conclusion cannot be generalized to the skilled
impostor scenario. In this case, synthetic static data only
contributes to increase the verification accuracy of medium-
or low-performing on-line algorithms such as system B, which
presents a relative EER improvement of 35%. However, the
addition of synthetic off-line information has barely any effect
on dynamic systems with already very low error rates such as
system A (relative improvement of 6%). This result supports the
hypothesis that almost all the information used to detect
skilled forgeries is contained within dynamic data.

6.3. Experiment 3 – fusion 3: results

The second row of Fig. 6 shows the DET curves corresponding
to the fusion of the two on-line systems (real AB) and the fusion of
all three verification algorithms systems (synthetic ABC). Two
main conclusions can be drawn from these results:

� “Fusion Real AB” vs “Fusion Synthetic ABC” random: As was
already shown in experiments 1 and 2 for unimodal on-line
systems, the performance of multimodal dynamic verification
(i.e., fusion of systems A and B) is also improved both by real
and synthetic off-line data under the random impostor sce-
nario (with relative improvements in terms of the EER of 24%
and 28%, respectively). This confirms the complementarity of
the information comprised in static and dynamic data noted in
previous experiments. It also reinforces one of the main
contributions of the present work already pointed out in
experiment 2: synthetic off-line signatures can be used to
improve the performance of on-line recognition systems (even
if these are the result of the fusion AB of two individual systems
A and B).

� “Fusion Real AB” vs “Fusion Synthetic ABC” skilled: Similar to
what was already observed in experiment 2, in the case of
skilled forgeries there is technically no performance gain due to
the large performance difference between the on-line algo-
rithm (fusion of systems A and B) and the static-based algo-
rithm (system C). In this scenario, the information added by
static data is not enough to enhance the overall verification
accuracy.

6.4. Results summary

As already mentioned, all the results presented in Sections 6.1–6.3
are graphically summarized in terms of the EER and its relative
improvement in Fig. 4. The observations and conclusions extracted
from these results in the previous sections may be summarized as
follows:

� As already mentioned in the discussion of the individual
experiments, probably the most important contribution of the
article is that synthetically generated off-line data can be used to
significantly and consistently improve the performance of dynamic
signature recognition systems in the random scenario, indepen-
dent of whether these are individual systems (e.g., A or B) or a
fusion of several on-line matchers (e.g., AB). This conclusion is
drawn from the comparison of results (see Fig. 6 and Table 1):
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system A vs AC-synthetic, system B vs BC-synthetic, system AB
vs ABC-synthetic. The average relative improvement obtained
in this scenario is of 40%, with an increase in the accuracy as
high as 20% for even top performing algorithms.

� The same comparative results show that (see Fig. 6 and Table 1)
In the skilled forgery scenario the previous observation only holds
for low- to medium-performing on-line signature recognition
systems (system B vs BC-synthetic). In the case of competitive
on-line verification algorithms their performance is maintained
(it does not decrease).

� Real off-line data and synthetic off-line data, generated from
dynamic information following the approach proposed in Section
3, behave almost identically in the random impostor scenario (i.e.,
see the comparison C-real vs C-synthetic in Fig. 5 and Table 1).

� Regarding the same comparison (i.e., C-real vs C-synthetic
shown in Fig. 5 and Table 1), in the case of skilled forgeries
the synthetic samples present a higher discriminative power
(relative improvement of 17%), probably due to the addition of
motion information (i.e., speed and pen-up trajectories) in the
generation process.

� On-line data contain more information than off-line data and
therefore can potentially lead to lower error rates (i.e., system A
vs C). This observation is stronger for the skilled impostor
scenario where it holds even for low-performing on-line
systems (i.e., system B vs C). This conclusion reinforces the
largely extended belief that forgers tend to imitate the shape
and geometry of the signatures in order to produce a similar
“drawing”, paying less attention to how that drawing was
produced (i.e., the dynamics of the signature). Therefore, the
on-line modality has a much larger discriminative potential
against skilled impostors.

In view of the previous summary, we propose a novel archi-
tecture for on-line verification, which exploits the complementar-
ity of dynamic and static signature recognition through the
generation of synthetic off-line data. The new method tries to
solve the traditional on-line vs off-line dichotomy, taking the best
from both modalities. Like any other on-line verification system,
the proposed approach receives only two inputs (see the diagram
in Fig. 7): the real enrolled on-line model and the real dynamic
test signature (which can be a genuine sample, random impostor
or skilled impostor). These two inputs are matched using any
generic on-line signature verification approach (either an indivi-
dual system or fusion of different matchers) to produce a single
on-line score son. Simultaneously, the two on-line inputs are
transformed into synthetic static samples which are compared
using any off-line verification system, generating this way a single
off-line score soff. Finally, the two scores (on-line and off-line) are
combined to produce one single output s.

The methodology is general, since it can integrate (i) any on-
line verification system either unimodal (such as systems A and B
considered in the present work) or multimodal, as combination of
several algorithms (such as the fusion AB used in the experi-
ments); (ii) any off-line verification system (such as system C
considered in the present work); (iii) any fusion strategy to
combine the on-line (son) and off-line (soff) matching scores.

Another added value of this architecture is its high practical
potential for real world applications. The proposed approach does
not need any further requirements with respect to currently
deployed on-line verification systems: from two input dynamic
signatures one similarity score is generated. The performance
improvement is obtained at the expense of a small increase in
the system response time due to the computational cost derived
from (1) the generation of the off-line synthetic samples; (2) the
matching of the off-line synthetic samples. In the particular case of
the experiments presented in this paper, carried out on MATLAB

2012a running on a standard core i6 PC using windows 7, such
extra computational cost was on average around 0.3 s, for every
matching transaction. Such an increase in the system's throughput
would be acceptable for most real operational contexts.

7. Conclusions

When dealing with an on-line verification problem, it should
be assumed that off-line data is not available. However, in the
present work, a method to generate synthetic static samples from
on-line signatures has been proposed. It has been experimentally
shown that the behaviour of such synthetic samples is very similar
to their real off-line versions, and that they can complement on-
line information.

This way, one of the main contributions of the work is the use
of the novel generation method to fuse both types of data, real on-
line and synthetic off-line, in order to improve the performance of
on-line verification algorithms. The level of improvement achieved
through this fusion depends on the impostor scenario considered:

� Random impostors: As already mentioned in the introduction,
this represents a very relevant scenario, as the decision thresh-
old of most applications is fixed according to the error rates
obtained in this operational framework. As such, it defines in
many cases the baseline performance of the system. The very
significant performance boost obtained in this case through the
fusion of the synthetic off-line data with the three on-line
systems tested is, on average, of 40%.

� Skilled impostors: This is the most relevant scenario in forensic-
related applications. In this case, the accuracy of on-line
systems is only improved through the fusion with synthetic
static data if the original algorithm presented a low-
performance. For top-ranked on-line systems the performance
is, in the worst case, preserved.

Another significant value of the work is the synthetic off-line
signatures generation method proposed. The synthetic static
samples are “dynamically enhanced”, embedding part of the
time-related information of the original on-line signatures (e.g.,
speed and pen-up trajectories). This way, their discriminative
power in the skilled impostors scenario is increased with respect
to regular real static signatures where only the image is available.

In summary, three main contributions may be highlighted from
the present research work with respect to the current state of the
art in signature biometrics: (i) a new method for the generation of
“dynamically enhanced” synthetic off-line signatures starting from
real on-line data has been proposed; (ii) different findings regard-
ing the discriminative capabilities and the complementarity of off-
line and on-line signature in the random and skilled forgeries
scenarios have been extracted, using a public benchmark which
contains the dynamic and static versions of the same signatures;
and (iii) a new on-line signature recognition architecture based on
the combination of real dynamic data and synthetic static data has
been proposed. The architecture has been validated on the same
benchmark as top-ranked traditional algorithms, showing that,
depending on the scenario and the systems considered, a sig-
nificant performance improvement can be achieved.

This research reinforces the findings of previous works show-
ing that, even though on-line signature has a higher potential for
recognition tasks, it does not comprise all the information present
in the signature trait. This way, off-line data can be a very valuable
asset to significantly increase the overall performance of this
biometric trait. Furthermore, the generation of synthetic static
data can become a realistic alternative to close the dichotomy
between on-line and off-line signature and promote research
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towards a unified signature biometric that benefits from both
modalities in order to reach the degree of deployment that was
foreseen for this technology some years ago.
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