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Abstract—Biometric authentication on devices such as smart-
phones and tablets has increased significantly in the last years.
One of the most acceptable and increasing traits is the handwrit-
ing signature as it has been used in financial and legal agreements
scenarios for over a century. Nowadays, it is frequent to sign in
banking and commercial areas on digitizing tablets. For these
reasons, it is necessary to consider a new scenario where the
number of training signatures available to generate the user
template is variable and besides it has to be taken into account
the lap of time between them (inter-session variability). In this
work we focus on dynamic signature verification. The main goal
of this work is to study system configuration update strategies
of time functions-based systems such as Hidden Markov Model
(HMM) and Gaussian Mixture Models (GMM). Therefore, two
different cases have been considered. First, the usual case of
having an HMM-based system with a fixed configuration (i.e.
Baseline System). Second, an HMM-based and GMM-based sys-
tems whose configurations are optimized regarding the number
of training signatures available to generate the user template. The
experimental work has been carried out using an extended version
of the Signature Long-Term database taking into account skilled
and random or zero-effort forgeries. This database is comprised
of a total of 6 different sessions distributed in a 15-month time
span. Analyzing the results, the Proposed Systems achieve an
average absolute improvement of 4.6% in terms of EER(%) for
skilled forgeries cases compared to the Baseline System whereas
the average absolute improvement for the random forgeries cases
is of 2.7% EER. These results show the importance of optimizing
the configuration of the systems compared to a fixed configuration
system when the number of training signatures available to
generate the user template increases.

Keywords—Biometrics, dynamic signature, system configuration
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I. INTRODUCTION

Due to the technological evolution and the quality improve-
ment of sensors, devices such as smartphones and tablets have
experimented a great deployment nowadays [1]. Therefore,
the use of these newer devices as biometric authentication
systems have begun to be applied in many sectors due to the
higher number of advantages compared to traditional ways of
authentication (i.e. password and card authentication systems).
Handwritten signature is one of the most socially accepted
traits as it has been used in financial and legal agreements
scenarios for many years [2]. In addition, it is worth noting that
signatures are very easy to acquire by means of these devices
through stylus or even the finger [3]. For this reason, this paper
is focused on dynamic or on-line signature verification systems

where information of each instant of the signing process is
available.

One of the main challenges in signature verification is
related to signature variability. While genuine signatures can
differ significantly (high intra-class variability), skilled forg-
eries could be similar to genuine signatures (low inter-class
variability). Another important problem related to intrinsic or
intra-class variability of signatures is known as aging term [4]
(i.e. the gradual decrease in a system performance due to the
changes suffered by the user’s trait along the time). Finally, it
is also worth noting to consider sources of extrinsic variability
such as the new device interoperability scenario [5] due to the
high deployment of devices in the last years.

Traditionally, the number of signatures used to obtain a
user’s template in the training stage for an on-line signature
verification system was being between 3 to 5 signatures [6],
[7], [8]. However, due to the higher acceptability of devices
in our society nowadays, the number of signatures available
per user is rapidly increasing with time. Therefore, the main
goal of this work is to analyze the performance and the
optimal system configuration update strategies over different
time functions-based signature verification systems taking into
account the scenario where the number of training signatures
available increases with time. It is worth noting that the case
proposed in this work is an ideal case since we know that all
training signatures are genuine (groundtruth). However, in a
real application, when incorporating new signatures as training
data there is the possibility of making errors regarding the
labelling of the data [9], so the performance of the ideal case
proposed in this work will be compared to the real case in
future studies.

One of the most well-known and competitive state-of-the-
art systems HMM-based system is considered in this work.
Basically, the HMM represents a doubly stochastic process
governed by an underlying Markov chain with finite number
of states and a set of random functions each of which is
associated with the output observation of one state [10]. There
are many previous studies in which the system proposed
for signature verification is based on HMM algorithms [11],
[12]. In addition, a GMM-based system which can be seen
as a particular case of HMM with only one hidden state is
considered in this work. This GMM-based system has been
proposed as it has been widely used in other biometric traits
such as speech recognition [13] and it has provided a good
performance in previous studies related to on-line signature
verification [14]. To the best of our knowledge, despite the long



amount of studies related to HMM-based dynamic signature
verification systems, none of them have analyzed the optimal
configuration of the HMM-based system (i.e. number of hidden
states (N) and number of Gaussian Mixtures per state (M))
in function of the number of training signatures available in
the enrollment stage. Experiments are carried out using an
extended version of the on-line Signature Long-Term database
[4] in which both skilled and random forgeries cases are
considered.

The remainder of the paper is organized as follows. Section
II describes the database used in the experimental work carried
out. Section III describes the time functions-based signature
verification system proposed. Section IV reports the experi-
mental work. Finally, Section V draws the final conclusions
and future work.

II. SIGNATURE DATABASE

The database used to carry out the experimental work of
this paper is an extended version of the Signature Long-Term
database [4]. Fig. 1 shows the number of genuine signatures
per user and the general time diagram of the different ac-
quisition sessions of it. This database was used in [4] taking
into account random forgeries. However, skilled forgeries are
considered in this extended version of the database too, which
will be made publicly available. This database is comprised of
a total of 29 users. The problem of inter-session variability is
also considered in this work due to signatures were acquired
in 6 different sessions with a 15-month time span, emulating
a real scenario like we can find in commercial and banking
sectors nowadays. The total number of genuine signatures and
skilled forgeries per user are 46 and 10 respectively. The users
had visual access to the dynamics of the signing process of the
signatures they had to forge as many times as they wanted.

Signatures were captured using a digitizing pen tablet
WACOM Intuos3 A6 digitizer at 100 Hz and writing on a
paper. The available information of this device is the following:
X and Y pen coordinates, pressure, pen angular orientation
(azimuth and altitude angles) and timestamp information. For
more information about the Signature Long-Term database see
[4].

III. DYNAMIC SIGNATURE VERIFICATION SYSTEM

A. Feature Extraction and Selection

A time functions-based system based on previous studies
[8], [15] is considered here. Signals captured by the digitizer
are used to extract a set of 23 time functions (see Table I) for
each signature. Only time functions related to X, Y coordinates
and pressure information are considered in this work. Time
functions related to pen angular orientation (azimuth and
altitude angles) have been discarded in order to consider the
same set of time functions that we would be able to use in
general purpose devices such as tablets and smartphones.

Sequential Forward Feature Selection (SFFS) algorithm
[16] is performed in order to obtain a subset of the 23 time
functions which improves the performance of the system in
terms of EER (%). This technique offers a suboptimal solution
since it does not take into account all the possible feature com-
binations, although it considers correlations between features.

TABLE I. Set of time functions considered in this work.

# Feature

1 x-coordinate: xn

2 y-coordinate: yn

3 Pen-pressure: zn
4 Path-tangent angle: θn
5 Path velocity magnitude: vn

6 Log curvature radius: ρn

7 Total acceleration magnitude: an

8-14 First-order derivate of features 1-7: ẋn, ẏn, żn, θ̇n, v̇n, ρ̇n, ȧn

15-16 Second-order derivate of features 1-2: ẍn, ÿn

17 Ratio of the minimum over the maximum speed over a 5-samples

window: vr

n

18-19 Angle of consecutive samples and first order difference: αn, α̇n

20 Sine: sn
21 Cosine: cn

22 Stroke length to width ratio over a 5-samples window: r5
n

23 Stroke length to width ratio over a 7-samples window: r7
n

This is the main goal of this algorithm. The EER has been
chosen as the optimization criterion. In this work, the HMM-
based system used in the experiments is based on [15]. An
optimal subset comprised of 9 time functions was chosen using
SFFS algorithm.

B. Time Functions-Based Signature Verification System

HMM algorithm [17] represents a double stochastic pro-
cess, governed by an underlying Markov chain, with a finite
number of states and random function set that generate sym-
bols or observations each of which is associated with one state.
The basic configuration of an HMM-based system (see Fig. 2)
is comprised by the following elements:

• Number of hidden states N.

• Number of Gaussian mixtures per state M.

The HMM-based system considered has a left-to-right config-
uration without skipping state transitions (see Fig. 2). In addi-
tion, a GMM-based system which can be seen as a particular
case of HMM with only one hidden state is also considered.
Similarity scores are computed as the log-likelihood of the
target signature (using the Viterbi algorithm) divided by the
total number of samples of the signature signal. In order to
keep scores between a reasonable range, normalised scores sn
between (0,1) are obtained as sn = exp(s(x,C)/30), where
s(x,C) is the score returned by the HMM algorithm and x
and C represent respectively the input signature to verify and
the enrolled model of the claimed identity.

Fig. 2. Graphical representation of a left-to-right N-state HMM, with M
Gaussian Mixtures per state. Ref. [18]



Fig. 1. General time diagram of the different acquisition sessions and number of genuine signatures per user that conform the Signature Long-Term database.
Ref. [4]

IV. EXPERIMENTAL WORK

A. Experimental Protocol

The main goal of this work is to analyze the optimal
configuration of the HMM-based and GMM-based systems
regarding the number of training signatures available per
user. Therefore, the last 5 genuine signatures (i.e. Bure23
block) of the sixth session are always used for testing. Skilled
forgery scores are obtained by comparing training signatures
against the 10 available skilled forgeries for the same user
whereas random or zero-effort forgery scores are obtained by
comparing the training signatures to one genuine signature of
the remaining users.

The following experiments have been proposed in order
to know how the configuration (i.e. number of hidden states
(N) and Gaussian mixtures per state (M)) of the HMM-based
and GMM-based systems change with the number of training
signatures available in the enrollment stage:

• Exp. A: The first 4 genuine signatures (i.e. BID 1) are
used in the enrollment stage.

• Exp. B: The first 16 genuine signatures (i.e. Biose-
curID) are used in the enrollment stage.

• Exp. C: The first 31 genuine signatures (i.e. Biose-
curID + Bure 1) are used in the enrollment stage.

• Exp. D: The first 41 genuine signatures (i.e. Bioses-
curID + Bure 1 + Bure21 + Bure22) are used in the
enrollment stage. In this last case it is important to
highlight that signatures from the same session are
used for both training and testing the system, so results
can be overoptimistic in this case.

B. Experimental Results

1) Baseline System: In this section, the usual case of having
an HMM-based system whose configuration is fixed (i.e. N =
2 and M = 32) [15] is analyzed when the number of training
signatures available to generate the user template increases.
Table II shows the performance of the Baseline System in
terms of the EER(%) for the different experiments quoted in
the experimental protocol IV-A.

Analyzing the skilled forgeries cases, the performance of
the Baseline System improves when the number of training
signatures increases. The results obtained in this section agree
with previous studies [4]. However, analyzing the random
forgeries cases, it seems that there is a limit in the improvement
of the system regarding the number of training signatures. This
effect has been reported in previous studies [8] as well.

2) Proposed Systems: In this experiment, the goal is to
analyze the optimal configuration of both HMM and GMM
Proposed Systems regarding the number of training signatures
available to generate the user template. Skilled forgeries case
has been chosen as the case to optimize as it is the most
challenging case to authenticate. Analyzing the configuration
of the HMM-Proposed System, Table III shows the perfor-
mance (i.e. EER(%)) of the HMM-Proposed System in terms
of the number of hidden states (N) and the number of Gaussian
mixtures per state (M) for the four experiments.

Some important conclusions can be extracted from the re-
sults. First, results show the importance of taking into account
different configurations of the HMM-based system regarding
the number of training signatures available to generate the user
template. In general, when the number of training signatures
is low (i.e. Exp. A), the optimal configuration of the HMM-
based system tends to have a higher number of Gaussian
mixtures than hidden states. However, when the number of
training signatures available increases (i.e. Exp. B, C, D), the
number of hidden states is higher than the number of Gaussian
Mixtures per state. Second, it seems that choosing an optimal
configuration of the HMM-based system tends to improve the
performance of the system as the number of training signatures
increases. This effect is different that we could see in the Sec.
IV-B1. Therefore, the higher number of training signatures, the
better performance of the system.

TABLE II. BASELINE SYSTEM: PERFORMANCE OF THE FIXED

HMM-BASED SYSTEM WITH N = 2 AND M = 32 IN TERMS OF THE

EER(%).

Exp. A Exp. B Exp. C Exp. D

Skilled Forgeries 16.6 13.1 9.0 7.6

Random Forgeries 8.3 2.8 2.4 3.4



TABLE III. EER(%) FOR DIFFERENT HMM CONFIGURATIONS FOR BOTH SKILLED (TOP) AND RANDOM (BOTTOM) FORGERIES REGARDING THE

NUMBER OF TRAINING SIGNATURES AVAILABLE TO GENERATE THE USER TEMPLATE (I.E. EXP. A, B, C AND D). N = NUMBER OF HIDDEN STATES; M =
NUMBER OF GAUSSIAN MIXTURE PER STATE.
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Regarding the Proposed GMM-Based System, Table IV
shows the performance of the system in terms of the EER(%)
regarding the number of training signatures available to gener-
ate the user template and the configuration of the system (i.e.
the number of Gaussian mixtures per state (M)). The results
of the GMM-based system are similar to the HMM-based
system. It is very important to analyze different configurations
of the GMM-based system in terms of the number of training
signatures available to generate the user template. In general,
we can see that the number of Gaussian mixtures required (M)
increases with the number of training signatures available.

Finally, Fig. 3 shows the best performance of the Base-
line, HMM and GMM Proposed Systems for the experiments
quoted in the experimental protocol (see Sec. IV-A). Some
important conclusions can be extracted from Fig. 3. The
performance of both HMM and GMM Proposed Systems are
much better compared to the Baseline System for both skilled
and random forgeries cases. For this reason, hereinafter we
evaluate the average performance of the HMM and GMM
Proposed Systems compared to the Baseline System pointing
out some important differences between the Proposed Systems.

Analyzing the skilled forgeries cases, the Proposed Systems
achieves an average absolute improvement of 4.6% compared
to the Baseline System. In addition, it is important to highlight
that when the number of training signatures increases, there is
a higher difference in the performance among the Proposed
and Baseline Systems. For example, in the Exp. A there is
an absolute improvement of 3.2% in the Proposed Systems
compared to the Baseline System whereas in the Exp. C the

absolute improvement is 4.6%. Analyzing the random forgeries
cases, the Proposed Systems achieves an average absolute
improvement of 2.7% compared to the Baseline System. In
addition, analyzing the HMM and GMM Proposed Systems
for random forgeries case, it is worth noting that when the
number of training signatures available is low (i.e. Exp. A) the
GMM-Proposed System works better than the HMM-Proposed
System whereas this effect is the opposite when the number
of training signatures available is higher (i.e. Exp. C and Exp.
D).

Finally, the best performance of the system is obtained
using an HMM-based system with N=64 and M=2 achieving
an EER of 1.4% and 0.0% for skilled and random forgeries,
respectively. However, it is important to highlight that in this
case signatures from the same session have been used for
training and testing the system. Regarding the case of training
and testing the system with signatures coming from different
sessions, the best performance of the system has been obtained
using a GMM-based system with M=128 achieving an EER of
4.1% and 0.7% for skilled and random forgeries, respectively.

Therefore, the results show the importance of optimizing
the configuration of the systems compared to a fixed configu-
ration system when the number of training signatures available
to generate the user template increases.

V. CONCLUSION

In this paper, the optimal configuration of time functions-
based systems regarding the number of training signatures



TABLE IV. EER(%) FOR DIFFERENT GMM CONFIGURATIONS FOR BOTH SKILLED (TOP) AND RANDOM (BOTTOM) FORGERIES REGARDING THE

NUMBER OF TRAINING SIGNATURES AVAILABLE TO GENERATE THE USER TEMPLATE (I.E. EXP. A, B, C AND D). M = NUMBER OF GAUSSIAN MIXTURE PER

STATE.

M=16 M=32 M=64 M=128 M=256 M=512 M=1024

Exp. A
18.6

6.9

13.8

4.1

18.6

6.9

Exp. B
14.5

3.4

11.0

2.1

8.3

2.1

8.3

0.7

9.0

2.8

Exp. C
9.0

2.1

4.1

1.4
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0.7

4.1

0.7

4.2

0.8
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5.5

1.6

3.4

0.7
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0.7

2.1

0.2
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0.2
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Fig. 3. Best performance in terms of the EER(%) of the Baseline and

Proposed Systems for the 4 different experiments quoted in the experimental

protocol (i.e. Sec. IV-A) and for skilled and random forgeries.

available to generate the user template has been studied for
dynamic signature verification. First, the traditional case of
having an HMM-based system with a fixed configuration is
considered (i.e. Baseline System). Second, an HMM-based
and GMM-based systems whose configuration is optimized in
terms of the number of training signatures available to generate
the user template have been proposed (i.e. HMM-Proposed
and GMM-Proposed Systems). The experimental work has
been carried out using an extended version of the Signature
Long-Term database taking into account skilled and random
or zero-effort forgeries. This database is comprised of a total
of 6 different sessions distributed in a 15-month time span.
The results reported in this work have shown the importance
of taking into account different configurations of the systems
regarding the number of training signatures available for both
HMM-based and GMM-based systems. Both HMM and GMM
Proposed Systems have achieved a similar performance in
dynamic signature verification. Analyzing the results, the Pro-
posed Systems have achieved an average absolute improvement
of 4.6% for skilled forgeries cases compared to the Baseline
System whereas the average absolute improvement for the
random forgeries cases has been 2.7%. In conclusion, the
results show the importance of optimizing the configuration
of the systems compared to a fixed configuration system when
the number of training signatures available to generate the user
template increases. For future work, the system configuration
update strategies proposed in this work will be analyzed using
different databases. Therefore, due to the lack of databases
with a higher number of genuine signatures per user, we will
acquire a new database in order to check the performance
of the Proposed Systems using a different set of users for
development and testing the system. Furthermore, it would
be interesting to analyze the system configuration update
strategies for the HMM and GMM Proposed Systems regarding
the complexity of signatures.
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