
Chapter 14
From Biometric Scores to Forensic
Likelihood Ratios

Daniel Ramos, Ram P. Krish, Julian Fierrez and Didier Meuwly

Abstract In this chapter, we describe the issue of the interpretation of forensic evi-

dence from scores computed by a biometric system. This is one of the most important

topics into the so-called area of forensic biometrics. We will show the importance of

the topic, introducing some of the key concepts of forensic science with respect to

the interpretation of results prior to their presentation in court, which is increasingly

addressed by the computation of likelihood ratios (LR). We will describe the LR

methodology, and will illustrate it with an example of the evaluation of fingerprint

evidence in forensic conditions, by means of a fingerprint biometric system.

14.1 Likelihood Ratio Framework for Evidence Evaluation

The evaluation of the relationship between two pieces of evidence at judicial trials

has been the subject of discussion in the past years [1]. Here, the problem is to give a

value to a comparison of a trace specimen of unknown origin (for instance a finger-

mark revealed in a crime scene, or a wire tapping involving an incriminating conver-
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sation) with a reference specimen of known origin (for instance, a fingerprint from a

suspect, or some recordings of a known individual). From a formal logical perspec-

tive [2], the given value should represent the degree of support of the comparison

to any of the propositions (also called hypotheses) involved in the trial. Examples of

simple hypotheses might be “the trace and the reference specimens originated from

the same source” or “the trace and the reference specimens originated from different

sources”, but more complex hypotheses can be considered [2]. In some sense, the

value of the evidence represents the strength of the link between the trace and the

reference specimen in the context of the propositions considered.

Evidence evaluation using a Bayesian probabilistic framework has been proposed

in recent years as a logical and appropriate way to report evidence to a court of law

[3]. In Europe, there have been initiatives to foster this approach, some of them in

response of notorious reluctance to the use of statistics in courts [4]. These have

been the main reason leading to the release of a Guideline [5] for the expression of

conclusions in evaluative forensic reports. This Guideline is proposed by the Euro-

pean Network of Forensic Science Institutes (ENFSI), an organization that includes

almost all the main forensic laboratories in Europe.
1

According to this Guideline,

a Bayesian framework for forensic evaluative reports is recommended for all disci-

plines and laboratories within ENFSI. Under this Bayesian approach, a likelihood

ratio (LR) is computed to represent the value of the evidence, and to be reported to

a court of law (mainly in the form of a verbal equivalent). This framework clearly

complies with the requirements of evidence-based forensic science [1]: it is scien-

tifically sound (transparent procedures, testability, formal correctness), and clearly

separates the responsibilities of the forensic examiner and the court.

The increasing establishment of this Bayesian evaluative framework has moti-

vated the convergence of pattern recognition and machine-learning approaches to

yield probabilistic outputs in the form of likelihood ratios. A common architecture

for this considers two steps: first, the computation of a discriminating score between

two specimens, trace and reference (e.g., a fingermark in the crime scene and an

exemplar fingerprint from a known suspect), which can be obtained from a standard

biometric system; and second, the transformation of the score into a likelihood ratio

[6–9]. This architecture is especially suited for biometric systems, where the output

of a conventional biometric system is typically expressed as a score, even though it

is used as black-box technology. Therefore, the score is most of the times a necessary

intermediate step to the likelihood ratio.

14.1.1 Challenges in LR-Based Evidence Evaluation

Despite its advantages, the computation of likelihood ratios still presents important

challenges. We enumerate the most important as follows.

1
http://www.enfsi.eu/.

http://www.enfsi.eu/
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First, the typical scenario in forensic science involves data presenting diverse and

unfavorable conditions, which means that automatic comparisons between the speci-

mens will result in a challenging problem. Efforts to model or compensate the effects

of these adverse conditions in likelihood ratio computation should be improved.

Some works such as [10] have contributed to evaluate the impact of this problem.

Moreover, integration of advanced machine-learning algorithms (like in [11, 12]) for

the compensation of adverse conditions into forensic evaluation helps in this direc-

tion. However, adverse condition compensation still remains a challenge.

Second, in forensic science the databases are difficult to obtain and to use, even

for research purposes. This is because, although there is plenty of forensic data in

some disciplines (e.g., large fingerprint databases), there are legal, privacy and inter-

operability issues that hamper the use of this data by academic and research institu-

tions. This leads to two opposite situations: either the databases are big when there

is access to the data, and therefore big-data solutions are a challenge to face; or the

databases are highly scarce, and the use of robust models is necessary. Data scarcity

has been tackled by different techniques as in [13, 14]. However, to our knowledge,

evidence evaluation models have not been adapted to big-data scenarios to handle

big databases when possible, which represents a loss of information in these scenar-

ios. Other lines of research have proposed the use of simulated forensic data in order

to prevent the problem of data scarcity [15]. The involvement of simulated data is

a big improvement against data scarcity situations, but the testing of the validity of

simulated databases for the operational use of systems in a real setup is still contro-

versial.

Third, although likelihood ratio computation methods are becoming more and

more popular, the validation of those methods for its use in forensic casework is

still not standardized. Even if likelihood ratios are computed to evaluate the links

between evidential materials, this does not guarantee that they will be able to be

integrated into a Bayesian decision framework to ultimately allow a fact finder to do

optimal decisions. In this sense, the measurement of the performance characteristics

that a likelihood ratio model should manifest is of paramount importance. Recent

work has shown that one of the most important characteristic that forensic likeli-

hood ratios should present is the so-called calibration [9]. This is a property of a set

of likelihood ratios, by which the LR is itself a measure of evidential weight. This

leads to the property that “The LR of the LR is the LR”, meaning that the LR is inter-

preting the evidence with the best possible probabilistic meaning in terms of Bayes

decisions [16]. Therefore, computing likelihood ratios is not enough, they should

also be the best calibrated as possible. There are current efforts of the forensic com-

munity in order to establish formal frameworks for the validation of likelihood ratio

models [9, 17, 18], but research is still needed. Also, a framework for the validation

of likelihood ratio methods has been recently published [19].
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Fourth, evidence evaluation in complex cases is still problematic. Probabilis-

tic graphical models, particularly Bayesian networks [20], have been proposed to

address those situations. However, this emerging field is an active area of research

in forensic science. More efforts are needed in order to provide forensic examiners

with appropriate tools in operational scenarios, especially if those models are to be

learned from data.

14.2 Case Assessment and Interpretation Methodology

A milestone in the use of the LR methodology in Europe was the Case Assessment

and Interpretation (CAI) methodology developed by the Forensic Science Service

(FSS) in the late 1990s [2]. This was the result of the efforts of the now closed

Forensic Science Service of the United Kingdom, in order to homogenize and make

more agile the relationship between courts and forensic service providers (e.g., police

forces or other public or private forensic laboratories). An ultimate aim is the use of

a logical methodology to avoid pitfalls of reasoning and fallacies. The methodol-

ogy has been described in several papers during the end of the twentieth century,

remarkably [2, 21, 22], and serves as the core of likelihood ratio-based evidence

interpretation.

There are several characteristic features of the CAI methodology, which we sum-

marize below.

∙ Full integration of the LR methodology into the forensic evidence evaluation

process. In this sense, all the elements typical from LR evidence evaluation are

present, namely the evidence, propositions, probabilistic reasoning, etc.

∙ A particular emphasis is put in the definition of the propositions in a given case,

which have to be informed by the circumstances of the case themselves. Thus, the

relationship between the court and the forensic science provider should be essen-

tial in order to define the propositions. Issues like the definition of the population

considered to model the alternative proposition, the specificity of the propositions

with respect to the population, the suspect and the trace, or the selection of the most

appropriate database to address the propositions [23], are of particular importance.

∙ A hierarchy of propositions [21] is introduced in order to address the forensic case-

work in the most appropriate manner with respect to the information in the case.

In this sense, there are three basic levels in the hierarchy: source level, where the

source which originated the trace(s) is considered; activity level, where the activ-

ities from which originate the traces are under discussion; and offence level, that

focuses on the question whether the activity from which originate the traces is

an infraction. Depending on the question asked by the requester/fact finder and

on the information in the case available to the forensic scientist, it is possible to

escalate the inference a to higher level, but in most cases the forensic examiner

is requested to report at source level, reason for which most of the effort to pro-

duce increasingly robust models has been focused on source level. Nevertheless,
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nowadays there is a push towards the use of activity-level propositions in casework

(even in the ENFSI Guideline for evaluative reports [5]), although LR models for

activity or offence levels are mostly in a research stage.

∙ Case pre-assessment is encouraged by the model. Under this concept, a prelimi-

nary LR value is reported prior to the case itself, in order to indicate what would

be the expected outcome of the forensic analysis by the examiner. This helps to

focus the expectations of the fact finder, and has important implications regarding

the efficiency of resources in a case.

14.3 Evidence Evaluation with Likelihood Ratios

The LR framework for interpretation of the evidence represents a mathematical and

logical tool in order to aid in the inference process derived from the analysis of the

evidence. In this methodology, the objective of the forensic scientist is computing the

likelihood ratio (LR) as a degree of support of one proposition versus its alternative

[3, 24].

The LR framework is stated as follows. Consider a forensic case. There is a foren-

sic evidence E, which contains the specimens to compare in a forensic case, namely,

in a fingerprint case, a recovered fingermark of unknown origin and a reference fin-

gerprint (namely the exemplar) whose origin is known to be a given suspect involved

in the case. In this context, the unobserved variable of interest is the true proposition

H with values
{

Hp,Hd
}

, where Hp and Hd are the possible relevant propositions

defined in the case, according to the CAI methodology. As mentioned before, the

definition of Hp and Hd varies in each case. A possible definition at the source level

could be as follows:

Hp: The origin of the fingermark (trace) and the fingerprint (reference) is the same

finger of one single donor.

Hd: The origin of the fingermark (trace) and the fingerprint (reference) are fingers

from two different donors.

Hp is typically called prosecution proposition, whereas Hd is referred to as defense
proposition. This is due to the fact that alternative, and mutually exclusive proposi-

tions arise naturally in an adversarial trial system like in the UK, where the CAI

methodology was developed. Other propositions can be addressed, and variation of

their statement can lead to a radically different selection of databases for LR compu-

tation [23], and even to different likelihood ratio models [25]. Therefore, care should

be taken in order to clearly and appropriately define the propositions in a case.

In Bayesian decision theory, decisions are made considering the probability

distribution of the variable of interest (in this case, the proposition variable H),

given all the observed information. In a forensic case, this can be represented as

P
(
H = Hp |E, I

)
and P

(
H = Hd |E, I

)
, or simply P

(
Hp |E, I

)
and P

(
Hd |E, I

)
,

where I is the background information available in the case not related to the evi-

dence E, as defined by the CAI methodology. Hp and Hd are in most cases mutually
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exclusive. Then, Bayes’ theorem [3] relates probabilities before and after evidence

analysis.

P
(
Hp |E, I

)
=

P
(

E|Hp, I
)
⋅ P

(
Hp | I

)

P (E| I)
(14.1)

In terms of interpretation, it is useful to use ratios of probabilities. Then, Eq. 14.1

becomes

P
(
Hp |E, I

)

P
(
Hd |E, I

) = LR ⋅
P
(
Hp | I

)

P
(
Hd | I

) (14.2)

LR =
P
(

E|Hp, I
)

P
(

E|Hd, I
) (14.3)

In Eq. 14.2, we can distinguish the following:

1. The prior probabilities P
(
Hp | I

)
and P

(
Hd | I

)
, which are province of the fact

finder and should be stated assuming only the background information (I) in the

case [24].

2. The LR (Eq. 14.3), assigned or computed by the forensic practitioner [3].

A critical point in the application of the LR methodology is the selection of proper

databases to address the propositions and also the trace material, for example the

language of the trace will determine the language of the speech databases used in the

case, but also from the definition of the propositions themselves. We will address this

issue in the example below, but many works in the literature give recommendations

on how to select these databases, both in fingerprints [26] or in forensic science in

general [23].

This LR-based framework for interpretation presents many advantages

∙ It allows forensic practitioners to evaluate and report a meaningful value for the

weight of the evidence to the court, with a universal interpretation, allowing for

the combination of results across disciplines when the same propositions are con-

sidered [5, 24].

∙ The role of the examiner is clearly defined, leaving to the court the task of using

prior judgments or costs in the decision process.

∙ Probabilities can be interpreted as degrees of belief [27], allowing the incorpora-

tion of subjective opinions as probabilities in the inference process in a clear and

scientific way.

The LR value has an interpretation as a support to a previously stated opinion,

due to the analysis of the evidence E. In other words

∙ If the LR > 1 the evidence will support that H = Hp, i.e., the prosecutor proposi-

tion.



14 From Biometric Scores to Forensic Likelihood Ratios 311

∙ If the LR < 1 the evidence will support that H = Hd, i.e., the defense proposition.

Moreover, the value of the LR represents the degree of support of the evidence

to one value of H against the other. For instance, LR = 3 means that “the evidence

supports H = Hp against H = Hd with a degree of 3 versus 1”. Therefore, a single

LR value has a meaning by itself, as opposed to a biometric score, that may have

only meaning if compared to a reference threshold or another set of scores.

It is important to note that the LR supports an opinion about H, but the LR is
not an opinion about H. Opinions about H are represented as probabilities of propo-

sitions, or in our binary case, their ratios. Therefore, it is not possible to make a

decision about the value of H based solely on the value of the LR, because decisions

will be taken from posterior probabilities, not only from degrees of support.

14.4 Interpreting Biometric System Scores
with Likelihood Ratios

According to [6, 7], in biometrics all the information that the systems yield about

the propositions after observing E is in most cases condensed into a so-called score,

a single number which is an observation of a random variable S, and must contain as

much information as possible about H. Therefore, the interpretation of the evidence

using biometric systems requires that the score will be first computed by the system,

yielding the particular value S = s, and then the score is interpreted using a likelihood

ratio. This leads to the following expression:

LR =
P
(

E|Hp, I
)

P
(

E|Hd, I
) =

P
(

s|Hp, I
)

P
(

s|Hd, I
) (14.4)

Moreover, most biometric scores are continuous, and in that case the ratio of

probabilities becomes a ratio of probability density functions, yielding

LR =
P
(

s|Hp, I
)

P
(

s|Hd, I
) =

p
(

s|Hp, I
)

p
(

s|Hd, I
) (14.5)

Thus, the LR value (Eq. 14.5) is the quotient of two probability densities. On

the one hand, the probability density function (pdf) p
(

S|Hp, I
)

in the numerator in

Eq. 14.3 is known as the intra-variability distribution. Its evaluation in the particular

value of the score S = s gives a measure of the probability density of observing

the evidence under Hp. On the other hand, the pdf p
(

S|Hd, I
)

in the denominator is

known as the inter-variability distribution, and its evaluation in the particular value of
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the score S = s gives a measure of the probability density of observing the evidence

under Hd.
2

The aim of LR methods with biometric score-based systems is to provide a model

that transforms scores into LR values in a case. Moreover, the resulting LR values

should present adequate performance in order to correctly aid the decisions of fact

finders.

14.5 LR Computation Methods from Biometric Scores

In this section, some of the most common algorithms for LR computation from bio-

metric scores are described.

14.5.1 Generating Training Scores

The main commonality of all the methods described in this section is that they need

two proposition-dependent sets of training scores, namely 𝐒𝐩 and 𝐒𝐝. These sets and

some of the issues associated to them are described as follows.

∙ The set 𝐒𝐩 =
{

s(1)p ,… , s(Npt)
p

}
consists of Npt scores computed assuming that

H = Hp. Therefore, the selection of data to compute the scores in 𝐒𝐩 has to be

done accordingly to the definition of the propositions. As Hp proposition typically

assumes that the trace and reference specimens in the case come from the same

person, the 𝐒𝐩 consists of same-source scores.
3

However, the rest of information

in Hp can be determinant in order to select the database to generate those same-

source scores. For instance, if the particular suspect in the case is included in the

propositions (e.g., “the trace was left by Mr. Dean Keaton”), then the propositions

will be person-specific or source-specific, and the database to generate 𝐒𝐩 should

include specimens coming from the particular donor, because in many biomet-

ric traits each person has a particular behavior regarding their score distribution

[28]. On the other hand, person-generic or source-generic propositions (e.g., “the

trace and the reference samples come from the same source”) would allow the use

of any same-source score from other people, since there is not knowledge of a

particular subject. Another example of the influence of propositions in the model

for LR computation is related to the definition of suspect-based or finger-based

proposition for fingerprint interpretation [25].

2
The background information about the case I will be eliminated from the notation for the sake of

simplicity hereafter. It will be assumed that all the probabilities defined are conditioned to I.

3
Here we work at the source level, and therefore same-source scores refer to scores generated from

two biometric specimens coming from the same source. They are what in biometric authentication

terminology are called genuine scores.
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∙ The set 𝐒𝐝 =
{

s(1)d ,… , s(Ndt)
d

}
consists of Ndt scores computed assuming that

H = Hdt. For the computation of these scores, several things should be taken into

account. First, Hd typically assumes that the questioned materials were not gen-

erated by the suspect in the case, but other person. Therefore, the scores in 𝐒𝐝
will essentially be different-source scores,

4
since the case always considers the

donor reference specimens as part of the evidence. Second, the way in which these

scores are generated is critical, since the selection of different strategies to obtain

𝐒𝐝 might lead to different LR values. Also, theoretical issues should be taken into

account regarding these strategies (for a discussion about this, see [29]). Last, but

not least, the determination of the population of sources of the test specimen must

be handled with care. The key point is that the population must be seen as the set

of potential donors of the test specimen, considering the definition of the proposi-

tion and the information about the case that is relevant and available to the forensic

examiner.

An important remark is in order here. The aim of the 𝐒𝐩 and 𝐒𝐝 score sets is

to represent the variation of S conditioned to the propositions. As S is the variable

representing the score to be obtained from the evidence in the case, the conditions in

the forensic case should be preserved for all comparisons in 𝐒𝐩 and 𝐒𝐝. For instance,

if the evidence consists of a degraded, partial fingermark and a fingerprint from a

ten-print card of a known suspect, all the scores in 𝐒𝐩 and 𝐒𝐝 should be generated

from comparisons of degraded fingermarks and fingerprints from ten-print cards, in

the conditions as similar as possible to those in the case. An exception would be if

the conditions do not affect the behavior of the scores at all, but this rarely happens

in real forensic scenarios.

Moreover, the scores in 𝐒𝐩 and 𝐒𝐝 should represent all possible sources of vari-

ability in S. Therefore, the use of models of variability is essential in order compute

better likelihood ratios. Good examples exist in the literature of the use of variability

models to compute the LR [26], or to compensate this variability at the level of the

biometric score [11, 12].

14.5.2 Common Methods for Score-Based LR Computation

14.5.2.1 Generative Assignment of Probability Densities

LR computation in forensic biometrics has been classically performed by the use of

generative techniques modeling the hypotheses-conditional distribution of the scores

variable S. This is the approach already presented in [30], and has been followed in

subsequent works in the literature. Under this approach, the objective is assigning

4
Here we work at the source level, and therefore different-source scores refer to scores generated

from two biometric specimens coming from different sources. They are what in biometric authen-

tication terminology are called impostor scores.
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the likelihoods p
(

S|Hp
)

to the training scores 𝐒𝐩, and p
(

S|Hd
)

to 𝐒𝐝. Then, the

ratio of the particular value of these densities at S = s will be the LR value.

Assigning p
(

S|Hp
)

and p
(

S|Hd
)

implies the selection of a proper model. The

most straightforward choice for biometric scores could be the Gaussian distribution,

obtained via Maximum Likelihood from the training set of scores. However, this

requires the distributions involved to present a good fitting with Gaussian probabil-

ity density functions, which is not typically the case. Fortunately, some score nor-

malization techniques such as T-Norm tend to generate Gaussian distributions for

scores when Hd is true [31]. Other approaches for generative ML fitting includes the

use of Kernel Density Functions [30, 32], Gaussian Mixture Models [32] and other

parametric distributions [18, 42].

14.5.2.2 Logistic Regression

Logistic regression is a well-known pattern recognition technique widely used for

many problems including fusion [33, 34] and more recently likelihood ratio com-

putation [7, 35]. The aim of logistic regression is obtaining an affine transforma-

tion (i.e., shifting and scaling) of an input dataset in order to optimize an objective

function. Let 𝐒𝐟 =
{

s(1)f , s(2)f ,… , s(K)
f

}
be a set of scores from K different biometric

systems. The affine transformation performed by the logistic regression model can

be defined as

flr = log
⎛
⎜⎜⎜⎝

P
(

Hp
|||𝐒𝐟 , I

)

P
(

Hd
|| 𝐒𝐟 , I

)
⎞
⎟⎟⎟⎠
= a0 + a1 ⋅ s(1)f + a2 ⋅ s(2)f +⋯ + aK ⋅ s(K)

f (14.6)

This leads to the following logistic regression model:

P
(

Hp
||| 𝐒𝐟 , I

)
= 1

1 + e−flr
= 1

1 + e− log(LR)−log(O(Hp))
(14.7)

where O(Hp) determines the prior odds in favor of Hp.

The weighting terms
{

a0, a1, a2,… , aK
}

can be obtained from a set of training

data with optimization procedures found in the literature.
5

Moreover, by training the

weights for some given simulated value of the prior odds, and removing the influence

of that value of the prior odds after computing flr, likelihood ratios are obtained.

Notice that logistic regression can be used for computing likelihood ratios from

a single biometric score (K = 1), but also to perform fusion and LR computation

simultaneously (when K > 1) [34]. This fact, joined to the good behavior that logistic

5
Typical implementations used in biometrics include toolkits like FoCal or BOSARIS, which can

be found in http://niko.brummer.googlepages.com.

http://niko.brummer.googlepages.com
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regression presents in most situations, have made this LR computation algorithm one

of the most popular ones.

14.5.2.3 Pool Adjacent Violators (PAV)

Another approach to score-to-LR transformation has been proposed by the use of

the Pool Adjacent Violators (PAV) algorithm [7]. The PAV algorithm transforms a

set of scores into a set of LR values presenting optimal calibration. However, it is

only possible to apply an optimal PAV transformation if the ground-truth labels of

the propositions for each score in the set are known. As suggested in [8], a PAV

transformation can be trained on the set of training scores 𝐒𝐩 and 𝐒𝐝, and then apply

the trained transformation to a score in a forensic case. Although a straightforward

use of PAV leads to a non-invertible transformation, several smoothing techniques

can be applied to PAV in order to keep it monotonically increasing. For instance,

adding a small slope to the function defining the PAV transformation will lead to an

invertible transformation. Interpolating with linear, quadratic or splines approaches

are also possible smoothing schemes.

14.6 Performance Measurement of LR Methods

As it was previously stated, the issue of performance measurement of LR methods is

paramount in order to achieve validation of forensic interpretation prior to its use in

casework [18]. In this section, we describe some of the performance metrics adequate

for LR-based forensic interpretation.

At the source level, performance measurement is typically carried out in an empir-

ical way. In order to measure the performance of a LR method, a test set of LR values

should be generated by comparisons of specimens from a biometric database using

that LR method. These comparisons should be in fact simulated cases, where the

conditions of specimens should be similar to the conditions of the case scenario

whose performance is to be measured. This would lead to Np LR values computed

when Hp is true and Nd LR values computed when Hp is true.

A solution to measure the performance of likelihood ratio values has been pro-

posed in [7] for speaker recognition, and has been dubbed log-likelihood-ratio cost
(Cllr). Later, it has been used in many other fields in forensic sciences [14, 17, 36,

37]. Cllr is defined as follows:

Cllr =
1

2 ⋅ Np

∑
ip

log2

(
1 + 1

LRip

)
+ 1

2 ⋅ Nd

∑
jd

log2
(
1 + LRjd

)
(14.8)
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The indices ip and jd respectively denote summing over the LR values of the simu-

lated cases where each proposition is respectively true.

An important result is derived in [7], where it is demonstrated that minimizing

the value of Cllr also encourages to obtain reduced Bayes decision costs for all pos-

sible decision costs and prior probabilities [38]. This property has been highlighted

as extremely important in forensic science [9]. Moreover, in [7], the Pool Adjacent

Violators algorithm is used in order to decompose Cllr as follows:

Cllr = Cmin
llr + Ccal

llr (14.9)

where

∙ Cmin
llr represents the discrimination cost of the LR method, and it is due to non-

perfect discriminating power.

∙ Ccal
llr represents the calibration cost of the system.

Cllr is a scalar measure of performance of LR values, the lower its value the bet-

ter the performance. Another useful measure of performance, with interpretation in

terms of information loss, is the Empirical Cross-Entropy (ECE), which is a gener-

alization of Cllr, as follows:

ECE = −
P
(
Hp| I

)

Np

∑
ip

log2P
(

Hp|sip , I
)

−
P
(
Hd| I

)

Nd

∑
jd

log2P
(
Hd|sjd , I

)
, (14.10)

where sip and sjd denote the scores from trace and reference specimens in each of the

simulated cases, where either Hp or Hd is respectively true.

As it happens with Cllr, ECE can be additively decomposed also using the PAV

algorithm into ECE = ECEmin + ECEcal
. This leads to ECE

min
measuring informa-

tion loss due to bad discriminating power, and ECE
cal

measuring information loss

due to miscalibration.

As it can be seen, ECE is dependent of the prior probabilities both explicitly and

through P
(

Hp|sip , I
)

and P
(
Hd|sid , I

)
. Thus, ECE can be represented in a prior-

dependent way. This has been proposed to be done by a so-called ECE plot [17],

which shows three comparative performance curves together (Fig. 14.1)

∙ solid, red curve: accuracy. This curve is the ECE of the LR values in the validation

set, as a function of the prior log-odds. The lower this curve, the more accurate

the method. This curve shows the overall performance of the LR method;

∙ dashed, blue curve: ECE
min

. This curve is the ECE of the validation set of LR

values after the application of the PAV algorithm. This shows the best possible

ECE in terms of calibration, and it is a measure of discriminating power;
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Fig. 14.1 Example of ECE plot

∙ dotted curve: neutral reference. It represents the comparative performance of a

so-called neutral LR method, defined as the one which always delivers LR = 1 for

each forensic case simulated in the set of LR values. This neutral method is taken

as a floor of performance: the accuracy should always be better than the neutral

reference. Therefore, the solid curve in an ECE plot should be always lower than

the dotted curve, for all represented values of the prior log-odds (the names floor
and ceiling are the opposite of the usual physical connotations but are chosen to

represent the lowest and highest levels of performance).

A free Matlab
TM

software package to draw ECE plots can be found in the follow-

ing webpage: http://arantxa.ii.uam.es/~dramos/software.html.

14.7 Computing LR Values from Biometric Scores: An
Example with Forensic Fingerprint Recognition

In this section, we illustrate the process of computing forensic LR values from bio-

metric fingerprint scores. We use a database collected from real cases, and in col-

laboration with Spanish Guardia Civil. Also, we use a state-of-the-art fingerprint

system based on Minutiae Cylinder Code [39–41].

Evidence evaluation in fingerprints by the use of LR has been recently proposed

in remarkable works like in [26] for minutiae configurations extracted manually from

http://arantxa.ii.uam.es/~dramos/software.html
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forensic examiners. However, other models based on the use of AFIS scores to com-

pute likelihood ratio values can be found in [42], and more recently [18]. The reasons

of modeling AFIS scores are diverse. On the other hand, it may give a complemen-

tary information to other methods more based on the direct statistical modeling of

the minutiae extracted by the examiners. On the other hand, it allows the use of pow-

erful systems to extract the information of identity, after which a likelihood ratio

model performs the interpretation with the less loss of information possible [6].

14.7.1 Database and Statistics

The database used in this work was obtained from Guardia Civil, the Spanish law

enforcement agency. The Guardia Civil database (GCDB) is a realistic forensic fin-

gerprint casework database. Apart from having typical minutiae feature types (ridge-
endings, bifurcations), GCDB also comprises rare minutiae types like fragments,

enclosures, dots, interruptions, etc. [43]. A comprehensive list of rare minutia fea-

tures used by Guardia Civil are shown in Fig. 14.2 and the corresponding minutiae

type names are listed in Table 14.1.

Fig. 14.2 Minutia types used by Guardia Civil. Names corresponding to individual minutia type

numbers can be found in Table 14.1

Table 14.1 List of minutia types used by Guardia Civil. Numbering with respect to Fig. 14.2

No Minutiae type No Minutiae type No Minutiae type

1 Ridge ending 6 Interruption 11 Circle

2 Bifurcation 7 Enclosure 12 Delta

3 Deviation 8 Point 13 Assemble

4 Bridge 9 Ridge crossing 14 M-structure

5 Fragment 10 Transversal 15 Return
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Table 14.2 The probability of occurrence and the entropy-based weights for the minutia types

present in the 268 fingermarks of GCDB. The numbers correspond to minutia types in Fig. 14.2

No Minutiae type Probability (pi) Weight (wi = − log10 pi)

1 Ridge-ending 0.5634 0.2492

2 Bifurcation 0.3620 0.4413

3 Deviation 0.0015 2.8294

4 Bridge 0.0024 2.6253

5 Fragment 0.0444 1.3523

6 Interruption 0.0021 2.6833

7 Enclosure 0.0204 1.6896

8 Point 0.0036 2.4492

10 Transversal 0.0003 3.5284

GCDB used in this work consists of 268 fingermark and reference fingerprint

images and minutia sets. All the minutiae in the fingermark images were manually

extracted by forensic examiners of Guardia Civil. The corresponding mated minutiae

in the reference fingerprints were also manually established. This includes the typi-

cal (ridge-endings and bifurcations) minutiae and the rare minutiae. The minutiae in

the reference fingerprints were combined with the minutiae extracted by Neurotech-

nology Verifinger algorithm, in order to generate a complete set of minutiae for the

reference fingerprint. For the fingermark, the minutiae will be the ones marked by

the examiners. The average number of minutiae in the fingermarks was 13 and that

of tenprints was 125.

The original fingermark minutia sets provided by Guardia Civil and the post-

processed VeriFinger generated minutia sets are used in all our experiments. To rep-

resent some rare minutiae, multiple points were needed. For example, to represent a

deviation two points are needed (see type 3 in Fig. 14.2), and to represent an assem-
ble three points are needed (see type 13 in Fig. 14.2). Whenever multiple points are

needed to represent a rare minutia, we mapped them to a single point representation

by taking the average of locations and orientations of all points.

From the 268 fingermark minutia sets, we estimated the probability of occurrence

(pi) of various minutia types. The probability (pi) and the entropy-based weights

(wi = − log10 pi) for each minutia type present in GCDB are listed in Table 14.2. In

the 268 fingermarks of GCDB, we noticed only seven types of rare minutia features.

They are listed in Table 14.2. Other rare minutia types are not found in the current

database used in this study, because they did not appear in the whole database.
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14.7.2 Biometric System

The system used to compare the minutiae was based on Minutiae Cylinder Code

(MCC) representation, also extensively presented in another chapter of this book,

deeply described in [39–41].
6

It is not the aim to deeply describe the score com-

putation system in this chapter, because we aim at the likelihood ratio computation

process. Details about the algorithm can be found in the relevant references [39–41].

In order to exploit the information in the rare minutiae features in the GCDB, the

minutiae included in those rare points are part of the features directly added to the

ridge endings and bifurcations. Thus, everything together has been used to feed the

MCC system. Therefore, the scores obtained by the system include information from

both typical and rare minutiae.

Finally, a T-Norm stage has been performed in order to align and normalize the

output different-source scores of the system. Test-Normalization, or T-Norm [44] has

been used to perform score normalization. In order to do that, a set of different-source

fingerprints, namely a cohort of different sources, is needed. From those so-called

T-Norm scores, the mean and the standard deviation 𝜇Tnorm and 𝜎Tnorm are computed.

The T-Norm technique is then applied to a particular score computed form a given

fingermark query as follows:

sTnorm =
sraw − 𝜇Tnorm

𝜎Tnorm
(14.11)

Thus, T-Norm performs query-dependent score normalization, and the result is

the alignment of the query-dependent different-source score distributions for all

comparisons in the particular set of scores.

Thus, this normalization technique compensates variability in the scores due to

the recovered fingermark. The T-Norm cohort in this experiment has been selected

from the same Guardia Civil database that has been used to simulate real foren-

sic fingermark-reference fingerprint comparisons, and therefore the results may be

overstated in terms of performance. However, for the sake of illustration on the com-

putation of likelihood ratios, this is not a problem.

It has been reported that the different-source scores of a biometric system tend to

be more Gaussian after the application of T-Norm [31]. Therefore, we will assume

that a Gaussian model will be appropriate for the MCC scores after T-Norm is

applied.

6
We have used the implementation of this score computation system provided by the authors.
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14.7.3 Methodology and Proposed LR Methods

This section proposes several methods for likelihood ratio computation using scores

from the MCC algorithm with the Guardia Civil database (GCDB) described in

Sect. 14.7.1.

14.7.3.1 Definition of Propositions

According to the methodology of CAI, the first step to compute likelihood ratios

is to establish the propositions considering the information present in the case. The

simulated cases that we are going to conduct here consist of the comparison of one

fingermark and one reference fingerprint. Both fingermark and reference fingerprint

come from GCDB. The scores used to train the models for the LR computation are

the rest of scores in the GCDB generated from individuals different from the donors

of the fingermark and the reference fingerprint. In this way, the models are trained

with scores not used in the case, and the data handling is honest in the sense of the

performance measurement.

According to this setup, there are several observation that are in order:

∙ The information in the case is almost non-existent. We only have the images of

the fingermark and the reference fingerprint, and therefore no assumption can be

done about the donors of fingermark and reference (e.g. ethnicity, gender, etc.).

This only allows generic propositions about the populations involved.

∙ The trace and reference specimens are pseudonymised because the metadata of

the donors are not necessary.

∙ We only have a single same-source comparison for each subject in the database.

Therefore, it is impossible for us to focus in source-specific models, because there

are no additional data available to model the particular behavior of their scores in

comparison to the whole population of scores.

∙ There is no information whatsoever about the relevance of the donor of fingermark

and reference fingerprint with respect to the action in the crime scene, or even

more with respect to any offense. Therefore, only propositions at source level can

be addressed.

∙ Because of the way it was built, we assume that all fingermarks in the GCDB

dubbed as different in the ground-truth labels are generated by different people.

It is assumed also in the corresponding reference fingerprint. Therefore, in this

database it will be equivalent to talk about donors as about fingers, since different

fingerprints will definitely belong to different donors (and not to different fingers

of the same donor).

Under these premises, we decide to state source level, person-generic and general-

population propositions for this case. Therefore, we have the following propositions:

Hp: The origin of the fingermark (trace) and the fingerprint (reference) is the same

finger of the donor.
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Hd: The origin of the fingermark (trace) and the fingerprint (reference) are fingers

from two different donors.

This definition of the propositions implies that, for a forensic case involving the

comparison of a fingermark and its corresponding reference fingerprint, the scores

needed to train the LR model should be generated with comparisons of fingermarks

and reference fingerprints without the constrain of belonging to a particular indi-

vidual. This implies that more scores will be typically available to train the mod-

els, therefore improving their statistical robustness. On the other hand, the use of

person-generic propositions inevitably implies an important loss of information in

cases where the identity of the individual is known, as it is typical in court. How-

ever, for this example we will consider this person-specific scenario because of the

limitations of the GCDB, as explained above.

14.7.4 Likelihood Ratio Models

As example in this chapter, we will compare the performance of the following com-

mon models for likelihood ratio computation.

∙ Pool Adjacent Violators.

∙ Gaussian-ML.

∙ Logistic regression.

14.7.5 Experimental Results

14.7.5.1 Experimental Protocol

The experimental protocol has been designed in order to simulate a real forensic

scenario where fingermarks are compared with reference fingerprints using typical

minutia features and also rare minutia features.

In our experiments, we used the Guardia Civil database (as described in

Sect. 14.7.1), because it is the only forensic fingerprint database which contains rare

minutiae, as it has been previously described. Since the GCDB is limited in size, a

cross-validation strategy has been followed in order to optimally use the data with-

out using the same dataset to train and test the LR models proposed. This cross-

validation strategy is described as follows: for each same-source comparison of a

fingermark and a reference fingerprint, the scores to train the LR model for that par-

ticular comparison will consist of all the scores generated with the GCDB, except

those generated with either the fingermark or the reference fingerprint involved in

the case. Therefore, the separation between the fingermark and reference fingerprint

and the individuals in the training database is guaranteed.
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This cross-validation strategy has many advantages in the sense of the optimal

usage of the available database. However, it also presents the disadvantage that the

conditions of the training scores matches the conditions of the fingermark and ref-

erence fingerprint under comparison to a higher degree than in a potential real case.

Thus, the results presented here could be overstated in terms of performance. How-

ever, due to the limitation of the database, and also because the aim of the work is to

show how to apply the methodology, we consider it appropriate to use this protocol.

Notice that this cross-validation strategy does not only guarantee that the data

used to train and test the models are different. Moreover, it also guarantees that the

T-Norm scores generated with the cohort are not present in the training database.

This is because the T-Norm cohort scores must be generated with the scores of the

query fingermark, which will be not present in the training database. Therefore, the

situation is realistic in the sense of the data handling to normalize the scores and also

to train the LR models.

14.7.6 Results on the Comparison of LR Computation
Methods

In this section, we compare all the proposed LR computation methods not only from

the perspective of the discriminating power, but also with respect to the calibration

loss. Thus, accuracy as the sum of both performance measures will allow us to select

the best choice for LR computation. From Fig. 14.3, it is seen that the logistic regres-

sion model presents the best accuracy (red solid curve), and therefore is the best of

the three methods proposed.

We now analyze calibration (separation between red and blue curves) more

deeply. It is generally seen in Fig. 14.3 that the calibration loss is better for PAV and

logistic regression methods rather than for the Gaussian method. Thus, both methods

are apparent good options for LR computation. Regarding the Gaussian-ML method,

it is seen that the calibration performance is worse than for PAV or logistic regres-

sion, especially in the region of low prior odds. As a possible explanation, although

T-Norm different-source scores tend to be Gaussian when they are pooled among all

queries, it is not the case for the same-source scores, and this makes the same-source

distribution to seriously diverge from Gaussianity even after T-Norm is applied.

An additional warning is in order here. The cross-validation procedure to train LR

models and to select T-Norm scores implies a scenario with low dataset shift between

training and testing data. In a forensically realistic setup, where dataset shift between

training and testing data can be severe, the performance of LR methods that exces-

sively fits the training data can seriously degrade. On the other hand, it is known in

pattern recognition that models with lower complexity are more robust to this effect

to avoid overfitting. Therefore, the much lower complexity of logistic regression with

respect to PAV indicates that the former can be potentially more robust to overfitting
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and dataset shift than the latter in forensically realistic conditions. Due to this reason,

logistic regression is more preferable to PAV computation method in this scenario.

As a conclusion of this section, the calibration loss represents a low percentage

of all the loss of accuracy for logistic regression and PAV LR computation methods,

in this order. This makes the overall performance of logistic regression superior,

which among other reasons makes it the best choice. On the other hand, Gaussian-

ML presents poorer calibration loss, sometimes presenting worse performance than

the neutral reference, which makes it less recommendable for the score computation

systems proposed in this chapter.
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Fig. 14.3 ECE plots showing performance of LR methods with T-Normed MCC scores. The dif-

ferent LR methods are PAV (a), Guassian-ML (b) and Logistic regression (c)
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14.8 Conclusions

In this chapter, we have described the methodology for computing likelihood ratios

from biometric scores, with an example of fingerprint recognition in forensic condi-

tions using rare minutiae. This has allowed the interpretation of the evidence from

the fingermark-to-reference-fingerprint comparisons simulating a real forensic case

by the use of a cross-validation strategy with the GCDB. Several LR methods have

been proposed and compared in terms of discriminating power and calibration per-

formance. These results clearly show that the proposed methods present far better

performance than the neutral reference and therefore are useful for forensic interpre-

tation.
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