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Abstract—The great popularity of smartphones and the in-
crease in their use in everyday applications has led to sensitive
information being carried in them, such as our bank account
details, passwords or emails. Motivated by the limited security
of traditional systems (e.g. PIN codes, secret patterns), that can
be easily broken, this work focuses on the analysis of users
normal interaction with touchscreens as a means for active
authentication. Given the frequency in which touch operations
are performed, characteristic habits, like the strength, rhythm
or angle used result in discriminative patterns that can be
exploited to authenticate users. In the present work, we explore a
statistical approach based on adapted Gaussian Mixture Models.
The performance across different kinds of touch operations,
reveals that some gestures hold more user-specific information
and are more discriminative than others (in particular, horizontal
swipes appear to be more discriminative than vertical ones). The
experimental results show that touch biometrics have enough
discriminability for person recognition and that they are a
promising method for active authentication.

Index Terms—Active authentication, biometrics, smartphone,
touchscreen, human computer interaction

I. INTRODUCTION

Traditionally, the methods used for authentication on mobile

devices have been based on passwords, PIN codes or secret

patterns. However, it has been proven that these methods have

different problems [1]–[5], of which inconvenience is one of

the most remarkable. Because of the need to authenticate

each time the device is used, there is a tendency to avoid

authentication measures, or to use short and weak passwords

and PIN codes, because they are easier to remember and can

be entered faster. Additionally, smudge attacks are capable

of following the residues left on the device’s screen when

entering the same pattern repeatedly, thus gaining access to the

device and showing that secret patterns are not secure enough.

These kind of authentication methods are known as entry-point

methods, in which you only authenticate once, when unlocking

the device, and this authentication is not performed again until

the device is once more locked. Therefore, one cannot detect

intruders if the screen is left unlocked or it is not possible to

know if the person who is using the phone is the same user

who authenticated in the first place.

To overcome these problems, new approaches known as

continuous or active authentication methods have arisen. In

these systems users are authenticated periodically in the back-

ground by passively analysing their biometrics. The usage

patterns are studied and compared to the stored templates of

the legitimate user, blocking the device if there are not enough

coincidences [3], [6].

One method for continuous authentication whose results are

only preliminary are touch biometrics on mobile devices. It is

based on the idea that every person has characteristic habits

and behaves differently from others when swiping the fingers

on a touchscreen. As was proven in previous works [2], [3],

[5], swiping patterns present high inter-class variability, that

is, touch data from different users show great differences and

thus can be discriminative among them. However, they also

present high intra-class variability, which means that they are

not stable biometrics, and hence, may change depending on

the user’s emotional state or with time, resulting in different

patterns of use. Therefore, modelling a subject can be difficult.

In this work, continuous authentication with touch bio-

metrics is investigated. Despite previous works studying and

assessing their suitability for authentication, due to the dif-

ficulty to model users’ touch-behaviour the results are yet

preliminary. This work contribution lies on the study of a

statistical based approach [7], using Gaussian Mixture Models

(GMM) with Universal Background Model (UBM) adaptation

[8] for personal authentication. For that purpose, this system

models users behaviour and how their data is distributed.

Additionally, a comparison between the distinctiveness of the

different touch operations is made.

This paper is organized as follows. Section II summarizes

related works in touch biometrics. Section III describes the

database and Section IV the system architecture, the features

used, and the statistical recognition approach evaluated. Ex-

perimental results are given in Section V and conclusions are

drawn in Section VI.

II. RELATED WORKS

Touch biometrics studies have mainly considered two ap-

proaches so far. The first one includes authentication methods

based on touch gestures at an entry point, analysing users’

touch behaviour exploiting a set of predefined gestures, for

example, the secret pattern on the unlock screen. The second

one is continuous authentication while the user freely interacts

with the device performing different tasks [1], [3], [5], [6].

Several studies have investigated whether touch data is

discriminative and stable enough for authenticating users.

In Frank et al. [3], we can see one of the earliest yet

more comprehensive works on continuous authentication using
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Fig. 1: System architecture

touch data. Using a database consisting of 41 users and a 27-

dimensional feature vector, Support Vector Machines with a

RBF-kernel (SVM) and k-Nearest Neighbors (kNNs) classi-

fiers were used for classification, resulting in a performance

with Equal Error Rate (EER) between 2% and 4% for eleven

consecutive strokes and 13% for one single stroke, proving

that using blocks of strokes resulted in a better performance

than a single stroke, which was also observed in other articles

such as [1], [5].

Single touch operations were also studied in Serwadda et
al. [1] and Shen et al. [5]. In Serwadda et al. [1] a benchmark

of ten different algorithms is analysed, concluding that among

them the better suited for continuous authentication of touch

operations are SVM with RBF-kernel, random forest and

logistic regression, all reporting 10% to 20% EER. In Shen

et al. [5], less than 5% EER is obtained when over ten

strokes are combined with SVM, kNNs, neural networks and

random forest classifiers. Additionally, the performance with

specific tasks is compared to the one obtained with free tasks,

concluding that specific tasks are more discriminative.

In addition to focusing on single touch operations, a fusion

of biometrics is studied in Xu et al. [2] (keystroke, slide,

and pinch) and Kumar et al. [9] (typing, swiping, and phone

movement). In the first one, an EER below 10% is obtained

over an SVM classifier with an RBF kernel, whereas in the

second one kNNs with Euclidean distance and random forest

are used to classify, obtaining accuracies up to 90%.

III. DATABASE

In the present work, the dataset acquired in [1] will be

used. According to [1], this database consists of data from 190

users, all of whom are students, faculty or staff at Louisiana

Tech University. The data was collected over two sessions, at

least one day apart, using for all users only one phone model

(Google Nexus S), running on Android 4.0. The training set

contains the first session data, whereas the test set comprises

the second session. Two Android applications were used for

data collection, in which users answered a series of multiple

choice questions. These questions were different in each

session and allowed the user to move freely, scrolling through

the short paragraphs and/or images, on which questions were

based. Both portrait and landscape orientation of the phone

were allowed.

For each point of a stroke, the application recorded the x and

y coordinates, the pressure on the screen, the area occupied

by the finger, the timestamp of the data point and the phone

orientation. Only two types of interactions were recorded:

horizontal strokes and vertical strokes. All other gestures, such

as zooming or rotations, were ignored.

IV. SYSTEM DESCRIPTION

A. System architecture

The system architecture is depicted in Fig. 1. Landscape and

portrait data are processed separately, because some features,

e.g. the coordinates from start and end-points or the velocity,

may change for the same user depending on the orientation.

The strokes from each orientation are first classified as vertical

or horizontal. Moreover, they are further divided based on their

direction as: upwards, downwards, leftwards or rightwards.

The motivation is that despite being, for example, both verti-

cal gestures, upwards and downwards strokes are performed

differently (e.g. with different fingers) and present their own

characteristic features, in the same way that one does not walk

equally forward and backwards. This division guarantees that

the particularities of how each user makes each gesture is taken

into account. For each stroke, a feature vector is extracted

and, afterwards, similarity scores are obtained using averaged

blocks of ten scores, as it has been proven in the literature

that blocks of strokes work better [1], [3], [5].
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Fig. 2: Effect on the performance of the number of Gaussian components, with r = 5.5
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Fig. 3: System performance as a function of r with 4 GMM components

TABLE I: Optimal feature set selected by the SFFS algorithm

Scenario Best performing features

Vertical θ(finger-down to finger-up), (xmax − xmin)/xmax range,
std of ax, (x̄− xmin)/x̄, (ymax − ymin)/ymax range

Horizontal θ(finger-down to finger-up), (ymax − ymin)/ymax range,
std of ay , (ȳ − ymin)/ȳ, (xmax − xmin)/xmax range

B. Feature extraction

Prior to computing the feature vectors, short strokes of less

than five touch points, which probably come from taps on the

screen, are considered outliers and discarded.

The feature set used in this work is adapted from the 100-

dimensional feature vector studied in [10], which contains a

high proportion of the best performing global features from the

signature biometrics literature. The use of this feature vector

is motivated by the fact that similarly to touch biometrics,

temporal features of gestures made on a surface are extracted

in online signatures and graphical passwords with doodles

[11]. A complete description of these features can be found

in [10]. However, signatures are much more sophisticated

descriptors than swipes on a touchscreen and hence, need more

complex features. This way, to adapt the feature vector, several

features that cannot be applied to the current problem were

not considered, such as those relating to pen-ups and pen-

downs. Additionally, feature selection is performed using the

Sequential Forward Floating Search (SFFS) algorithm [12].

The best 5 features in terms of EER chosen by this algorithm

are depicted in Table I. This algorithm is used with vertical

strokes in portrait orientation, the most commonly performed.

Despite the small dimension of the resulting feature vector, it

should be noted that the gestures used for classification can be

easily described due to their simplicity. Lastly, feature vectors

normalization into the interval (0,1) is computed using tanh-

estimators [13].

C. Similarity computation

The UBM is a general model that describes the behaviour

of a population in a feature space. It is computed once for

all users using full covariance matrices and all data from the

training set. Once calculated, it is adapted to the legitimate

subject’s model using his training samples via a relevance

factor r, which trade-offs between the general information of

the UBM and the specificities of the user training data. The

higher r the more importance is given to the UBM general

data. A complete description of the steps followed to obtain

the user’s model can be found in [8]. The adapted GMM was

implemented using Matlab’s statistics toolbox (Version 8.3).

V. EXPERIMENTS

A. Results

In this section, the best parameters for authentication are

studied. The effect on the performance of the number N of

GMM components with a fixed relevance factor r = 5.5
is first studied. In Fig. 2 it is shown that the number of

components that result in the best performance varies de-

pending on the type of stroke and the number of training

samples considered to adapt the UBM. In most cases, the

performance improves as the number of components grows.

With 40 training samples, the performance is better and more



stable in most cases. Downwards strokes perform better than

upwards in portrait orientation, while the opposite happens

in landscape orientation. This means that these strokes are

more distinctive for each of the orientations. Horizontal strokes

performance presents a larger variability depending on the

number of training samples and it barely improves as the

number of GMM components grows. This may be because

data points of horizontal strokes are very condensed in one or

two clusters, and, when using more components, the models

represent outliers that do not show the general behaviour of

the current user.

The effect of the relevant factor r in the adaptation process

is studied for N = 4 GMM components, which resulted in a

good performance in most scenarios. In Fig. 3 the mean EER

across all users in the system is depicted as a function of r. It

can be observed that, as r increases, the EER has a slight initial

descent, with some rises and falls, until it stabilizes. This can

be caused by the model becoming more general as r increases,

thus being less adapted to the user’s specific characteristics.

Nevertheless, it should also be noted that even with a large r,

the adapted model still holds enough user specific information

to be discriminative. As was also observed when changing

the number of GMM components, downwards strokes perform

better than upwards in portrait orientation, while the reverse

occurs in landscape orientation. For horizontal strokes, the

performance is slightly better in leftwards strokes for portrait

orientation, whereas in landscape orientation it is similar.

The performance obtained for all the described configu-

rations is around 20% EER, with the best values ranging

from 15% to 22%. These values are obtained with different

parameters in each of the operations, but using a relevance

factor r = 30 and 40 training samples to adapt the UBM

results in a better performance than other configurations.

B. Discussion of the performance across touch operations

In portrait orientation, horizontal strokes perform better than

the vertical ones. Additionally, it should be noted, the best

performing gestures are, in most experiments, the downwards

and rightwards strokes over the upwards and leftwards strokes.

This means that they hold more discriminative information. A

possible reason may be that they are performed more often and

are more stable and hence users swipe the screen following

more distinctive patterns in these gestures.

On the other hand, in landscape orientation horizontal

strokes present only a slightly better performance than vertical

ones. Considering this also occurred in portrait orientation,

horizontal gestures probably hold more discriminative infor-

mation. In addition to the frequency in which these strokes

are performed, a possible cause may be related to being much

shorter gestures. Thus, horizontal gestures have less degrees

of freedom and users tend to show a more stable behaviour.

The overall performance is better in landscape orientation

than in portrait orientation. One of the reasons for this could be

that the users who swiped the screen in landscape orientation

almost never use portrait orientation, and thus, present more

consistent and stable habits.

VI. CONCLUSIONS AND FUTURE WORK

In this work, continuous authentication using the most

common touch operations has been studied using a statistical

approach. Users’ touch behaviour can be modelled using a

GMM adapted from a UBM, that represents an “average user”.

The results have shown that touch biometrics are discrimina-

tive and stable enough to be used for user recognition and

that they are a promising method for active authentication.

In addition, it has been found that horizontal strokes hold

more user-specific information and are more discriminative

than vertical strokes. Gestures made in landscape orientation

are also more discriminative than in portrait orientation.

Nevertheless, these results are only preliminary. Further

work includes studying this system with other databases and

comparing it to other approaches [1], as well as extending the

considered gestures to multitouch operations [14].
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