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Abstract—Architectures based on Recurrent Neural Networks
(RNNs) have been successfully applied to many different tasks
such as speech or handwriting recognition with state-of-the-
art results. The main contribution of this work is to analyse
the feasibility of RNNs for on-line signature verification in real
practical scenarios. We have considered a system based on Long
Short-Term Memory (LSTM) with a Siamese architecture whose
goal is to learn a similarity metric from pairs of signatures. For
the experimental work, the BiosecurID database comprised of 400
users and 4 separated acquisition sessions are considered. Our
proposed LSTM RNN system has outperformed the results of
recent published works on the BiosecurID benchmark in figures
ranging from 17.76% to 28.00% relative verification performance
improvement for skilled forgeries.

Index Terms—Biometrics, on-line handwritten signature, re-
current neural networks, LSTM, DTW, BiosecurID

I. INTRODUCTION

New trends based on the use of RNNs are becoming more
and more important nowadays for modelling sequential data
with arbitrary length [1]. The range of applications can be very
varied, from speech recognition [2] to biomedical problems
[3]. RNNs are defined as a connectionist model containing
a self-connected hidden layer. One benefit of the recurrent
connection is that a memory of previous inputs remains in
the networks internal state, allowing it to make use of past
context. One of the fields in which RNNs has caused more
impact in the last years is in handwriting recognition due to
the relationship that exists between current inputs and past
context. However, the range of contextual information that
standard RNNs can access is very limited [4] due to the well
known vanishing gradient problem [5]. LSTM [6] is a RNN
architecture that arised with the aim of resolving the shortcom-
ings of standard RNNs. This architecture has been deployed
with success in both on-line and off-line handwriting [4], [7].
Whereas off-line scenarios consider information only related to
the image of the handwriting, in on-line scenarios additional
information such as X and Y pen coordinates and pressure
time functions are also considered providing therefore much
better results. In [4], the authors proposed a system based
on the use of Bidirectional LSTM (BLSTM) for recognizing
unconstrained handwritten text considering both off- and on-
line handwriting approaches. The results obtained applying
this new approach outperformed a state-of-the-art HMM-based
system and also proved the new approach to be more robust

to changes in dictionary size. LSTM approaches have been
considered not only for recognizing unconstrained handwriting
but also for writer identification. In [8], the authors considered
a system based on BLSTM for on-line text-independent writer
identification. The experiments carried out over both English
(133 writers) and Chinese (186 writers) outperformed state-
of-the-art systems as well.

Despite the good results obtained in the field of handwriting
and the similarity with the case of handwritten signature,
very few studies have applied LSTM RNNs successfully to
handwritten signature verification systems, as far as we know.
In [9], the authors proposed the use of a system based on
LSTM for on-line signature verification. Different configura-
tions based on the use of forget gates and peephole connections
were studied considering in the experimental work a small
database with only 51 users. The LSTM RNNs proposed
in that work seemed to authenticate genuine and impostor
cases very well. However, as it was pointed out in [10], the
method proposed in that work for training the LSTM RNNs
is not feasible for real applications for various reasons. First,
the authors considered the same users for both development
and evaluation of the system. Moreover, the deployment of
that LSTM RNN architecture may not be feasible in real
scenarios as the system should be trained every time a new
user was enrolled in the application. In addition, forgeries
are required in that approach for training, which may not be
feasible to get as well. Besides, the results obtained in [9]
cannot be compared to any state-of-the-art signature verifica-
tion system as the traditional measures such as the equal error
rate (EER), accuracy, or calibrated log likelihood-ratios were
not considered. Instead, they just reported the errors of the
LSTM-outputs. In order to find some light on the feasibility
of LSTM RNNs for signature verification purposes, Otte et al.
performed in [10] a deep analysis considering three different
real scenarios: 1) training a general network to distinguish
forgeries from genuine signatures on a large training set, 2)
adopting a network that works perfectly on the training set
to a specific writer, and 3) training the network on genuine
signatures only. However, all experiments failed obtaining
a 23.75% EER for the best configuration, far away from
the best state-of-the-art results and concluding that LSTM
RNN systems trained with standard mechanisms were not
appropriate for the task of signature verification.
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Fig. 1. Examples of our proposed LSTM RNN system based on a Siamsese architecture for minimizing a discriminative cost function that drives the similarity
metric to be small for pairs of signatures.

The main contribution of this work is to analyse and prove
the feasibility of LSTM RNN systems in combination with
a Siamese architecture [11] for on-line signature verification.
This Siamese architecture allows to get a close approximation
to the verification task learning a similarity metric from pairs
of signatures (pairs of signatures from the same user and pairs
of genuine-forgery signatures). The main advantage of this
method is that the model can be extrapolated to signatures
from unknown users with very good results, opposite to
traditional architectures where signatures from all users have
to be taken into account in the training and testing process
of the network in order to achieve good results [9]. Different
users and signatures are considered for the development and
evaluation of the system in order to analyze the true potential
of LSTM RNNs in signature verification.

The remainder of the paper is organized as follows. In
Sec. II, our proposed approach based on the use of LSTM
RNNs for signature verification is described. Sec. III describes
the BiosecurID on-line signature database considered in the
experimental work. Sec. IV describes the information used for
feeding the LSTM RNNs. Sec. V describes the experimental
protocol and the results achieved with our proposed approach.
Finally, Sec. VI draws the final conclusions and points out
some lines for future work.

II. PROPOSED METHODS

The methods proposed in this work for improving the
performance of on-line signature verification are based on the
combination of LSTM RNNs with a Siamese architecture.

A. Siamese Architecture

The Siamese architecture has been used for recognition
or verification applications where the number of categories

is very large and not known during training, and where the
number of training samples for a single category is very small
[11]. The main goal of this architecture is to learn a similarity
metric from data minimizing a discriminative cost function that
drives the similarity metric to be small for pairs of signatures.
Fig. 1 shows examples of the architecture proposed in this
work for discriminating genuine from impostor cases. Siamese
architectures have been considered for many recognition and
verification applications. In [11], the authors proposed the use
of Convolutional Neural Networks (CNNs) with a Siamese
architecture for face verification. Experiments were performed
with several databases obtaining very good results where the
number of training samples for a single category was very
small. Siamese architectures have also been used in early
works for on-line signature verification [12] although not
considering RNNs. In [12], the authors proposed an on-line
signature verification system comprised of two separated sub-
networks based on Time Delay Neural Networks (TDNNs).
Different architectures regarding the number and size of layers
were studied. A total of 8 time functions fixed to the same
length of 200 points were extracted for X and Y pen coor-
dinates using an old-fashion 5990 Signature Capture Device.
The best performance was obtained using two convolutional
layers with 12 by 64 units in the first layer and 16 by 19
units in the second one. The threshold was set to detect 80.0%
of forgeries and 95.5% of genuine signatures, far away from
the results that we can achieve nowadays with state-of-the-art
systems [13], [14].

B. Long Short-Term Memory

LSTM RNN systems have been successfully applied to
many different tasks such as language identification consid-
ering short utterances [15] or biomedical problems [3] for
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Fig. 2. End-to-end on-line signature verification system proposed in this work and based on the use of LSTM RNNs with a Siamese architecture.

example. However, the analysis and design of LSTM RNN
architectures for new tasks are not straightforward [16].

LSTM RNNs [6] are comprised of memory blocks usually
containing one memory cell each of them, a forget gate f , an
input gate i, and an output gate o. For a time step t:

ft = σ(Wf · [ht−1, xt] + bf ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

ot = σ(Wo · [ht−1, xt] + bo) (3)

C̃t = tanh(WC · [ht−1, xt] + bC) (4)

Ct = ft � Ct−1 + it � C̃t (5)

ht = ot � tanh(Ct) (6)

where W∗ is the input-to-hidden weight matrix and b∗ is the
bias vector. The symbol � represents a pointwise product
whereas σ is a sigmoid layer which outputs values between
0 and 1. The LSTM does have the ability to remove old
information from t− 1 time or add new one from t time. The
key is the cell state Ct which is carefully regulated by the
gates. The f gate decides the amount of previous information
that passes to the new state of the cell Ct. The i gate indicates
the amount of new information (i.e. C̃t) to update in the cell
state Ct. Finally, the output of the memory block ht is a filtered
version of the cell state Ct, being the o gate in charged of it.

The best topology obtained for our proposed LSTM RNNs
is based on the use of two LSTM hidden layers and finally, a
feed-forward neural network layer. Fig. 2 shows our proposed
end-to-end on-line signature verification system. The first layer
is composed of two LSTM hidden layers with 46 memory
blocks each and sharing the weights between them. The
outputs provided for each LSTM hidden layer of the first layer
are then concatenated and serve as input of the second layer
which corresponds to a LSTM hidden layer with 23 memory
blocks. Finally, a feed-forward neural network layer with a
sigmoid activation is considered, providing an output score
for each pairs of signatures. The size of the input layer was
determined by the data, which is described in more details in
Sec. IV. In addition, many more LSTM RNN architectures
regarding the number of LSTM hidden layers and memory
blocks were tested providing worse results in all cases.

III. ON-LINE SIGNATURE DATABASE

The BiosecurID database [17] is considered in the ex-
perimental work of this paper. This database is comprised
of 16 original signatures and 12 skilled forgeries per user,
captured in 4 separate acquisition sessions leaving a two-
month interval between them. There are a total of 400 users
and signatures were acquired considering a controlled and
supervised office-like scenario. Users were asked to sign on a
piece of paper, inside a grid that marked the valid signing
space, using an inking pen. The paper was placed on a
Wacom Intuos 3 pen tablet that captured the following time
signals of each signature: X and Y pen coordinates (0.25 mm),
pressure (1024 levels) and timestamp (100 Hz). In addition,
pen-ups trajectories are available. All the dynamic information



TABLE I
Set of time functions considered in this work.

# Feature
1 x-coordinate: xn
2 y-coordinate: yn
3 Pen-pressure: zn
4 Path-tangent angle: θn
5 Path velocity magnitude: vn
6 Log curvature radius: ρn
7 Total acceleration magnitude: an
8-14 First-order derivate of features 1-7:

ẋn, ẏn, żn, θ̇n, v̇n, ρ̇n, ȧn
15-16 Second-order derivate of features 1-2: ẍn, ÿn
17 Ratio of the minimum over the maximum speed

over a 5-samples window: vrn
18-19 Angle of consecutive samples and first order

difference: αn, α̇n

20 Sine: sn
21 Cosine: cn
22 Stroke length to width ratio over a 5-samples

window: r5n
23 Stroke length to width ratio over a 7-samples

window: r7n

is stored in separate text files following the format used in
the first Signature Verification Competition, SVC [18]. All the
acquisition process was supervised by a human operator whose
task was to ensure that the collection protocol was strictly
followed and that the captured samples were of sufficient
quality (e.g. no part of the signature outside the designated
space), otherwise, the donor was asked to repeat a given
signature.

IV. TIME FUNCTIONS REPRESENTATION

The on-line signature verification system proposed in this
work is based on time functions (a.k.a. local system) [19].
For each signature acquired, signals related to X and Y pen
coordinates and pressure are used to extract a set of 23 time
functions, similar to [20] (see Table I). Different approaches
regarding the preprocessing of the signatures and the number
of time functions to consider have been analysed in a first
stage. The best results are obtained feeding the LSTM RNNs
with as much information as possible (i.e. 23 time functions)
as it is shown in the input layer of Fig. 2.

V. EXPERIMENTAL WORK

A. Experimental Protocol

The experimental protocol considered in this work has been
designed in order to analyse and prove the feasibility of LSTM
RNNs for on-line signature verification in practical scenarios.
Therefore, different users and signatures are considered for the
two main stages, i.e., development of the LSTM RNNs system
and evaluation of it. This allows us to obtain a clear analysis

of the feasibility of these new approaches in on-line signature
verification systems.

The first 300 users of the BiosecurID database are used
for the development of the system, while the remaining 100
users are considered for the evaluation. For both stages, the
4 genuine signatures of the first session are used as training
signatures, whereas the 12 genuine signatures of the remaining
sessions are left for testing. Therefore, inter-session variability
is considered in our experiments. Skilled forgeries scores
are obtained by comparing training signatures against the 12
available skilled forgeries signatures for the same user.

B. Experimental Results

1) Development Results: This section describes the devel-
opment and training of our proposed LSTM RNNs system
with a Siamese architecture considering the 300 users of the
development dataset. Two different cases are analysed: 1) the
case of considering two signatures performed for the same user
as inputs, and 2) the case of having one genuine signature from
the claimed user and one skilled forgery signature performed
by an impostor as inputs. Therefore, for the first case, a total
of 4 × 12 × 300 = 14, 400 pairs of genuine comparisons are
considered for training the system whereas for the second
case, there are a total of 4 × 12 × 300 = 14, 400 pairs of
impostor comparisons as we have the same number of genuine
and skilled forgery signatures for testing. Our LSTM RNNs
is implemented under Theano [21] with a NVIDIA GeForce
GTX 970 GPU. Each training iteration takes about 30 minutes.

Fig. 3 shows how the training cost of the LSTM RNNs
decreases with the number of training iterations. A red dashed
line is included in the figure indicating the training iteration
which provides the best LSTM RNN performance over the
development dataset, with a training cost value of 0.019. It
is important to remark the behaviour of the neural network
during training as it is capable of skipping different local
minimums during the training process and continue decreasing
the training cost until about 140 training iterations where it
saturates. Regarding the system performance, two different
cases are considered. First, the evaluation of the system
performance considering scores directly from all pairs of
signatures (i.e. 1vs1) and second, the case of performing the
average score of the four one-to-one comparisons (i.e. 4vs1)
as there are four genuine training signatures per user. Our
proposed LSTM RNN system achieves a system performance
in training of 0.11% and 0.00% EER for the cases 1vs1 and
4vs1 respectively. These results shows the potential of LSTM
RNNs for signature verification.

2) Evaluation Results: This section analyses the perfor-
mance of the proposed LSTM RNNs trained in the previous
section. The remaining 100 users (not used for development)
are considered here. In order to make comparable our approach
to related works, we have used the same Baseline System
recently considered in [22], which is based on the DTW
algorithm with a total of 9 out of 27 different time functions se-
lected using the Sequential Forward Feature Selection (SFFS)
algorithm.
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TABLE II
SYSTEM PERFORMANCE RESULTS IN TERMS OF EER(%)

CONSIDERING THE EVALUATION DATASET.

1vs1 4vs1
Baseline System 10.17 7.75
Proposed System 6.44 5.58

Fig. 4 shows the system performance in terms of DET
curves for both Proposed and Baseline Systems considering
1vs1 and 4vs1 cases. Table II shows the system performance
in terms of EER(%) for completeness.

Analysing the results obtained in Table II for the 1vs1
case, our Proposed System achieves a relative improvement
of 36.7% EER compared to the Baseline System. This result
(i.e. 6.44% EER) outperforms state-of-the-art results for the
case of considering one signature for training [13].

Analysing the results obtained for the 4vs1 case, our Pro-
posed System achieves a relative improvement of 28.0% EER
compared to the Baseline System, outperforming the state-of-
the-art results of the BiosecurID database with a final value
of 5.58% EER. Moreover, it is important to highlight that
the result obtained with our Proposed System for the case of
using just one training signature (1vs1) outperforms the result
obtained with the Baseline System for the 4vs1 case, showing
the high ability of our proposed approach for learning even
with small amounts of data.

Results obtained prove the high feasibility of our proposed
LSTM RNNs with a Siamese architecture for on-line signature
verification. In addition, it is important to highlight the advan-
tages of considering our proposed approach for the deployment
in real applications as the LSTM RNN system does not require
any kind of training during the evaluation stage and works
independently of the number of training signatures available
for the user.

Finally, a preliminary evaluation considering random forg-
eries has been carried out for completeness. It is important
to highlight that our proposed LSTM RNN system has been
developed only for skilled and not for random forgeries as this
is the most challenging case in real scenarios not only because
of the quality of the forgeries but to the scarce of skilled
forgeries. The same experimental protocol considered for the
evaluation of skilled forgeries (i.e. the remaining 100 users)
is carried out for the case of random forgeries, but comparing
the reference signatures with one genuine signature of each
of the remaining users. The system performance obtained for
this case has been around 24.0% EER, much higher compared
to the 0.5% EER obtained using the Baseline System based
on DTW. This result achieved using our proposed LSTM
RNN system makes sense as the Siamese architecture has
learnt the similarity metric from pairs of signatures minimizing
a discriminative cost function only for the skilled forgeries
case. Therefore, the same very good results are also expected
to be achieved for the case of random forgeries when pairs
of genuine and random forgeries are considered during the



development and training of the system. In addition, it is
always feasible to perform an on-line signature verification
system based on two consecutive stages: 1) a system based
on DTW in order to reject random forgeries, and 2) a system
based on our proposed LSTM RNNs system in order to reject
skilled forgeries. This way we would achieve state-of-the-art
results for both skilled and random forgery cases.

VI. CONCLUSIONS

In this work we analyse and prove the feasibility of LSTM
RNN systems in combination with a Siamese architecture [11]
for on-line signature verification. This work provides the first
successful framework on the use of RNN systems for on-
line signature verification, as far as we know. The BiosecurID
database comprised of 400 users and 4 separated acquisition
sessions has been considered in the experimental work, using
the first 300 users for development and the remaining 100
users for evaluation. Two different cases have been considered.
First, the evaluation of the system performance considering
scores directly from all pairs of signatures (i.e. 1vs1) and
second, the case of performing the average score of the four
one-to-one comparisons (i.e. 4vs1) as there are 4 genuine
training signatures per user (from the first session).

Our proposed LSTM RNN system with a Siamese architec-
ture is based on two LSTM hidden layers and finally a feed-
forward neural network with a sigmoid activation. The best
model has obtained in development a final value of 0.11%
and 0.0% EER for the 1vs1 and 4vs1 cases, respectively.

Analysing the results obtained using the 100 users of the
evaluation dataset, our Proposed System has achieved a final
value of 6.44% and 5.58% EER for the 1vs1 and 4vs1 cases
respectively. These results have outperformed the state-of-the-
art either for the case of using just one training signature (1vs1)
[13] or the case of performing the average score of the four
one-to-one comparisons (4vs1) [22]. In addition, it is important
to highlight the results obtained in this work compared to the
ones obtained by Otte et al. in [10] where all experiments
failed obtaining a 23.75% EER for the best case. In that work,
standard LSTM architectures seemed not to be appropriate
for the task of signature verification. However, our proposed
Siamese architecture allows to get a close approximation to
the verification task learning a similarity metric from pairs of
signatures (pairs of signatures from the same user and pairs
of genuine-forgery signatures).

These results prove the high feasibility of our proposed
LSTM RNNs with a Siamese architecture for on-line signature
verification. For future work, the approach considered in this
work will be further analysed considering not only skilled but
random forgeries during the training of the neural network.
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