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Abstract: This work explores human intervention to improve Automatic Signature Verification (ASV). Significant efforts have
been made in order to improve the performance of ASV algorithms over the last decades. This work analyzes how human
actions can be used to complement automatic systems. Which actions to take and to what extent those actions can help state-
of-the-art ASV systems is the final aim of this research line. The analysis at classification level comprises experiments with
responses from 500 people based on crowdsourcing signature authentication tasks. The results allow to establish a human
baseline performance and comparison with automatic systems. Intervention at feature extraction level is evaluated using a self-
developed tool for the manual annotation of signature attributes inspired in Forensic Document Experts analysis. We analyze
the performance of attribute-based human signature authentication and its complementarity with automatic systems. The
experiments are carried out over a public database including the two most popular signature authentication scenarios based on
both online (dynamic time sequences including position and pressure) and offline (static images) information. The results
demonstrate the potential of human interventions at feature extraction level (by manually annotating signature attributes) and
encourage to further research in its capabilities to improve the performance of ASV.

1 Introduction
The signature is worldwide accepted as an identity authentication
method and it has been used by several cultures over the past 2000
years. The signature is a behavioural biometric trait which
comprises neuromotor characteristics of the signer (e.g. our brain
and muscles among other factors define the way we sign) as well
as socio-cultural influence (e.g. the western and asian styles).
During centuries, the examination of signatures has been made by
experts who determine the authenticity of the sample based on
forensic analysis. Recently, automatic signature verification (ASV)
systems have emerged as a feasible way to automate the traditional
signature authentication method made by forensic document
examiners (FDEs) [1–3]. The variety of AS authentication
applications is large. The AS authentication literature is commonly
divided into online and offline systems depending on the nature of
the data and the applications [2]:

• Offline or static signature authentication: The signatures are
performed using an ink-pen and the information is digitalised by
optical scanners. The authentication is executed by analysing the
visual characteristics of the signature including morphology,
texture, and geometry. The potential applications are mostly
related with document analysis.

• Online or dynamic signature authentication: The signatures are
acquired with digital devices which capture the temporal
sequences of the signing process. The authentication is executed
based on global parameters (e.g. total time and number of pen-
ups) or temporal functions derived from the acquired sequences
(e.g. velocity and acceleration). The applications of this type
include those related with automatic authentication systems (e.g.
point of sales, delivery services and mobile authentication).

In most of these applications, humans usually supervise the signing
process but their responsibilities are mostly limited to guaranteeing
a valid acquisition without any contribution to authentication.
These supervisors do not usually have the specific experience of
FDEs and they will be referred to as laymen in the rest of this
work. Without specific training and considering that signature

authentication is not the principal job assignment of the above-
mentioned laymen, their performance is an open question. Fig. 1
tries to illustrate the difficulties related with this task. The
deployment of automated systems is eliminating human
intervention in many authentication applications. However, the
abilities of humans should not be undervalued and there is large
room for improvement of automatic methods by incorporating
human intervention in some scenarios. Some of these scenarios
where a layman may help or contribute to AS authentication are
banking, point of sales, notary public, or parcel delivery. We
advocate for the consideration of human interaction in these
scenarios due to the particularities of the signature as a behavioural
biometric. As it has been demonstrated [3], the biometric
information of the signature (used to recognise the authenticity)
fluctuates severely for different users and acquisition conditions.
Our aim in this research line of human interactions in automatic
systems is to alleviate such fluctuations with simple actions a
layman can take in many scenarios of practical importance. Which
actions to take and to what extent those actions can help state-of-
the-art ASV systems is the final aim of this research line. 

Human-assisted schemes in biometrics take advantage of both
human skills and automated system capabilities [4–8]. The human
intervention on biometric systems can be done at different levels
(see Fig. 2) according to the different tasks to be realised: at image
level (e.g. quality assessment to discard samples with large
distortions); at feature level (e.g. manual annotation of
discriminative attributes); at matching or classification level (e.g.
human ratings in the form of scalar values); and finally at decision
level (e.g. binary decision, genuine, or fake). In this work, we will
focus on two specific types of interventions: (a) human ratings that
measure the perceived authenticity (intervention at classification
level) and (b) manual annotation of attributes (intervention at
feature level) used as input of an automatic classification system. 

The study of human performance on biometric applications is
not new and it helps to better understand the potential and
capabilities of automatic systems [9, 10]. Human skills are
commonly used as benchmark for the evaluation of automatic
algorithms [11, 12]. Some biometric characteristics are more
suitable than others for these evaluations. In general, biometric
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traits such as face, signature, or voice will be better recognised by
humans than other characteristics such as fingerprint, iris, and
palmprint. However, some studies reveal that humans can be
highly inaccurate at recognising biometric characteristics such as
faces from unfamiliar people [9, 12]. This means that we can easily
recognise the face or voice of friends and our own signature but we
fail more often at recognising the face, voice, or signatures from
unfamiliar people.

The research community has investigated different ways to
exploit the human skills in biometric applications. The use of
human annotations in automatic biometric authentication systems
has provided encouraging results in the literature [8]. Visual
attribute annotation made by humans has emerged as a way to
improve automatic authentication systems in face [4, 6–10], gait
[5], and signature authentication [13]. The attributes can be defined
as an extensive vocabulary of visual attributes (low-level image
features) that can be used to label a large dataset of images. A set
of attributes can be used to train models or classifiers and recognise
classes (based on the presence or absence of these attributes). Some
of these attributes used for biometric applications are known as soft
biometrics (e.g. gender, ethnicity, age, hair colour, complexion, or
height among many others). An attribute, as well as soft
biometrics, reveals information about the individual but this is not
able to authenticate him/her because of its lack of uniqueness and
permanence [14]. However, the combination of multiple attributes
can be used to improve the overall uniqueness and generate models
capable to recognise users [15].

Human intervention in signature authentication has been
historically related to forensic sciences. On the basis of their
training and experience, FDEs analyse the authenticity of a given
signature according to a set of evidences. The attribute annotation
of signatures is a common task in FDEs analysis and it consists of
either discrete labels (e.g. the signature has proper punctuation) or
scalar measures of specific characteristics (e.g. a stroke length of 6 

mm). Oliveira et al. [16] analysed the performance of graphology
features in AS authentication with promising results over a dataset
with 5600 signatures from 60 writers (including genuine samples,
simple forgeries, and simulated forgeries). Malik et al. compared
the performance of FDEs and AS authentication systems for
disguised signatures when the owner of the signature introduces
changes in his/her signature in order to mask his/her identity [4].
The results obtained in their study suggest that FDEs can achieve
similar performance to automatic systems with accuracies over
90%. FDEs are well trained to analyse the authenticity of
signatures and their performance is usually high classifying
genuine and forged samples [11]. Although the experience of the
expert is also exploited, the work of FDEs is mostly based on well-
defined protocols and methodologies. The set of features proposed
by FDEs is large [16, 17] and their evaluations are based on
evidences that support their final opinion. The results of FDE
evaluations are therefore a mix of experience, training, and
personal subjectivity. It is reasonable to assume that the analysis
performed by a non-FDE human (excluding the experience and
training) is mostly based on the personal subjectivity of each
subject. While the baseline performance of FDEs has been
analysed in the literature [18, 19], to the best of our knowledge, the
literature lacks of studies analysing the baseline performance of
laymen [13, 20–22]. Crowdsourcing was employed in [21] in order
to establish a human baseline performance on signature
authentication. The experiments reported over responses from 150
laymen shown performances ranging from 7% (false acceptance
rate) to 80% (false rejection rate) depending on the scenario and
the information provided to the users. Signature authentication
based on human annotations made by laymen (intervention at
feature level) was proposed in [13]. The experiments included
annotations of 13 attributes (inspired by FDE analysis) made by
one layman on samples from 30 different signers. The results
reported suggest the potential of human annotations to improve

Fig. 1  Mixed genuine signatures and forgeries (made by other people after practising for 2 min). Which signatures are genuine? The rectangles highlight two
genuine signatures as gallery samples. See the rest of the labels at [Solution to Fig. 1: From left to right. Top: genuine, forgery, genuine, forgery; centre:
forgery, genuine, forgery, forgery; and bottom: genuine, forgery, genuine, genuine.]

 

Fig. 2  Example of human-assisted signature authentication scheme
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ASV with improvements between 25 and 90%. Even though these
works represent valuable contributions, the literature suffers from
three important shortcomings: (i) lack of studies about the
performance of laymen (non-expert humans) for large populations;
(ii) comprehensive framework including both online and offline
signatures; and (iii) proposals to improve the performance of ASV
systems through the human intervention.

The present work is a step forward in the analysis of the
potential of human intervention to improve AS authentication. The
contributions of this work are three-fold: (i) we extended the
experiments presented in [21] with responses from 500 laymen,
providing new insights in the performance of humans in signature
authentication tasks based on crowdsourcing experiments; (ii) we
present a deep analysis of the attribute-based signature
authentication system proposed in [13] via human interventions
made by 11 different annotators and the complete BiosecurID-
UAM corpus (3696 signatures from 132 different signers); and (iii)
we analyse the performance of combined schemes incorporating
the proposed attribute-based manual approach to online and offline
state-of-the-art ASV systems.

The rest of this paper is organised as follows: Section 2 presents
our work to establish a human baseline performance based on
human interventions at classification level. Section 3 describes the
proposed manual attribute-based signature authentication
developed to analyse human intervention at feature extraction
level. Section 4 reports the experiments and results. Finally,
Section 5 summarises the conclusions and future works.

2 Human intervention at classification level:
human baseline performance
It is relatively easy to recognise our signature from signatures
made by others but several studies have probed how difficult it is to
recognise the authenticity of signatures different to ours [11, 20–
22]. In [11, 20], the ability of 22 individuals to recognise signatures
was evaluated using 765 signatures from 51 writers (432 genuine
and 333 forgeries). The results obtained suggest that people
perform worst than state-of-the-art offline signature authentication
automatic systems (Hidden Markov Models (HMM)-based equal
error rate of ∼12%). The performance of human (FDE experts) and
offline ASV systems was evaluated in [18]. The study found that
even experts have difficulties to recognise some cases (especially
disguised signatures). Using a common framework, the
performance of human experts and automatic systems show similar
accuracies. In [21], Amazon Mechanical Turk was employed to
establish a human baseline performance in signature
authentication. The results obtained from 150 subjects suggest that
laymen performance is poor with False Acceptance Rate (FAR)
and False Rejection Rate (FRR) up to 30%. However, the results
improved when the responses of different laymen were combined,
which suggests that errors (especially false rejection) are not
equally distributed between people. In [22], the researchers analyse
the combination of offline signature verification systems and
human decisions. The authors propose a combined scheme based
on a pool of optimal human–machine actions that minimises the

error curves (in the form of Receiver Operating Curve (ROC)).
About 23 amateur humans evaluated the authenticity (intervention
at decision level) of 765 test signatures (same database as [11, 20]).
The results presented suggest that combination of human responses
and AS verifiers can be used to improve the unaided schemes (only
humans or only machine).

In the present work, we develop an extension of the experiment
proposed in [21]. The new experiment comprises 160 (80 genuine
and 80 forgeries) signatures made by 20 different signers from
BiosecurID database [23] and 500 workers who provide a
confidence value between 1 and 10 related with the perceived
authenticity of a query signature (1 = I am sure this is a forgery; 10 
= I am sure this is a genuine signature). Four genuine samples
(known authenticity) are shown in addition to the query sample
(unknown authenticity). The decision threshold is set to 5. Fig. 3
shows the average performance of individual workers and the
performance obtained when different responses from different
workers are combined (using the mean rule). Comparing human
performance by aggregate human ratings is a standard protocol
[12]. The responses of workers can be fused to determine the
complementarity potential of the human abilities. In addition to the
human performance, the performance of two baseline ASV systems
[24, 25] are evaluated (in terms of Equal Error Rate (EER)) on the
same dataset. Note that only static images of the signatures are
shown to the laymen. Human ranks and ASV scores are not
combined in this experiment. A brief description of both systems is
given below.

Online system [24, 26]: A function-based dynamic time warping
algorithm (ranked among top three algorithms in international
technology evaluations [27, 28]). The algorithm is based on
Dynamic Time Warping (DTW) [26] applied to functions of time
sequences extracted from each signature. A set of seven time
functions are derived from [x, y, p] sequences. The sequences
were selected after feature selection (based on the performance of
the feature set) from a larger set of sequences defined in [24]. The
DTW algorithm matches two different sets of sequences based on
the Euclidean distance between the time functions. The
classification score is obtained as the average distance between one
test signature and the enrolled set.
Offline system [25, 29]: Local binary patterns (LBPs) and local
directional patterns (LDPs) are used to characterise the signature
regions (12 overlapping blocks for each signature). Discrete cosine
transform is applied to reduce the dimensionality of the feature
vectors and two different least squares support vector machine
(LSSVM) classifiers are trained using each of the feature sets (LBP
and LDP features). The final score is computed as the sum of the
two LSSVM scores coming from each of the classifiers. The
offline system is applied on the offline versions of the signature
samples (the BiosecurID database [23] comprises both the online
and offline versions of the same signature samples).

The results show FAR and FRR up to 30% when the responses
of individual workers are evaluated. However, the combination of

Fig. 3  Human baseline performance (the curves present the averaged FAR and FRR) according to the number of workers combined and performance (in
terms of EER) of ASV baseline systems
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different workers clearly outperforms the individual results with
absolute improvements of 25 and 12% for FRR and FAR,
respectively. These performance metrics are calculated averaging
the performance obtained by different sets of laymen. Fig. 3 shows
the maximum and minimum performances when the responses of 1
and 200 laymen are analysed. The results show how even
combining the responses of laymen, the differences between the
best and the worst set of users are clear (see minimum and
maximum values). The large improvement obtained for the FRR
suggests that errors produced by the authentication of genuine
signatures are not equally distributed among different workers.
Regarding the comparison with ASV, the individual responses of
laymen are far in terms of performance (higher error rates).
However, the performance obtained by aggregate opinions suggests
the potential of human interventions when a large number of
responses are combined (regardless of the practical limitations of
these combinations in real applications). There are two important
conclusions: (i) laymen are highly inaccurate on signature
authentication when they do not have specific training or tools
designed to improve their performance and (ii) the combination of
responses from different laymen can be used to improve the
performance, especially false rejection.

3 Human intervention at feature level: attribute-
based signature authentication
The human baseline performance obtained suggests the necessity
of specific training or guidance to improve the performance of
laymen. The annotation of attributes inspired by FDE analysis is a
way to provide information capable to authenticate signatures in a
semi-automatic scheme. In this work, we employ the tool for the
manual annotation of signature attributes presented in [13, 21]. The
application is a MATLAB Graphic User Interface (GUI) self-
developed for Windows computers (Intel Core-i3, 8 GB random
access memory). The application is designed to be used by a
human without the previous experience on FDE analysis or
signature authentication tasks. About 13 attributes are annotated
from a unique static binary image of the signature (each signature
is annotated separately). While dynamic data is highly
discriminative for AS authentication, our previous studies suggest
that layman performs better on static images rather than dynamic
videos or sequences [21]. The features annotated using the
application are described below.

3.1 Signature attributes

The list of features of a signature used in signature authentication
either on forensic or automatic scenarios is large [16, 17, 24].
These features can be classified according to different criteria as
the school (e.g. mimic or symbolic), the nature of the information
(e.g. graphology or graphometry), or the different signature parts
(e.g. flourish, text), among others. Table 1 presents a taxonomy of
the most popular features analysed in the FDE literature. 

Owing to the large number and variety of existing features, we
have selected a set of 13 attributes (inspired in the FDE analysis)
on the basis of two characteristics: (i) efficiency: the annotation of
the attributes must be fast for a layman without any FDE
experience and (ii) performance: the attributes must be
discriminative and useful for signature authentication. While
efficiency is easy to estimate, the performance is certainly
unknown. The final selection was based on a preliminary
experiment performed with 1 annotator and 840 signatures (30
signers × 28 samples). Some of the attributes discarded because of
its low performance in accordance with the time necessary for the
labelling were connections, capitalisation or cross strokes. We
divided the final set of features into two groups:

• Categorical attributes (A1–A9): denoted by discrete labels (e.g.
spaced/concentrated signature).

• Scalar measures (A10–A13): which are calculated according to
representative keypoints manually located (e.g. distance
between characters or strokes). The keypoint selection reflects
the human ability to highlight the most representative signature
regions.

The features are strongly related to the signature content (text and
flourish) and include both global information related with the
whole aspect and local information related with specific strokes.
The set of features allow to explore how the human perception can
help to improve automatic systems. Guidelines (in the form of a
few examples) are shown to the annotator to obtain more consistent
features. However, the annotation of the attributes is a subjective
task and some values can vary between annotators (see the stability
analysis performed at Section 3.3). Listed below are the features
chosen and a brief description based on the principles given above
(see [16, 11, 17, 18] for details):

A1. Shape (rounded strokes, vertical strokes, horizontal strokes,
calligraphic model, vertical, and horizontal strokes, or unknown):
This attribute defines the most predominant orientation of the
strokes of the signature including both text and flourish. This
attribute is strongly related to the writing style of the signer.
A2. Proportionality (proportional, unproportioned, mixed, or
unknown): The proportion defines the symmetry and size of the
writing characters (typically the given name and the family name
of the signer). It is strongly biased by the nature of the signature
(e.g. text-based, text + flourish, and flourish-based).
A3. Text loops (round, sharp, or unknown): Predominant style of
the loops (typical in letters such as ‘l, g, p, f, j, y’, and others) and
directional changes (typical in uppercase letters such as ‘A, M, N’
and others).
A4. Order (clear order, confusing, concentrated, or spaced): This
attribute refers to the graphic distribution of the parts that form the
signature. Some authors refer to this attribute as complexity and it
is related with the number of trajectory intersections and density
distribution of the information.
A5. Punctuation (the signature has proper punctuation, the
signature has punctuation but in the wrong place, or there is no
punctuation): This attribute analyses any punctuation mark or
distinctive stroke that can characterise the signature (e.g. ‘i’ or ‘j’
punctuation).
A6. Flourish symmetry (symmetric, asymmetric, or unknown): This
attribute refers to the flourish strokes and their symmetry.
A7. Flourish weight (thin, wide, or unknown): This attribute is
related to the whole shape of the flourish which is commonly
characterised by thin or wide strokes made by fast and very person-
dependent movements.

Table 1 Taxonomy of some of the most popular features
used in FDE analysis: (a) morphological; (b) dynamics; (c)
writer ability; and (d) writing style
Morphological Dynamics Writer ability Writing style
proportionality speed hesitation shape
slant or slope overall

pressure
enlargements formatting

alignment to the
baseline

local
pressure

skill method of
production

text loops slowness tremor embellishments
flourish
characteristics

stops arrangement handedness

size sudden
endings

retouching cross strokes and
dots

character spacing — legibility entry/exit strokes
stroke lengths — freedom of

execution
punctuation

direction of strokes — simplification connections
order — range of

variation
emphasis

— — pen hold capitalisation
— — handedness
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A8. Flourish stroke roundness (round, sharp, or unknown): This
attribute is related to the style of the strokes of the flourish, which
typically include changes of directions that can be classified into
sharp (highly abrupt) or round (soft change of direction).
A9. Hesitation (the user did not hesitate while making the
signature, the user did hesitate while making the signature, or
unknown): This attribute reveals the level of perceived hesitation in
the signature. Hesitation produces enlargement of characters,
tendency of curves to become angles, patching, and retouching,
tremors, among others.
A10. Alignment to the baseline: It is defined as the angle (radians)
between the main dominant axis of the signature and the horizontal
baseline.
A11. Slant of the strokes: This attribute measures the slope (angle
in radians with respect to the horizontal baseline) of up to three
different characters or stroke segments. The annotator has to
choose which are the most relevant strokes (if they exist;
otherwise, the attribute is set to zero).
A12. Strokes-length: As in the slant measures, the annotator has to
select up to three representative strokes (initial and ending points)
to automatically calculate their lengths (in pixels).
A13. Character spacing: This attribute measures the separation (in
pixels) between up to four most relevant characters in the signature
(typically part of the given name and family name).

Note that A12 and A13 are measured in pixels. To improve the
interoperability between different scanners, the values can be
converted to the International System of Units by using the
resolution parameter (e.g. 600 dpi of BiosecurID database). We
recommend Fig. 4 shows an example of the 13 attributes associated
to a given signature. 

3.2 Attribute database and protocol

The database used in our experiments is the signature data in the
BiosecurID multimodal database [23]. The database was acquired
in five different universities using five different acquisition
devices. To avoid any bias in the results (e.g. sensor
interoperability), only the UAM subcorpus, which is the largest
subcorpus within the database, will be considered in this work. The
subcorpus employed comprises 132 signers of the UAM corpus
acquired in four different sessions, with 16 genuine signatures (four
per session) and 12 simulated forgeries (three per session) for every
subject (132 × 28 = 3696 signatures). Simulated signatures are
made by writers different to the owner trying to imitate the natural

style of a genuine signature. Signatures were performed on a
marked area over paper templates (25 mm × 120 mm) with an
inking pen which also captured the x and y trajectories and the pen
pressure p during the signing process, with a sampling frequency
of 100 Hz. The database includes both the dynamic sequence
[x, y, p] and the static image scanned (600 dpi) from the sheets.

The 3696 signatures were manually annotated according to
Section 3.1. The annotation was made by 11 M.Sc. students (from
Universidad de las Fuerzas Armadas – ESPE, Ecuador) without
any previous experience on FDE analysis. No information about
the authenticity (genuine or imitation) of the samples was provided
to the annotator and all signatures were analysed separately.
Therefore, the attribute database comprises more than 800,000
attributes [The full attribute database will be available here: http://
www.atvs.ii.uam.es/databases.jsp.] (11 annotators × 132 signers × 
28 samples × 20 annotations).

3.3 Discriminability and stability of the human attribute
annotation

The first experiment is carried out to evaluate the discriminative
power of manually annotated attributes. First of all, the categorical
labels are transformed into numerical values from 1 to the number
of possible labels for each attribute (e.g. six for A1 or four for A2).
Let Ai

j be a matrix with the values of the attribute
i ∈ {1, 2, …, 20} annotated by the annotator j ∈ {1, 2, …, 11}
for the whole database (note that A11, A12, and A13 have more
than one annotation). All the values Ai

j(n, p) are first normalised as

A^
i
j(n, p) = 1

2 tanh 0.01
Ai

j(n, p) − μi
σi

+ 1 (1)

where μi and σi are, respectively, mean and standard deviation of
the attribute i from all the genuine signatures across all annotators
j. We have used the tanh normalisation function in order to reduce
the impact of outliers on the models generated from the labelled
features [30]. Index n ∈ {1, …, N = 132} is the signer and
p ∈ {1, …, P = 16} is the sample number. We define two
discriminability indices DR and DF for random and forgery
comparisons, respectively. In DR, the model of signature n is
evaluated against signatures samples of different signer. In DF, the

Fig. 4  Example of categorical attributes (left) and scalar measures (right) for a given signature
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model of signature n is evaluated with imitations made by other
signers. DR is computed for a specific attribute i as

DR(i) = 1
N − 1 N ∑

n = 1, n ≠ m

N

∑
m = 1

N μi(n) − μi(m)
σi(n) + σi(m) (2)

where μi(n) is the attribute i mean for signer n computed across the
16 available genuine signatures for that signer (and all annotators).
Similarly σi(n) is also the attribute i standard deviation for signer
n . The discriminability index of simulated forgeries DF for
attribute i is computed as

DF i = 1
N ∑

n = 1

N μi(n) − μ~i(n)
σi(n) + σ~i(n) (3)

where μ~i(n) and σ~i(n) are the mean and standard deviation of the
simulated forgeries of the signer n computed across the 12
available forgeries for that signer (and all annotators). In the case
of attributes with more than one annotation (A11, A12, and A13),
the annotations are processed separately and then combined into
one value by averaging. As it is expected, the discriminability of
attributes is higher in random forgeries, see Fig. 5. However, the
results suggest that depending on the scenario (random or
simulated forgeries), some attributes can be more discriminant than
others. As an example, the Hesitation (A9) is more discriminant for
simulated forgeries than for random. This is because of the
vacillations of the forger which are not present in genuine
signatures (used for the random comparisons). On the other hand,
the Shape (A1) is highly discriminative for random comparisons
but not for forgeries. 

The annotation of attributes depends of the perception of the
annotator and it can vary between annotators. It is expected that
some attributes will be more stable (similar among different
annotators) than others. We calculated the index S̄(i) to measure the
instability of an attribute i as

S̄(i) = 1
NPT ∑

n = 1

N

∑
p = 1

P 1
11 ∑

j = 1

11
Ai

j(n, p) − mode(Ai
:(n, : )) (4)

where N, P, T are the number of signers, samples, and number of
labels of each attribute, respectively (N = 132, P = 16; T varies for
each attribute, see Section 3.1). Ai

j(n, p) is the value of the attribute
i by the annotator j for the sample p of the signer n. Ai

:(n, : ) is a
matrix (dimension 176 × 1) with all the values of the attribute i
from all the samples of the signer n and all the annotators
(176 = 11  annotators × 16 genuine samples per signer).

The instability index for all the nine categorical attributes can
be seen in Fig. 6 (left-hand side). We did not include the measured
attributes in the analysis because the measures are strongly
dependent on the keypoints selected by the annotators. Therefore,
the instability indexes of measured attributes show values much
greater than categorical attributes. The results show how some
attributes such as Flourish weight (A7), Proportion (A2), Shape
(A1), and Flourish roundness (A8) are less stable than others such
as Flourish symmetry (A6), Punctuation (A5), or Text loops (A3).
More instructive guidelines or training can be used to improve the
stability of the attribute annotations. Fig. 6 (right-hand side) shows
the correlation matrix of all attributes. In general, there is a low
correlation between features, except for the three attributes related
to the flourish characteristics (A6, A7, and A8) and the four
measures of the slant of the strokes (A11). 

Fig. 5  Discriminability index of the different attributes for random (left) and simulated forgery comparisons (right)
 

Fig. 6  Instability index of the categorical attributes for genuine signatures (left) and correlation matrix of the attributes (right)
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4 Experiments
The experiments are designed to answer the following questions:
What is the performance of manual annotated signature attributes?
What is the complementarity (in terms of performance) between
human attribute-based authentication and traditional automatic
online signature authentication? The experiments are divided into
two categories:

Scenario 1 –— random comparisons: The model of the user is
evaluated using genuine samples from other users (different to the
owner) as impostor attacks (simulation of users who try to spoof
the identity of the user with their own signature).

Scenario 2 – forgery comparisons: Also known as skilled
forgeries, the model of the user is evaluated using imitations made
by other users (with different level of skill, see the database
description for details [23]).

The training set is composed of the four genuine signatures
from the first session of each user. Genuine scores are obtained
comparing the training model to the remaining 12 genuine samples
of each user (sessions 2–4) for a total number of genuine scores
equal to 1584 (132 × 12). Impostor scores for the random scenario
are obtained comparing the training model to the first genuine
samples from all users (different to the owner) for a total number of
random impostor scores equal to 17,292 (132 × 129 × 1). The 1584
impostor scores for the simulated forgery scenario are obtained
comparing the training samples to the 12 simulated forgeries
available for each user (132 × 12).

The attribute-based matching proposed in this work can be used
in both online and offline signature authentication applications. To
compare the performance of attribute-based signature
authentication and ASV systems, we have used two state-of-the-art
systems (described in Section 2) based on online features (dynamic
sequences derived from the signing process) and offline features
(obtained from the static image of the signature).

The distances between categorical features and scalar measures
are obtained separately. The distance between two scalar attribute
vectors (attributes A10–A13) is calculated using the Manhattan
distance normalised by the average absolute deviation of each
attribute. Assume f = f 1, f 2, …, f I  as the feature vector (with I
features) of a given test sample and
gp = g1

p, g2
p, …, gI

p p ∈ {1, …, P} as an enrollment set with P
samples. The distance between the feature vector f  of the test
sample and the enrollment set gp

p = 1
P  of a given signer is

calculated as

d = ∑
i = 1

I f i − ḡi
σi

(5)

where ḡ is the mean of the enrollment set and σ = σ1, σ2, …, σI
is the standard deviation of the enrollment features. In our

experiments P is equal to 4 and I = 11 (note that attributes A11–13
comprise ten measures). In the case of categorical attributes
(attributes A1–A9), we consider a fixed distance equal to 1 when
the label of the feature vector and the mode of the gallery vectors
(most frequent value of the attribute for this signer) are not equal.
Therefore, the distance between categorical attributes ranges from
1 to 9 (number of attributes between query sample and gallery set
with different labels). Both distances (categorical and scalar) are
normalised similar to (1). The final score is obtained as the sum of
both distances.

4.1 Attribute-based matcher performance

The rest of the experiments try to evaluate the performance of the
manually annotated signature attributes (detailed in Section 3) and
the improvement obtained when they are combined with the two
signature authentication systems (detailed in Section 2). Note that
BiosecurID database includes both online information (captured
using a digital tablet) and the static image of the signatures
(scanned at 150 dpi). The static images are used as input of the
offline system, while the online sequences are used as input of the
online system and the tool for the attribute annotation (the image
shown to the annotator is a synthetic version derived from the
[x, y, p] sequences). Both static real signature and synthesised
version can be used to annotate the attributes proposed in this
work. We have chosen the synthetic version (generated from
dynamic sequences) because digital devices are common in real
applications (e.g. points of sales, banks, and postal).

The results are reported in Table 2 and Fig. 7 in terms of
average performance (EER and FRR when FAR is equal to 10%
across all annotators) and best performance (EER and FRR when
FAR is equal to 10% for the best annotator).

The performance obtained by the proposed attribute-based
matcher is similar to the performance obtained by the offline ASV
baseline system. The better performance of the online matcher is
caused by the more discriminant information available in the
dynamic sequences in comparison with the features obtained from
single static images (both the attribute-based and offline systems
are based on static information).

The next step is to explore the complementarity between
baseline systems and the proposed attribute-based matcher. Once
again, the scores are normalised similar to (1) and combined using
a weighted sum. The weights are heuristically selected based on the
performance achieved in the previous experiment: 0.8 × online
score + 0.2 × attribute-based score, and 0.8 × offline score + 0.2 × 
attribute-based score. The results (see Table 2) suggest that the
proposed attribute-based matcher can be used to significantly
improve the performance of baseline systems either in random and
simulated forgery scenarios. In the random comparison scenario, it
is possible to observe improvements from 44% (average
annotators, offline + attribute-based matcher) to 90% (best
annotator, online + attribute-based matcher). In the case of
simulated forgeries, the improvements range from 16% (average
annotators, online + attribute-based) to 23% (best annotator, offline 
+ attribute-based).

4.2 Ranked performance

As it was mentioned, comparing human performance by aggregate
human ratings is a standard protocol for the evaluation of human-
assisted schemes [4, 12]. Similar to the experiment included in
Section 2, we propose a combination of laymen responses based on
sum rule at score level (scores obtained by different laymen are
combined). We analyse the performance for the combination of an
increasing number of annotators: 2, 5, and 10. The experiments
with 2 and 5 annotators are repeated 50 times (with random
selection of annotators) and the experiment with 10 annotators is
repeated 11 times using the 11 different possible combinations.
Table 3 shows the averaged results and the improvement obtained
by the combination of laymen. 

The results suggest the complementarity of annotations made
by different laymen with improvements of the EER ranging from
27 to 75% for random scenarios and 2 to 42% for forgeries

Table 2 Performance for the different systems on the
BiosecurID database (improvement with respect to the
baseline systems added as subscript)
System EER, % FRR (FAR = 10%)

Random Forgeries Random Forgeries
offline system (baseline) 4.72 20.27 2.13 34.31
online system (baseline) 1.85 6.85 1.21 6.12
attribute-based (average) 6.89 24.22 4.64 54.23
attribute-based (best
annotator)

4.25 22.31 2.04 46.32

offline + attributes
(average)

2.63↓44% 16.80↓17% 0.84↓60% 30.21↓12%

offline + attributes (best
annotator)

1.66↓65% 15.55↓23% 0.46↓78% 29.80↓13%

online + attributes
(average)

0.72↓61% 5.98↓13% 0.10↓92% 4.65↓24%

online + attributes (best
annotator)

0.20↓89% 5.55↓19% 0.01↓99% 4.24↓31%
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scenarios. These improvements are even higher for the FRR with
values ranging from 54 to 99% for random scenarios and 18 to
41% for forgeries scenarios. As in previous experiments, the
improvement is larger in offline applications than in online
applications. The higher error rates obtained in offline systems
offer a larger margin for performance improvement.

5 Conclusions
This work explores human intervention on signature authentication
systems at two different levels. The first scheme considers
intervention at classification level, with an analysis of how humans
perform at signature authentication tasks. The experiments based
on the analysis of the response of 500 people help to establish a
human baseline performance. The results suggest that laymen
perform worst than ASV systems and highlight the difficulties
associated to this task. The average error rate of laymen is around
30% but aggregated opinions show the potential of human
capabilities when responses from different people are combined.

The second scheme evaluates the human intervention at feature
level based on attributes inspired in the work of FDEs. The
experiments include 11 different annotators, 3696 signatures, and
more than 800,000 labelled attributes. The results suggest the
potential of human capabilities to improve automatic authentication
systems in both offline and online applications. The combination of
attribute-based intervention and ASV systems at score level shows
improvements ranging from 16 to 90% depending on the scenario.

The results reported in this work reveal new insights on how
humans perform on signature authentication, and some ways in
which ASV systems can be improved with human intervention.
Our methods and experimental framework were developed for that
purpose and not for direct practical application. For practical
applications, we would recommend to obtain a reduced set of the
most discriminative features either automatically or manually

labelled in a short amount of time (e.g. <10 s for a point of sales or
<1 min for an important banking operation). In addition, the human
intervention evaluated in this work is focused on static information
of the signature and future work should also explore how dynamic
information could be integrated into these human annotations. The
discriminative power of the dynamic information of the signature
could be used to increase the differences between genuine and
forged samples. Previous works suggest that more information
showed to the laymen does not necessarily imply better
performance [21]. How to integrate the dynamic information into
the human evaluations is not trivial and further research is needed.
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