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Abstract—Biometrics have been tradittionally based on im-
ages acquired in the visible spectrum. In this paper, we will
go first into details regarding the regions beyond the visible
spectrum that have been already explored in the literature
for biometrics to overcome some of the limitations found in
the visible region. Later, we will introduce millimeter imaging
as a new region of the spectrum that has also potential in
biometrics. To this aim, we first consider shape and texture
information individually for person recognition. Later, we
compare them and study to what extent the joint use of
shape and texture can provide further improvements. Results
suggest that both sources of information can complement each
other, reaching verification results of 1.5% EER. This result
motivates us to think that in the future, person recognition can
be integrated within the millimeter screening scanners already
deployed in airports, and enhance this way security.

Keywords-mmW Imaging; body shape; body texture; CNN;
security; multimodal fusion; multi algorithmic fusion

I. INTRODUCTION

Biometrics is a technological area, whose aim is to

discriminate automatically between subjects in a reliable

way and according to some target application based on

one or more signals derived from physical or behavioral

traits [12]. The most widely research biometric traits have

been face, fingerprint, iris and voice. However, there is also

additional biometric information available in some particular

application domains that has not been extensively studied.

For instance, body information has been primarily studied

through gait biometrics, but not much using information

derived from single-shot images [18].

From the entire electromagnetic spectrum, the visible

range of the spectrum comprises only the range between

400 − 750 nm. Despite that most biometric recognition

applications use images acquired in the visible spectrum,

such images are affected by, among other factors, light-

ing conditions and body occlusions viz. clothing, make-

up or hair. To overcome these limitations, the biometric

community have explored other ranges of the spectrum

with interesting properties. Table I summarizes some of the

regions beyond the visible spectrum that have been explored

for biometrics, pointing out the associated wavelength, and

their properties.

As illustrated, X-ray has a wavelength in the range of

0.01 − 10 nm and enough energy to pass through cloth

and human tissues. An interesting example on biometric

identification through X-ray is dental biometrics [5], which

are useful in forensic scenarios.

The infrared band of the electromagnetic spectrum (IR)

lies between the microwave and visible regions and its wave-

length is located in the range of 1 mm to 750 nm. Some

examples of usages of the IR region for biometric purposes

are: i) using the NIR subregion to be more robust against

illumination changes [14] or allowing identification in the

darkness, ii) using the MWIR and LWIR bands to deploy

liveness detection, being the later less explored than NIR.

A novel approach to address MWIR-based biometrics is

through polarimetric images. By acquiring the polarization-

state, additional textual and geometric information can be

obtained and be used to enhance the conventional thermal

face images [19], [11].

A. Submillimeter and Millimeter Wave Imaging

Submillimeter (smW) and millimeter waves (mmW) fill

the gap between the IR and the microwaves Specifically,

mmW waves lie from 10−1 mm (30−3000 GHz), covering

the highest frequencies of the microwave region and the

smW regime lies in the range of 1 mm to 100 μm (300
GHz to 3 THz ), occupying the lowest frequencies of the

infrared region. The smW band is within the well-known

Terahertz band, which occupies the range between 0.3−300
μm (1000− 1 THz).

Although most of the radiation emitted by the human body

belongs to the MWIR and LWIR bands, it emits radiation

in the smW and mmW regions as well, hence allowing

passive imaging. One of the more interesting properties is

that clothing is highly transparent to the mmW radiation

and partially transparent to the smW radiation. Natural

applications of mmW and smW imaging include Concealed

Weapon Detection (CWD), non-destructive inspection, low

visibility navigation enhancement and medical imaging.
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Table I
REGIONS BEYOND THE VISIBLE SPECTRUM COMMONLY USED FOR BIOMETRIC APPLICATIONS. ABBREVIATIONS USED: ARCHITECTURE

(ARCH.); ACTIVE (A); PASSIVE (P); CONCEALED WEAPON DETECTION (CWD); INFRARED (IR); NEAR INFRARED (NIR); MEDIUM WAVE

INFRARED (MWIR); LONG WAVE INFRARED (LWIR); SUBMILLIMETER WAVE (SMW); MICROWAVE (MW); MILLIMETER WAVE (MMW).

Spectrum
Region Wavelength Properties

X-ray 0.01− 10nm Penetration through clothes and human tissues

IR

NIR 750nm− 0.9um Robust to illumination visibility in the darkness
MWIR 3um− 5um Invariant to illumination, acquires temperature
LWIR 8um− 14um Invariant to illumination, acquires temperature
smW 100um− 1mm Non-polar dielectric material, partial transparency

MW mmW 1mm− 10mm Non-polar dielectric material, High transparency, visibility in adverse conditions

CWD is deployed on mmW imaging due to the high

degree of contrast achieved between the human body and

weapons or other metallic objects in that region [3], [16].

Indeed, there are already mmW wave scanners deployed

in several airports which acquire the full body signature

with that purpose, exploiting the different responses (due

to difference of temperatures) between metallic objects and

the human body skin [17].

As these waves can penetrate through clothing, in mmW

images, we are able to see things that can not be seen in

a visible image, such as the torso information. As a result,

information collected in a mmW image may be useful for

person recognition. Concretely, shape information retrieved

from the mmW images may be more robust to clothing

variations than visible images. For the same reason, mmW

imaging can also be exploited to retrieve texture information,

which could potentially be used as discriminatory informa-

tion. Furthermore, mmWs are also able to pass through facial

accessories such as balaclavas, caps or artificial beards. This

property makes mmW images less susceptible to spoofing

attacks when compared to images in the visible spectrum

[10] as people modifying their body constitution or using

sophisticated facial masks may be easily detected using

mmW images.

Contrary to CWD, few research works have been carried

out for biometric recognition applications using mmW im-

ages. This has been mainly due to privacy concerns and lack

of suitable databases for person recognition. The pioneers of

this line of work were Alefs et al., who put forward a person

recognition system using real mmW passive images acquired

in outdoors scenarios from the mmW TNO database [2].

They exploited the texture information contained in the torso

region of the image through multilinear eigenspaces tech-

niques, reaching very promising verification results (86% of

Verification rate at FAR=0.001). However, the experimental

protocol followed in [2] was very optimistic (distances were

computed comparing pairs of images under the same head

pose and point of view conditions, which was not a realistic

situation). In [8], the utility of mmW images for person

recognition under realistic scenarios was explored with a

more realistic experimental protocol. They analysed shape

information using real mmW images from the same database

as [2], finding out that shape information could provide

sufficient evidence for both verification and identification

tasks, with EERs of 10.0% while using contour-based and

image-based shape approaches.

Later, in [9], they explored the use of texture information

extracted from real mmW images. The results achieved

concluded that the torso was the best mmW body part, with

the best EER around 5.00%.

In this paper, we aim to gain more insight through the

joint use of shape and texture information from mmW

images. With this goal in mind, we consider first biometric

systems based on mmW texture and mmW shape standalone.

Later, we will study different fusion schemes regarding

combination of different texture approaches, and a joint

fusion between shape and texture. Fig. 1 shows the overall

pipeline of the system.

This paper is structured as follows. A brief review of the

selected shape-based and texture-based features approaches

are given in Section II and III, respectively. The mmW

TNO database and experimental protocol used in this paper

is described in Section IV. Results of these methods are

presented in Section V. Finally, Section VI concludes the

paper with a brief summary and discussion.

II. TEXTURE-BASED APPROACHES

For the transparency property of millimeter waves, mmW

imaging for person recognition can be exploited through

texture information. Concretely, we have considered three

mmW body parts: face, torso and wholebody information. To

address mmW texture information here, we consider various

hand-crafted and deep learning approaches. Among the wide

variety of hand-crafted features presented in the literature

for biometrics, we select two of the most widely used

ones: i) Local Binary Patterns (LBP), and ii) Histogram

of Oriented Gradients (HOG). In what concerns deep learn-

ing approaches, several experiments have been conducted

through fine tuning two different pre-trained models: Alexnet

[13] and VGG-face [15]. In what follows we give more

details regarding each of them.

Hand-crafted features: we consider LBP and HOG. In

both cases, first images are resized to 100 × 150 (width
× height format). The image is then divided into non
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Figure 1. An overview of the proposed fusion scheme for person recognition from mmW images. The upper branch depicts the approach that address
mmW texture while the lower branch sketches the approach that deals with mmW shape.

overlapping 10 × 10 blocks. In what concerns LBP, for

each block we compute the LBP descriptor with radius 1,

8 neighbours and uniform patterns, resulting in a 59-length

vector. The final feature vector of each image is the concate-

nation of all the histograms from all blocks. LBP features

are extracted based on the implementation provided by [1]

Regarding HOG, each block is described by a histogram of

gradients with 8 number of orientations, with each gradient

quantized by its angle and weighted by its magnitude. Then,

four different normalizations are computed using adjacent

histograms, resulting in 8 × 4-length feature vector for

each block. The final feature vector of a given image is the

vectorization of the HOG features from all blocks. HOG

features are extracted using the implementation provided by

[6]. In both cases, the distance-matcher employed has been

the cosine distance.

Learned features: in order to extract deep learning

features for the problem of mmW person recognition with

only small databases available, we need to apply transfer

learning techniques such as fine-tuning or use some pre-

trained models as feature extractor. After performing several

experiments, we realized that for this particular problem,

the fine-tuning strategy worked better. This might be due

to the dissimilarity between images from the source and

target datasets. Concretely, we have fine-tuned the pre-

trained models from the Alexnet and VGG-face networks,

originally designed for the ISLVRC competition in 2012 and

2014, respectively. We have adapted the very last layers of

the CNN architecture, changing the classification task from

1000 different objects or 2662 facial images to 50 different

subjects. In total, we have 6 fine-tuned models, one per each

mmW body part and pre-trained model. For the training,

we have used the stochastic gradient descent to learn the

parameters, with a momentum of 0.9, a number of epochs of

100, and a batch size of 32 samples. The learning rate and

regularization parameter for the mmW person recognition

task were respectively set to 10−5 and 10−3 for Alexnet

and to 10−6 and 10−4 for VGG-face. After fine-tuning the

AlexNet or VGG-face on the target dataset, we extract the

deep feature as the output of the fc7 layer, which is a 4096
dimension vector. This feature vector will be later compared

to other feature vector from a different subject to obtain a

similiarity score through cosine distance.

A. Texture-based Fusion Schemes

We propose two different fusion schemes to further

reach additional improvements over the individual texture

approaches.

Multialgorithmic Fusion: we consider here fusing dis-

criminative features extracted from a particular mmW body

part. Concretely, we fuse at score level, information from

the two hand-crafted (LBP and HOG) and two deep learn-

ing approaches (Alexnet and VGG-face), which use cosine

similarity as the matcher.

Multimodal CNN-Level Fusion Torso and Wholebody:
this multimodal fusion implies combining information from
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Figure 2. CNN-level fusion. This architecture allows you to fuse
information from two different biometric traits.

different mmW body parts: face, body and wholebody.

We studied different multimodal fusion schemes: feature,

score and CNN-level fusion, finding out that the CNN-level

outperformed the tradditional multimodal fusion schemes.

The proposed CNN-level fusion was inspired by previous

works in the area of object recognition [7]. Concretely, this

multimodal network consists of two CNN branches, which

then are combined in a late fusion approach (see Fig.2).

The training of this multimodal CNN is performed stage-

wise, that is, first each branch is trained individually and then

the overall architecture is trained using the individual trained

models from branch 1 and branch 2. Branch 1 and branch

2 are merged by concatenating features from the fc7 layer,

resulting in a concat vector of size 2× 4096 = 8192. After

that, an additional fully connected layer (fc8) is introduced

followed by a Softmax classification layer. To assure that

mmW body parts come from the same identity, a slice layer

is introduced at the beginning of the network. Due to the lack

of a sufficient number of samples, both branches are fine-

tuned using a particular pre-trained model. After that, the

overall CNN architecture is trained to learn the parameters

associated to the new introduced layer fc8, using a batch

size of 50, learning rate of 0.0001 and 100 epochs.

III. SHAPE-BASED APPROACHES

As a consequence of the clothing transparency of mil-

limeter waves, shape information retrieved from the mmW

images may be more robust to clothing variations than

visible images. Among the different shape-based approaches

studied in a previous work [8], here we focus in those shape

approaches with better verification performance, namely: i)
Contour-Coordinates (CC) ii) Shape Contexts (SC), and iii)
Row and Column Profiles (RCP). CC and SC are related

to the contour coordinates themselves or to their relative

position, respectively. RCP retains shape information, ex-

tracted from binarized images. The matchers employed for

these shape approaches are Dynamic Time Warping (DTW)

and Modified Hausdorff Distance (MHD), which both are

distance-based matchers able to provide dissimilarities be-

tween sequences of different points.

Contour Coordinates: are used as the baseline feature

approach, defined as CC(n) = (xn, yn), n = 1, . . . , ncc−1,

being ncc the number of pixels that compose the contour

that the silhouette edge describes with the background

(approximately 2000 points), and (xn, yn) the coordinates

of each one of those pixels.
Row and Column Profiles: given the binarized image

I , whose pixels belonging to the foreground (fg) are set to

1 (I (xfg ,yfg) = 1) and pixels belonging to the background

(bg) are set to 0 (I (xbg ,ybg) = 0), row and column profiles

are computed as the number of pixels per row and per

column which belongs to the foreground, respectively.
Shape Contexts: were first introduced by Belongie et

al. [4]. This technique describes a specific point considering

the relative distance and angle of the rest of the points within

a shape. This method considers the set of vectors originating

from a point to all other sample points on a shape. The

number of radial bins (r bins) and theta bins (θ bins) are

the main parameters of this descriptor. As a result, the shape

contexts of a shape with N points forms a vector of size

(N × r bins× θ bins).

IV. MMW TNO DATABASE AND EXPERIMENTAL

PROTOCOL

The mmW TNO database is comprised of images be-

longing to 50 different male subjects in 4 different scenar-

ios. These 4 different scenarios derive from the combination

of 2 different head poses (frontal head pose and lateral head
pose) and 2 different facial occlusions (balaclava and beard).

Images were recorded using a passive stereo radiometer

scanner in an outdoor scenario. Each full scanning is a set

of two single images with slightly different points of view

of size 696×499 (width×height). By dividing this set into

single images of 348×499, the TNO database is comprised

of 50 subjects ×2 head pose configurations ×2 facial clutter

configurations ×2 images per set, making a total of 400
images in the whole mmW TNO database. Even if it does

not contain a larger number of subjects, the mmW TNO

database is the only dataset available for research purposes.

V. RESULTS

Table II presents the results obtained with the individual

shape and texture approaches and the fusion of both ap-

proaches.
Texture: after having explored the three mmW body

parts with all texture approaches, we found that the torso

was the most discriminative one. Surprisingly, hand crafted

approaches work slightly better. Considering the three mmW

body parts, the second best body part was the wholebody,

with 14.00% EER. Regarding the two different texture

fusion approaches, we improved the individual results to

2.00% EER when considering all texture torso features and

to 2.50% when combining information from the two best

mmW body parts: torso and wholebody, using alexnet as

feature descriptor.
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Table II
SHAPE AND TEXTURE FUSION FOR VERIFICATION. SCORE LEVEL FUSION BETWEEN THE BEST SHAPE AND TEXTURE APPROACHES.

ABBREVIATIONS USED: HISTOGRAM OF ORIENTED GRADIENTS (HOG); CONTOUR COORDINATES (CC); ROW COLUMN PROFILES (RCP); SHAPE

CONTEXTS (SC); DYNAMIC TIME WARPING (DTW); MODIFIED HAUSDORFF DISTANCE (MHD). VERIFICATION PERFORMANCE IS REPORTED IN

TERMS OF EER (%). FUSION RESULTS, WHICH MANAGES TO OUTPERFORM SHAPE OR TEXTURE STANDALONE ARE HIGHLIGHTED IN BOLD. THE BEST

OVERALL VERIFICATION RATE IS MARKED WITH *.

Texture App. Perf. Texture Fusion App. Perf. Shape App. Perf. Shape & Texture App.

Torso Alexnet 6.00%
Multimodal

CNN-Level Fusion
2.50%

CC-DTW 11.50% 3.00%
RCP-DTW 10.75% 1.50%∗

Wholebody Alexnet 14.00%
CC-MHD 9.25% 2.50%
SC-MHD 15.25% 2.50%

Torso HOG 4.50%
Multialgorithmic

Fusion
2.00%

CC-DTW 11.50% 2.00%
Torso LBP 6.00% RCP-DTW 10.75% 1.86%

Torso Alexnet 6.00% CC-MHD 9.25% 1.50%∗
Torso VGG 8.72% SC-MHD 15.25% 2.00%

Shape: among the different combinations of shape

descriptors and matchers, the best shape-based approaches

are Contour Coordinates with Dynamic Time Warping (CC-

DTW, 11.50% of EER), Row and Column Profiles with

Dynamic Time Warping (RCP-DTW, 10.75% of EER), Con-

tour Coordinates with Modified Hausdorff Distance (CC-

MHD, 9.25% of EER), and Shape Contexts with Modified

Hausdorff Distance (SC-MHD, 15.25% of EER).

Fusion between shape and texture: is carried out among

the best shape-based approaches and the best texture-based

approaches, in terms of verification following the frontal

protocol. It is carried out at the score level, following the

sum rule, having previously normalized scores to the same

range. As performance of shape-based approaches is always

worse compared to texture-based approaches, a weighted

fusion is conducted. Weights are empirically estimated,

giving more importance to texture than to shape. Concretely

these weights are set to 0.8 and 0.2 for texture and shape,

respectively. Table II shows the fusion results attained for

verification. As can be seen, even if shape-based approaches

perform poorly compared to texture-based approaches, they

are able to complement the evidence given by the latter ones,

slightly outperforming the results. The best fusion results

are achieved when combining Multialgorithmic Fusion with

CC-MHD, or the Multimodal CNN-Level Fusion with RCP-

DTW reaching EER of 1.5%. When comparing those results

to the reference work carried by Alefs et al. [2], we

found that our best schemes outperformed the performance

reported there. Concretely, the verification rates obtained at

FAR = 0.001 were of 92% and 88% for the Multialgorithm

Fusion with CC-MHD, and the Multimodal CNN-Level

Fusion with RCP-DTW, respectively (see also Fig. 3). Notice

that those results are obtained with a more realistic scenario

than the one used in the reference work.

VI. CONCLUSION

In this work we have studied the problem of person

recognition through millimeter wave images. In particular,

we have found that shape and texture information can

provide additional performance improvements in comparison
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Figure 3. ROC curves of the best Shape and Texture configurations.
Abbreviations used: Contour Coordinates (CC); Row Column Profiles
(RCP); Dynamic Time Warping (DTW); Modified Hausdorff Distance
(MHD), Convolutional Neural Networks (CNN).

with their standalone performance rates. For large scale

application, further experiments will be needed, including

experiments with larger datasets. For future work, we plan

to perform experiments using active images, which are the

ones used in the mmW scanners deployed in airports. In

any case, even with practical limitations, the present work

has shown the feasibility of using mmW body texture for

Person Recognition, and a quantitative analysis of the key

factors affecting its performance, in this way, showing that

current mmW security deployments may be improved with

biometrics functionalities.
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