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Abstract—This paper focuses on modeling the complexity of
biomechanical tasks through the usage of the Sigma LogNormal
model of the Kinematic Theory of rapid human movements.
The Sigma LogNormal model has been used for several applica-
tions, in particular related to modeling and generating synthetic
handwritten signatures in order to improve the performance
of automatic verification systems. In this paper we report
experimental work for the usage of the Sigma LogNormal model
to predict the complexity of biomechanical tasks on two case
studies: 1) on-line signature recognition in order to generate user-
based complexity groups and develop specific verification systems
for each of them, and 2) detection of age groups (children from
adults) using touch screen patterns. The results achieved show
the benefits of using the Sigma LogNormal model for modeling
the complexity of biomechanical tasks in the two case studies
considered.

Index Terms—On-line signature verification, user profiling,
neuromotor model, signature complexity, age prediction, touch
dynamics, biometrics

I. INTRODUCTION

On-line signature verification and other handwritten tasks
(drawings, touch patterns, etc.) are experiencing a high de-
velopment recently due to the technological evolution of
digitizing devices, including smartphones and tablets. Such
handwritten data can be applied to many applications in
different sectors such as security, e-government, healthcare,
education, user profiling, advertising or banking [1], [2].

This work has been supported by project TEC2015-70627-R
MINECO/FEDER and by UAM-CecaBank Project. Ruben Tolosana is
supported by a FPU Fellowship from Spanish MECD, and Javier Hernandez
by a FPI Fellowship from UAM.

This paper focuses on modeling the complexity of hand-
written information, which can be a very important factor in
different applications related to handwriting. We propose to
model the complexity of handwritten tasks through the usage
of the Sigma LogNormal model of the Kinematic Theory of
rapid human movements [3]. The Sigma LogNormal model
has been used in the past for several applications. One of
the most successful ones has been the synthetic generation of
handwriting, in particular signatures (two examples in [4] and
[5]). This model has recently been used in [6] and [7] not
to generate synthetic signature samples, but to improve the
performance of traditional signature verification systems. In
[6] the authors proposed a skilled forgery detector using some
features extracted from the Sigma LogNormal model whereas
in [7], a new set of features based on the Sigma LogNormal
model was proposed achieving very good performance.

In this paper we report experimental work for the usage
of the Sigma LogNormal model to predict the complexity of
biomechanical tasks on two case studies: 1) The first one de-
scribes its application to on-line signatures in order to generate
user-based complexity groups (as there are users with very
complex signatures and other with very simple ones). Then,
a specific signature verification system is developed for each
complexity group achieving very significant improvements of
verification performance [8]. 2) On the other hand, the second
one describes its application to detect age groups (children
from adults) in touch dynamic tasks performed on smartphones
or tablets [9], as the difference between adults and children is
mainly caused by the different maturity of their anatomy and



TABLE I
SIGMA LOGNORMAL PARAMETERS DESCRIPTION

Parameter Description
Di Input pulse: covered distance when executed isolated.
t0i Initialization time. Displacement in the time axis.
µi Logtemporal delay.
σi Impulse response time of the neuromotor system.
θsi Initial angular position of the stroke.
θei Final angular position of the stroke.

neuromotor system. These are less mature in children, so they
have worse manual dexterity causing rougher movements [10]
[3].

The remainder of the paper is organized as follows. Sec. II
describes the Sigma LogNormal model, used in this work to
model the complexity of handwritten tasks. Sect. III describes
the first case study focused on modeling the complexity of on-
line signatures and its experimental results. Sect. IV describes
the second case study focused on modeling the complexity
of touch dynamic information in order to detect age groups
and its experimental results. Finally, Sec. V draws the final
conclusions and points out some lines for future work.

II. THE SIGMA LOGNORMAL MODEL

Many models have been proposed to analyze human move-
ment patterns in general and handwriting in particular. These
models allow the analysis of features related to motor control
processes and the neuromuscular response, providing comple-
mentary features to the traditional X and Y coordinates related
to handwriting tasks. One of the most well known writing
generation models is the Sigma LogNormal model [3] [11].

The Sigma LogNormal model states that the velocity profile
of human hand movements can be decomposed into strokes.
Moreover, the velocity of each of these strokes, i, can be
described with a speed signal vi(t) that has a lognormal shape:

|vi(t)| =
Di√

2πσi(t− t0i)
exp(− (ln(t− t0i)− µi)2

2σ2
i

) (1)

where each of the parameters are described in Table I. The
complete velocity profile is modelled as a sum of the different
individual stroke velocity profiles as:

vr(t) =
N∑

i=1
vi(t) (2)

where N is the number of lognormals of the entire move-
ment. A complex action, like a handwritten signature or
touch task, is a summation of these lognormals, each one
characterized by different values for the six parameters in
Table I. Fig. 1 shows an example of the lognormal velocity
profiles extracted for each stroke of one signature.

III. CASE STUDY 1: ON-LINE SIGNATURE COMPLEXITY

Signature verification systems have been shown to be
highly sensitive to signature complexity [12]. In [13], Alonso-
Fernandez et al. evaluated the effect of the complexity and

Fig. 1. Trace and velocity profile of one reconstructed on-line signature
using the Sigma LogNormal model. A single stroke of the signature and
its corresponding lognormal profile are highlighted in red colour. Individual
strokes are segmented within the LogNormal algorithm [3].

legibility of the signatures for off-line signature verification
(i.e. signatures with no available dynamic information) point-
ing out the differences in performance for several matchers.
Signature complexity has also been associated to the con-
cept of entropy, defining entropy as the inherent information
content of biometric samples [14], [15]. In [16] a “personal
entropy” measure based on Hidden Markov Models (HMM)
was proposed in order to analyse the complexity and variability
of on-line signatures regarding three different levels of entropy.
In addition, the same authors have recently proposed in [17] a
new metric known as ”relative entropy” for classifying users
into animal groups where skilled forgeries are also considered.
Despite all the studies performed in the on-line signature trait,
none of them have exploited, as far as we are aware, the
concept of complexity in order to develop more robust and
accurate on-line signature verification systems.

A. Proposed System

Based on the parameters of the Sigma Lognormal model, we
propose to use the number of lognormals (N ) that models each
signature as a measure of the complexity level of the signature.
Once this parameter is extracted for all available genuine
signatures of the enrolment phase, the user is classified into
a complexity level using the majority voting algorithm (low,
medium and high complexity levels). Only genuine signatures
are considered in our proposed approach for measuring the
complexity level. The advantage of this approach is that
the signature complexity detector can be performed off-line
thereby avoiding time consuming delays and making it feasible
to apply in real time scenarios.

Then, after having classified a given user into a complexity
group, a specific on-line signature verification module based
on time functions (a.k.a. local system) [18] has been adapted to
each signature complexity level. For each signature acquired,
signals related to X and Y pen coordinates are used to extract
a set of 23 time functions, similar to [19]. The most discrim-
inative and robust time functions of each complexity level
are selected using the Sequential Forward Feature Selection
algorithm (SFFS) enhancing the signature verification system
in terms of EER. A DTW algorithm [20] is used to compute



the similarity between the time functions from the input and
training signatures.

B. Database and Experimental Protocol

In this case, BiosecurID database [21] is considered. Signa-
tures were acquired from a total of 400 users using a Wacom
Intuos 3 pen tablet with a resolution of 5080 dpi and 1024
pressure levels. The database comprises 16 genuine signatures
and 12 skilled forgeries per user, captured in 4 separate
acquisition sessions. Each session was captured leaving a two
month interval between them, in a controlled and supervised
office-like scenario. Signatures were acquired using a pen
stylus. The available information within each signature is:
X and Y pen coordinates and pressure. In addition, pen-up
trajectories are available.

The experimental protocol has been designed to allow the
study of different signature complexity levels in the system
performance. Two main experiments are carried out: 1) eval-
uation of the signature complexity detector proposed in this
work in order to classify users into different complexity levels,
and 2) evaluation of the proposed approach based on a separate
on-line signature verification system adapted to each signature
complexity level.

For the first experiment, our proposed signature complexity
detector is analyzed using all available users from BiosecurID.
For the second experiment, the BiosecurID database is split
into development dataset (40% of the users) and evaluation
dataset (the remaining 60% of the users). The development
dataset is considered in order to select the most discriminative
and robust time functions for each signature complexity level
using the SFFS algorithm whereas the evaluation dataset is
considered for the evaluation of the proposed system. Both
skilled and random forgeries are considered using the 4 signa-
tures from the enrolment session as reference signatures and
the remaining 12 genuine signature and 12 skilled forgeries
signature as the test. The final score is obtained after perform-
ing the average score of the four one-to-one comparisons.

C. Results

The first experiment was designed to evaluate the proposed
approach for signature complexity detection. For this, the
signature complexity detector was performed in two different
steps. First, each user of the BiosecurID database was man-
ually labelled in a signature complexity level (low, medium,
high). This process was carried out seeing the image of just
one genuine signature per user and it was performed by two
annotators and two times each in order to keep consistency on
the results. Three different complexity levels were considered
based on previous works [17]. Users with signatures longer
in writing time and with an appearance more similar to
handwriting were labelled as high-complexity users whereas
those users with signatures shorter in time and with generally
simple flourish with no legible information were labelled as
low-complexity users. This first stage served as a ground
truth. Following this stage, the Sigma LogNormal parameter
N was extracted for each available genuine signature of the
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Fig. 2. Probability density function of the number of lognormals for each
complexity level using all genuine signatures of the BiosecurID database. The
three proposed complexity-dependent decision thresholds are highlighted by
black dashed lines.

Fig. 3. Signatures categorized for each complexity level using our proposed
signature complexity detector. From top to bottom: low, medium and high
complexity.

BiosecurID database (i.e. a total of 400× 16 = 6400 genuine
signatures). Then, we represented for each complexity level
their corresponding distribution of lognormals according to
the ground truth performed during the first stage. Fig. 2
shows the distributions of the number of lognormals obtained
for each complexity level using all genuine signatures of
the BiosecurID database. The three proposed complexity-
dependent decision thresholds are highlighted by black dashed
lines and were selected in order to minimize the number
of misclassifications between different signature complexity
levels. Signatures with lognormal values equal or less than
17 are classified as low-complexity signatures whereas those
signatures with more than 27 lognormals are classified into the
high-complexity group. Otherwise, signatures are categorized
into medium-complexity level. Fig. 3 shows some of the
signatures classified into each complexity level.

We now analyse each resulting complexity level following
the same procedure proposed in [17]: analysing the system
performance for different complexity groups considering only
X and Y pen coordinates. It is important to remark that each
user is classified into a complexity level applying the majority
voting algorithm to all available enrolment signatures of the
user. Table II shows the system performance for each complex-
ity level in terms of EER(%). The results show different system
performance regarding the signature complexity level. Users
with a high complexity level have an absolute improvement



TABLE II
EXPERIMENT 1: SYSTEM PERFORMANCE RESULTS (EER IN %) OF THE

BIOSECURID DATABASE OF EACH PERSONAL COMPLEXITY LEVEL.

Low C. Medium C. High C
Skilled forgeries

Random forgeries
22.2
3.6

21.7
2.4

17.9
2.6

of 4.3% compared to users categorized into a low complexity
level for skilled forgeries.

Then, the second part of the experimental work was focused
on developing a specific verification system for each group
of signature complexity. For this, the SFFS algorithm was
applied to the development dataset in order to find the most
discriminative time functions for each complexity group. Then,
the evaluation of the proposed system was compared to a
baseline system based on DTW and the same system (same
time functions) for all complexity groups, similar to the
baseline system presented in [6].

Table III shows the evaluation results achieved considering
our proposed approach based on personal entropy on-line sig-
nature verification systems. Analysing the results obtained, our
Proposed Systems achieve an average absolute improvement
of 2.5% EER compared to the Baseline System for the case
of skilled forgeries. It is important to note that for the most
challenging users (users with high personal entropy level),
our proposed approach achieves an absolute improvement of
3.7% EER compared to the Baseline System. Analysing the
results obtained for the random forgery cases, our Proposed
Systems also achieves improvements for all personal entropy
levels. For this case, the improvement has been lower than for
skilled forgery cases due to its low values and the way that the
SFFS algorithm was applied during the training of the systems
(focused on skilled forgery cases). Results obtained after
applying our proposed approach based on personal entropy
on-line signature verification systems outperform the results
of the state-of-the-art for the BiosecurID database. In [6], the
authors achieved an absolute improvement of 1.0% EER for
skilled forgery cases whereas our proposed approach achieves
an average absolute improvement of 2.5% EER compared to
the same Baseline System.

IV. CASE STUDY 2: PREDICTING AGE GROUPS FROM
TOUCH PATTERNS

Age groups prediction based on handwritten touch patterns
acquired from touchscreen devices such as smartphones or
tables is a recent and important challenge. Touchscreen panels
have changed the way users interact with new devices. The
touchscreen enables an intuitive experience of use that allows
a direct interaction with what is being displayed. In the last
years there has been a huge spread of the use of this kind
of devices by young children. The study in [22] reveals that
97% of US children under the age of four use mobile devices,
regardless of family income. The age is a key attribute in user
profiling with direct application on several automatic systems
(e.g. parental control, recommender systems, advertising, etc.).

In this case study we propose the use of the Sigma Log-
Normal model to detect age groups as simple application
of the model to drag and drop touch tasks showed large
differences between adults and children velocity profiles. In
Figure 4, an example of these types of profiles is presented,
consisting in performing a drag and drop task in both cases.
A visual comparison between children and adults velocity
profiles shows that children’s signals are usually composed by
a higher number of strokes than the adults’ ones, and therefore
have a higher degree of complexity.

Moreover, there are previous studies like [23], which have
proved that the Sigma LogNormal model can be used to
characterize children handwriting. They conclude that there
are two main groups of children separable by looking at
their learning stage. Children’s neuromotor skills become more
similar to the adults’ skills when they grow up, namely, when
they finish their preoperational stage. At age 10 children
know how to activate each little muscle properly to produce
determinate fine movements [24]. As they are based on the
same neuromotor skills, the principles applied to handwriting
models can be also used to model touchscreen patterns.

A. Proposed System

In this case, a more complex system was developed com-
pared to Case Study 1 in order to predict age groups from drag
and drop touch tasks, as the main focus here was to optimize
the final classification result.

The parameters of the Sigma LogNormal model (as de-
scribed in Sect. II) were used to calculate 18 different features
per lognormal as described in [25]. These features can be
classified into two groups: space-based and time-based. Space-
based features are those that give information about the spatial
distribution of the strokes, such as Di, µi, σi, and other
features based in θsi and θei (see Table I). Time based features
are composed by the values of speed at some relevant points
of the strokes like their maximum or inflexion points; and
the time-offsets between those points. The task time and
the number of lognormals in each task have been added as
additional features.

It is worth noting that the lognormals with amplitude value
lower than a threshold were discarded. Then, the 18 features
from [25] are computed for each stroke, and each parameter
is averaged across strokes. The 18 averaged parameters are
augmented with the task time and the number of strokes to
generate the final feature vector of size 20.

As a classifier we use a SVM (Support Vector Machine)
with a RBF (Radial Basis Function) kernel because of its good
general performance in binary classification tasks and the few
number of parameters to configure.

B. Database and Experimental Protocol

The database used is publicly available and was presented
in [24]. It is comprised with data from touchscreen activity of
both children and adults performing predesigned tasks in an
ad-hoc app. In the present work, we have used the data from
singletouch and multitouch drag and drop activities. Drag and



TABLE III
EXPERIMENT 2: SYSTEM PERFORMANCE RESULTS (EER IN %) ON THE EVALUATION DATASET FOR EACH SIGNATURE COMPLEXITY LEVEL.

Low C. Medium C. High C.
Baseline Proposed Baseline Proposed Baseline Proposed

Skilled forgeries
Random forgeries

13.8
1.5

10.1
1.3

7.5
0.7

5.2
0.5

6.2
0.9

4.6
0.9

Fig. 4. Comparison between Sigma LogNormal speed profiles for (a) an adult
and (b) a child following the same task.

drop activities consist of picking one object on the device
screen and moving it to a target area. Multidevice information
is available as the users have completed the tasks both in
a smartphone and in a tablet. Both single-sensor and cross-
sensor tasks are analyzed.

The dataset is composed by 89 children between 3 and 6
years old and 30 young adults under 25 years old. The mean
age of the children is 4.6 years. The total number of drag and
drop tasks is 2912 for children and 1157 for adults (see [24]
for more details).

As the experimental protocol, the database was divided
randomly into training (60%) and testing (40%). The random
selection was repeated 50 times and the final performance is
presented in terms of averaged correct classification accuracy.

C. Results

Table IV shows the accuracies obtained according to the
different scenarios. They are presented in terms of correct clas-
sification accuracy (percentage of samples from both classes
correctly classified).

The mean value of accuracy having into account all the
evaluated scenarios is 92.8%. The classification rates are over
96% in a single-sensor setting and over 95% in a cross-sensor
scenario. The best results are obtained with tablets as sensors,
while using smartphone’s data slightly degrades the results.

Compared with [26] where they get an accuracy rate of
86.5% using one tap task for classification and with a single-
sensor aproximation (using smartphone’s data), our system
performs better, getting a 93.6% of accuracy using only data

from smartphones, and over 96% using data from tablets.
Another conclusion that can be extracted of Table IV is that
the data obtained from multitouch tasks get worse results than
the singletouch cases. The best multitouch scenario is obtained
using tablet’s data for both training and testing, with a 94.6%
of accuracy, compared with its singletouch counterpart that
gets a 96.3%. This may be caused by the less developed
control of the left hand by right-handed people and vice versa.
The main reason for using the Sigma LogNormal model is that
adults have a better control of fine movements than children,
what is translated to different values for the model parameters
[24].

The cross-sensor scenarios get results not too far from the
single-sensor scenarios. The results obtained using smartphone
singletouch data for training, and tablet singletouch data for
testing (95.9% of accuracy) are quite similar to those obtained
using only tablet singletouch data (96.3% of accuracy). This
fact makes this type of systems very suitable for real applica-
tions due to its high independence of the device used.

Due to the higher number of children in the database
compared to adults, selecting a percentage of the total users
make the two scenarios unbalanced. Experiments balancing the
number of both classes in training and testing have been made.
The results show small variations around 1% of accuracy with
respect to the presented results.

V. CONCLUSIONS

This work has reported experimental results on modeling
the complexity of biomechanical tasks through the usage of
the Sigma LogNormal model of the Kinematic Theory of
rapid human movements. Two different case studies have been
analyzed.

The first case study has focused on applying the Sigma
LogNormal model to develop an on-line signature complexity
detector. Just by using the number of strokes of the signatures
was enough to obtain very good results differentiating between
three different signature complexity groups (low, medium and
high). As a second stage, a specific signature verification
system was developed for each signature complexity group
by carrying out a time functions selection process. Very sig-
nificant improvements of recognition performance have been
shown when comparing the proposed system with a baseline,
being both based on DTW and time functions as features.
For future work, the approach considered in this work will
be further analysed using the e-BioSign public database [27]
in order to consider new scenarios such as the case of using
the finger as the writing tool. Also, novel systems based on
the usage of Recurrent Neural Networks (RNNs) [28] and the
fusion of different systems [29] will be considered .



TABLE IV
ACCURACY RESULTS FOR THE 20 LOGNORMAL FEATURES. THE ACCURACY IS MEASURED AS THE RATE OF CORRECT CLASSIFICATIONS CONSIDERING

BOTH CLASSES.

Testing samples
Phone Singletouch Tablet Singletouch Phone Multitouch Tablet Multitouch

Phone Singletouch 93.6% 95.0% 88.0% 92.1%
Tablet Singletouch 93.7% 96.3% 88.9% 94.0%
Phone Multitouch 94.1% 95.9% 88.0% 92.8%Traning samples

Tablet Multitouch 93.0% 96.3% 87.9% 94.6%

On the other hand, the second case study has focused on
age group prediction (children from adults) from handwritten
touch patterns acquired from touchscreen devices such as
smartphones or tables. Applying the Sigma LogNormal model
to some examples of drag and drop tasks from children and
adults showed that children had a more complex velocity
profiles with a larger number of sigma LogNormals. The
proposed approach is based on 20 features extracted from
the model, and results achieved were very promising with
classification rates over 96% in a single-sensor setting and
over 95% in a cross-sensor scenario.
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