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Abstract—In this paper we evaluate body static information
to improve the performance of face recognition at a distance. To
this aim, we assess one state-of-the-art face recognition system
based on deep features and three body-based person recognition
systems, namely: i) row profiles with correlation coefficient,
ii) row and column profiles with Support Vector Machines,
and iii) contour coordinates with Dynamic Time Warping.
Results are reported using the Multi-Biometric Tunnel Database,
emphasizing on three distance settings: far, medium, and close,
ranging from full body exposure to head and shoulders exposure.
Several conclusions can be drawn from this work: a) row and
column profiles are more robust than contour coordinates, b)
face-based systems perform poorly at far distances, being body-
based information more reliable at that distances, c) in general
face-based systems perform better than body-based approaches
at medium and close distances, and d) the multimodal fusion ap-
proach manages to outperform face-only recognition at distance
in all distance-settings considered.

I. INTRODUCTION

Is face recognition a solved problem? According to the
Labeled Faces in the Wild face recognition benchmark (LFW),
in which latest results are almost perfect, one may think
that this problem is already solved [1]. However, results
achieved in less constrained scenarios such as the recent
initiatives Megaface [2] or International Competition on Face
Recognition in the Wild [3] show that there is still room for
improvement, especially concerning robustness towards aging,
large scale, camera-subject distance and low resolution. These
facts together with other challenging conditions encountered
in surveillance and related unconstrained scenarios such as
changes in pose, expression, illumination, blur or occlusions
greatly hinder the performance of face recognition systems in
the wild [4].

Aiming to enhance biometric system performance in chal-
lenging conditions, researchers have proposed multimodal
approaches [5], that is, the use of additional biometric traits
to complement or alleviate limitations given by a single
biometric system. One useful case of multimodal approaches
in unconstrained scenarios is the use of soft biometrics to
complement the evidence given by face verification systems
[6], [7], [8]. There exist several definitions of soft biometrics
like the ones stated in [9], but most of them share the same
main point: soft biometrics are based on information that can
help to recognize people as it is related with each individual,
but it is not enough to perform recognition accurately by
themselves (see a review on soft biometrics in [9]).

However, when the person of interest is far from the
acquisition system such it is the case of surveillance scenarios,
it is not straightforward to estimate soft biometrics reliably,
mainly due to the fact that the majority of the estimation
algorithms are based on facial information [9], [10]. For those
types of scenarios, Tome et al. proposed to use both face and
body measurements to enhance face verification performance
[7]. However, although the reported results by Tome et al.
were promising, their measurements were manually annotated
and therefore it is difficult to infer the real impact of soft
information over face verification systems.

The main contribution of this paper is the proposal of a mul-
timodal person recognition system that uses jointly face and
body static information. The body-based person recognition is
focused on shape information directly extracted from binarized
images. Face recognition is based on a state-of-the-art deep
learning approach. Performance of the individual systems
along with the multimodal system are reported and discussed
for three different distance settings within the Multi-Biometric
Tunnel Database [11], varying from the far distance setting in
which there is full-body exposure to the close distance setting
in which only head and upper torso are visible. It is worth
noting that our multimodal approach: i) extracts body and
face information from the same single shot-image, contrary to
other multimodal approaches based on face and gait [12], and
ii) the whole multimodal approach is fully automatic, starting
from face detection and background subtraction modules to
the final multimodal decision.

The rest of this paper is organized as follows: Section II
summarizes related works regarding body shape-based person
recognition and multimodal approaches involving body infor-
mation. Section III presents the proposed multimodal person
recognition system. Then, Section IV describes the database
and experimental protocol employed. Later, Section V presents
the results. Finally, Section VI summarizes the contributions
of this work and discuses future works.

II. RELATED WORKS

A. Body-based Biometrics

In this Section, some related works regarding the use of
body information for person recognition purposes are re-
viewed. Although gait has been the mainstream approach
for performing person recognition using body information
[13], mainly based on body dynamic information from lateral
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views, here we summarize exclusively related works using
information extracted from static images.

First of all, the use of body information has been widely
used in the literature for people re-identification purposes,
aiming to answer the question “Where have I seen this person
before?” using visual cues such as color, texture or shape
information [14], [15].

In what concerns person recognition, Nakajima et al. [16]
explored color and shape-based features extracted from full
body images. Results were reported using SVM as classifier
and a small dataset composed of images from 8 different
people with four different poses in different days. Very high
performance (above 95% of accuracy) was observed when
training and testing images were extracted the same day but
the performance dropped significantly when the test set was
not acquired the same day as the training images.

Hahnel et al. [17] further explored color and texture features
with a database of 53 people, reaching recognition results
of 97.4%. Authors acknowledged the limitations of using
color information for some particular applications such as
surveillance in shopping malls.

B. Multimodal Biometrics including Body Information

Multimodal approaches have been also proposed for person
recognition in the literature to circumvent limitations of uni-
modal approaches in challenging scenarios. Information can be
extracted from single or multiple sensors and fusion schemes
can be applied at different levels [5]. In particular, fusion at
score level is a popular option because of its simplicity and the
performance increase that can be experienced. An extensive
review of multimodal approaches for person recognition is
beyond the scope of this Section, for a wide review see Ross
et al. [5]. We restrict here to highlighting related works that
have used dynamic or static body information as one of the
biometric traits involved in the multimodal approach.

Concerning the use of body static information, Collins et al.
[18] proposed to use body shape information like body height,
width and some body part proportions to enhance performance
of gait-based biometric systems. Shape and gait information
were extracted from the same lateral views.

Tome et al. [7] proposed the use of face and body mea-
surements in surveillance scenarios to enhance face verifica-
tion systems. Concretely, this system was based on sparse
representations and body measurements involving categorical
information regarding both constitution and appearance in-
formation. Results were reported using 100 individuals from
the Multi-Biometric Tunnel Database. Fusion led to improved
verification results when introducing body information from
19% to 10% of EER and from 41% to 16% of EER for
close and far distance scenarios, respectively. However, it is
important to notice that body information was extracted from
manual annotations.

III. PROPOSED SYSTEM

In what follows we describe the general scheme of the
proposed multimodal person recognition system designed for

verification mode. As sketched in Fig. 1, the multimodal
person recognition approach is divided into two branches,
being the upper branch the face-based person recognition sys-
tem and the lower branch the body-based person recognition
system. On the upper branch, given a single-shot image, the
face is automatically detected and preprocessed to further
extract some discriminative features. Finally, a match score
is estimated by comparing the extracted features with the
template associated to the claimed identity. Likewise, on the
lower branch, first the body silhouette is extracted through
background subtraction techniques. Once the person is seg-
mented, shape features are extracted from the binarized image.
After comparing the extracted body shape test features with
the body shape template associated to the claimed identity, the
body based person recognition system outputs a match score.
Finally, the multimodal fusion approach is built by fusing
individual scores from face and body based person recognition
systems.

A. Face-based Person Recognition System

The face-based person recognition system is divided into
four stages, namely: face detection, preprocessing, feature
extraction and matching. We proceed now to describe the
details concerning each stage.

1) Detection and Preprocessing: Firstly, faces are detected
through the Viola-Jones algorithm as it is known to perform
reasonably well with frontal faces [19]. There are three possi-
ble outputs from the face detector: 1) One face is detected
and the detector returns a bounding box that contains the
face location. 2) Multiple faces are detected and the bounding
boxes of all them are returned. Sometimes, there are false
positive face detections and bounding boxes without a real
face inside them are returned. In these cases, we decided to
keep only the larger bounding box because in the majority of
cases it contains the real face. 3) No face is detected so there
is no output. This case is called Failed To Acquire (FTA) and
happens frequently with images acquired at the far distance
setting because of the low resolution. The FTA rate at far
distance of this specific work is 20.41%. In these situations, the
face-based verification system will not be able to provide any
estimation. Once the face is detected, the image is histogram
equalized using [20].

2) Feature Extraction: Face features considered in this
work are based on deep learning. Concretely, features are
extracted from pretrained CNN models through transfer learn-
ing techniques. In particular, two different pretrained models
are assessed: Alexnet [21] and VGG-face [22]. We have
performed some preliminary tests to decide which network
to use. These tests have confirmed the intuition that VGG-
face suits better to our requirements as it has been trained
for face classification while AlexNet has been trained for
object classification. Concretely, VGG-face was inspired by
the previous VGG-Very-Deep-16 CNN network [23], using a
dataset of 2.6 million faces and 2622 classes (individuals).
Their deep architecture comprises 39 layers and it contains
more than 130 million parameters.
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Fig. 1. Multimodal person verification system. Given a single shot image, both face and body discriminative features are extracted to further obtain
individual scores, which are combined before the final decision. The figure visually shows the appearance of the learnable deep parameters and the row and
column profiles involved in face and body-based modules, respectively.

In order to extract deep features from VGG-face, first we
need to resize the images to the input size of the network,
which is 224× 224. Features are obtained by feedforwarding
the images until the fc7 layer, which turned out to be the layer
that achieves better verification results (compared to the fc6
layer). This way, for each image we obtain a feature vector of
4096 elements.

3) Matching: The last block of the face recognition system
is the matching stage. As matcher we considered Support
Vector Machines.

a) Support Vector Machines (supervised algorithm):
SVMs is based on a representation of the examples as points
in a multidimensional space. The training process consists
in choosing a hyperplane that maximizes the distance from
it to the nearest data point of each class. With this type of
classifiers, it is interesting to have the input data represented
in a high-dimensional space, what gives more freedom to find
a hyperplane with a minimum distance large enough to obtain
high classification rates.

B. Body-based Person Recognition System

This section describes a person recognition system based
on body static information that can be used standalone or
employed in a fusion scheme with other systems, for example
with the face-based system from Section III-A.

1) Image Segmentation: In a real scenario, it would be
essential to include a pedestrian detection module before
extracting body information [24]. Since images from the
Multi-Biometric Tunnel Database only contain one person per
frame, the region of interest in which the person is located is
inferred through a baseline background subtraction algorithm,
setting the background as the initial frame of the sequence. The
background subtraction is carried out in each of the 3 RGB
channels and then the RGB result is grayscaled. The binarized
silhouette is obtained after thresholding the gray scale image

with a global threshold. The foreground segmentation is fol-
lowed by some morphological noise reduction operations, in
order to delete isolated foreground areas in the image. Finally,
we proceed to select the bounding box around the foreground
silhouette and normalize it to a height of 600 pixels and a
different width for each distance scenario, according to the
maximum width of the silhouette among all users for that
scenario.

2) Feature Extraction: Two different shape feature extrac-
tors are considered, specifically: Row and Column Profiles
(RCP) and Contour Coordinates (CC).

a) Row and Column Profiles: Given the binarized image
I , pixels belonging to the foreground (fg) are set to 1
(I (xfg ,yfg) = 1) and pixels belonging to the background (bg)
are set to 0 (I (xbg ,ybg) = 0). We then compute row and
column profiles by counting foreground pixels across rows
and columns, respectively.

b) Contour Coordinates: are also extracted
from the normalized image I , being defined as
contour coordinates(n) = (xn, yn), n = 1, ...ncc,
being ncc the number of pixels that compose the contour
that the silhouette edge describes with the background, and
(xn, yn) the coordinates of each one of those pixels. It is
worth noting that each silhouette will have a different number
of contour points, so the size of the feature vector is different
between images. Unlike RCP, Contour Coordinates directly
account for the relative location of the different points within
the contour.

3) Matching: Two different distance-based matchers and
one supervised classifier are explored, concretely: i) Dynamic
Time Warping; ii) Correlation Coefficient, and iii) Support
Vector Machines.

a) Dynamic Time Warping (unsupervised algorithm)::
its goal is to find an elastic match among samples from two
different sequences that minimize a given distance measure.
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In this work, DTW is used to obtain the minimal cumulative
distance between two sequences of contour coordinates, which
do not have to share the same dimensionality. The algorithm
searches for a path that minimizes the distance using a sequen-
tial procedure and holding some global and local constraints.

b) Correlation Coefficient (unsupervised algorithm):: the
second classifier is based on the correlation of two feature
vectors. The correlation coefficient measures the dependence
between them, for example, if there exists a linear relationship.
This measure of similarity is useful to compare row profile
features as the persons to be identified will have the same
distribution in the different parts of their body as opposed
to row profiles pertaining to other identities. Column profile
and contour coordinates can experiment more changes in their
values as the person can change the relative position of its
arms and legs, modifying significantly the feature vectors, so
these features are not considered in this matcher.

c) Support Vector Machines (supervised algorithm)::
this classifier has been used only with RCP as vectors to be
compared must be of equal size (see Section III-A3).

C. Score Fusion

The final module of the multimodal person recognition
system fuses individual scores. This fusion is carried out at
score level. Previously, scores are normalized to the range
[0, 1] using the tanh-estimators described in [25].

The fusion method used consists of combining scores of
both systems following the next logic [26], [27]. a) If there are
scores from both systems, then they will be added following
the sum rule. b) If one of the two systems does not have a
score (e.g. due to face detection error), the resulting score will
be a scaled version of the available score. c) If there are no
scores available, then the system will not be able to take a
decision and that situation will be treated as a FTA.

The fusion scheme considered consists on: a weighted
sum in which different weights are assigned to the different
modalities at each distance-scenario, according to a specific
criterion: sfused = p · sface + (1− p) · sbody .

IV. DATABASE AND EXPERIMENTAL PROTOCOL

A. Database

The dataset used for this work is a subset from the
Southampton Multi-Biometric Tunnel database [11]. This
database contains images of 227 different individuals walking
through a tunnel in semi-unconstrained conditions and differ-
ent distances. There are 10 sessions from each user, with each
session having all the aforementioned information.

In this work we have considered only the frontal videos
from the database to combine information from face and body
at different distances. Similar to [7] we have defined three
different scenarios varying the distance between the camera
and the user (see Figure 5 in [7] for examples).

• Far scenario: images taken at 7.5 meters. Face is in
low resolution (average resolution of 76 × 76), but the
full body is available.

• Medium scenario: images taken at 4.5 meters. Face
resolution is better than in the far scenario (average
resolution of 135 × 135), but only the upper half of the
body is visible.

• Close scenario: images taken at 1.5 meters. Face is in
higher resolution (average resolution of 315 × 315), but
only head and upper torso are available.

B. Experimental Protocol

The subset of the Multi-Biometric Tunnel Database consid-
ered in this work is comprised of images from the 227 subjects
from 10 different sessions and at the 3 distance scenarios
described before, resulting in a subset of 227× 10× 3=6810
images. Results are reported for the verification mode in terms
of ROC curves, Equal Error Rate and Verification Rate (EER
and VR in %).

This whole set of images is divided into development and
test sets following a 5-fold cross validation protocol, meaning
that each time 4 folds out of 5 are used for development and
the remainder one for test. The k individual results will then
be averaged to produce a single performance value through
their mean and standard deviation values. The experiments
performed with development and test subsets are the same,
being the purpose of the development dataset to calculate the
statistics for the score normalization, so the process will be
explained only for one subset.

In particular, each k-fold is further divided into train and test
data. This time, a leave-one-out strategy is followed. For all
the 10 sessions of each user we take 1 as the testing vector, and
the rest (9) for training the classifiers. Concerning distance-
based matchers, namely: DTW and Correlation Coefficient,
the test feature vector is compared to the 9 training feature
vectors yielding 9 individual scores. Then, these individual
scores are averaged to obtain the final match score. Unlike
distance-based matchers, the SVM classifier follows a slightly
different protocol. For each user in the selected subset, a SVM
model is trained using the 9 training feature vectors from
that user as the positive class, and the training data from the
remaining users as the negative class. When comparing the test
feature vector to the different SVM models, a single score is
directly obtained. We have decided to use a polynomial kernel
of third grade, as it gives us the best results comparing it with
other kernels and also trying to avoid overfitting without using
polynomial kernels of higher grades.

V. RESULTS

A. Individual Systems

Individual results for the face-based and body-based systems
are summarized in Table I. As expected, the performance of the
face-based system decreases as distance increases since less
faces are detected and the discriminative information extracted
from them is more limited due to low resolution.

In what concerns body-based system performance using row
column profiles as features, it is observed that results improve
with an increasing distance as there is more body information
available in the images, but the best results are obtained at
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EER[%] Far Medium Close
Face System
VGG-SVM 18.93 0.9 0.1

Body Systems
CC-DTW 20.47 11.37 12.56
RP-CORR 15.01 12.19 19.57
RCP-SVM 4.13 1.67 6.78

TABLE I
EER OF THE INDIVIDUAL SYSTEMS OBTAINED FOR TEST DATA.

RESULTS HAVE BEEN OBTAINED FOR FAR, MEDIUM AND CLOSE
SCENARIOS, SIMILAR TO [7]. VALUES ARE EXPRESSED IN %.

HIGHLIGHTED IN BOLD ARE THE BEST RESULTS FOR THE BODY
INFORMATION SYSTEMS AT EACH DISTANCE.

medium distance, not at far distance. This fact shows that
the upper body (head and torso) has more information about
the user than the lower part. At medium distance, the upper
torso is captured with higher resolution helping the classifier
to discern better between users. Contour Coordinates also
behave better at medium and close distance as these are the
scenarios in which the contour contains more discriminative
information among subjects. In terms of performance, the
RCP + SVM body-based approach outperforms RP + CORR
and CC + DTW approaches. It is interesting to note that the
best performing approaches are SVM in both face-based and
body-based systems. SVM are a more sophisticated classifier
technology than the other alternatives, so their better results
are not surprising. By analyzing individual performances from
face-based and body-based recognition systems we observe
that both systems could be complementary as the performance
of one rises in the scenarios where the other worsens. Even
more, at the far scenario, the body-based alternative obtains
significantly better results than the face-based. These results
encourage us to perform a fusion of both systems.

B. Score Fusion

The performance of the baseline fused system is reported in
Table II. As can be seen, fusion results outperform the face-
based systems at far distance and also body-based results at
close distance. This makes sense because in each case, there is
a system working properly and complementing the other. The
criterion followed to estimate the weighting factor p has been
set to the case in which at FAR=10−3 the verification rate (VR)
is maximized. The experiments carried out for this estimation
are depicted in Fig. 2. At far distance, the best verification rates
are achieved with a low value for p, giving more importance to
the body-based system. On the other hand, at close distance it
happens the opposite, as best results are obtained giving more
weight to the face-based system. At medium distance, in most
systems, a halfway weight gives the best results.

The most important conclusion that can be extracted from
these results is the high improvement of the global perfor-
mance at far and medium scenarios compared to only using
face recognition. These are the scenarios where the standalone
face-based system fails more, but with the contribution of the
body-based information a high number of those errors can be
alleviated. Concretely, we infer that at far distance, the fusion
scheme always improves the baseline system, while at medium

and close distance it achieves it most of the times. These
results demonstrate the utility of this multimodal biometric
scheme in scenarios where the unimodal face-based system
does not work optimally.

VI. CONCLUSION

In this work, we proposed a fully automatic multimodal
person recognition system to enhance the performance of
face recognition in challenging scenarios affected among other
factors by low resolution and distance. We analyze the perfor-
mance of individual systems (state-of-the-art face recognition
based on deep learning and various body-based matchers) and
their fusion in three different distance settings.

We have observed that: i) the face-based system perfor-
mance increased with a decreased distance, performing very
poorly in the far distance setting, and ii) the body-based
system performs better at larger distances than close distances,
noticing that upper body information is more discriminative
than lower body information.

Regarding fusion schemes, we have learnt that: i) body
shape information may be the best source of information to
perform recognition when face is not detected or is poorly de-
tected, ii) face-based performance is enhanced by body shape
information specially in long distance scenarios where low
resolution faces limit the face discrimination capability, and
iii) person recognition performance is enhanced in medium
and close distance settings when using RP-CORR or CC-DTW
body shape systems.

Finally, some future work in this research line is dis-
cussed. Introducing automatic distance detection could be
worth exploring to automatically configure fusion weights, to-
gether with more sophisticated quality-based biometric fusion
schemes [27], [28] or pose-based score level fusion schemes
[29]. Also testing this approach under more challenging
databases such as the Point-and-Shoot Challenge [30] could
provide insight regarding the real impact of this approach
and unveil new challenges regarding people detection and
segmentation. For that purpose it would also be essential to
use state-of-the-art face detection algorithms [31].
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