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Performing covert biometric recognition in surveillance environments has been 

regarded as a “grand” challenge, considering the adversity of the conditions where 

recognition should be carried out (e.g., poor resolution, bad lighting, off-pose and 

partially occluded data). This special issue compiles a group of approaches to this 

problem. 

Progress in biometrics research has been concentrated on improving the robustness of recogni-
tion against poor quality data, consistent with less constrained data acquisition environments and 
protocols. Among the most obvious ambitions of this research topic is the development of au-
tomata able to work effectively in conditions that are currently confined to visual surveillance, so 
called “recognition-in-the-wild.” In such conditions data is acquired covertly, from large dis-
tances, and has poor discriminability due to limited resolution, blur, and other degradation fac-
tors. 

One interesting possibility to acquire data in visual surveillance scenarios is the use of PTZ (pan-
tilt-zoom) devices. According to this concept, the QUIS-CAMPI surveillance system was re-
cently introduced, enabling the automated acquisition of face imagery of subjects at-a-distance 
and on-the-move (up to 50 meters away). This dataset was the basis of the “ICB-RW: Interna-
tional Challenge on Biometric Recognition-in-the-Wild” competition, of which the primary goal 
was fostering the development of biometric recognition algorithms capable of working in sur-
veillance scenarios. 

The ICB-RW competition took place from September to December, 2015. There were a total of 
19 registrations in the competition, most of these from academic/research institutions, also with a 
small number coming from private companies. A learning set from the QUIS-CAMPI database 
was initially released for all participants and, by the end of the contest, a disjoint subset was used 
in performance evaluation. Based on the obtained results, seven methods were selected, and their 
authors were invited to contribute to this department. 

Ekenel et al. align the probe and gallery face images with respect to eye centers, considering 
only frontal images as gallery elements. A convolutional neural network (CNN) is used for face 
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representation purposes, with 1-nearest neighbor rule based on signal correlation being used for 
matching. 

Grm and Struc generated an augmented version of the learning set by oversampling the training 
images via bounding box noise and horizontal flipping. The pre-trained Visual Geometry Group 
(VGG) face deep convolutional network was used as a feature extractor and a soft max classifier 
to discriminate between genuine and imposter pairwise comparisons.  

Shi et al. used a feature set extracted from a deep convolutional network model trained on the 
CASIA-Webface database, and a similarity measure based on cosine distance. Ten models were 
learned independently from different facial parts, and subsequently fused. Also, multi-pose gal-
lery data was synthesized to ease the matching phase. 

Gutfeter and Pacut provided an information fusion approach that relies on the responses given by 
a set of convolutional neural networks that perform face recognition, each one specialized in 
handling samples from a specific 3D angle. 

Brogan and Scheirer started by frontalizing both the gallery and probe data. Next, feature extrac-
tion was carried out based on a SLMSimple Neural Network with four bins created to represent 
different versions of the gallery samples. Finally, probe descriptors are matched with one of the 
four bins according to yaw angle of the head, and the resulting pairs of feature vectors feed a 
support vector machine that performs biometric recognition. 

Gonzalez-Sosa et al. (Universidad Autónoma de Madrid, Spain) extracted Local Binary Patterns 
from nine facial regions of frontalized versions of the images. Next, illumination is compensated, 
and a fused distance score is determined by only considering the five best individual facial re-
gions of each sample. 

Finally, Riccio, Nappi, and de Maio started by locating a set of facial key points using an Active 
Shape Model. This step provided the information to remap (align) the face regions into 64 x 100 
images of constant dimension. Next, local light adjustment techniques are used to compensate 
for the dynamic lighting conditions, with matching being carried out according to an optimized 
localized version of the spatial correlation index. 

We hope that this collection of seven papers provides an overview of the current research in this 
extremely ambitious sub-field of biometric recognition research. We wish to thank all the people 
that enabled the publication of this special issue. First of all, we wish to thank Dr. Daniel Zeng, 
the editor-in-chief emeritus of this magazine, for accepting this idea with enthusiasm and for his 
support and motivation. Also, we would like to acknowledge the work carried out by João C. 
Neves, both in the management of the ICB-RW contest and in the performance evaluation of the 
submitted algorithms. 
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Face recognition under unconstrained conditions is a challenging computer vision task. Identifi-
cation under mismatched conditions, for example, due to difference of view angles, illumination 
conditions, and image quality between galley and probe images, as in the International Challenge 
on Biometric Recognition-in-the-Wild (ICB-RW) 2016, poses even further challenges. 

In our work, to address this problem, we have employed facial image preprocessing, deep repre-
sentation, and score normalization methods to develop a successful face recognition system. In 
the preprocessing step, we have aligned the gallery and probe face images with respect to auto-
matically detected eye centers. We only used frontal faces as a gallery. For face representation, 
we have employed a state-of-the-art deep convolutional neural network model, namely the VGG-
Face model. For classification, we have applied a nearest neighbor classifier with correlation dis-
tance as the distance metric. As the final step, we normalized the resulting similarity score ma-
trix, which includes the scores of all face images in the probe set against all face images in the 
gallery set, with z-score normalization. The proposed system has achieved 69.8 percent Rank-1 
and 85.3 percent Rank-5 accuracy on the test set, which were the highest accuracies obtained in 
the challenge.  

Preprocessing 
In the challenge dataset there are two subsets. These are gallery (watch list) and probe sets. The 
total number of subjects is 90. There are three face images for each subject in the gallery set and 
five images in the probe set. As gallery images, frontal, left, and right profile face images of the 
subjects, which are collected under control conditions, are provided. While, in the probe set, im-
ages of subjects collected from a surveillance camera are available. 

In the proposed system, we only used frontal face images from the gallery set. We have also de-
veloped a multi-view based on another system,1 however, due to low quality probe images, it is 
difficult to obtain good quality frontalized or profilized face images for matching. Moreover, we 
could not have achieved better results with this approach on the validation set.  

Face alignment is based on eye-center positions. Even though we have tried to frontalize the 
probe images using the proposed method in Hassner et al.,2 due to the aforementioned reason, 
this type of more advanced alignment did not provide a performance improvement on the valida-
tion set. Details of face alignment are given in the following subsections. 

Facial Landmark Detection 

For the given probe and gallery face image sets, 68 facial landmarks have been detected. The 
method in Kazemi and Sullivan3 uses ensemble of cascade regression trees to estimate the facial 
landmark positions. Compared to other techniques, this method gives robust and accurate land-
mark positions in challenging conditions, such as varying illumination, pose, and low quality im-
ages, which are strongly present in the probe set of the ICB-RW competition. 
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Face Alignment 

Face alignment is the process of registering faces with respect to facial landmarks, for instance, 
eyes, nose, mouth, and chin, to a canonical frame. This process fixes the landmarks’ positions in 
aligned images, and it is carried out by a similarity transformation. In our work, we have used 
facial landmarks provided by the landmark detector in Kazemi and Sullivan3 and performed 2-D 
similarity transformation that aligns faces based on eye center positions. After alignment, facial 
images were cropped and resized to a fixed resolution of 224 x 224 pixels. 

 

Figure 1. A general overview of our system. 

Feature Extraction 
Our face representation is based on VGG-Face model,4 which is a 16-layer convolutional neural 
network (CNN) model trained with 2.6M facial images of 2,622 subjects. We used this model for 
feature extraction by employing the Fully Connected 6 (FC6) layer’s output as the facial signa-
ture. This layer outputs a 4096 dimensional feature vector. The extracted feature vectors of the 
facial images in the gallery and probe sets are then compared using nearest neighbor classifica-
tion with correlation distance as the distance metric. The overview of the system is illustrated in 
Figure 1.  

Due to the limited amount of competition data, we did not perform fine-tuning to adapt the 
VGG-Face model,4 which is trained mainly with the celebrity pictures collected from the web, to 
the competition’s domain. However, the experiments on the validation set have shown that deep 
CNN-based representation still provides better performance compared to well-known ap-
proaches, such as Fisher vectors5 (see Figure 2).  

Post Processing 
We have evaluated the similarity of every probe image against every gallery image and con-
structed a similarity score matrix with gallery images in the columns and probe images in the 
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rows. We first applied z-score normalization on each column of the score matrix, which repre-
sents the scores of gallery images for a given probe image, and then took the exponent of each 
matrix column in order to finalize the scores. The experimental results on the validation set have 
shown that such normalization has increased the Rank-1 accuracy from 66.8 percent to 71.7 per-
cent. 

Experiments 

Challenge Task 

Given one frontal, one left, and one right profile image for each of the 90 people in the gallery 
set with a total of 270 images, it is expected from the ICB-RW participants to evaluate the simi-
larity scores of given probe images against the gallery images (watch list). There are five probe 
images for each person with a total of 450 images provided for validation and test, respectively. 
As a result, the system provides an MxN dimensional score matrix, where M is the number of 
face images in the gallery set and N is the number of face images in the probe set. Since, in the 
proposed system, only frontal face images of subjects were used from the gallery set, M corre-
sponds to the number of subjects, 90, in the database. 

In the score matrix, each column represents the distance values between a subject’s probe image 
and all the images in the gallery set. A score value at the (i,j)-th position in the score matrix cor-
responds to the distance between the i-th gallery image and the j-th probe image.  

Evaluation 

As required in the competition, the algorithm’s performance is measured by the Rank-1, Rank-5 
accuracies and Area Under Curve (AUC) of the Cumulative Match Score Curve (CMC). For 
each probe image, a Rank-K list is calculated by ranking the K most similar subjects in the watch 
list. The CMC is obtained by calculating the percentage of correct identification for all probe im-
ages with all different Rank-K list sizes. 

The CMC plots obtained by all the tested features on the validation set can be examined in Fig-
ure 2. On the validation set, with the VGG-Face features, 66.8 percent Rank-1, 83.5 percent 
Rank-5 accuracies and an AUC of 95.3 percent is obtained. With the score normalization, Rank-
1 and Rank-5 accuracies increase to 71.7 percent and 86.5 percent, respectively. AUC has be-
come 96.2 percent. The AUC performance of Fisher vectors is 85.6 percent and increases to 86.5 
percent when normalization is applied. 

 

Figure 2. Cumulative Match Score Curve (CMC) on the validation set. 
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The AUC obtained on the test set is 95.4 percent. A Rank-1 accuracy of 69.8 percent and a 
Rank-5 accuracy of 85.3 percent have been achieved. These values are the highest accuracies 
obtained in the challenge. Compared to the Rank-1 scores of the second and third best systems in 
the competition, our system provides 7.8 percent and 12.2 percent absolute performance im-
provement, respectively. The results validate the difficulty of performing face recognition under 
mismatched conditions, which indicates that further research is required to improve performance. 
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Automated person recognition from surveillance quality footage is an open research problem 
with many potential application areas. In this paper, we aim at addressing this problem by pre-
senting a face recognition approach tailored towards surveillance applications. The presented ap-
proach is based on domain-adapted convolutional neural networks and ranked second in the 
International Challenge on Biometric Recognition-in-the-Wild (ICB-RW) 2016. We evaluate the 
performance of the presented approach on part of the QUIS-CAMPI dataset and compare it 
against several existing face recognition techniques and one state-of-the-art commercial system. 
We find that the domain-adapted convolutional network outperforms all other assessed tech-
niques, but is still inferior to human performance. 

The demand for surveillance systems is growing rapidly. To be useful, such systems require ac-
tive human supervision and screening of all recorded surveillance footage, which is a demanding 
and time-consuming task considering the number of security cameras commonly installed at the 
surveilled areas. Clearly there is a need to devise automated approaches capable of autono-
mously recognizing people from security videos without human intervention. Unfortunately, the 
quality and variability of the security footage makes it difficult to develop automated solutions 
capable of matching human performance. To address this problem, we present in this paper a 
face recognition approach based on domain-adapted convolutional neural networks. The pre-
sented approach exploits the so-called VGG convolutional network trained on a large dataset of 
facial images and uses the pre-trained VGG network to process the security footage and extract 
high-level facial representations. A softmax classifier is then trained on top of the deep network 
using facial images captured by a security camera. Here, the classifier acts as a domain-adaption 
layer which exploits the facial representations produced by the network to conduct identity inter-
ference in the target domain (i.e., on the security footage). In the remainder of the paper we de-
scribe the domain-adapted convolutional network used for our ICB-RW submission and present 
experimental results on the QUIS-CAMPI6 dataset. We describe comparative experiments with 
various face recognition systems and also compare the performance of the presented approach 
with human performance on the same data. 

Deep Learning for Surveillance Applications 

Deep Learning and Convolutional Neural Networks 

In recent years, deep learning has attracted significant attention in various application domains, 
such as natural language processing, computer vision, or signal processing. Deep models have 
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shown state-of-the-art performances for different research problems by learning high-level fea-
ture representations from raw input data through a hierarchy of model layers. For computer vi-
sion problems, the predominant deep models are convolutional neural networks (CNNs), which 
consist of cascaded stacks of convolutional filters. The networks as a whole are parameterized by 
the weights of the individual filters θ = {W} that are learned during training. At each layer, the 
output of the previous layer is processed via convolutional filtering, and the output is subjected 
to a non-linear activation function. For the n-th layer of an N-layer network, this can be formal-
ized as follows: 

( ) ( )1 1y y y W
nn n n nfθ σ− −= = ∗    (1) 

where yn and yn−1 (1 ≤ n ≤ N) represent the outputs of n-th and (n−1)-th layer, respectively; σ de-
notes a non-linear activation function; ∗stands for the convolutional filtering; the set of open pa-
rameters of the n-th layer are the filter weights, i.e., θn = {Wn}; and the input to the first layer (n 
= 1) are the raw (unprocessed) images. An N-layer deep CNN is then described as: 

( )( )
1 1

y x
N N

f f fθ θ θ−
=      (2) 

where x and y are inputs and outputs of the network, respectively, and   stands for the function-
composition operator. To reduce the computational requirements and the size of the parameter 
space of the CNNs, the convolutional layers are commonly interspersed with dimensionality-
reducing layers, such as max-pooling, average pooling, or strided convolutional layers, which 
effectively implement different subsampling strategies. By training convolutional networks via 
gradient descent, the image representation is learned directly from the input data in an end-to-end 
manner, as opposed to classical computer vision approaches where the image descriptors are typ-
ically hand-crafted before being fed to some classifier.  

 

 

Figure 1. Experimental results of the evaluation. The images show: (a) the CMC curves for the 
comparative assessment; (b) sample images from the ICB-RW dataset (manually) partitioned into 
three subsets according to the level of difficulty the images pose for the recognition process; (c) a 
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comparison of AUC values across the three difficulty levels for all assessed methods; and (d) a 
comparison of Rank 1 recognition rates across the three difficulty levels for all assessed methods. 

The VGG architecture 

The VGG network architecture, introduced for face recognition in Parkhi et al.,4 represents a 16-
layer CNN that falls into the class of so-called very deep convolutional networks. The VGG net-
work achieves competitive performance due to some key differences over earlier network archi-
tecture, i.e.: 

• Small filters: All convolutional filters are of size 3 x 3 pixels, as opposed to earlier 
CNNs which used much larger filter sizes. By using multiple 3 x 3 convolutions in a 
sequence, a similar effect is achieved as with larger filters (receptive fields), but with a 
less extensive parameter space. 

• No strides: Previous CNN implementations used large filters combined with strides of 
more than 1 (commonly: 4) to subsample the input image. This adversely affects perfor-
mance and is not required with the VGG architecture. 

• Constant representation size: Every sub-sampling step by a factor of 4 (max-pooling 
over a 2 x 2 neighborhood) is followed by a 2-fold increase in the number of convolu-
tional filters in the following layers. This process results in a constant representation 
size of all layer outputs (in terms of memory requirements) and improves the computa-
tional performance of the CNN. 

The VGG network for surveillance applications 

Training a competitive VGG network for face recognition in surveillance scenarios requires 
large amounts of training data and significant computing resources. The original VGG network, 
for example, was trained with 2.6 x 106 facial images over several weeks on a computer 
equipped with 4 high-performance GPUs.4 To make the VGG network applicable to surveillance 
scenarios, we resort to domain adaptation techniques and apply them to the pre-trained VGG 
(face) convolutional network from Parkhi et al.4 We perform net surgery on the pre-trained VGG 
network and use the existing configuration for representation calculation. Specifically, we use 
the output of the final fully-connected layer as the representation of the input images. On top of 
the network (i.e., after the fully-connected layer) we train a probabilistic multi-class softmax 
classifier using the development set of the ICB-RW data. 

Assume a set of training vectors { }
1:i i L

y y
=

=  belonging to M distinct classes. A softmax classifier 

computes a vector of posterior probabilities 1Mp ×∈  for all target classes through the softmax 

transformation of a linear function of y, i.e.: 

 
W y+b
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

  

where the image representation 1Ky ×∈  is generated by the pre-trained VGG network, and the 

matrix 1 2W w ,w , ,w
TT T T K M

M
× = ∈    and the vector [ ] 1

1 2b , , ,
T M

Mb b b ×= ∈   are learned pa-

rameters of the classifier. The classifier is trained via mini-batch error backpropagation with sto-
chastic gradient descent using the categorical cross-entropy between the current output 
probability distribution and the desired probability distribution as the objective function. A given 
input vector y is classified into the class with the highest posterior probability. With the pre-
sented approach, the pre-trained VGG network is treated as a feature extractor and the softmax 
classifier as the domain-adaptation layer that maps the computed image representation into the 
target application domain. We refer to this approach as the domain-adapted VGG network (DA-
VGG) in the remainder of the paper.  
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Experiments and Results 
We assess the suitability of the domain-adapted VGG network for surveillance scenarios on part 
of the QUIS-CAMPI6 dataset used for the ICB-RW 2016 competition. The data contains gallery 
and probe images of 90 distinct subjects (See Figure 1b). The high resolution gallery images 
consist of one frontal and two profile images of each subject captured under frontal pose and uni-
form illumination in studio-like conditions. The probes are of lower quality and comprise 10 im-
ages captured by a security camera. Our goal is to automatically determine the identity of the 
subjects in the surveillance footage (i.e., the probes) given the high-resolution galleries. For the 
experimental evaluation, we follow the ICB-RW protocol and split the gallery and probe images 
into a development set, used for training, and an (hold-out) evaluation set, used for performance 
reporting. The former contains all gallery images and half of the probes, which the latter com-
prises the same galleries and the other half of the probe images. We conduct 450 identification 
experiments (each involving 270 probe-to-gallery comparisons) for each experimental run. We 
report performance in terms of Cumulative Match Score Curves (CMCs), the rank-R1 (R1) 
recognition rate and the area under the CMC curves (AUC). Prior to the experiments, we crop 
facial regions from the gallery and probe images using the bounding boxes that ship with the 
data and rescale the cropped regions to a size of 224 x 224 pixels. 

We provide competitive results for a number of competing methods, i.e: 

• CSU baseline recognition systems based on Linear Discriminant Analysis (CSU LDA) 
and the Bayesian intrapersonal/extrapersonal classifier (CSU BIC)7 

• A deep convolutional neural network based on the VGG architecture was trained from 
scratch in the learning set of ICB-RW data (ICB-VGG) and 

• A state-of-the-art commercial off-the-shelf (COTS) face recognition system. 

Additionally, a trained researcher manually assigned a similarity score between 1 (surely differ-
ent people) and 5 (surely the same person) to each probe-to-gallery comparison to provide in-
sight into the capabilities of human annotators on the data. The scoring methodology followed 
the approach presented in Phillips and O’Toole,8 and the results generated based on this scoring 
are denoted with “Human” in Figure 1. The CMC plots of the experiments are presented in Fig-
ure 1(a). The DA-VGG network outperforms the CSU baselines with a margin of over 30 per-
cent in terms of the rank-1 recognition rate. The domain adapted network (DA-VGG) also results 
in better performance than the ICB-VGG network trained from scratch, suggesting that large 
amounts of training data (albeit outside the problem domain) are a must for the training of com-
petitive deep models. The COTS system results in a rank-1 recognition rate of 43 percent, which 
is below the 66 percent assured by the DA-VGG network. However, facial detection is an inte-
gral part of the COTS-system, so the reported performance also includes potential errors at the 
face detection stage, which is not the case for other methods. Among all tested approaches, the 
DA-VGG performance is the closest to human performance, though the performance gap is still 
around 15 percent on this dataset at rank-1 in favor of humans. This observation is in line with 
previous work,8 which also suggests that for difficult conditions automatic systems are still infe-
rior to humans. To further break down these results, a human annotator partitioned all the probe 
images into three subsets (i.e., easy, challenging, and hard) according to the perceived level of 
difficulty of the images for recognition illustrated in Figure 1(b). The AUC values and rank-1 
recognition rates across the three levels are shown in Figures 1(c) and 1(d) for all assessed meth-
ods. The human performance is the most consistent, while all other methods deteriorate in per-
formance when moving to more difficult conditions. In terms of AUC, human and DA-VGG 
performance are reasonably close on the “easy” images,” while the performance gap is bigger for 
the “hard” images.  

Conclusions 
We have presented our work related to the ICB-RW evaluation. Our experimental results suggest 
that, despite the lack of large-scale datasets of surveillance footage suitable for training deep face 
recognition models, adaptation techniques can be exploited to develop models with reasonable 
performance. Nevertheless, automated face recognition for surveillance applications remains a 
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challenging problem, and human performance still remains superior for difficult conditions. 
Given the potential benefits of fully-automated surveillance systems, further research in this area 
is warranted. 

DEEP NETWORK ENSEMBLE FOR SURVEILLANCE 
FACE RECOGNITION 
Hailin Shi 
Xiangyu Zhu 
Shengcai Liao 
Zhen Lei 
Stan Z. Li 
Chinese Academy of Sciences 

Surveillance face recognition is important for watch-list based applications. However, face 
recognition in surveillance scenarios is difficult due to various challenges. It is a kind of “in the 
wild” scenario, but generally more difficult than face recognition with Internet images (e.g., la-
beled faces in the wild). 

In this paper, we introduce a deep network ensemble method for surveillance face recognition. 
We adopt a deep model of convolutional neural networks (CNN) as the feature descriptor and 
make an ensemble of ten such models learned from different facial parts. We also propose a 
multi-pose synthesis method to expand gallery images for better matching. 

Model 
Our CNN model includes 9 convolutional layers and 4 pooling layers, without any fully-con-
nected layer to keep the model in a light-weight style. The architecture details are given in Table 
1, determined similarly as in Yi et al.9 

Table 1. The architecture of the CNN. 

Name Type Filter / Stride Output 

Conv11 Convolution 3×3 / 1 55×55×32 

Conv12 Convolution 3×3 / 1 55×55×64 

Conv13 Convolution 3×3 / 1 55×55×128 

Pool1 Max pooling 2×2 / 2 28×28×128 

Conv21 Convolution 3×3 / 1 28×28×96 

Conv22 Convolution 3×3 / 1 28×28×192 

Pool2 Max pooling 2×2 / 2 14×14×192 

Conv31 Convolution 3×3 / 1 14×14×128 

Conv32 Convolution 3×3 / 1 14×14×256 

Pool3 Max pooling 2×2 / 2 7×7×256 

Conv41 Convolution 3×3 / 1 7×7×160 

Conv42 Convolution 3×3 / 1 7×7×320 

Pool4 Avg pooling 7×7 / 1 1×1×320 

Norm4 L2 normalization  320 
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Training 
Our CNN model is trained on the CASIA-Webface database,9 which contains 10,575 subjects 
and 494,414 face images. We sample a validation set with 1,000 subjects from the database, and 
use the remaining subjects for training. All face images are aligned according to the provided 
landmarks, and then horizontally mirrored for data augmentation. 

The proposed CNN model is trained in a multi-task fashion.9 The training objective is a weighted 
sum of the softmax and contrastive losses10 employed after the Norm4 layer of the CNN. This 
incorporates both the advantages of face identification and verification tasks for joint learning. 

The softmax part is conducted by an N-way classification of the training identities. The CNN 
features and the identity labels are involved to calculate the log-likelihood loss. This part is in 
charge of learning discriminability of the CNN via the identification task. 

Meanwhile, the contrastive loss is responsible for learning generalization ability of the CNN via 
the verification task. The contrastive loss10 is computed by an L2 distance D2 if the pair of face 
features is positive (the same subject), and by a hinge loss otherwise (Equation 1). Through the 
contrastive loss learning, the CNN tends to reduce the distance of the positive pairs, and push the 
negative pairs away. 

( )

21
2

21
2

                 , Positive pair
contrastive loss

max 0,1 , Negative pair

D

D

= 
−

 

The training is conducted in the manner of mini-batch optimization. The CNN is optimized via 
the standard stochastic gradient descent method with back-propagation. According to the training 
steps in Yi et al.,9 we set the softmax loss a large weight in the beginning of training and reduce 
it iteratively because the softmax loss converges much faster than the contrastive loss. 

Multi-pose Synthesis of Gallery Images 
In the evaluation phase, we adopt a newly proposed face synthesis approach11 to enlarge the gal-
lery set so as to improve the robustness against pose variations. Specifically, given three images 
(frontal, left and right profiles) of each subject in the gallery set, firstly, we detect 68 facial land-
marks of each image by Yan et al.12 and fit a 3DMM model to the three images, which are con-
strained to have different poses but share the same 3D shape. Secondly, for each image, we 
uniformly mark some background anchors around the face region, estimate the depth with their 
nearest 3D points, and turn the whole face image into a 3D object. Next, the three 3D faces are 
merged by the dense correspondence in face region, leading to a refined 3D description of the 
gallery face. Finally, we rotate the 3D gallery face in 54 poses (9 yaw x 6 pitch) and render them 
into 2D images to expand the gallery set, as shown in Figure 1. 
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Figure 1. Original gallery images (top) and some examples of synthesized gallery images of 
different poses (bottom). 

Evaluation 
The evaluation process is described as follows. First, the face area and landmarks are detected by 
Yan et al.12 from the raw gallery and probe images. 

Then, all the gallery (including synthesized ones) and probe images are aligned and cropped into 
55 x 55 RGB images according to the detected landmarks. These images are sent to the CNN 
model for feature extraction, resulting in a 320-d feature vector for each image. 

Next, a cosine similarity matching between the feature vectors is performed for the matching 
score. In particular, the scores between the probe and the synthesized gallery images are aver-
aged as the matching score between the probe and the gallery subjects. Moreover, ten of such 
CNN models are trained, each focusing on different facial parts. Finally, scores of the ten models 
are averaged to get an ensemble and yield the final result. 

The proposed method is evaluated on the International Challenge on Biometric Recognition-in-
the-Wild (ICB-RW). This benchmark dataset contains 90 subjects, with three images (frontal, 
left, and right profiles) per subject enrolled in the gallery set, five images per subject in the probe 
set for training, and another five images per subject in the probe set for performance evaluation. 
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Following the evaluation protocol, our method achieves 57.6 percent rank-1 accuracy and 0.921 
AUC of the CMC curve, leading to the 3rd place in the ICB-RW competition (Table 2). Never-
theless, it is worth noting that the parameter size of our model is 17.2 MB, which is much lighter 
than the VGG model (37.8 MB) used by the top two methods in Table 2. 

Table 2. Performance on the ICB-RW. 

Method 
Rank-1 IR 
(%) 

Rank-5 IR 
(%) 

AUC (CMC 
curve) 

H. Ekenel, G. Ozbulak, E.Ghaleb 69.8 85.3 0.954 

K. Grm, S. Dobrisek, V. Struc 62.0 78.7 0.952 

H. Shi, X. Zhu, S. Liao, Z. Lei, S. Li 57.6 75.8 0.921 

W. Gutfeter 42.9 64.4 0.918 

J. Brogan 11.6 30.4 0.755 

 

It appears that the face recognition performance in surveillance is promising here, thanks to the 
powerful CNN models. However, keep in mind that this is a small dataset, therefore a large 
benchmark on surveillance face recognition is still an urgent need. 

DEEP NEURAL NETWORK ENSEMBLES DEDICATED 
TO DIFFERENT HEAD POSES FOR FACE 
IDENTIFICATION 
Weronika Gutfeter 
Research and Academic Computer Network (NASK) 

Andrzej Pacut 
Warsaw University of Technology 

A solution is proposed to the problem defined in the International Challenge on Biometric 
Recognition-in-the-Wild (ICB-RW 2016). Faces from images taken under uncontrolled condi-
tions are to be identified in a watch-list created of good quality facial images of various head 
poses. The proposed method is based on deep neural network ensembles. Each network ensem-
ble is trained to classify faces seen from specific directions, namely, frontal images, left, and 
right profiles. This approach reflects the watch list structure, which contains these three types of 
head poses. The ensemble networks’ results are then combined in various ways to obtain the fi-
nal classifier. The results are compared to a single network trained with all pooled facial images. 

The Objective of Challenge and Specification of Data 
The algorithm described in this paper was designed to meet the objectives of the ICB-RW 2016 
challenge. The task of this competition was to identify the people in the CCTV surveillance sys-
tem assuming that one is provided a watch list which consists of good quality images. The train-
ing data used in the competition was a part of the QUIS-CAMPI dataset. It contains both the 
watch-list images of 90 subjects (called there the gallery subset) and the probe images which are 
static frames obtained in a surveillance system. In the gallery subset, three images with different 
head positions (frontal, left-side, and right-side) were provided for each subject. The gallery im-
ages were acquired under controlled lighting conditions, and aside from faces, they show full sil-
houettes of the subjects. The probe images subset contains five images of each subject captured 
outdoors. The subjects rarely look into the camera that was localized over their heads, and faces 
are often occluded. Challenge participants received the gallery subjects’ detection results, 
namely, the positions of detected faces. The results of the ICB-RW Challenge were evaluated 
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using the area under curve (AUC) calculated for the cumulative match score (CMC) as an identi-
fication rate. The participants had no access to an additional five probe images that were kept for 
evaluation purposes. 

Deep Learning Methods in Face Recognition and Image 
Classification 
Methods based on deep convolutional neural networks became winning approaches in various 
competitions in the field of image classification and face recognition. Training multilayer net-
works is a very time- and resource-consuming process. The concept behind convolutional net-
works lies in the reduction of the connections between layers – each convolutional layer is a set 
of small-neighborhood filters moving through the layer and having shared parameters that are 
not dependent on filter positions. Typically, the convolution layers are separated by the pooling 
layers which aggregate the results of convolutions. Usually, the last layers are fully connected, 
and the output layer expresses the class probabilities. It is believed that the features built in the 
consecutive layers express the increasingly complex image properties relevant to a given recog-
nition problem. 

Architecture of Network 
Three networks were built, each trained on a subset of watchlist images: frontal, left-sided, and 
right-sided. The results were merged in different ways to obtain final classifiers. Several merging 
methods were compared along with a pooled data classifier, trained on all (frontal, left-sided, and 
right-sided) images. The networks were based on certain recommendations given in some other 
papers describing image recognition methods based on deep neural networks Very effective so-
lutions using convolutional neural networks were introduced in the paper; they are referred to 
here as VGG (Visual Geometry Group) networks. The VGG networks are built of a set of layers 
of convolutional filters of different sizes. The network architecture is similar in structure to 
CNN-S, which is the slowest but also the most accurate version of the proposed networks.  

Some layers were reduced to better meet the challenge requirements and also to overcome cer-
tain hardware limitations of the laboratory equipment. The network processes 3-channel RGB 
image patches of width and height of 128 pixels; hence, it accepts the inputs of size 3 x 128 x 
128. The network is comprised of 5 convolutional layers, one with filters of size 7 x 7 (number 
of filters was set to 96), one of size 5 x 5 (256 filters), and the last three of sizes 3 x 3 (512 filters 
in each layer). The convolutional layers were separated with pooling layers consisting of 2 x 2 or 
3 x 3 not-intercepting pooling regions. The number and sizes of the inner layers remain the same 
as in the original VGG architecture. The last 2 layers were fully connected and had their sizes 
reduced from the original 4096 units to 1024 units. At the output, the probabilities of 90 subjects 
were calculated. The network was implemented using common deep learning libraries in python 
programming language: lasagna and low-level theano. They have the ability to transfer some 
CPU computations to GPU processors to accelerate the learning process. A typical training took 
11 hours for each network. 

Data Preprocessing and Network Training 
Data preprocessing has a strong influence on the convergence of the training process. First, the 
data was cropped using the detection coordinates provided together with the images. The 
cropped images were then processed by histogram normalization using its luminance component 
in YCbCr color space (only the luminance channel was normalized). To increase the number and 
variability of the training set, the original gallery dataset was augmented by small random transi-
tions, small rotations, and pixel value dithering, giving 36 images for each gallery image. Then 
the images were scaled to size 128 x 128 (with the ratio preservation). Afterwards, the pixel val-
ues were demeaned and scaled to a common range. The augmented gallery set contained 9,720 
images, 3,240 images for each head position. Five probe images were available for each person. 
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Four probe images and all relevant face images for network training were used, leaving the re-
maining probe image for validation. All frontal, left-side, and right-side, images were classified 
as relevant, depending on the type of training. Each training was repeated 7 times, using different 
folds of the probes data. Training batches contained 45 images, due to limitation of the memory 
of the graphic card. The stochastic gradient descent with the momentum was chosen for learning. 
The hyper-parameters were changed linearly through the learning epochs, with the momentum 
increasing from 0.9 to 0.999 and with the learning speed decreasing from 10-2 to 10-4. The vali-
dation error was defined by the categorical cross-entropy 

logij ij
ij

E t p= −   

Where pij is the predicted probability that i-th image belongs to j-th class and tij is defined by the 
target distribution. 

 

Figure 1. The training process: Accuracy for the estimation and the validation sets. The shaded 
area shows the standard deviation limits. 

After the initial tests, the maximal number of epochs was set to 150. This number was deter-
mined experimentally. 

Results and Discussion 
Each single neural network (for frontal, left-side, and right-side faces) produces a vector of prob-
abilities of the size equal to the number of classes. They can be aggregated in various ways. 
Some simple methods of merging the predictions from the trained ensembles were tested on the 
networks. The maximal value, the minimal value, and the average were compared in an experi-
ment. A network on all pooled data was also trained. The resulting scores are shown in Table 1. 
The table presents the average results for all 7 folds completed during training. As the challenge 

55May/June 2018 www.computer.org/inteligent



  

 IEEE INTELLIGENT SYSTEMS 

was evaluated by the area under curve (AUC), it was decided to use the average of network pre-
dictions as the final merging method. 

The difference between the cumulative curves of identification between single network and the 
average result for ensemble can be seen in Figure 2. Note that while the pooled data results are 
similar to the individual (F, L, or P) results, they were obtained with a three-times larger dataset. 
After merging the results (Figure 2), the CMC curves for the ensemble average are larger than 
the individual results by about 0.1. 

Table 1. The scores for F, L, R, and pooled data networks, together with the scores for several 
ways of predictions merging. 

 

This suggests that using the ensemble approach by a proper “segregation” of data leads to better 
classification results. 

 

Figure 2. Cumulative match curves for a single network (F) and for the average of ensembles. 
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Conclusions 
It was shown that the convolutional neural networks can be robust classifiers in the task of hu-
man face identification in challenging conditions. Without additional knowledge and pre-training 
on external databases, the system was prepared to recognize faces of the subjects in distinct 
poses. The classification given by the ensemble approach (with the use of averaging the individ-
ual results) is better than that given by pooled data. The presented approach leads to one of the 
best in the ICB-RW 2016 challenge.  

FACIAL FRONTALIZATION AND SMART MATCHING 
VIA POSE 
Joel Brogan 
Walter J. Scheirer 
University of Notre Dame 

In this work, we introduce a face recognition method based on the idea of improving the perfor-
mance of a deep convolutional neural network by frontalizing and accurately aligning extreme 
out-of-pose images as a pre-processing step before feature extraction. Highly accurate facial 
alignment and pose normalization provide spatially coherent feature patches for faces of differ-
ent shape and pose. 

Methodology 
This method has three main components: (1) Facial pose correction and binning, (2) feature ex-
traction via a biologically-inspired convolutional neural network, and (3) face matching using an 
SVM trained on comparison vectors.  

Facial pose correction and binning 

For facial pose correction and alignment, a modified version of Hassner’s method2 was used. 
Hassner’s frontalization method normalizes pose by calculating an extrinsic camera calibration. 
Using a 68-point facial landmarker from Zhu and Ramanan,13 the detected points on the input 
face are compared to a set of template points on a generic 3D face template to calculate a 2D to 
3D transform. This transform is used to back-project face pixels from the image onto a 
frontalized generic 3D face model. This method helps accurately align features on out-of-pose 
faces for better matching performance. To address both extreme and mild out-of-plane facial ro-
tation, four different watch-list “bins” of frontalized faces are built from the watch-list set. Bin 1 
consists of versions of the face frontalized with no symmetry induced. Bin 2 consists of versions 
of the face replacing areas that are self-occluded from heavier yaw angles using a “soft sym-
metry” replacement mask. Bin 3 consists of versions of the face with complete symmetry mir-
rored from the left side to the right. Bin 4 is the same as Bin 3, using the opposite side of the face 
for symmetry. This 4-bin database system induces all possible variations of the frontalized 
watch-list set that account for different types of poses. In this way, it is less likely for a probe 
face to be at a pose unaccounted for within the system. When an input probe is assigned to the 
correct database bin, it will match against face images frontalized under similar conditions to im-
prove match performance.  

Feature extraction 

Once the watch-list pose database is built, a biologically-inspired artificial neural network is 
used to extract a rich feature vector from the face.14 This network is a three-layer convolutional 
neural network trained by randomly instantiating the weights for a large set of candidate models, 
with selection of the best models made via a high-throughput screening approach. As a starting 
point, and inspired by previous neuronal modeling work in computational neuroscience, the 
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model considers the constituent operations of cortical processing in a single layer as a set of sim-
ple computational elements, including (i) a filtering operation, implementing template matching; 
(ii) a simple nonlinearity, e.g., a threshold; (iii) a local pooling/aggregation operation, such as 
softmax; and (iv) a local competitive normalization. Each of these operations is actually a large 
family of possible operations, specified by a set of parameters controlling fan-in and fan-out, 
threshold values, pooling exponents, the spatial extent over which the operations perform, and 
the size/shape/content of the templates that are matched. A simulated cortical unit is then mod-
eled as a specific choice of these elements, e.g.: 

( )( )( )( ), , , ,
  

N P T F
Simulated unit output Normalize Pool Threshold Filter inputθ θ θ θ=  

where the various θ,X describe parameters for each of the constituent operations. In short, the 
training process starts with an inclusive family of hypotheses for the cortical computations that 
could be in one layer – a “space of details” parameterizing neural computations of limited overall 
complexity. This family of models has yielded success in describing processing across visual 
cortical areas, and visual encoding more generally. Following basic principles, this underlying 
feature approach has been demonstrated to achieve good performance for face recognition 
tasks.14 For each face in the watch-list considered in this work, four different feature vectors for 
all four frontalization bins are generated. 

Matching 

The matching process consists of yaw estimation, bin assignment, frontalization, and feature 
matching. After a probe image is submitted as input to the system, the face is detected and its 
yaw angle is calculated using Zhu and Ramanan.13 Using the estimated yaw angle, the face is 
assigned to a specific pose bin using Table 1. The face is frontalized using the modified version 
of Hassner et al.,2 and the biologically-inspired network is used to extract features. Performance 
of 1-to-N matching then takes place within its respective watch-list matching bin. 

Table 1. Pose normalization rules. 

Yaw angle Matching bin 

> 45° Hard Symmetry 1 

45° to 15° Soft Symmetry 

15° to -15° No Symmetry 

-15° to -45° Soft Symmetry 

< -45° Hard Symmetry 2 

 

A “match vector” for each subsequent pair is then calculated using the rule: 

 ( )ijk ik jkMatchVector FeatureVector FeatureVector= −   

A linear Support Vector Machine (SVM) is then used to calculate a similarity score from any 
given MatchVectorij. The SVM model is trained on the ICB-RW training set, using all true 
matches and an equal amount of sub-sampled non-matches. The biologically-inspired network is 
trained on the LFW15 data set without frontalization, a completely disjoint dataset from ICB-RW 
using frontalization. Therefore, the SVM learns a decision boundary based on the feature space 
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of frontalized faces. This way, a more generalizable neural network model is used to generate 
features, while the decision boundaries are learned for the specific recognition task at hand. Us-
ing the trained SVM model, match scores for each feature vector pair are calculated and used to 
populate a similarity matrix for performance analysis. The entire pipeline is shown in Figure 1. 

 

Figure 1. Training and matching pipeline for the proposed algorithm. Four versions of each gallery 
image are generated using frontalization, and one is placed in each bin. Each image per bin is 
encoded as a feature vector using the biologically-inspired deep neural network. In the matching 
phase, the probe’s pose is estimated and is assigned to one of the bins, where it is compared with 
all the feature vectors of that bin, yielding N comparison vectors for N gallery subjects. These 
vectors are then fed to a SVM, responsible for verifying if each vector corresponds to a positive or 
negative pair. 

Results and Conclusions 
This method produces a high rank-1 match rate. Table 2 shows match rates and the area under 
the curve of our generated Cumulative Match Characteristic. While rank-1 and 5 show relatively 
poor performance, the global AUC shows that this DNN+SVM method provides decent discrim-
ination between faces when enough faces are taken into consideration. 

Table 2. Rank match rates. 

Rank 1 Rank 5  AUC 

11.60% 30.40% 0.76% 

 

This method deviates from other proposed methods in a few key ways: it is the only method that 
uses frontalization to align and normalize the pose of faces. Additionally, the frontalization per-
forms a “smart” binning operation. This allows for a smart feature matching process that can ac-
count for extreme pose mismatch. Lastly, this method only incorporates the ICB-RW training 
data set at the last step within an SVM model, while the biologically-inspired neural network 
was trained on LFW. This helps insure that the system has not overfit the task at hand, and may 
help explain why rank-1 and 5 rates are lower than some of the neural network approaches in this 
competition. 
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The source code for this work is made publicly available at: https://github.com/joelb92/Smart-
Pose-Facial-Matching 

EXPLORING FACIAL REGIONS IN UNCONSTRAINED 
SCENARIOS: EXPERIENCE ON ICB-RW 
Ester Gonzalez-Sosa 
Ruben Vera-Rodriguez 
Julian Fierrez 
Javier Ortega-Garcia 
Universidad Autonoma de Madrid 

Previous works have studied the potential of using facial regions instead of the whole face in bi-
ometrics for unconstrained scenarios.16-17 In Bonnen, Klare, and Jain,16 four facial regions (eye-
brows, eyes, nose, and mouth) were used, conducting some of the experiments with the ARFace, 
a database with fixed occlusions in a constrained scenario (high resolution with controlled illu-
mination and pose). In Tome et al.,17 additional face regions were considered (up to 15) using the 
SCFace database. This database simulates a forensic scenario, including mugshot and CCTV im-
ages. This database, though, is not completely realistic, as users cooperate with the system (con-
trolled pose) and the illumination is also controlled. In the present work, we explore face 
recognition through facial regions on the QUIS-CAMPI dataset. This database is one of the most 
challenging forensic databases in the literature, as it comprises mugshot images and CCTV im-
ages acquired in fully unconstrained scenarios without any cooperation from the users. The 
CCTV images have variations in pose, occlusions, illumination, distance, expression, etc. Please 
notice that our intention in this work is not to beat state-of-the-art approaches, but to give an in-
sight into the potential use of facial regions in unconstrained scenarios. Our main objective in 
this line of work is to devise general face methods to exploit region-based face processing appli-
cable to existing matches. We really believe this region-based processing will benefit even the 
most advanced face recognition approaches (e.g., based on deep learning) when confronted by 
challenging scenarios such as the one represented in the ICB-RW competition. With this vision 
in mind, the present work presents an example of how a robust face matcher based on SIFT can 
be improved by also considering frontalized facial regions. 

Preprocessing, Feature Extraction, and Matching 

Preprocessing 

Figure 1 shows the general scheme followed in this work. The face is detected using the bound-
ing box information provided as metadata by ICB-RW organizers. The preprocessing stage in-
volves grayscaling, illumination normalization,18 and resizing (320 x 320). As facial region 
extraction highly depends on the subject pose, we frontalize the face using the software provided 
by Hassner et al.2 The frontalization process involves the estimation of a projection matrix be-
tween a query image and a standard 3D reference. 

Feature Extraction 

Two different features are computed for each image: (i) local binary patterns (LBP) of 9 facial 
regions and (ii) scale invariant feature transform descriptors (SIFT) of the whole face. 

1. Local Binary Patterns of Facial Regions (LBP): In this work, 9 facial regions are ex-
tracted from the frontalized face: right eye, left eye, left eyebrow, right eyebrow, nose, 
mouth, chin, eyes, eyebrows, and face. First, a set of 68 landmarks are extracted 
through active shape modeling (ASM). Each facial region is extracted from the loca-
tion of some landmark points as described in Gonzalez-Sosa et al.19 Then, the facial 
region is divided into 10 x 10 blocks. The histogram of LBPs (59 uniform patterns) is 
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computed per each block. The final feature vector of a facial region is the concatena-
tion of the different histograms of LBP computed per block. 

2. Scale Invariant Feature Transform Descriptors (SIFT): While local binary patterns 
highly depend on the spatial correlation between images, SIFT features are more ro-
bust against changes in scale and rotations; therefore, they may be more suitable for 
comparing images without frontalization. In our implementation, SIFT descriptors are 
computed using cells of 6 x 6 pixels around keypoints and 16 orientations.  

Matching 

For SIFT descriptors, the similarity between two single images is defined as the number of 
matched keypoints between the two images, given a certain threshold. The dissimilarity between 
two LBP descriptors of two facial regions is computed using the Euclidean distance, followed by 
a normalization by the dimension of the particular facial region feature, to assure that all facial 
regions contribute similarly. 

Experimental Protocol 
The QUIS-CAMPI training set is composed of 3 mugshot images and 5 CCTV images per user. 
In our submitted approach, we only use the frontal mugshot image and the 5 CCTV images as 
the training images of a particular watch-list subject. At the evaluation phase, we have a test 
CCTV image, which is preprocessed and frontalized as described earlier. We apply one to one 
comparisons between the test CCTV image and all the training images belonging to the same 
watch-list subject before estimating the final score. If frontalization succeeds, these comparisons 
are carried out using LBP descriptors extracted from 9 facial regions; SIFT descriptors are used 
otherwise. The final score between a test CCTV image and a watch-list subject derives from the 
combination of the individual scores that result from the comparisons of the test CCTV image 
with each of the training images. This combination function depends on the specific face recog-
nition system employed:  

1. SIFT-based system: The final similarity score is the maximum of the 6 individual simi-
larities. 

2. Frontalized Region-based system: When attempting to compute a final similarity 
score, we address a N x 9 matrix of similarities, where N is the number of training im-
ages from a particular watch-list subject that have been successfully frontalized, and 9 
is the number of facial regions considered in each individual comparison. The final 
score is the sum of the best 5 facial region similarities, having previously chosen the 
maximum similarity of each facial region. 

 

Figure 1. General scheme of the different systems considered in this work: system 1 (baseline), 
system 2 (submitted) to the ICB-RW Competition, and system 3 (improved). 
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Results 
Results are reported in terms of identification task with rank-1, rank-5, and Area Under the 
Curve (AUC) between 0 and 1 for the QUIS-CAMPI dataset. Figure 2 shows the cumulative 
match characteristic curves for the three different systems considered: 

• System 1 (baseline): Using only SIFT descriptors (R1=20.0; R5=34.0, AUC=0.69). 
• System 2 (submitted): Based on LBP facial regions or SIFT descriptors, depending on 

the frontalization (R1=24.0; R5=39.1, AUC=0.73). 
• System 3 (improved): Based on the fusion of SIFT descriptors and LBP facial regions or 

only SIFT descriptors, depending on the frontalization (R1=34.2; R5=48.6, AUC=0.80). 

The submitted approach improves the baseline system from 0.69 to 0.73 in terms of AUC, and 
also improves rank-1 and rank-5 rates. The frontalization and the possibility of using similarities 
of facial regions coming from different training images of the subject may be the reason for this 
improvement. A big performance improvement is seen with the improvised fusion in which an 
AUC of 0.80 is obtained, yielding a 15.94 percent relative improvement with respect to the base-
line system. Concerning rank-1 rates, there is an absolute improvement of 14.2 with respect to 
the baseline system. This is due to the complementary information coming from the fusion of 
SIFT descriptors and the LBP facial regions (when frontalization is possible).  

 

Figure 2. Cumulative Match Characteristic curves for system 1 (baseline), system 2 (submitted), 
and system 3 (improved). 
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Conclusion 
This work explores the problem of face recognition in real unconstrained scenarios using a facial 
region approach. Our approach aims to be robust against challenging scenarios, either by using 
descriptors robust to rotations and changes in scales, or using texture information from different 
facial regions extracted from a frontalized face. It also introduces a combination function to esti-
mate the best final score among a test CCTV and the training images. Finally, we propose an im-
proved system based on the combination of complementary information coming from SIFT and 
LBP descriptors that outperformed significantly the submitted approach. 
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UNSUPERVISED FACE RECOGNITION IN THE WILD 
Michele Nappi 
University of Salerno 

Daniel Riccio 
University of Naples Federico II 

Luigi de Maio 
Biometric and Imaging Processing Laboratory (BIPLab) 

The soaring number of video surveillance cameras that are installed in public places makes face 
recognition from video surveillance an increasingly important task. In this contribution we pre-
sent a new unsupervised face identification framework that searches faces extracted from video 
frames among a set of enrolled identities, which represent a gallery of known persons. 

Face recognition from video is attracting ever increasing attention from both academic laborato-
ries and industries, due to its high potential in many real world security applications. Most of the 
present methods deal with face recognition from videos that supply face images with high-reso-
lution and favorable conditions in terms of pose and illumination.  

This scenario is quite far from that, characterized by real video-surveillance applications, where 
low resolution cameras acquiring unaware people often provide low-quality face images, which 
are affected by large distortions in terms of non-frontal pose and/or uneven illumination. The 
main goal of researchers in this field is filling this gap. 

As classifying faces acquired in uncontrolled settings is a complex task, most of the present 
methods are supervised approaches. They rely on a preliminary training stage on labeled faces to 
learn the structure of the feature space aiming to optimize the separation among different classes. 

However, unsupervised methods show the advantage of classifying faces without any previous 
knowledge of the class distribution. This represents a desirable property when dealing with a 
large number of clusters with little labeled data. 

This contribution proposes a complete framework, namely Unsupervised Face Recognition in the 
Wild (UFRW) for face recognition in video-surveillance applications, where few pictures per 
person are provided as enrolled identities that must be identified in single video frames that are 
submitted to the system as probes. 

The UFRW biometric system has been tested in the ICB-RW 2016 challenge, where the goal 
was to identify persons appearing in video-surveillance frames (still images). Objects to be iden-
tified were also provided with high quality images that have been used for enrolling them into 
the system. 

The whole pipeline of UFRW is shown in Figure 1. 
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Face Detection and Normalization 
Many approaches for face detection and normalization have been proposed to achieve invariance 
to data conditions and to allow biometrics to operate in uncontrolled settings. Though such dif-
ferences do not hinder the human ability to recognize a person, they can heavily degrade the per-
formance of an automatic recognition system. In order to cope with this problem, UFRW 
implements both these tasks. 

Face Detection 

Face detection is the first operation performed by the system, when an image is submitted to 
UFRW as input. When more than one face appears in the image, the system locates the largest 
one, as it guesses that the closer the subject to the acquisition camera, the higher the probability 
of obtaining an accurate identification response. The region of interest (ROI) including the face 
is located by means of the Viola-Jones20 global face detector. The extracted ROI then undergoes 
a further localization process, which searches for 68 facial landmarks. The landmark localization 
is performed by minimizing a global distance between candidate facial points and their homo-
logues on a general shape model as defined in Grgic, Delac, and Grgic.21 The shape model is 
pre-computed over a wide set of annotated training images. The accuracy of the facial landmark 
localization process represents a critical aspect, as it affects subsequent steps in the recognition 
pipeline. 

Face Normalization 

Many algorithms in literature address pose normalization, aiming at improving classification ac-
curacy. The computational cost is the true limit of most of all these approaches when processing 
a high number of faces. UFRW does not implement any pose correction strategy. However, by 
exploiting facial landmarks provided by the face detection module, it performs simple prepro-
cessing to adjust the face ROI before inputting it to the face matching module. First of all, the 
center of the eyes is used to correct head rolling and to compute the inter-ocular distance d (in 
pixels). The face ROI is then scaled to a factor f=48/d to ensure that the inter-ocular distance of 
all face images is fixed to 48 pixels. At last, the face ROI is cropped to a fixed size of 64 x 100 
pixels. Having obtained the face ROI, it then undergoes an illumination correction process that is 
performed by applying the weberfaces technique described in Wang et al.22 This algorithm ap-
plies a localized histogram equalization process by exploiting Weber’s law, so that the contrast 
of a pixel is enhanced according to its surrounding luminance. 

Face Matching 
Video-surveillance applications run in partially or totally uncontrolled settings, providing images 
that are heavily affected by severe distortions. Since most of the well-known face classification 
techniques are not robust enough to cope with pose/illumination changes, occlusions and expres-
sion variations, they cannot be profitably used in uncontrolled conditions. In this contribution we 
propose to perform the matching by implementing a localized version of the spatial correlation 
index. A global correlation index between two images A and B is defined as: 
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Where A  and B  represent the average values of pixels of A and B, respectively. In UFRW, A 
and B are partitioned in subregions rA and rB, so the correlation values s(rA, rB) are computed 
locally and then cumulated over all subregions. In more detail, for each subregion rA, UFRW 
searches in a limited window around the same position in B, the region rB, which maximizes the 
correlation s(rA, rB). The global correlation S(A,B) is obtained as the sum of the local maxima. 
Even if this approach is more computationally expensive, it turns out to be more accurate. There 
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are two considerations motivating this choice. First of all, a higher accuracy is a more stringent 
requirement in video-surveillance applications when performing off-line video analytics. 
Secondly, the pre-computation of some quantities in the matching formulae, the code 
optimization, and the reduced required resolution, allow for the performance of a considerable 
amount of matches (hundreds) in less than one second on medium-low band computing 
equipment. 

Face Similarity Computation 
The identification protocol implemented by UFRW assumes that the system gallery G contains 
at least one acquisition (template) for each enrolled identity Ij, j=1,...,|H|, where H is the set of 
such identities. A query image p submitted to UFRW is matched against all the templates gk, 
k=1,...,|G|, in the gallery G by computing the corresponding correlation index S(p, gk). The re-
sulting list of scores is sorted in decreasing order, and the identity Ij with the highest correlation 
is returned. 

Results 
The UFRW biometric system was evaluated on face images acquired in uncontrolled conditions. 
In particular, two different datasets have been considered. The former is SCFace,21 which in-
cludes 130 subjects who have been captured at three different distances, with eight devices 
(cam1, cam2,…,cam8), five of which were in visible daylight, two during night in visible light, 
and one in infrared. In this experiment we only considered visible daylight images which were 
captured by the first device (cam1). 

We also tested UFRW on images provided in the QUIS-CAMPI database.23 In this experiment, 
90 out of the 320 subjects have been considered for testing. Faces extracted from high-quality 
registration images (frontal view) have been used to enroll subjects into the gallery G, while 450 
images of the same subjects have been included in the probe set P. Probe images have been auto-
matically acquired by a parent-child surveillance system during the QUIS-CAMPI project. 

Table 1. Performance of UFRW in terms of Cumulative Match Score (rank-1 and rank-2) and Area 
Under CMC Curve (AUC). 

Dataset Rank 1 (%) Rank 5 (%) 
AUC (CMC 
curve) 

SCFace 70.4 90.3 0.954 

QUIS-
CAMPI 

11.1 25.1 0.694 

 

From results in Table 1, it can be observed that the recognition performance of UFRW on 
SCFace is significantly better than that obtained on QUIS-CAMPI. This can be explained by 
considering that face images in SCFace show less pose distortions than those in QUIS-CAMPI, 
even if both sets of video frames are extracted from video-surveillance streams. As a matter of 
fact, UFRW does not implement any pose frontalization stage, so that it encounters difficulties 
when dealing with large pose distortions. Moreover, UFRW is an unsupervised face recognition 
system, so it has no previous knowledge of the class distribution of the enrolled subjects. We 
think this is a desirable property for a face biometric system, as it does not need a retraining 
stage if new subjects are enrolled into the gallery. In other words, new identities can be added to 
or deleted from the gallery without stopping and restarting the system. 
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Figure 1. The system architecture of UFRW. 

Conclusions 
In this contribution, we presented a new face recognition system, namely UFRW, for video-sur-
veillance applications. It is an unsupervised framework, which automatically detects and normal-
izes the face region from still video frames and searches for a match in a gallery of enrolled 
subjects according to a localized reformulation of the correlation index. Preliminary results show 
that there is room for improvement in terms of recognition performance. In future work, we will 
include a pose normalization process in the system pipeline in order to mitigate the effect of pose 
distortions. 
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