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Abstract. In this paper we study face Presentation Attack Detection
(PAD) against realistic 3D mask and high quality photo attacks in
dynamic scenarios. We perform a comparison between a new pulse-based
PAD approach based on a combination of a skin detector and a chromi-
nance method, and the system used in our previous works (based on
Blind Source Separation techniques, BSS). We also propose and study
heuristical and statistical approaches for performing continuous PAD
with low latency and false non-match rate. Results are reported using
the 3D Mask Attack Database (3DMAD), and a self-collected dataset
called BiDA Heart Rate Database (BiDA HR) including different video
durations, resolutions, frame rates and attack artifacts. Several conclu-
sions can be drawn from this work: (1) chrominance and BSS methods
perform similarly under the controlled and favorable conditions found in
3DMAD and BiDA HR, (2) combining pulse information extracted from
short-time sequences (e.g. 3 s) can be discriminant enough for performing
the PAD task, (3) a high increase in PAD performance can be achieved
with simple PAD score combination, and (4) the statistical method for
continuous PAD outperforms the simple PAD score combination but it
needs more data for building the statistical models.

Keywords: Face Presentation Attack Detection · Liveness detection ·
Continuous authentication

1 Introduction

Nowadays, face is one of the most extended biometric traits along with iris and
fingerprint. The causes of this spread are the inherent properties of face-based
systems: samples can be acquired at a distance, passively, continuously, and
using legacy hardware. Faces also contain highly discriminant features in order
to achieve high accuracy rates when performing the recognition and verification
tasks. Other significant reason of this spread is the deployment of biometrics
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broadly for the first time. Face-based systems are now present in numerous sce-
narios like medical applications, video-surveillance, mobile devices, e-commerce,
etc.

Because of those reasons, attacks to face recognition systems are now more
than ever, an important security issue. Among all the types of attacks, presen-
tation attacks consist in showing an artifact to the sensor (e.g. a camera) for
trying to disguise the attacker as a genuine user of the biometric system [10].

Presentation Attack Detection (PAD) techniques deal with these type of
attacks. Even though high detection results can be obtained with these methods,
the same PAD techniques may not be useful against all types of artifacts [14].
One of the most harsh menaces existing today are Mask Attacks, in which the
presentation attack artifact is a 3D mask of a genuine user’s face [6]. In these
attacks, most PAD techniques successful against photo and video attacks, e.g.
texture and depth based, become useless for high quality masks, because their
similar properties (geometry, color, shape) to their real counterparts.

More recently, remote PhotoPlethysmoGraphy (rPPG) techniques [17], con-
stisting in analysing videos for extracting the user’s pulse signal, have been
employed to analyze video sequences, proving to be an effective countermeasure
against 3D mask attacks [12]. However, in order to achieve a robust estimation
of the pulse signal, published approaches that use this method need long video
sequences, good light conditions, are sensitive to failures in the face detection
module, and also dependent to different acquisition sensors.

Current approaches like [18] perform a short-time approach to rPPG, more
adequate to variable scenarios, in which the user or attacking conditions can
change in the middle of the video sequence. In particular, in continuous scenarios
where the attacker can enter at any time in a video stream, short-time approaches
to PAD permit low latency PAD decisions. In this case holistic approaches are
unable to give a continuous estimation of pulse and/or presentation attack prob-
ability, or PAD decisions with low latency. In addition, a short-time analysis of
the rPPG signal also allows a better subsequent processing of the rPPG signals
toward an overall more robust long-term estimation of the pulse.

Classic authentication schemes, in which users are authenticated employing
an initial login stage, are able to stop unauthorized access attempts, but they are
still unable of avoiding session “hijacking”. In these attacks, a genuine user has
been correctly authenticated and accepted by the PAD module, but after that,
an attacker may be able to get control of his session. This problem is specially
relevant in the field of mobile authentication, where the portability of the devices
makes easier their theft or loss.

Continuous Authentication has emerged in biometrics to deal with the men-
tioned security problems in mobile devices and personal computers. These tech-
niques consist in monitoring the user in a continuous way for verifying that the
current user is the same who made the initial login, ideally in a transparent
manner. For accomplishing this objective, biometrics such as the face [16] or the
touch interaction [7] can be captured continuously without the user being aware.
Our proposed approach for PAD follows the same continuous strategy, but in
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Fig. 1. Proposed scheme for Continuous Presentation Attack Detection (PAD). The
authentication starts with a classic login (e.g. password, token or even a biometric
trait), which may include or not PAD. If the login is successful, the continuous PAD
loop starts working, generating PAD scores from the face video stream and deciding
if a Presentation Attack has started or not. In the same loop we may also want to
check also if the user is still the same (in gray), in a kind of Active Authentication
scheme [16].

our case checking for PAD instead of identity. Please note that both identity
and PAD can be incorporated in the loop, in a kind of continuous PAD and
authentication scheme (see Fig. 1).

During a session hijacking, the attacker may be able to perform harmful
actions, such as deleting or copying sensitive information, or installing a back-
door for granting future access to the compromised system. The latency of a
continuous authentication method has the same level of criticalness than the
accuracy rates, so a balance between usability and security must be achieved.

In this paper we: (1) present an algorithm based on rPPG for pulse detection
applied to face Presentation Attack Detection (PAD); (2) study the performance
of rPPG video-based continuous PAD, both in an existing benchmark (3DMAD)
and a new dataset; and (3) test pulse-based continuous PAD in a scenario in
which the attacking conditions vary over time.

The rest of this paper is organized as follows: Sect. 2 summarizes related
works in rPPG and continuous authentication. Section 3 describes the proposed
system. Section 4 describes the employed databases and the experimental proto-
col. Section 5 shows the results obtained. Finally, concluding remarks are drawn
in Sect. 6.

2 Related Works

2.1 Remote Photoplethysmography

Photoplethysmography (PPG) [1] is a low-cost and noninvasive technique for
measuring the cardiovascular Blood Volume Pulse (BVP) through variations
in transmitted or reflected light. PPG can also be used to predict many vital
health parameters such as blood pressure, heart rate (HR), hemoglobin and
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blood glucose level. Remote PPG (rPPG) consists in applying PPG techniques
to video sequences. These techniques look for changes in the color of the user’s
face that are caused by changes in the concentration of oxygen in the blood.

Related to our work, Poh et al. [17] measured HR from videos captured with
a web-cam. They tracked the user’s face and performed ICA to the RGB signal to
separate the BVP chrominance signal from the other illumination variations and
noise. On the other hand, the CHROM method [5] performs a linear combination
of the spectrum bands to map the PPG signals to a space in which they are more
robust to artifacts and noise.

Other works like [19] localize and track the information of certain facial
regions instead of the entire face as there exist some zones that present higher
variations in their color due to the pulsations. In [15] they use a special sensor
that has the capability to capture other two additional bands in the visible
spectrum, since they have empirically proved to carry robustly the blood volume
change information.

Regarding face PAD, when rPPG techniques are employed to estimate the
pulse signal from a video sequence, the obtained result is highly different between
the cases in which the recording contains a real face, and the cases with an
attacking artifact (e.g. photos, videos, masks) [12].

Most research in this area employ self-collected datasets not publicly avail-
able. We decided to use 3DMAD as is one of the few public 3D mask PAD public
datasets. It contains RGB videos of genuine users and of 3D mask attacks. We
also employed a self-collected supplementary dataset in order to have larger RGB
videos compared to the ones from 3DMAD. Larger recordings are necessary to
measure the performance of continuous PAD techniques along time.

2.2 Continuous Authentication

A continuous authentication loop (see Fig. 1) can be added to any existing one-
shot authentication system to improve its security. The most basic approach is
based on using a single score in the authentication loop over time. The system
generates a single score (i.e., N = 1 in Fig. 1) each T seconds and decides if there
is another user (or a presentation attack) based on that single authentication
(or PAD) score.

The next level of complexity consist in combining several scores (i.e., N > 1)
using different types of logic. The first approximation is based on calculating
the arithmetic mean of several consecutive scores and taking a decision based
on that combination. The combination can be done in a more complex way, for
example considering that the confidence in the presence of the user decays when
the time since the last authentication increases, with a function that decreases
with time. On the other hand, not all the video frames have the same quality,
for example due to occlusions, movement, blur, etc. Confidence functions can be
built taking into account the quality level of the extracted signals [2]. However,
these heuristic methods are very specific to each scenario, and do not have high
generalization capabilities.
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One can also use statistical methods for integrating multiple authentication
or PAD scores in the continuous loop of Fig. 1, by using gallery information
to build models (typically real faces and attacks models for continuous PAD).
Once the models are trained, the scores (single or multiple) that are extracted
in the real environment are compared to the models in order to take a deci-
sion. A relevant work in this line is Quickest Change Detection (QCD). This
technique has been employed successfully in mobile active authentication [7,16]
using multimodal data (i.e. face videos and touchscreen interaction).

Fig. 2. Architecture of the proposed module for continuous pulse-based face presen-
tation attack detection (PAD Score Computation in Fig. 1). Given a facial video (N
segments of T seconds each, with a time overlap α), the face is detected and rPPG-
related features are extracted from the ROI in order to obtain an individual PAD
score of each considered video segment(of T seconds). Then, the considered video seg-
ment generates an individual PAD score considering a database of real faces and mask
attacks using a SVM. Finally the individual PAD scores are combined to derive the
final fused PAD score corresponding to the full input Video Sequence.

3 Proposed Approach

The main purpose of the continuous PAD module proposed in Fig. 1 consists
in deciding if a video sequence contains images of real faces or images of pre-
sentation attacks. The architecture of this module is further detailed in Fig. 2.
The first part is the rPPG signal extractor that obtains the pulse signal from
the recordings. Once the rPPG signal is extracted from the video sequences,
the second stage computes a set of features in order to distinguish between real
faces and face attacks. The third step is a trained classifier that generates a score
for each video sequence. The fourth and last stage integrates individual scores
generated each T seconds, to form a final fused PAD Score each N individual
scores.

3.1 rPPG Signal Extraction

The video sequences are generated from the input video stream by considering T
seconds (with or without time overlap). The window length T allows to process
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larger or shorter pieces of the videos, having thus varying resolution in the final
decision.

The rPPG signal generation is divided into two modules: skin detection and
rPPG signal extraction:

Skin Detection. In the majority of the literature systems, the first stage con-
sists in a face detection module (e.g. using the Viola-Jones algorithm) followed
by ROI extraction. This stage selects one or several parts of the face that are
assumed to contain robust information of the pulse signal. We applied this app-
roach in our recent related work [11] and we have seen that it has several limi-
tations such as: little robustness to movements, it can be difficult to implement,
and it has a high computational load. Due to all these drawbacks, in this work
we decided to apply the skin detector presented in [13] for getting our ROI. It
transforms the video frames from the RGB color space to the YCrCb space.
Their authors selected this color space as it has shown to have high discrimi-
nant properties for skin color modelling. The Y channel contains information of
brightness while the Cr and Cb channels contain information about the differ-
ences between colors. A deeper description of the algorithm can be found in [13].
This algorithm skips a high number of pixels assuming that their values do not
change within a small neighborhood. This approach reduce the CPU overload
significantly making it suitable for real time video processing. Finally this algo-
rithm does not depend of a face detection module, so it is more robust to user’s
movements.

rPPG Signal Extraction. Once the skin pixels have been located (see Fig. 3(c)
and (d) for examples), the next stage consists in extracting the rPPG signal from
each considered segment (of T seconds). First, the raw values of the pulse signal
are computed as the average intensity of the skin pixels. This calculation is made
for each frame of the segment and for each the three color channels: Red, Green
and Blue. The outputs are three rPPG sequences, one for each color channel.
These raw rPPG signals contain not only the light variations produced by the
blood volume changes, but also variations due to the external illumination and
other noise sources. To reduce those undesired factors, in [11] we processed each
channel as follows: a detrending filter for reducing the slow non-pulsating changes
in the rPPG signal, a moving-average filter for eliminating random noise, and a
band-pass filter for magnifying the frequency bands related to the usual pulse
values. In this present work we decided to use the CHROM algorithm [5], which
performs a linear combination of the three individual color channels into only one
signal, robust to noise and external interferences [5]. This method also performs
a frequency analysis of the signal for magnifying the bands related to a expected
human pulse (between 0.6 Hz and 4 Hz).

3.2 Feature Extraction

In our previous work [11], used for reference, we decided to use the features
from [12], where the authors transformed the signal from the spatial domain to
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the frequency domain using the FFT, and after that they estimated its Power
Spectral Density (PSD) distribution. Two features were extracted from each
color band: the maximum power response P , and the ratio R between P and the
total power in the 0.6–4 Hz frequency range.

For this work we decided to complement these two features P and R with
other discriminant features that can give us more information about the rPPG
signal in the time domain, following [4]. That work processed data from 3D
accelerometer sensors, but their analysis is extrapolable to our rPPG signals.
The final selected features can be seen in Table 1.

Table 1. Time and frequency features extracted from the postprocessed rPPG signal
after applying the CHROM algorithm [5].

Domain Feature Description

Time Zero crossing rate Number of times the signal crossed the zero value

Maximum/minimum Quotient between the temporal maximum and
minimum

Frequency P Maximum power response

R Quotient of P and the total power in the
0.6–4 Hz frequency range

Mean Mean value of the signal

Spectral centroid Mean value of each frequency component
multiplied by its magnitude

Nmax/N Sum of the N biggest values of the frequency
signal divided by N

LF Energy Sum of the energy between 0 Hz and 4 Hz

HF Energy Sum of the energy between 2 Hz and 4 Hz

3.3 Classification

The last block of the presentation attack detection system is the classifier. Like
in our reference work [11] we use Support Vector Machines (SVMs) as classifiers,
in the present case considering the 9-dimensional features from Table 1 as input,
and two classes as output: genuine face or face attack. Similar to related works
[8], we use the signed distance to the separating surface obtained in the SVM
training as output score of the Classifier in Fig. 2.

3.4 Integration of Individual Scores

In our experimental study we compare 4 different methods for the final stage in
Fig. 2. The target of this stage is detecting the attacks as quick as possible (low
Average Detection Delay, ADD), but trying to maintain a low value of real faces
incorrectly detected as attacks (low False Non-Match Rate, FNMR). A deeper
explanation of these terms can be found in [16].
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Single Score. The first alternative only uses one input score for generating the
fused PAD score (i.e., N = 1).

Mean Score. Individual PAD scores are averaged (applicable for N > 1).

Confidence-Based Combination. A weighted sum of input scores is applied.
The first way explored to define the weights consists in a time decay function.
This function considers older samples as less reliable than the newer ones, since
as time passes the conditions are high likely to have changed. The more recent
scores will have a bigger weight. The second way is based in a rPPG quality
measure [2]. In this work we decided to calculate a SNR value from each rPPG
signal. In order to do that, we consider a perfect rPPG signal as sinusoidal, and
all the other frequencies different to the one most relevant are considered as
noise. The scores with a higher SNR will have a bigger weight when computing
the sum.

Quickest Change Detection. QCD is a statistical method that first estimates
match and non-match distributions of the scores, and then tries to detect the
moment in which the new scores change from one distribution to the other. This
type of approach needs prior data in order to build the match and non-match
distributions. Some variants of QCD also require to know the probability of
intrusion in advance, so we decided to implement the MiniMax QCD (MQCD)
algorithm from [16], which only needs the score distributions.

4 Databases and Experimental Protocol

4.1 Databases

We use two different databases in order to compare results. The first is a public
dataset named 3D Mask Attack Database (3DMAD) from the Idiap Research
Institute [6]. We decided to use 3DMAD to enable direct comparison with related
studies, primarily with our reference work [11]. The second database is a self-
collected dataset named BiDA HR (BiDA Heart Rate database). It has been
captured with the goal of complementing existing databases like 3DMAD, which
have several limitations such as low resolution, few spectrum bands and short
duration.

The 3D Mask Attack Database (3DMAD) [6] contains frontal-view record-
ings of 17 different users acquired using Microsoft Kinect. The dataset is com-
posed by 3 different sessions, two with genuine accesses and one with 3D mask
presentation attacks. Each session contains 5 videos of 10 s, captured at 30 frames
per second, with a resolution of 640× 480 pixels. The length of the videos is one
important limitation of this database, as it would be desirable to have longer
video sequences in order to study continuous authentication and continuous PAD
methods.
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Fig. 3. Datasets: 3DMAD (top) and BiDA HR (bottom). From left to right: (a) gen-
uine access attempt, (b) presentation attack. We also show the outputs from the skin
detection algorithm in (c) and (d) from a genuine access and a presentation attack
respectively.

The BiDA Heart Rate Database (BiDA HR) is a self collected dataset
captured at the facilities of our research group at Universidad Autonoma de
Madrid, in order to avoid the limitations from existent public databases. BiDA
HR contains RGB, frontal-view, controlled, 60 s recordings of 10 different users,
captured at 25 frames per second with 1920 × 1080 resolution (FullHD). It is
a preliminary database and it has not been released yet. We are now captur-
ing more samples to build a larger dataset. At its current state, the BiDA HR
database is composed by 2 different sessions, one with real accesses and other
with photo attacks. The artifacts of the attack attempts are HQ color printings
of the faces (see Fig. 3). This way we are able to measure the performance of
face PAD based on pulse detection with other type of easy-to-create spoofing
artifacts different than 3D masks (the case in 3DMAD).

4.2 Experimental Protocol

From each rPPG signal we extracted the 9-dimensional feature vector described
in Table 1. For classification in Fig. 2 we used Support Vector Machines with
linear kernels and Cost parameter C = 1000 similarly to [11,12].

Two experiments are conducted: first we emulate the results in our previous
work [11]. This experiment does not try to show the performance of continuous
authentication but it tries to compare the performances of both core rPPG
algorithms. The second experiment consists in obtaining performance measures
when using the proposed methods for continuous PAD presented in Sect. 3.4.

The experimental protocol is the same for both databases (3DMAD and
BiDA HR). First of all, the whole dataset is divided into genuine samples and
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presentation attack samples. Then, for the first experiment, in order to train and
test the classifier, we use a Leave-One-Out Cross-Validation (LOOCV) protocol:
for each subject in the database, we use all his feature vectors for testing a SVM
model that has been trained with all the samples from the remaining users. The
metric used to report results is the Equal Error Rate (EER in %). EER refers
to the value where the Impostor Attack Presentation Match Rate (IAPMR,
percentage of presentation attacks classified as real) and the False Non-Match
Rate (FNMR, percentage of real faces classified as fake) are equal1.

Results are obtained for several temporal window sizes: from 1 to 10 s in
the case of 3DMAD, and also for 20, 40 and 60 s in the case of BiDA HR.
For each temporal size T of the video segments, and considering a single video
segment (i.e., N = 1 in Fig. 2), the EER has been calculated independently for
all the subjects (each one of the LOOCV iterations). The individual results are
then averaged to produce a single performance (mean and standard deviation of
EER).

For the case of the continuous PAD experiments, we consider N > 1 in Fig. 2.
In this case a PAD decision will be generated with a Delay of D = N×T seconds
(video segments are not overlapped in time in our experiments).

Additionally, the QCD algorithm also needs prior data in order to build the
match and non-match distributions. To compute those models, we use all data
from 2 random users in each LOOCV iteration, who are left out of the LOOCV
training and testing. In this case, additionally to the average EER rate, we have
also computed an ADD-FNMR curve for varying temporal windows D. This
curve is useful for showing the balance between the security and the usability of
the continuous PAD approach proposed in Fig. 1.

Finally, for a deeper understanding of the QCD performance, we have also
included some examples of the evolution of the fused PAD score during an exam-
ple attack attempt. As the databases do not contain videos combining real faces
and attacks, we have built videos concatenating a real access and an attack of
the same user.

5 Results

5.1 Comparison with Reference Work

Table 2 shows the results of the comparison between the reference rPPG pipeline
from [11] and the current work. Highlighted in bold are the best EER results
for each value of the video length T . As can be seen in the table, none of the
systems is absolutely better than the other in terms of performance. In general,
the present system achieves lower EER rates than [11] when working with larger

1 As error measures we have mentioned IAPMR and FNMR as defined and discussed
by Galbally et al. [9]. Modifying the Decision Threshold until those error rates are
equal we obtain the Presentation Attack Equal Error Rate, PAEER, defined and
discussed in [9]. Here we follow [9] using PAEER to evaluate the presentation attacks,
but calling it as EER for simplicity.
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values of T (>5 s), but the differences in the error rates are low. If the databases
contained less controlled conditions: more head motion, light changes, blur, etc.,
then we would expect more benefits from the skin detection and the CHROM
algorithm proposed now, as they have shown to perform more robustly than [11]
under these type of conditions.

Table 2. Comparison between the proposed rPPG face PAD and [11] on 3DMAD
and BiDA HR databases. The study has been performed changing the length T of the
video sequences analyzed. Values in %. Lower values for each window length T are
highlighted in bold.

3DMAD Length T [s] 1 2 3 4 5 6 7 8 9 10

[11]
Mean EER [%] 42.8 45.0 37.8 40.7 33.1 29.7 25 26.1 24.1 22.1
Std EER [%] 5.0 5.9 8.6 9.8 10.8 18.1 14.5 15.2 11.9 10.3

Present Work
Mean EER [%] 44.7 42.2 37.3 46.1 46.1 28.8 26.1 25.8 22.3 18.8
Std EER [%] 4.1 6.7 8.5 5.9 5.45 11.8 13.1 12.2 12.3 13.4

BiDA HR Length T [s] 1 2 5 10 20 30 40 50 60

[11]
Mean EER [%] 46.9 45.7 42.1 40.1 40.0 40.0 36.6 30.0 25.0
Std EER [%] 3.9 5.1 9.5 9.6 14.0 21.1 20.5 25.8 26.3

Present work
Mean EER [%] 48.5 46.5 43.1 38.6 38.9 31.2 30.8 32.5 26.2
Std EER [%] 2.4 2.7 6.3 11.3 10.1 15.6 18.4 22.9 23.1

Comparing the EER results obtained with 3DMAD data with those obtained
with BiDA HR, there is a gap between performances, achieving lower rates in
the case of 3DMAD. As we discussed in [11], this seems to be due to the lower
frame rate of BiDA HR.

5.2 Continuous PAD

PAD Score Integration. Figure 4 shows the PAD mean score combination
from Sect. 3.4 on both databases. In that figure, the x axis corresponds to the
values of D = N ×T , the delay for releasing the PAD decision (see Fig. 2), while
the different curves represent the performances obtained with different temporal
resolution T . It can be seen that, in general, the lowest EER (i.e., best PAD
performance) is not obtained when using large T , but intermediate values (e.g.
T = 3 s). With even shorter values of T (1 s or 2 s) the amount of available scores
within each decision window will be higher, but the reliability of each individual
score will be lower (as can be seen in Table 2). On the other hand, the individual
scores obtained with large values of T are the most reliable, but in this case
there will be little data to combine within each decision window of size D.

The reader can notice that the EER obtained for specific D and T may be
higher than the results showed in Table 2 for equivalent values (note that T in
Table 2 should be compared to D in Fig. 4). For example, this is the case of
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Fig. 4. Mean score combination of individual PAD scores, generated in temporal win-
dows of varying duration on 3DMAD (left) and BiDA HR (right) databases. The x axis
corresponds to the value of D = N × T , the decision delay, while the different curves
represent the performances obtained with different sizes of the temporal resolution T ,
and N is the number of individual PAD scores being combined.

T = 1 and D = 10 in Fig. 4 vs T = 10 in Table 2. While the classic approach
(without the continuous loop in Fig. 1) is able to achieve a EER value of 18.8% at
the 3DMAD database, the continuous PAD is only able of getting around 35%.
However, the proposed continuous approach provides higher temporal resolution
(decisions each second) and it is also able to improve the ongoing decisions by
considering both old data and new one. The classic approach is only able to give
one decision and only after the full 10 s have passed (high latency).

The best results from the 3 heuristic PAD methods compared (mean score,
time based combination, and SNR-based combination) are obtained with the
arithmetic mean. The SNR-based combination has failed to distinguish the sam-
ples with more quality from each recording. We think that modeling the pulse
signal as a sinusoidal is not capturing appropriately the nature of a high qual-
ity pulse signal. With more accurate models it might be possible to achieve
lower error rates using this approach. Finally, the temporal confidence fails to
achieve lower EER rates than the other methods, and we think this is mainly
caused by the limitations of the employed databases. This confidence measure
is designed to deal with variable scenarios in which the conditions (attack/non
attack) change within the same video. However these databases only contain
recordings of attacks and real attempts performed separately. If this method
was applied to a more realistic scenario, the results might be better than the
ones obtained with the other two heuristic methods.

Quickest Change Detection (QCD). Figure 5 shows the ADD-FNMR curves
obtained with the QCD algorithm for the 3DMAD and BiDA HR databases.
The different pairs of values of ADD and FNMR have been computed vary-
ing the decision threshold for each temporal segment T . The results from both
databases show the same properties. In these curves, the best choice of ADD-
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Fig. 5. Average Presentation Attack Detection Delay (ADD) vs False Non-Match Rate
(FNMR) obtained on the 3DMAD (left) and BiDA HR (right) databases, for different
temporal segments T .

FNMR depends of the real application of the system. Generally, a lower area
under the curve is an indicator of a better performance. As can be seen in Fig. 4,
the best results (as a balance of usability and security) are obtained with medium
values of T , as it provides a good balance between the reliability of the scores and
a low latency. When working with large values of T it is impossible to achieve
low ADDs because of the inherent latency due to the analyzed temporal seg-
ments, of duration T . This limitation does not exist when working with small T ,
but these approaches are unable to obtain FNMR values as low as the obtained
with a bigger T , due to the smaller reliability of the individual PAD scores being
fused.

Fig. 6. Temporal evolution of the fused PAD scores (QCD) in a variable attack scenario.
The attacker puts on the mask inside the example video. Results using data from
3DMAD (left) and BiDA HR (right) are shown.
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Finally, Fig. 6 shows an example of the evolution of the liveness scores
obtained with the MQCD algorithm. In this scenario we wanted to simulate
a real situation in which the attacker puts on the mask inside the video, so we
have concatenated two different videos from the same user (a real access and an
attack attempt). The higher the scores the higher the estimated probability of
a presentation attack. Thanks to the MQCD and its low latency approach, the
PAD score is able to evolve over the video, and can be compared to a threshold
to detect the intrusion with low latency.

6 Conclusions and Future Work

In this paper, we have studied face Presentation Attack Detection (PAD) based
on remote PhothoPlethysmoGraphy (rPPG) or, in other words, video-based
heart rate estimation. We have extracted pulse information from facial videos
from two different databases: 3DMAD and BiDA HR. These databases contain
videos with different resolutions, frame rates, durations, and spoofing artifacts.

We have compared the performance of a new rPPG system based on a com-
bination of a skin detector and a chrominance method, and the system used in
our previous work [11], which was based on Blind Source Separation techniques.
Even though the chrominance-based system is more robust to variable light con-
ditions, blur, and other factors, in this work both systems perform in a similar
way due to the controlled conditions found in 3DMAD and BiDA HR.

We have also analyzed several approaches for low-latency continuous PAD.
The first approach combines individual PAD scores with simple rules obtained
from consecutive small video segments. The arithmetic mean of consecutive
scores outperforms SNR-based and temporal-based score combination functions.
The second approximation to continuous PAD uses a Quickest Change Detection
algorithm (MQCD) for getting a balance between low attack detection delays
(ADD) and low false positive rates (FNMR). Best results were obtained by gener-
ating individual PAD scores from video segments of around 3 s. We also discussed
a possible time-variant attack scenario in which the attacker puts on the mask
in the middle of the video. In this scenario, the advantages of a short-time rPPG
analysis can be fully exploited.

Future work includes: (1) Improving the baseline system for getting lower
EER with short videos (e.g. using video magnification techniques [3]). (2) Cap-
turing a larger database with a higher number of users, more variate spoofing
artifacts, and also more challenging conditions (like ambient illumination, blur,
occlusions, etc.). (3) Accomplishing a more in depth study of the performance
when changing spatial and temporal resolution of videos. And (4) developing
more robust quality metrics in rPPG [2] for score combination in continuous
PAD and continuous authentication [8].
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