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Abstract Authentication applications based on the use of biometric methods have
received a lot of interest during the last years due to the breathtaking results obtained
using personal traits such as face or fingerprint. However, it is important not to forget
that these biometric systems have to withstand different types of possible attacks. This
work carries out an analysis of different Presentation Attack (PA) scenarios for on-line
handwritten signature verification. The main contributions of the present work are: (1)
short overview of representative methods for Presentation Attack Detection (PAD)
in signature biometrics; (2) to describe the different levels of PAs existing in on-line
signature verification regarding the amount of information available to the attacker,
as well as the training, effort and ability to perform the forgeries; and (3) to report
an evaluation of the system performance in signature biometrics under different PAs
and writing tools considering freely available signature databases. Results obtained
for both BiosecurID and e-BioSign databases show the high impact on the system
performance regarding not only the level of information that the attacker has but also
the training and effort performing the signature. This work is in line with recent efforts
in the Common Ceriteria standardization community towards security evaluation of
biometric systems, where attacks are rated depending on, among other factors, time
spent, effort and expertise of the attacker, as well as the information available and
used from the target being attacked.
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19.1 Introduction

Applications based on biometric user authentication have experienced a high deploy-
ment in many relevant sectors such as security, e-government, healthcare, education,
banking or insurance in the last years [1]. This growth has been possible thanks to
two main factors: (1) the technological evolution and the improvement of sensors
quality [2], which have cut the prices of general purpose devices (smartphones and
tablets) and therefore, the high acceptance of the society towards the use of them; and
(2) the evolution of biometric recognition technologies in general [3—5]. However, it
is important to keep in mind that these biometric-based authentication systems have
to withstand different types of possible attacks [6].

In this work, we focus on different Presentation Attack (PA) scenarios for on-
line handwritten signature biometric authentication systems. These systems have
received a significant amount of attention in the last years thanks to improved signa-
ture acquisition scenarios (including device interoperability [7]) and writing inputs
(e.g. finger [8]).

In general, two different types of impostors can be found in the context of signature
verification: (1) random (zero-effort or accidental) impostors, the case in which no
information about the user being attacked is known and impostors present their own
signature claiming to be another user of the system, and (2) skilled impostors, the
case in which impostors have some level of information about the user being attacked
(e.g. image of the signature) and try to forge their signature claiming to be that user
in the system.

Galbally et al. have recently discussed in [9] different approaches to report accu-
racy results in handwritten signature verification applying the lessons learned in the
evaluation of vulnerabilities to Presentation Attacks (PAs). They considered skilled
impostors as a particular case of biometric PAs that is performed against a behav-
ioral biometric characteristic (referred to in some cases as mimicry). It is important
to highlight the key differences between physical PAs and mimicry, while traditional
PAs involve the use of some physical artefacts such as fake masks and gummy fin-
gers (and therefore, can be detected in some cases at the sensor level), in the case
of mimicry the interaction with the sensor is exactly the same followed in a nor-
mal access attempt. Galbally et al. in [9] modified the traditional nomenclature of
impostor scenarios in signature verification (i.e. skilled and random) following the
standard in the field of biometric Presentation Attack Detection (PAD). This way, the
classical random impostor scenario was referred to as Bona Fide (BF) scenario, while
the skilled impostor scenario was referred to as PA scenario. This new nomenclature
is used in this chapter as well.

If those PAs are expected, one can include specific modules for PAD, which in the
signature recognition literature are usually referred to as forgery detection modules.
A survey of such PAD methods is out of the scope of the chapter. Here in Sect. 19.2,
we only provide a short overview of some selected representative works in that area.

A different approach aimed at improving the security against attacks in signa-
ture biometrics different from including a PAD module is template protection [10].
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Traditional on-line signature verification systems use very sensitive biometric data
such as the X and Y spatial coordinates for the matching, storing this information as
the user templates without any kind of protection. A compromised template, in this
case, would easily provide an attacker with the X and Y coordinates along the time
axis, making possible to generate very high-quality forgeries of the original signature.
In [11], an approach for signature template generation was proposed not considering
information related to X, ¥ coordinates and their derivatives on the biometric system,
providing, therefore, a much more robust system against attacks, as this critical infor-
mation would not be stored anywhere. Moreover, the results achieved had error rates
in the same range as more traditional systems that store very sensitive information.

The main contributions of the present work are: (1) short overview of represen-
tative methods for PAD in signature biometrics; (2) to describe the different levels
of PAs existing in on-line signature verification regarding the amount of information
available to the attacker, as well as the training, effort and ability to perform the
forgeries; and (3) to report an evaluation of the system performance in signature bio-
metrics under different PAs and writing tools considering freely available signature
databases.

The remainder of the chapter is organized as follows. The introduction is com-
pleted with a short overview of PAD in signature biometrics (Sect. 19.2). After that,
the main technical content of the chapter begins in Sect. 19.3, with a review of the
most relevant possible attacks, pointing out which type of impostors are included
in various well-known public signature databases. Section 19.4 describes the on-line
signature databases considered in the experimental work. Section 19.5 describes the
experimental protocol and the results achieved. Finally, Sect.19.6 draws the final
conclusions and points out some lines for future work.

19.2 PAD in Signature Biometrics

Presentation Attack Detection (PAD) in signature biometrics can be traced back to
early works by Rosenfeld et al. in the late 70s [12]. In that work, authors dealt with the
detection of freehand forgeries (i.e. forgeries written in the forger’s own handwriting
without knowledge of the appearance of the genuine signature) on bank checks for
off-line signature verification. The detection process made use of features derived
from Eden’s model [13], which characterizes handwriting strokes in terms of a set of
kinematic parameters that can be used to discriminate forged from genuine signatures.
Those features were based on dimension ratios and slant angles, measured for the
signature as a whole and for specific letters on it. Finally, unknown signatures were
classified as genuine or forgery on the basis of their distance from the set of genuine
signatures. A more exhaustive analysis was later carried out in [14], performing
skilled forgery detection by examining the writer-dependent information embedded
at the substroke level and trying to capture unballistic motion and tremor information
in each stroke segment, rather than as global statistics.
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In [15], authors proposed an off-line signature verification and forgery detection
system based on fuzzy modelling. The verification of genuine signatures and detec-
tion of forgeries was achieved via angle features extracted using a grid method. The
derived features were fuzzified by an exponential membership function, which was
modified to include two structural parameters regarding variations of the handwriting
styles and other factors affecting the scripting of a signature. Experiments showed
the capability of the system in detecting even the slightest changes in signatures.

Brault et al. presented in [16] an original attempt to estimate, quantitatively and
a priori from the coordinates sampled during its execution, the difficulty that could
be experienced by a typical imitator in reproducing both visually and dynamically
that signature. To achieve this goal, they first derived a functional model of what
a typical imitator must do to copy dynamically any signature. A specific difficulty
coefficient was then numerically estimated for a given signature. Experimentation
geared specifically to signature imitation demonstrated the effectiveness of the model.
The ranking of the tested signatures given by the difficulty coefficient was compared
to three different sources: the opinions of the imitators themselves, the ones of an
expert document examiner, and the ranking given by a specific pattern recognition
algorithm. They provided an example application as well. This work supposed one
of the first attempts of PAD for on-line handwritten signature verification using
a special pen attached to a digitizer (Summagraphic Inc. model MM1201). The
sampling frequency was 110Hz, and the spatial resolution was 0.025 inch.

More studies of PAD methods at feature level for on-line signature verification
were carried out in [17, 18]. In [17], authors proposed a new scheme in which a
module focused on the detection of skilled forgeries (i.e. PA impostors) was added
to the original verification system. That new module (i.e. Skilled Forgeries Detector)
was based on four parameters of the Sigma LogNormal writing generation model [19]
and a linear classifier. That new binary classification module was supposed to work
sequentially before a standard signature recognition system [20]. Good results were
achieved using that approach for both skilled (i.e. PA) and random (i.e. BF) scenarios.
In [18], Reillo et al. proposed PAD methods based on the use of some global features
such as the total number of strokes and the signing time of the signatures. They
acquired a new database based on 11 levels of PAs regarding the level of knowledge
and the tools available to the forger. The results achieved in that work using the
proposed PAD reduced the EER from a percentage close to 20.0% to below 3.0%.

19.3 Presentation Attacks in Signature Biometrics

This section aims to describe the different levels of skilled forgeries (i.e. PA impos-
tors) that exist in the literature regarding the amount of information provided to the
attacker, as well as the training, effort and ability to perform the forgeries. In addi-
tion, we consider the case of random forgeries (i.e. zero-effort impostors) although
it belongs to the BF scenario and not to the PA scenario in order to review the whole
range of possible impostors in handwritten signature verification.
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Previous studies have applied the concept of Biometric Menagerie in order to
categorize each type of user of the biometric system as an animal. This concept was
initially formalized by Doddington et al. in [21], classifying speakers regarding how
easy or difficult the speaker can be recognized (i.e. sheep and goats, respectively),
how easily they can be forged (i.e. lambs) and finally, how good they are forging
others (i.e. wolves). Yager and Dunstone have more recently extended the Biometric
Menagerie in [22] by adding four more categories of users (i.e. worms, chameleons,
phantoms and doves). Their proposed approach was investigated using a broad range
of biometric modalities, including 2D and 3D faces, fingerprints, iris, speech and
keystroke dynamics. In [23], Houmani and Garcia-Salicetti applied the concept of
Biometric Menagerie for the different types of users found in the on-line signature
verification task proposing the combination of their personal and relative entropy
measures as a way to quantify how difficult it is a signature to be forged. Their
proposed approach achieved promising classification results on the MCYT database
[24], where the attacker had access to a visual static image of the signature to forge.

In [25], authors showed through a series of experiments that: (1) some users are
significantly better forgers than others (these users would be classified as wolves in
the previous user categorization); (2) forgers can be trained in a relatively straight-
forward way to become a greater threat; (3) certain users are easy targets for forgers
(sheep following the previous user categorization); and (4) most humans are relatively
poor judges of handwriting authenticity, and hence, their unaided instincts cannot
be trusted. Additionally, in that work, authors proposed a new metric for impostor
classification: naive, trained and generative. They considered naive impostors as
random impostors (i.e. zero-effort impostors) in which no information about the user
to forge is available whereas they defined trained and generative impostors as skilled
forgeries (i.e. PA impostors) when only the image or the dynamics of the signature
to forge is available, respectively.

In [26], authors proposed a software tool implemented on two different computer
platforms in order to generate forgeries with different quality levels (i.e. PA impos-
tors). Three different levels of PAs were considered: (1) blind forgeries, the case in
which the attacker writes on a blank surface having access just to textual knowledge
(i.e. precise spelling of the user’s name to forge); (2) low-force forgeries, where the
attacker gets a blueprint of the signature projected on the writing surface (dynamic
information is not provided), which they may trace; and (3) brute-force forgeries,
in which an animated pointer is projected onto the writing pad showing the whole
realization of the signature to forge. The attacker may observe the sequence and
follow the pointer. Authors carried out an experiment based on the use of 82 forgery
samples performed by four different users in order to detect how the False Accep-
tance Rate (FAR) is affected regarding the level of PA. They considered a signature
verification system based on average quadratic deviation. Results obtained for four
different threshold values confirmed a strong protection against attacks.
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A more exhaustive analysis of the different types of forgeries possible in signature
recognition was carried out in [27]. In that work, authors considered random or zero-
effort impostors plus four different levels of PA impostors regarding the amount of
information provided to the attacker and the tools used for the impostors in order to
forge the signature:

e Random or zero-effort forgeries, in which no information of the user to forge is
available and the impostor uses its own signature (accidentally or not) claiming to
be another user of the system.

¢ Blind forgeries, in which the attacker has access to a descriptive or textual knowl-
edge of the original signatures (e.g. the name of the person).

e Static forgeries (low-force in [26]), where the attacker has access to a visual static
image of the signature to forge. There are two ways to generate the forgeries.
The first one, the attacker can train to imitate the signature with or without time
restrictions and blueprint, and then forge it without the use of the blueprint, leading
to static trained forgeries. In the second one, the attacker uses a blueprint to first
copy the signature of the user to forge and then put it on the screen of the device
while forging, leading to static blueprint forgeries, more difficult to detect as
they have the same appearance as the original ones.

e Dynamic forgeries (brute-force in [26]), where the attacker has access to both
the image and also the whole realization process (i.e. dynamics) of the signature
to forge. The dynamics can be obtained in the presence of the original writer or
through the use of a video recording. In a similar way as the previous category,
we can distinguish first dynamic trained forgeries in which the attacker can use
dedicated tools to analyze and train to forge the genuine signature, and second,
dynamic blueprint forgeries which are generated by projecting on the acquisition
area a real-time pointer that the forger needs to follow.

e Regained forgeries, the case where the attacker has access only to the static
image of the signature to forge and makes use of a dedicated software to regain its
dynamics [28], which are later analyzed and used to create dynamic forgeries.

Figure 19.1 depicts examples of one genuine signature and three different types of
forgeries (i.e. random, static blueprint and dynamic trained) performed for the same
user. The image shows both the static and dynamic information with the X and Y
coordinates and pressure.

Besides the forgery classification carried out in [27], Alonso-Fernandez et al.
studied the impact of an incremental level of quality in the PAs against signature
verification systems. Both off-line and on-line systems were considered using the
BiosecurID database which contains both off-line and on-line signatures. For the off-
line system, they considered a system based on global image analysis and a minimum
distance classifier [29] whereas a system based on Hidden Markov Models (HMM)
[30] was considered for the on-line approach. Their experiments concluded that the
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Fig. 19.1 Examples of one genuine signature and three different types of forgeries performed for
the same user

performance of the off-line system is only degraded with the highest level of forgeries
quality. On the contrary, the on-line system exhibits a progressive degradation with
the forgeries quality, suggesting that the dynamic information of signatures is the
one more affected by the considered increased forgeries quality.

Finally, Fig. 19.2 summarizes all different types of forgeries for both BF and PA
scenarios regarding the amount of information available to the attacker, as well as
the training, effort and ability to perform the attack. In addition, the most commonly
used on-line signature databases are included in each PA group. It is important to
highlight the lack of public on-line signature databases for the case of blind forgeries,
as far as we know.
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Fig. 19.2 Diagram of different types of forgeries for both BF and PA scenarios regarding the
amount of information available to the attacker, as well as the training, effort and ability to perform
the attack. The commonly used on-line signature databases are included in each PA group

19.4 On-Line Signature Databases

The following two databases are considered in the experiments reported here:

19.4.1 e-BioSign

For the e-BioSign database [8], we consider a subset of the freely available database'
comprised of signatures acquired using a Samsung ATIV 7 general purpose device
(a.k.a. W4 device). The W4 device has a 11.6-inch LED display with a resolution of
1920x 1080 pixels and 1024 pressure levels. Data was collected using a pen stylus
and also the finger in order to study the performance of signature verification in
a mobile scenario. The available information when using the pen stylus is X and
Y pen coordinates and pressure. In addition, pen-up trajectories are also available.
However, for the case of using the finger as the writing tool, pressure information
and pen-ups trajectories are not recorded. Regarding the acquisition protocol, the
device was placed on a desktop and subjects were able to rotate the device in order
to feel comfortable with the writing position.

Data were collected in two sessions for 65 subjects with a time gap between
sessions of at least three weeks. For each user and writing tool, there are a total
of eight genuine signatures and six skilled forgeries (i.e. PA impostors). Regarding
skilled forgeries for the case of using the stylus as the writing tool, users were
allowed during the first session to visualize a recording of the dynamic realization
of the signature to forge as many times as they wanted whereas only the image of
the signature to forge was available during the second session. Regarding skilled
forgeries for the case of using the finger as the writing tool, in both sessions users

Thitps://atvs.ii.uam.es/atvs/eBioSign-DS 1.html.
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had access to the dynamic realization of the signatures to forge as many times as
they wanted.

19.4.2 BiosecurID

For the BiosecurID database [31], we consider a subset [32] comprised of a total
of 132 users.” Signatures were acquired using a Wacom Intuos 3 pen tablet with a
resolution of 5080 dpi and 1024 pressure levels. The database comprises 16 genuine
signatures and 12 skilled forgeries (i.e. PA impostors) per user, captured in four
separate acquisition sessions. Each session was captured leaving a two-month interval
between them, in a controlled and supervised office-like scenario. Signatures were
acquired using a pen stylus. The available information within each signature is X and
Y pen coordinates and pressure. In addition, pen-up trajectories are available.

The following PAs are considered in the database in order to analyze how the
system performance differs regarding the amount of information provided to the
attacker: (i) the attacker only sees the image of the signature once and tries to imitate
it right away (session 1); (ii) the attacker sees the image of the signature and trains
for a minute before making the forgery (session 2); (iii) the attacker is able to see the
dynamics of the signing process three times, trains for a minute and then makes the
forgery (session 3); and (iv) the dynamics of the signature are shown as many times
as the attacker requests, being able to train for a minute and then sign (session 4).

19.5 Experimental Work

19.5.1 Signature Verification System

An on-line signature verification system based on time functions (a.k.a. local sys-
tems) is considered in the experimental work [33]. For each signature acquired using
the stylus or the finger, only signals related to X and Y pen coordinates and their first-
and second-order derivatives are used in order to provide reproducible results. Infor-
mation related to pen angular orientation (azimuth and altitude angles) and pressure
have been always discarded in order to consider the same set of time functions that
we would be able to use in general purpose devices such as tablets and smartphones
using the finger as the writing tool.

Our local system is based on DTW, which computes the similarity between the
time functions from the input and training signatures. The configuration of the DTW
algorithm described in [34].

2https:// atvs.ii.uam.es/atvs/biosecurid_sonof db.html.
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19.5.2 Experimental Protocol

The experimental protocol has been designed to allow the study of both BF and
PA scenarios on the system performance. Three different levels of impostors are
analyzed: (1) random forgeries, (2) static forgeries (both trained and blueprint) and
(3) dynamic forgeries. Additionally, for the e-BioSign subset, the case of using the
finger as the writing tool is considered. All available users (i.e. 65 and 132 for e-
BioSign and BiosecurID subsets, respectively) are used for the evaluation as no
development of the on-line signature verification system is carried out.

For both databases, the four genuine signatures of the first session are used as
reference signatures, whereas the remaining genuine signatures (i.e. 4 and 12 for
the e-BioSign and BiosecurID databases, respectively) are used for testing. Skilled
forgeries scores (i.e. PA mated scores) are obtained by comparing the reference signa-
tures against the skilled forgeries (i.e. PA impostors) related to each level of attacker,
whereas random forgeries scores (i.e. BF non-mated scores) are obtained by com-
paring the reference signatures with one genuine signature of each of the remaining
users (i.e. 64 and 131 for the e-BioSign and BiosecurID databases, respectively).
The final score is obtained after performing the average score of the four one-to-one
comparisons.

19.5.3 Experimental Results

Tables 19.1 and 19.2 show the system performance obtained for each different type
of impostor and database. Additionally, Fig. 19.3 shows the system performance in
terms of DET curves for each impostor scenario and database.

First, we analyze the results achieved for the case of using the stylus as the writing
tool. In this case, a system performance improvement can be observed for both
BiosecurID (Table 19.1) and e-BioSign (Table 19.2) databases when the amount of
information that the attacker has is reduced. For example, a 7.5% EER is obtained in
Table 19.1 when the attacker has access to the dynamics and also the static information

Table 19.1 BiosecurID: system performance results (EER in %)

Random forgeries Static forgeries Dynamic forgeries
Stylus 1.1 54 7.5

Table 19.2 e-BioSign: system performance results (EER in %)

Random forgeries Static forgeries Dynamic forgeries
Stylus 1.0 11.4 12.3
Finger 0.4 8.9% 18.3

*Generated on new data captured after e-BioSign
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Fig. 19.3 System performance results obtained for each different type of impostor and database

of the signature to forge whereas this value is reduced to 5.4% EER when only the
static information is provided to the forger.

We can also observe the impact of varying training and effort to perform the forg-
eries by comparing Tables 19.1 and 19.2. In general, higher errors are observed for
the e-BioSign database for both types of skilled forgeries (i.e. dynamic and static)
compared to the BiosecurID database. This is due to the fact that for dynamic forg-
eries, the attackers of the e-BioSign database had access to the dynamic realization
of the signatures to forge as many times as they wanted and were also allowed to
train without restrictions of time, whereas for the BiosecurID database the attackers
had time restrictions, resulting in lower quality forgeries. For the case of static forg-
eries, the attackers of the e-BioSign database used a blueprint with the image of the
signature to forge, placing it on the screen of the device while forging whereas for



450 R. Tolosana et al.

the BiosecurID database, the attackers just saw the image of the signatures to forge
and trained before making the forgery without the help of any blueprint.

Finally, very similar good results are achieved in Tables 19.1 and 19.2 for random
forgeries (i.e. zero-effort impostors) as the attackers have no information of the user
to forge and present to the system their own signature.

Analyzing the case of using the finger as the writing tool, a high degradation
of the system performance can be observed in Table 19.2 for the dynamic forgeries
compared to the case of using the stylus as the writing tool. A recommendation for
the usage of signature recognition on mobile devices would be for the users to protect
themselves from other people that could be watching while signing, as this is more
feasible to do in a mobile scenario compared to an office scenario. This way skilled
forgers (i.e. PA impostors) might have access to the global shape of the signature
but not to the dynamic information and results would be much better. For analyzing
this scenario, we captured additional data after e-BioSign achieving a 8.9% EER
(marked with * in Table 19.2, as the dataset in this case is not the same of the rest
of the table), much better results compared to the 18.3% EER obtained for dynamic
forgeries. For the case of random forgeries (i.e. zero-effort impostors), better results
are obtained when the finger is considered as the writing tool compared to the stylus
proving the feasibility of this scenario for random forgeries. Finally, it is important
to remind that we are using a simple and reproducible verification system based only
on X, Y coordinates and their derivatives. For a complete analysis of using the finger
as the writing tool please refer to [8].

Finally, we would like to remark that the results obtained in this work should
be interpreted in general terms as comparing different scenarios of attack. Specific
results on operational setups can vary depending on the specific matching algorithm
considered. An example of this can be seen in [35], where two different verification
systems (i.e. Recurrent Neural Networks (RNNs) and DTW) were evaluated on
the BiosecurID database for different types of attacks. The signature verification
system based on RNNs obtained much better results than DTW for skilled forgeries,
but DTW outperformed RNNs for random forgeries concluding that fusion of both
systems could be a good strategy. Similar conclusions can be observed in previous
studies [36, 37].

19.6 Conclusions

This work carries out an analysis of Presentation Attack (PA) scenarios [6] for on-line
handwritten signature verification [33]. Unlike traditional PAs, which use physical
artefacts (e.g. fake masks and gummy fingers), the most typical PAs in signature
verification represent an attacker interacting with the sensor exactly in the same way
followed in a normal access attempt, i.e. the presentation attack is a handwritten
signature, in this case imitating to some extent the attacked identity. In such typical
PA scenario, the level of knowledge that the attacker has and uses about the signature
being attacked results crucial for the success rate of the attack.



19 Presentation Attacks in Signature Biometrics ... 451

The main contributions of the present work are: (1) short overview of represen-
tative methods for PAD in signature biometrics; (2) to describe the different levels
of PAs existing in on-line signature verification regarding the amount of informa-
tion available to the attacker, as well as the training, effort and ability to perform
the forgeries and (3) to report an evaluation of the system performance in signa-
ture biometrics under different PAs and writing tools considering available signature
databases.

Results obtained for both BiosecurID [31] and e-BioSign [8] databases show the
high impact on the system performance regarding not only the level of information
that the attacker has but also the training and effort performing the signature [27].
For the case of using the finger as the writing tool, a recommendation for the usage of
signature recognition on mobile devices would be for the users to protect themselves
from other people that could be watching while signing, as this is more feasible to
do in a mobile scenario [38] compared to an office scenario. This way skilled forgers
(i.e. PA impostors) might have access to the global shape of the signature but not to
the dynamic information and results would be much better. This work is in line with
recent efforts in the Common Criteria standardization community towards security
evaluation of biometric systems, where attacks are rated depending on, among other
factors: time spent, effort, and expertise of the attacker; as well as the information
available and used from the target being attacked [39].
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