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Abstract. In this paper we evaluate the performance of mobile keystroke
authentication according to: (1) data availability to model the user; and
(2) combination with behavioral-based profiling techniques. We have developed
an ensemble of three behavioral based-profile authentication techniques (WiFi,
GPS Location, and App usage) and a Keystroke state-of-the-art recognition
approach. Algorithms based on template update are employed for profiling
systems meanwhile bidirectional recurrent neuronal networks with a Siamese
training setup is used for the keystroke system. Our experiments are conducted
on the semi-uncontrolled UMDAA-02 database. This database comprises
smartphone sensor signals acquired during natural human-mobile interaction.
Our results show that it is necessary 6 days of usage data stored to achieve the
best performance in average. The template update allows to improve the equal
error rate of keystroke by a relative 20%–30% performance.
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1 Introduction

In the last decade smartphones have become a vital gadget for an important percentage
of the world population. Recent reports reveal that mobile lines exceeded the world
population in 2018 [1]. Moreover, more than 90% of citizens decline to go out without
their smartphones due to the need for contact with their friends or work responsibilities
among others reasons [2]. During our daily routines, smartphones become a sort of data
hubs storing a wide variety of sensitive information: from personal information (e.g.
photos, videos, chats messages) stored by ourselves, behavioral traits (e.g. touch
gestures, GPS location, WiFi connections, keystroke patterns) stored by the smart-
phones during the user interaction, up to critical information (e.g. bank transactions,
account’s passwords, contacts list). Due to this capacity of storing sensitive informa-
tion, according to [3] more than a half of population would be willing to pay 500$ and
the 30% would pay up to 1000$, regardless the price of the device, in order to recover
the smartphone information when stolen.
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However, some surveys have shown that about 34% or more smartphone users did
not use any form of authentication mechanism on their mobile devices [4]. Among the
reasons for this, inconvenience of use was cited to be the main reason. They find out
that mobile device users considered unlock screens unnecessary in 24% of the situa-
tions and they spend up to 9% of time they use their smartphone unlocking the screens
despite of many modern smartphones have fingerprint and face recognition algorithms.

In order to deal with this problem of convenience of use, the research community is
developing transparent biometric authentication mobile systems [5]. These approaches
analyze behavioral information (e.g. touch gestures, keystroke patterns) stored by the
smartphone during normal user-device interaction and check the user’s identity in the
background. This way, the smartphone will be able to assist in user authentication
avoiding to disturb the owner with traditional authentication mechanisms (e.g. pass-
words, swipe patterns).

Despite some of these biometric authentication mobile systems work really well
achieving a good performance under certain conditions (e.g. limited number of users,
supervised scenarios), these systems are not usually tested in a real life scenario in
which a new user installs the authentication system in the device and starts using it. In
that moment, the amount of behavioral data available for the biometric authentication
will be scarce and the performance may be low. The device will need a traditional
authentication mechanism until it has enough behavioral biometric information to
check the identity of the user by itself with good performance.

The aim of this paper is to analyze how the performance of these mobile biometric
authentication systems evolve according to the amount of behavioral information
available from the owner. Our experiments include up to four different information
channels (Keystroke, GPS location, WiFi signals, and App Usage) and the fusion of all
of them to train a reliable authentication system by employing each time more user’s
information to authenticate. Finally, we will analyze how much information these
biometric systems need to work with a good performance. For this, our experiments are
conducted on the UMDAA-02 mobile database [6], a challenging mobile dataset
acquired under unsupervised conditions.

The rest of this paper is organized as follows: Sect. 2 makes an overview of the
state-of-the-art works related and links with this work. Section 3 describes the archi-
tecture followed to implement the different systems proposed. Section 4 explains the
experimental protocol, describing the database and the experiments performed. Sec-
tion 4.3 presents and analyzes the results achieved and Sect. 5 summarizes the con-
clusions and future work.

2 Background and Related Works

Authentication systems based on keystroke dynamics have been widely studied in
computer keyboards, achieving very good results in fixed text [7] (i.e. the keystroke
sequence of the input authentication system is prefixed) and free text [8] (the input can
be any kind of keystroke sequence). The feature set usually employed in keystroke
recognition is generated using the elapsed time of press and release events between
consecutive keys [9]: hold time, inter-key latency, press and release latency. In the
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authentication stage; Manhattan distances, DTW and digraphs achieve the best results
in most of the cases for fixed text scenarios [7, 10, 11], whereas binary classifiers
(SVM, KNN), Hierarchical Trees and Recurrent Neuronal Networks work better in free
text [12–14].

Regarding keystroke authentication in smartphones, similar architectures have been
applied with little adaptations. In [15], they take advantage of the hand postures while
holding the device during typing as discriminative information, and combining this
with time features they reduce the error rates up to 36.8% in a fixed text scenario with
binary classifiers (SVM, NB, and KNN). In [16], Monaco et al. proposed Partially
Observable Hidden Markov Models (POHMM) as an extension of the traditional
Hidden Markov Models (HMMs), but with the difference that each hidden state is
conditioned on an independent Markov chain. The algorithm is motivated by the idea
that typing events depend both on past events and also on a separate process. More
recently, [17] proposed a Siamese Long Short-Term Memory network architecture in
which the keystroke authentication is performed by calculating the Euclidean distance
between two embedding vectors (the outputs of the Siamese model).

The WiFi networks detected by our smartphone provide useful information about
when and where we go, and hence, they can detect possible variations in our daily
routines. This discriminative information is considered as behavioral biometric and it
could help in the mobile authentication process. In this assumption, [18] explores a
WiFi authentication system based on templates. They store in a template the time and
the name of the WiFi networks detected during the training process, then they test by
comparing the template with the new WiFi networks detected and compute a kind of
confidence score.

Regarding Geo-location based authentication approaches, Mahub et al. [19]
developed a modified HMM to characterize the mobile trace histories, they suggest that
the human mobility can be described as a Markovian Motion, and they predict the new
user location exploiting the sparseness of the data and past locations. In [13], they
classify mobile user location with SVM by using the latitude and longitude as features
and calibrating the scores with logistic regression. They also implement App Usage
based authentication by ranking the top 20 mobile applications most visited by the user
that appear in the training set. The classification process is performed by comparing
these top ranks of more used applications with the new test data and calculating a
similarity score. In the other hand, [20] suggests that the unknown applications and
unforeseen events have more impact in App Usage authentication than the top N-apps,
and they should be incorporated in the models by adopting smoothing techniques with
HMMs. They are capable of detecting an intrusion in less than 3 min of application
usage with only 30 min of historical data to train.

Finally, how to integrate all these different modalities in a multimodal mobile
authentication architecture is not trivial [21]. Due to many differences between the
architectures proposed for each biometric trait, the fusion is usually done at decision
level. For example in [13], they fused at decision level web browsing, application
usage, GPS location, and keystroking data using information from slice time windows.
They suggest that the performance increases according to the size of the time window.
In [22], they merge also at decision level touch dynamics, power consumption, and
physical movements modalities with a dataset captured under supervised conditions. In
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[17], they merge up to 8 modalities (keystroke dynamics, GPS location, accelerometer,
gyroscope, magnetometer, linear accelerometer, gravity, and rotation sensors) at score
level with a Siamese Long Short-Term Memory network architecture and 3 s window.
The fusion approach enhances the performance more than 20% compared to each
modality separately. In [23], they designed a mobile authentication app that collects
data from WiFi, Bluetooth, accelerometer, and gyroscope sources during natural user
interaction and fused them at score level achieving up to 90% of accuracy in the best
scenario.

Previous works fusing different modalities [13, 17, 22, 23] have focused their
approaches on obtaining time windows from the different modalities and then, they
carry out the fusion with the architectures previously trained for each user. However,
this does not represent a realistic scenario because biometric information is not always
available at the beginning and therefore, the lack of these biometric information could
decrease the performance.

The major contributions of this paper are: (i) a performance analysis of user mobile
authentication based on keystroke biometrics traits and 3 behavioral-based profiling
techniques (GPS location, WiFi, and App usage) separately and the fusion of all them
at score level for a multimodal approach, and (ii) a study of the performance evolution
of these authentication systems across the time according to the amount of user bio-
metric information available in each moment.

3 Systems Description

In this paper we will analyze 4 mobile sources of information: Keystroking, GPS
Location, App Usage, and WiFi. According to the literature, keystroke patterns are
related to the neuromotor skills of the people based on, for instance, time differences
between consecutive keys, which are directly related to muscles activation/deactivation
timing [24]. On the other hand, GPS location, WiFi, and App Usage belong to
behavioral based-profiling systems that describe daily habits and manners from the user
according to the services they use or the places they visit [5]. In the next subsection we
describe the approach followed for each of the 4 systems taking into account the above
definitions.

3.1 Keystroke System

In keystroking, the discriminative user information is allocated in the temporal rela-
tionships of press and release events between two or more consecutive keys. For this
reason, we decided to implement a Recurrent Neural Network (RNN) algorithm for
keystroking authentication. To the best of our knowledge, RNN has demonstrated to be
one of the best algorithms to deal with temporal data and works well with free-text
keystroke patterns [14, 17]. The feature set chosen is as follows: (i) Hold Latency (HL):
the elapsed time between press and release key events; (ii) Inter-key Latency (IL): the
elapsed time between releasing a key and pressing the next key; and (iii) Press Latency
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(PL): the elapsed time between two consecutive press events. Additionally, we add the
pressure as another feature to provide more behavioral user information (see Fig. 1 for
details).

Our RNN model has a fixed length input N. To handle keystroke sequences of
varying length, we concatenate them until we have the length necessary to feed the
RNN, as proposed in [17]. The longer sequence we choose, the better performance the
RNN model usually achieves. However, the system has to wait until the user has
pressed enough number of keys to authenticate the user. So there is a trade-off between
the performance and the authentication time delay.

The architecture of the RNN model that achieved our best results is depicted in
Fig. 2. That RNN consists of two LSTM layers of 32 units with batch normalization
and dropout rate of 0.5 between layers to avoid overfitting. We suggest that the next
keys typed are as relevant as past keys, therefore, in order to consider forward and
backward time relationships between consecutive keys, we decided to set up the LSTM
layers in a bidirectional mode (duplicating the number of neurons in each layer, one for
each forward and backward direction). The output of the RNN model is an embedding
vector of 64 units’ size ð32� 2Þ, this embedding vector is a feature representation of
the input keystroke sequence that we will use to distinguish a keystroke sequence from
genuine and impostor users. By training the RNN model in a Siamese setup, the RNN
model will learn discriminative information of the keystroke sequence and transform
this information into an embedding space where keystroke sequences of the same user
(genuine samples) are close, and far in the opposite case.

Press 1 Press 2 Press Release 1 Release 2 Release 

Key 1 Key 2 Key 

TimeHL{1} HL{2} HL{ }IL{1:2} IL{2:3}

PL{1:2} PL{2:3}

HL{1} IL{1:2} PL{1:2}

HL{2} IL{2:3} PL{2:3}

HL{ } IL{N:N+1} PL{N:N+1}

Pressure 1

Pressure 2

Pressure 

Feature vector (4 features × keys ) 

Fig. 1. Example of feature extraction for a keystroke sequence of N keys. The number in
brackets shows the key corresponding to each feature.
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In this setup, the RNN model has two inputs (the two keystroke sequences to
compare) and outputs two embedding vectors (see Fig. 3 for details). By calculating the
Euclidean distance between this pair of embedding vectors we will obtain a score
between 0 and a, where 0 means that both keystroke sequences belong to the same user
and a means that they come from different users.

For this, the contrastive loss is defined to regulate large or small distances
depending on the label yij associated with the pair of samples [17]. Let’s define Xi and
Xj as both inputs of the Siamese model, the Euclidean distance between the pairs
d Xi;Xj
� �

is defined as:

d Xi;Xj
� � ¼ f ðXiÞ � f ðXjÞ

�� �� ð1Þ

where f ðXiÞ and f ðXjÞ are the outputs (embedding vectors) of the RNN Model. Finally,
with the contrastive loss, the RNN model will learn to make this distance small for
genuine pairs and large for impostor pairs according to the label yij:

Loss ¼ 1� yij
� � d2 Xi;Xj

� �

2
þ yij

max2 0; a� d Xi;Xj
� �� �

2
ð2Þ

where the label yij is set to 0 for genuine pairs and 1 for impostor pairs and a[ 0 is
called the margin (the maximum margin between genuine and impostor distances).

LSTM
(32)

Batch Norm

DropOut(0.5)

LSTM
(32)

Batch Norm

LSTM
(32)

Batch Norm

DropOut(0.5)

LSTM
(32)

Batch Norm

LSTM
(32)

Batch Norm

DropOut(0.5)

LSTM
(32)

Batch Norm

Features key 1 Features key 2 Features key 

Fig. 2. Architecture of the Bidirectional RNN model proposed. The output of the model y is a
embedding vector of 64 (32� 2) features (the bidirectional mode duplicates the number of
neurons in each layer).
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3.2 Behavioral-Based Profiling Systems

For WiFi, GPS location, and App Usage behavioral-based profiling systems we employ
a template-based matching algorithm that has proved to work well according to [18,
20]. This algorithm consists in user’s templates that record the time stamps and the
frequency of the events occurred during the daily routines of the user. These events are
the WiFi networks detected, the latitude and longitude of a location or the name of the
app for WiFi, GPS location, and App Usage systems respectively.

Table 1 shows an example of a template for the WiFi system. First of all, we
divided the 24 h of the day in M time slots of fixed duration. For example, for M ¼ 48
we will have 48 slots of 30 min length ( 24/48 = 0.5 h = 30 min). Once the size of the
time slots is set, the template records for each WiFi network the time slot it belongs and
the name of the network. The frequency column shows the number of sessions that
WiFi network was detected in the same time slot. In other words, the template-based
algorithm describes the daily routines of the user during a period of time according to
the events detected by their smartphone when he/she unlocks the smartphone.

( )
( )

Train keystroke sequences 
( × 4) Embedding vectors (64 × 1)

C
on

tra
st

iv
e 

lo
ss

 
(, )

Bidirectional
RNN model

,
Fig. 3. Siamese keystroke setup for training. N is the number of keys in each sequence.

Table 1. Example of a WiFi user template generated according the data captured during a week.

Event (WiFi network) Time slot Frequency

Network 1 4 7
Network 2 10 3
Network 3 10 1
Network 1 15 7
Network 4 24 5
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Finally, we test the system by comparing the new sessions with the user template.
We match the new events detected with the events of the template for each time slot
and calculate a confidence score as:

score ¼
XS

i¼1

f 2i ð3Þ

where fi is the frequency of the event stored in the user template that matches with the
test event i in the same time slot and S is the total number of events detected in that test
session. For example, if the test session includes the WiFi networks of ‘Network 2’ and
‘Network 3’ during the tenth time slot, the score confidence will be 12 þ 32 ¼ 10
(according to the template showed in Table 1). Based on this, a higher score in the test
session implies higher confidence for authentication.

4 Experiments

4.1 Database

The experiments were conducted with the UMDAA-02 database [6] that comprises
more than 140 GB smartphone sensor signals collected during natural user-device
interaction. Table 2 summarize the characteristics of the database. The users were
mainly students from the university of Maryland, they used a smartphone provided by
the researchers as their primary device during their daily life (unsupervised scenario)
over a period of two months. A huge range of smartphone sensors were captured:
touchscreen (i.e. touch gestures and keystroking), gyroscope, magnetic field, GPS
location, and WiFi networks, among others. Information related to mobile user’s
behavior like lock and unlock time events, start and end time stamps of calls, and app
usage are also stored.

Table 2. General UMDAA-02 dataset information.

Description Statistics

Gender 36M/12F
Age 22–31 years
Avg. Days/User 10 days
Avg. Sessions/User 248 sessions
Avg. Sensors/Session 5.2 Sensors
Avg. Sessions/Day 26 sessions
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The structure of the database is divided in sessions (i.e. the elapsed time between
the user unlocks the screen until the next lock). For each session, the device stores in a
folder all the sensor signals employed in that session. For example, if the user unlocks
the smartphone to check the email inbox maybe there are no GPS locations or key-
stroke signals but WiFi and swipes gestures could be provided. The amount of data and
the kind of signals acquired vary according to the user’s behavior. This reason moti-
vated us to analyze the temporal performance evolution of our systems at session level
instead of fixed time slots like days or weeks. Some users could provide a large amount
of information in only one day whereas it could be scarce in other users.

4.2 Experimental Protocol

For the behavioral based-profiling systems (WiFi, GPS Location, and App Usage), we
train the templates with the first M sessions acquired for each user and using the
remaining sessions as genuine test sessions. Sessions from the others users are con-
sidered as impostor data.

The RNN model for keystroke recognition is trained in a Siamese setup, which had
showed to perform very well with short time sequences like signatures or smartphone
time signals [17, 25]. For this, we train de RNN model with pairs of keystroking
sequences from train users (80% of the users). Regarding the training details, the best
results were achieved with a learning rate of 0:005, Adam optimizer was used with
b1 ¼ 0:9, b2 ¼ 0:999 and e ¼ 10�8 respectively, batch size of 512 pairs and the margin
set to a ¼ 1:5.

For testing, Fig. 4 shows the details of the setup in which we compare the first M
keystroke sequences of each test user (commonly named gallery samples) with new
keystroke sequences that belong to the same user (genuine samples) or other test users

Gallery embedding vectors 

Unknown
keystroke sequence ( ) Eu

cl
id

ea
n 

di
st

an
ce

Gallery user
keystroke sequences

Bidirectional
RNN model

Fig. 4. Siamese keystroke setup for testing. The number M of gallery samples in test varies
according to the number of keystroke sessions employed for testing. The number of keys in each
sequence N is set to 20.
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(impostor samples). Our idea is to build a RNN model able to generalize, distin-
guishing keystroke sequences from any kind of users.

As we commented before, the keystroke data in UMDAA-02 is stored by sessions
and the length of the keystroke sequences vary depending on the session and user, but
the RNN model has a fixed length input that we set to N ¼ 20, the average of the
keystroke sequence length of the database. To avoid zero padding or truncating, we
concatenate consecutively keystroke sequences from the user sessions to build the input
keystroke sequence of the RNN model so this sequence will belong to only one session
in average but could be more or less. In this assumption, we have a total of 8615
keystroke sequence in total for all users in the database.

Finally, to study the temporal evolution of the performance across the time (ses-
sions in this paper) in the keystroke system, we will increase the number of gallery
sequences assuming that each gallery sequence is a new genuine user session and then,
we test the unknown sample comparing it to all gallery sequences and averaging the M
resulting distances (see Fig. 4).

4.3 Results and Discussion

We first compare the bidirectional RNN model for keystroke proposed in this paper
with a SVM model, following the traditional workflow of global feature extraction and
classification. For this, we extract again the same time features as in the RNN model
(HL, IL, PL, and Pressure) and then we compute the global features for each time
feature: mean, median, standard deviation, 1 percentile, 99 percentile, and 99-1 per-
centile. According to this protocol, for each keystroke session we have a feature vector
of size 24 6� 4ð Þ. Then, we train a SVM for each user using his/her first M keystroke
sessions as genuine samples and M samples from other users as impostor ones.

EE
R

 (%
)

# Train sessions # Train sessions 

Fig. 5. Evaluation of keystroke performance with bidirectional RNN and SVM models across
the number of sessions employed to train.
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Figure 5 shows the EER curves for keystroke systems using both SVM and RNN
algorithms versus the number of sessions employed to train the models. EER refers to
Equal Error Rate, the value where False Acceptance Rate (percentage of impostors
classified as genuine) and False Rejection Rate (percentage of genuine users classified
as impostors) are equal. The results suggest that RNN networks work better than SVM
in all cases, even when there are few user samples available for training the RNN
algorithm. However, the EER for SVM tends to drop faster than RNN as more user
data is available.

Finally, we evaluate the performance of each biometric system individually and the
fusion of all of them. Figure 6 shows the performance versus number of sessions
employed for training. The results show that the best individual system in terms of EER
is the WiFi system, achieving less than 23% of EER with 150 sessions to train the
templates. However, the keystroke system drops faster and performs better with few
user data. We think that this occurs because the keystroke system (bidirectional RNN)
was previously trained with data from other users and learnt discriminative keystroke
patterns, being able to authenticate new users with few samples.

The dotted curve shows the fusion of all systems at score level. To get the best of
the fusion scheme, we weighted the systems by giving higher weights to the best ones
(WiFi and GPS location). The best results are around 19% of EER with more than 150
sessions to train. According to Table 2 (last row), the authentication systems need more
than 6 days in average to authenticate users to achieve the best performance possible.

5 Conclusions and Future Work

In this paper we evaluate the performance of mobile keystroke authentication according
to: (1) data availability to model the user; and (2) combination with behavioral-based
profiling techniques. We have developed an ensemble of three behavioral-based profile
authentication techniques (WiFi, GPS Location and App usage) and a keystroke state-

EE
R

 (%
)

# Train sessions 

Fig. 6. Evaluation performance for all modalities and the fusion of all across the number of
sessions employed to train.
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of-the-art recognition approach. The results showed that even though behavioral based-
profile systems tend to work better with large amounts of training data, the performance
gets worse when the amount of data to model the user is scarce. We therefore suggest
that behavioral profile systems work well at long terms, when the smartphone has
stored enough data to train the templates.

On the other hand, a keystroke system based on bidirectional RNN seems to work
better with few samples. We suggest that this happens due to the pre-training phase of
the RNN model with development users in a Siamese setup.

Although the keystroke system works better than the others with few samples, the
performance is not competitive for large amounts of training data. For future work, we
propose to improve the keystroke performance by employing transfer learning tech-
niques and adapting the RNN model to each user when the amount of user data is
enough.
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