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ABSTRACT 
In this paper we evaluate how discriminative are behavior-based 
signals obtained from the smartphone sensors. The main aim is to 
evaluate these signals for person recognition. The recognition 
based on these signals increases the security of devices, but also 
implies privacy concerns. We consider seven different data 
channels and their combinations. Touch dynamics (touch gestures 
and keystroking), accelerometer, gyroscope, WiFi, GPS location 
and app usage are all collected during human-mobile interaction 
to authenticate the users. We evaluate two approaches: one-time 
authentication and active authentication. In one-time 
authentication, we employ the information of all channels 
available during one session. For active authentication we take 
advantage of mobile user behavior across multiple sessions by 
updating a confidence value of the authentication score. Our 
experiments are conducted on the semi-uncontrolled UMDAA-02 
database. This database comprises of smartphone sensor signals 
acquired during natural human-mobile interaction. Our results 
show that different traits can be complementary and multimodal 
systems clearly increase the performance with accuracies ranging 
from 82.2% to 97.1% depending on the authentication scenario. 
These results confirm the discriminative power of these signals. 

CCS CONCEPTS 
• Security and privacy → Security services →
Authentication → Biometrics

KEYWORDS 
Mobile authentication, Biometric recognition, Behavioral 
Patterns, Behavioral-based profiling; Touch dynamics 

ACM Reference format: 

Alejandro Acien, Aythami Morales, Ruben-Vera Rodriguez, Julian Fierrez 
and Ruben Tolosana. 2019. MultiLock: Mobile Active Authentication 
based on Multiple Biometric and Behavioral Patterns. In Proceedings of 
Workshop on Multimodal Understanding and Learning for Embodied 
Applications (MULEA’19), October 25, Nice, France, 7 pages. 
 https://doi.org/10.1145/3347450.3357663 

1   INTRODUCTION 
Services are migrating from the physical to the digital domain in 
the information society. Examples can be found in e-government, 
banking, education, health, commerce, and leisure. This digital 
revolution is associated with a massive deployment of mobile 
devices including multiple sensors (e.g. camera, gyroscope, GPS, 
touch screens, etc.), and full connectivity (e.g. bluetooth, WiFi, 4G, 
etc.). The mobile market has expanded to the point where the 
number of mobile devices in use is nearly equal to the world’s 
population. Mobile devices are rapidly becoming data hubs, used 
to store e-mail, personal photos, online history, passwords, and 
even payment information. Recent studies have shown that about 
34% or more users did not use any form of authentication 
mechanism on their devices [1]. In similar studies, inconvenience 
is always shown to be one of the main reasons why users do not 
use any authentication mechanism. In [2], researchers show that 
mobile device users spent up to 9% of the time they use their 
smartphone on unlocking their screens, and the 2018 Meeker 
Report indicated that the average smartphone user checks his/her 
device 150 times per day. Those factors lead individuals to make 
less security conscious decisions like leaving their smartphones 
unprotected or just protecting them using simple to break 
authentication mechanisms (e.g., simple Google unlock graphical 
patterns vulnerable to over-the-shoulder attacks [3]).  

Biometric technologies improve traditional recognition 
technologies in several ways based on passwords or swipe 
patterns. The advantages of biometric systems are many in terms 
of security and convenience of use, which has led these 
technologies to take on a leading role in the last years. In fact, 
there is a growing interest in the biometrics research community 
towards more transparent and robust authentication methods that 
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make use of the interaction signals originated when using 
smartphones [4][5]. Signals generated with the sensors already 
embedded in mobile devices (e.g., gyroscope, magnetometer, 
accelerometer, GPS, and touchscreen interactions) along with 
metadata associated to our use of the technology (e.g. internet 
point access, browsing history, app usage) could assist in user 
authentication avoiding the inconveniences of traditional 
unlocking systems. All this information is originated naturally 
during the normal usage of the user with a smartphone, and it has 
been demonstrated that can be used for person identification 
under certain conditions [5]. By regularly conducting unobtrusive 
identity checks of the mobile user during a normal session, a 
continuous authentication system can verify if the device is still 
being operated by the authorized user. With this active system, if 
the mobile device is stolen, it should quickly recognize the 
presence of an unauthorized user. 

The aim of this paper is to analyze multi-modal approaches 
for user recognition based on smartphone usage under realistic 
conditions. Our experiments include up to four different biometric 
traits (touch gestures, keystroking, gyroscope, and accelerometer) 
and three behavioral-based profiling techniques (GPS, WiFi, and 
app usage). The experiments are conducted on the UMDAA-02 
mobile database [6], a challenging dataset acquired under natural 
conditions. 

The rest of this paper is organized as follows: Section 2 links 
the present works with related research. Section 3 describes the 
architecture of our approach. Section 4 explains the experimental 
protocol, describing the database and the experiments performed. 
Section 5 presents the final results for single and multimodal 
architecture and Section 6 summarizes the conclusions and future 
work. 

2   RELATED WORKS 
Mobile authentication based on soft biometrics traits has been 
extensively studied in the last years [7][8][9]. Swipe dynamics is 
one of the most popular traits analyzed [7]; however, it has been 
shown not to have enough discriminative power to replace 
traditional technologies.  

Accelerometer and gyroscope sensors have been studied 
traditionally for gait recognition, and some works have 
demonstrated also their utility for user authentication with 
acceptable performance [10]. In [11], they use accelerometer and 
gyroscope mobile sensors for user recognition trough simple 
gesture like answering a call in four different user states: standing, 
sitting, walking and running. Employing bagged trees as 
classifiers they suggest that these sensors are enough 
discriminant to recognize the owner of the device during common 
arm gestures. 

Geo-location based verification approaches are scarce in the 
literature. In [12], Mahbub and Chellappa developed a mobile 
authentication system using trace histories by generating a 
confidence score of the new user location taking into account the 
sparseness of the geo-location data and past locations. For this 
purpose, they employed modified Hidden Markov Models 
(HMMs) considering the human mobility as a Markovian motion. 
In a similar way, in [13] a variation of HMMs was used to develop 
a user authentication mobile system by exploiting application 
usage data. They suggest that unforeseen events and unknown 
applications have more impact in the authentication performance 
than the most common apps used by the user. 

The potential of WiFi history data was analyzed in [8] for 
mobile authentication. They explored: i) the WiFi networks 
detected by the smartphone, ii) when the detection occurs, and iii) 
how frequently those networks are detected during a period of 
time. 

Regarding keystroke traits, in [9] a fixed-text keystroking 
system for mobile user authentication was studied using not only 
time and space based features (e.g. hold and flight times, jump 
angle or drag distance) but also studying the hands postures 
during typing as discriminative information. In [14], a novel fixed-
text authentication system for laptops and mobile devices based 
on Partially Observable HMMs was studied. This model is an 
extension of HMMs in which the hidden state is conditioned on 
an independent Markov chain. The algorithm is motivated by the 
idea that typing events depend both on past events and also on a 
separate process. 
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Figure 1: System architecture. Continuous line corresponds to one-time authentication, and dotted line indicates add-on 
modules for active authentication. 
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Finally, building a multimodal system that integrates all these 
heterogeneous information sources for mobile user 
authentication is still a challenge [15]. Noisy data, intra class 
variation or spoofing attacks [16] are some inevitable problems in 
unimodal systems that can be overcome by multimodal 
architectures [5][15]. In [17], a multimodal user authentication 
system was based on the fusion at decision level of voice, location, 
multi-touch, and accelerometer data. Their preliminary results 
suggest that these four modalities are suitable for continuous 
authentication. In [18], a fusion was performed also at decision 
level of behavioral-based profiling signals such as web browsing, 
application usage, and GPS location with keystroking data 
achieving 95% of user authentication accuracy using information 
from one-minute window. More recently, in [19] a fusion also at 
decision level of touch dynamics, power consumption, and 
physical movements modalities achieved 94.5% of accuracy with a 
dataset that was captured under supervised conditions. In [20], an 
unobtrusive mobile authentication application is designed for 
single and multimodal approaches. They collected data from WiFi, 
Bluetooth, accelerometer, and gyroscope sources in unsupervised 
conditions and fused them at score level achieving up to 90% of 
accuracy in the best scenario. In [21], they propose a Siamese Long 
ShortTerm Memory network architecture to merge up to 8 
modalities (keystroke dynamics, GPS location, accelerometer, 
gyroscope, magnetometer, linear accelerometer, gravity, and 
rotation sensors) for mobile authentication, achieving 97.15% of 
accuracy using data a non-public proprietary database with 37 
subjects and a sliding window.  

Previous works fusing different modalities ([18][19][20][21]) 
have focused their approach on obtaining time windows from the 
different modalities and then carry out the fusion. However, this 
does not represent a realistic scenario due to not all modalities 
fused can always be captured in a specific time windows. In this 
work we go a step forward by merging the modalities at session 
level (time during an unlock and the next lock of the device), and 
therefore fusing only the modalities available at each session. The 
performance of biometric mobile authentication based on human 
interaction raises doubt under challenging non-supervised 
scenarios.  

The contributions of this work are: i) performance analysis of 
user authentication based on 4 biometric data channels (touch 
gestures, keystroking, accelerometer, and gyroscope) and 3 
behavior profiling data sources (WiFi, GPS, and App usage), 
obtained during natural human-smartphone interaction; ii) study 
of multimodal approaches for smartphone user authentication 
based on various combinations of the previous 7 data channels, 
both for One-Time Authentication and for Active Authentication 
schemes (i.e., continuously over multiple sessions). Our results 
demonstrate that signals from the smartphone can be used to 
improve user authentication under realistic usage conditions. 

3   SYSTEM DESCRIPTION 
In this paper we analyze 4 biometric data channels (touch 
gestures, keystroking, gyroscope, and accelerometer) and 3 
behavior data sources (GPS, WiFi, and app usage). We study 2 

architectures for user authentication (see Fig. 1): the first approach 
(continuous line in Fig. 1), referred to as One-Time Authentication 
(OTA) is based on unimodal systems trained with the information 
extracted from the mobile sensors during a user session. A session 
is defined as the elapsed period between the device unlock and the 
next lock. Therefore, sessions have a variable duration and 
information obtained from sensors varies depending on the usage 
of the device during the session. The information provided by the 
sensors is employed to model the user according to the seven 
systems mentioned before: keystroking, touch gestures, 
accelerometer, gyroscope, WiFi, app usage, and GPS location. 
Each system provides a single authentication score and these 
scores are combined to generate a unique score for each session. 
The second approach, called Active Authentication (dotted line in 
Fig. 1), is based on updating a confidence value generated from 
the One-Time Authentication during consecutive sessions. 

The seven systems are categorized into two main groups 
according to the nature of the information employed to model the 
user: biometric and behavior-based profiling systems. In this 
work, biometric systems refer to the top 4 channels in the Sensors 
Data module of Fig. 1 (red box). The way we realize touch 
gestures, typing, or handle the device is determined by behavioral 
aspects (e.g. emotional state, attention) and neuromotor 
characteristics of users (e.g. ergonomic, muscles 
activation/deactivation timing, motor abilities). Behavioral-based 
profiling refers to those systems that model the owners of the 
device according to the services they use during their daily habits 
(orange box in Fig. 1, bottom 3 channels in the Sensors Data 
module).  

3.1 Behavioral-based profiling systems 
WiFi, app usage, and GPS location system are based on a similar 
template-based matching algorithm. A user template is defined as 
a table containing the time stamps and the frequency of the events 
[8]. For this, we divided the time (24 hours of the day) into 𝑁 equal 
time slots (e.g. if we choose 𝑁 = 48 we will have 48 time slots of 
30 minutes), giving to each time slot a number ID. Then we store 
in the template the event`s name, the number ID of the time slot 
and the occurrence frequency of that event (number of times this 
event occurs during this particular time slot on a window of 
consecutive days). Table 1 shows an example of the app-usage 
template for a given user generated according the data obtained 
during six days; in this case WhatsApp application is detected in 

Table 1: Example of an app-usage user template 
generated according the data captured during six days. 
 

Event Time slot Frequency 

WhatsApp 4 5 

Navigator 4 3 

YouTube 5 1 

WhatsApp 5 1 

Facebook 7 2 
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the fourth slot for five days out of the six days considered 
meanwhile the same app is detected only one day in the fifth slot. 
Note that multiple detections of the same event in the same time 
slot and day are ignored but they are stored if they belong to 
different time slots or days. Depending on the system, the event 
could be the name of the WiFi network, latitude and longitude of 
a location (with two decimals of accuracy), or the name of a 
mobile app for WiFi, GPS location, and app usage systems, 
respectively. Finally, we test the systems by calculating a 
behavior-based confidence score [8] for each test session as: 

𝑠𝑐𝑜𝑟𝑒 = ∑𝑓𝑖
2

𝑆

𝑖=1

 (1) 

where 𝑓𝑖 is the frequency of the event stored in the template that 

match with the test event 𝑖 in the same time slot and 𝑆 is the total 
number of events detected in that test session. For example, if the 
test session includes the usage of WhatsApp and Navigator apps 
during the fourth slot, the score confidence will be  52 + 32 = 34 
(according to the template showed in Table 1). Based on this, a 
higher score in the test session implies higher confidence for 
authentication. 

3.2 Biometric systems 
For touch gestures, keystroking, accelerometer and gyroscope 
systems, the feature extraction and classification algorithms are 
adapted to model the user information. In the touch gestures 
system, the feature set employed is a reduced set of the global 
features presented in [22] (commonly used for online handwriting 
sequence modeling) and adapted for swipe biometrics in [7]. Mean 
velocity, max acceleration, distance between adjacent points, or 
total duration are some examples of this subset of 28 features 
extracted (see [22] for details). 

For accelerometer and gyroscope, the data captured are 
comprised of the 𝑥, 𝑦, and 𝑧 coordinates of the inclination vector 
of the device (gyroscope) and the acceleration vector 
(accelerometer) in each time stamp. For these two sensors we use 
the feature set proposed in [10]: mean, median, maximum, 
minimum, distance between maximum and minimum, and the 
standard deviation for each array of coordinates. Moreover, we 
propose the 1 and 99 percentiles and the distance between them 
as additional features.  

Regarding keystroke dynamics, the keys pressed were 
encrypted in order to ensure users’ privacy. Thus, systems based 
on graphs were discarded and we adopted traditional timing 
features: hold time, press-press latency, and press-release latency 
as in [23][24]. Finally, we propose a feature set based on six statics 
(mean, median, standard deviation, 1 percentile, 99 percentile, and 
99-1 percentile). Note that UMDAA-02 keystroke data can be 
considered as a free text scenario. However, the limited samples 
per session and the encrypted keys make it difficult the 
application of popular free-text keystroke authentication 
methods.  

For classification we train different Support Vector Machines 
(SVM) with a radial basis function (RBF) kernel, one for each 
feature set and user with an optimization of both hyperparameters 
(𝐶,𝜎). 

4   EXPERIMENTS 

4.1 Database 
The experiments were conducted with UMDAA-02 database [6]. 
This database comprises 141.14 GB of smartphone sensor signals 
collected from 48 Maryland University students over a period of 2 
months, the participants used a smartphone provided by the 
researchers as their primary device during their daily life 
(unsupervised scenario). The sensors captured are touchscreen 
(i.e. touch gestures and keystroking), gyroscope, accelerometer, 
magnetometer, light sensor, GPS, and WiFi, among others. 
Information related to mobile user´s behavior such as lock and 
unlock time events, start and end time stamps of calls and app 
usage are also stored. Table 2 summarizes the characteristics of 
the database. During a session, the data collection application 
stored the information provided by the sensors in use. 

4.2 Experimental Protocol 
The experiments are divided into two different scenarios: One-
Time Authentication (OTA) and Active Authentication (AA). In 
OTA the performance is calculated using only one session to 
authenticate the user meanwhile in AA we employ multiple 
consecutive sessions in order to improve the confidence in the 
authentication. 

For all experiments the dataset is divided into 60% days for 
training (first sessions) and the remaining 40% days for testing. 
This means that we employ six days in average to model the user 
and 4 days in average to test such a model.  The performance for 
both scenarios is presented in terms of average correct 
classification rate computed as 100−EER (Equal Error Rate). EER 
refers to the value where False Acceptance Rate (percentage of 
impostors classified as genuine) and False Rejection Rate 
(percentage of genuine users classified as impostors) are equal. 

a) One-Time Authentication. In OTA experiments, all 7 
systems are trained separately for each user and the scores are 
calculated at session level, generating 7 scores for each test 
session as maximum (note that the number of systems available 
during a session varies). The 4 biometric systems considered can 
produce more than one score per session (e.g. multiple gestures or 
multiple keystroking sequences during a text chat). In those cases, 

Table 2: General UMDAA-02 dataset information. 
 

Description Statistics 

Gender  36M/12F 

Age  22-31 years 

Avg. Days/User 10 days 

Avg. Sessions/User 248 sessions 

Avg. Time/Session 224 seconds 

Avg. Systems/Session 5.2 systems* 
*Systems: refers to the number of systems available out of the 7 
studied in this work. 
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the scores available during the session are averaged to obtain one 
score for each biometric system and session. Finally, we normalize 
with 𝑡𝑎𝑛ℎ  normalization and fuse the scores (mean rule) to 
calculate a single score [15] according to the different fusion set-
ups proposed. The scores from the best fusion set-up will be used 
in the AA scenario.  

b) Active Authentication.  For AA experiments we 
consider the QCD algorithm (Quickest Change Detection) as 
explained in [25]. The QCD-based algorithm updates a confidence 
score based on previous events (sessions in this work) by 
performing a cumulative sum of scores. This cumulative sum will 
be almost zero if the scores belong to the genuine user, and will 
grow if an impostor takes the control, until it reaches a certain 
threshold that would detect the intruder. The cumulative sum is 
calculated as follow: 

𝑠𝑐𝑜𝑟𝑒𝑗
𝐴𝐴 = max(𝑠𝑐𝑜𝑟𝑒𝑗−1

𝐴𝐴 + 𝐿𝑗, 0) (2) 

where 𝑗  means the actual session and 𝑠𝑐𝑜𝑟𝑒𝑗−1
𝐴𝐴  is the previous 

cumulative score. 𝐿𝑗  is the contribution of the actual session 
calculated as the log-likelihood ratio between score distributions: 

𝐿𝑗 = log
(
 
 𝑓𝐼(𝑠𝑐𝑜𝑟𝑒𝑗)

𝑓𝐺(𝑠𝑐𝑜𝑟𝑒𝑗)
) (3) 

where 𝑓𝐺  and 𝑓𝐼 are the probability distributions of the genuine 
and impostor scores respectively calculated previously in the OTA 
fusion scenario, and 𝑠𝑐𝑜𝑟𝑒𝑗 is the OTA fused score of the actual 
session. According to (3), the log-likelihood ratio 𝐿𝑗  will be 
negative if  𝑠𝑐𝑜𝑟𝑒𝑗 belongs to a genuine user and positive in the 
opposite case and, therefore, multiple consecutive sessions of an 

impostor in control will increase the cumulative sum (𝑠𝑐𝑜𝑟𝑒𝑗
𝐴𝐴). 

Fig. 2 depicts an example of 𝑠𝑐𝑜𝑟𝑒𝑗
𝐴𝐴 evolution. At the time the 

mobile starts to be operated by an intruder (session number 

sixteen in Fig. 2) the 𝑠𝑐𝑜𝑟𝑒𝑗
𝐴𝐴 (𝑗 > 16)  will tend to increase until 

reaching the threshold. The average time elapsed between the 
intrusion start and the intrusion detection is known as Detection 
Delay (ADD) measured in number of sessions. 

5   RESULTS AND DISCUSSION 

5.1 One-Time Authentication 
In this section we analyze the OTA scenario: the accuracy for the 
4 biometric systems and the fusion with each behavior-based 
profiling system. Table 3 summarizes the final results by ranking 
from the best individual biometric system performance to the 
worst one. The first column shows the performance obtained for 
each single biometric system. From the second to the fourth 
column, we show the performance for the fusion of each biometric 
system with each behavior-based profiling system, and the fifth 
column shows the fusion with all of them. 

 Firstly, the poor performance achieved by some biometric 
systems can be caused by the uncontrolled acquisition conditions 
of the database and the limited number of samples per session (e.g. 
free text keystroke usually requires large sequences) but the 
combination of all of them (last row in Table 3) shows acceptable 
performance for unsupervised scenarios. 

Secondly, we can observe that behavior-based profiling 
systems always improve biometric systems performances in all 
fusion schemes.  In fact, the combination of all behavior-based 
profiling approaches with each biometric system achieves the 
most competitive performance, improving them in more than 18% 
of accuracy in the best of cases. If we analyze each single 
behavior-based profiling fusion, we can observe that the GPS 
system achieves the best improvements, boosting biometric 
systems performances in more than 13% of accuracy. 

Table 3: Results achieved for both One-Time and Active Authentication (AA) scenarios in terms of correct classification rate 
(%) according to different number of biometric systems and their fusion with behavior-based profiling systems. In brackets, 
average number of sessions employed (ADD).  

 

System Acc. +WiFi +GPS +AppUsage All AA 

Touch gestures 72.0 78.2 78.3 75.4 83.1  95.0 (6) 

Keystroking 62.5 72.6 70.9 67.8 79.1 92.9 (7) 

Accelerometer 61.3 70.8 77.3 64.7 78.7 93.7 (7) 

Gyroscope 59.5 69.7 72.6 63.4 78.4 92.3 (6) 

Combined 73.2 77.3 78.9 75.3 82.2 97.1 (5) 
 

Figure 2: An example of QCD-based curve with a sequence 
of 30 sessions (15 genuine and 15 impostors).  The dashed 
line is the intruder detection threshold and the grey box 
shows the Detection Delay (DD). 
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Finally, in Fig. 3 we plot the ROC curves for each single 
biometric system and the best fusion set-up, i.e. the fusion of all 
behavior-based profiling systems with each biometric system 
(column 5 in Table 3). The results in OTA scenario suggest that 
behavior-based profiling systems always improve the biometric 
ones and the best performance is achieved by fusing with all of 
them, and therefore, the scores obtained from this fusion scheme 
will be use in AA scenario. 

5.2 Active Authentication 

Some definitions first: 

 Probability of False Detections (PFD): is the percentage of 
genuine users detected as intruder during a sequence of 

genuine sessions. It means that 𝑠𝑐𝑜𝑟𝑒𝑗
𝐴𝐴 reaches the intruder 

detection threshold during a genuine session sequence 
(genuine curve in Fig. 2). PFD is similar to FMR (False Match 
Rate) in one-time authentication. 

 Probability of Non-Detection (PND): is the percentage of 
intruders not detected during a sequence of intruder sessions. 

It means that 𝑠𝑐𝑜𝑟𝑒𝑗
𝐴𝐴 does not reach the intruder detection 

threshold during the intruder sessions sequence (impostor 
curve in Fig. 2). PND is similar to FNMR (False Non-Match 
rate) in one-time authentication. 

 Average Detection Delay (ADD): is the average number of 
impostor sessions needed to detect an intruder (the grey box 
in Fig. 2).  

To calculate the correct classification rate in AA we plot in 
Fig. 4 the PND vs. PFD and ADD vs. PFD curves. The PND-PFD 
curves are similar to FMR-FNMR curve in one-time authentication 
with the main difference that those results are obtained from a 
sequence of stacked scores instead of only one. The equal error 
rate (EER) will be the value where PND and PFD are equal and the 
correct classification rate will be computed as 100 − EER. The 

ADD-PFD curve shows the number of sessions needed to detect 
an intruder according to the PFD. This curve allows us to know 
how many sessions are needed to achieve the EER reported. For 
instance, the PND-PFD curves in Fig. 4 (right) show that the EER 
in Active Authentication is 2.9% for an ADD equal to 5 sessions. 
These results suggest that we can improve OTA results at the cost 
of having more sessions to detect an intruder. All curves were 
calculated for each user and averaged. 

Finally, all AA results are summarized in the last column of 
Table 3. Remember that scores employed in the QCD-based 
algorithm come from the fusion scores of the best OTA scenario 
(fusing with all behavior-based profiling systems) so both 
performances are correlated. Each performance in Table 3 for AA 
is followed by the average detection delay in brackets needed to 
achieve it. As we expected, in all different fusion set-ups the AA 
algorithm improves the accuracy at the cost of needing more 
sessions to detect the intruder. In fact, for the best fusion set-up 
the performance improves from 82.2% to 97.1% by using 5 
consecutive intruder sessions to detect the impostor. Comparing 
all scenarios, the greatest improvement occurs with all biometric 
systems combined (14.9% of improvement in the last row of Table 
3) with an average 5 sessions. 

Figure 4: PND vs PFD curves of active authentication for 
the best fusion schemes (up), PND vs PFD and ADD vs PFD 
curves for the best fusion set-up (down). The dark dashed 
line shows the EER and the red one shows the Average 
Detection Delay for that EER in the lower plot. 
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Figure 3: ROC curves (One-Time Authentication) for 
individual biometrics and the best fusion set-up 
incorporating the three considered behavior profiling 
sources (All = WiFi + GPS + App usage). 
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6   CONCLUSIONS AND FUTURE WORK  
In this paper, we have studied user mobile active authentication 
based on multiple biometric and behavior-based profiling 
systems. For this, we studied two scenarios according to the 
number of sessions used: one session (One-Time Authentication) 
and multiple sessions (Active Authentication). The results suggest 
that some biometric systems work better than others, and that the 
fusion with behavior-based profiling systems always improves the 
results, achieving accuracies up to 82.2% in the best case for an 
OTA scenario. Our experiments also suggest that Active 
Authentication always improve the accuracies with up to 14% of 
enhancement with respect to One-Time Authentication using 
between 5 and 7 sessions. 

For future works, we will evaluate the combination of 
heterogeneous signals at data and feature level. These studies will 
be focused in the analysis of possible correlations between 
patterns (e.g. touch gestures and app used are highly correlated).  
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