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Abstract

Handwritten signature is one of the most socially accepted biometric traits as it has been

used in financial and legal agreements for over a century. However, is signature biometric tech-

nology really adapted to current scenarios? With the massive deployment of mobile general

purpose devices such as smartphones and tablets, new very interesting and user-friendly sce-

narios have appeared beyond the traditional office-like scenario considering high quality devices

especifically designed for signature acquisition. In addition, despite the high technological evo-

lution, and concretely, the success of deep learning techniques in combination with Graphics

Processing Units (GPUs), the core of most of the state-of-the-art signature verification systems

is still almost the same than 20 years ago. Why deep learning techniques do not outperform

traditional systems as it happens in other fields?

The last motivation for this Thesis is related to password-based systems. Traditionally,

the two most prevalent user authentication approaches have been Personal Identification Num-

bers (PIN) and One-Time Passwords (OTP). However, and despite the high popularity and

deployment of PIN- and OTP-based authentication systems in real scenarios, many studies have

highlighted the weaknesses of these approaches as they are very easy to guess or steal (i.e.,

through shoulder-surfing and smudge attacks). Is it possible to increase the security of these

traditional authentication systems at the same time that we provide a good experience to the

users?

As a way of finding the answers to these questions, this Thesis is mainly focused on the

analysis of the new opportunities that bring up these novel scenarios and technologies and the

challenges that must be tackled in order to achieve state-of-the-art results.

This Dissertation comprises five different parts. Part I first concentrates on the problem

statement and main contributions of the Thesis. The experimental chapters are then divided

into three parts, Part II, Part III, and Part IV. Lastly, Part V concludes the Thesis.

Part I first introduces the basics of biometrics, focusing on handwritten signature biometrics,

which is the main topic of study in this Thesis, and the challenges and opportunities for it along

an exhaustive overview of the state-of-the-art. Then, we concentrate on describing the most

relevant features of existing on-line signature databases, making special emphasis on all the

databases acquired during this Thesis. Finally, Part I concludes explaining first the specific

details of the traditional on-line signature verification systems considered in the experimental

parts of the Thesis, and then our novel end-to-end writer-independent RNN signature verification

systems proposed in this Dissertation.

The first experimental part (Part II of this Dissertation) starts analysing the system perfor-

mance of traditional signature verification systems on emerging scenarios such as finger input,

device interoperability and mixed writing-input. Due to the high system performance degra-

dation of them, in this Thesis we propose a two-stage approach based on robust preprocessing



and feature selection techniques. We then study the novel scenario where the number of stored

samples or templates per user can grow very fast, making it possible to train more robust statis-

tical user models, improving the performance of biometric systems, and in particular, reducing

the template aging effect. The research carried out in this part aims to answer the following

questions: How is the system performance affected on these novel scenarios? What approach

should we consider to overcome these challenges?

In the second experimental part (Part III of this Dissertation) we propose new ways to

improve traditional signature verification systems. Concretely, we first evaluate the potential

of including deep learning technology through a new architecture (Siamese) more adapted to

the signature verification task. We then focus on the concept of complexity in signature and

enhance the traditional systems through the selection of the most robust features for each

signature complexity level.

Finally, Part IV of this Dissertation evaluates the potential of incorporating handwriting

biometric information to traditional authentication systems based on passwords, asking the user

to draw each digit of the password on the touchscreen instead of typing them as usual.

The research carried out in this Dissertation has led to novel contributions which include: i)

analysis and adaptation of on-line signature verification systems to emerging scenarios such as

finger input, device interoperability and mixed writing-input through robust preprocessing and

feature selection techniques, ii) an exhaustive experimental analysis of template update strate-

gies for three popular on-line signature verification approaches, extracting various practical find-

ings related to the template aging effect in signature biometrics, and configuring time-adaptive

improved versions of the considered baseline approaches overcoming to some extent the template

aging, iii) exploring the potential of deep learning approaches for on-line signature verification.

We have proposed a novel end-to-end writer-independent on-line signature verification system

based on Recurrent Neural Networks with a Siamese architecture, which has outperformed other

state-of-the-art systems, iv) improvement of traditional signature verification systems through

the incorporation of the signature complexity concept, v) enhancement of traditional PIN and

OTP authentication systems through the incorporation of handwriting biometric information

as a second level of user authentication, vi) acquisition of new unprecedented handwriting and

signature databases and release of them to the research community, and vii) part of the re-

search presented in this Thesis has been deployed successfully in a pilot project in which on-line

signature verification will be used massively in the Spanish banking sector.



Don’t ever let someone tell you
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mis compañeros Telecos, en especial: Daniel Izquierdo, Álvaro Foguet, Vı́ctor Sánchez, Fran
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Chapter 1

Introduction

Is Handwritten signature technology adapted to current scenarios? Is it making the

most of the available resources? Certainly not. Signatures have been traditionally acquired in

pen-based office-like scenarios using devices specifically designed to capture dynamic signatures

and handwriting (i.e., so called graphic or writing tablets such as those manufactured by Wacom

and others), in which the stylus has always been considered as input, and achieving, in general,

very good results. However, the high deployment of mobile devices such as smartphones and

tablets has given rise to new very interesting scenarios and opportunities with their corresponding

challenges for the system performance that must be tackled.

This rapid and continuous deployment of mobile devices around the world has been motivated

not only by the high technological evolution and new features incorporated by the mobile device

sector but also to the new internet infrastructures that allow the communications and use of

social media in real time, among many other factors [Salehan and Negahban, 2013]. In this way,

both public and private sectors are aware of the importance of mobile devices in our lives and

they are putting all their efforts in order to deploy their services through user-friendly mobile

applications ensuring data protection and high security at the same time.

Traditionally, passwords have been the most prevalent user authentication approach. How-

ever, despite the high popularity and deployment of them in practical scenarios, many studies

have highlighted the disadvantages of these approaches as they may be easy to be stolen/forged [Bon-

neau et al., 2012; Galbally et al., 2017]. Biometric recognition schemes are able to cope with

these challenges by combining both security and convenience [Meng et al., 2015].

Biometrics is a technological area whose aim is to authenticate subjects through the use

of biological (e.g., face and fingerprint) or behavioural (e.g., voice and handwritten signature)

traits [Jain et al., 2016]. It is easy to find biometric systems all around nowadays, e.g., in our

smartphones for unblocking them, payments, banking, insurance, and access control such as

borders, among many others.

Traditionally, biometric recognition systems have been based on features manually designed

by researchers for a specific task (a.k.a. handcrafted features). However, this trend has begun

to change in the last years. The reasons mainly reside in the massive amount of available data

3



1. INTRODUCTION

Figure 1.1: Handwriting and signature scenarios addressed in this Thesis.

together with the increased computer resources available these days. In this sense, Deep Learning

(DL) has become a thriving topic [Goodfellow et al., 2016], allowing computers to learn from

experience and understand the world in terms of hierarchy of simpler units. DL has enabled

significant advances in complex domains such as natural language processing [I. Sutskever, O.

Vinyals and Q.V. Le, 2014], computer vision [B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A.

Torralba, 2016] and also for biometrics [Bhanu and Kumar, 2017; Sundararajan and Woodard,

2018], among many others.

This Thesis is mainly focused on the functioning of on-line handwritten signature verification

systems on current mobile scenarios, the new opportunities that arise for this biometric trait

with the increasing amount of data and computer resources, and the exploration of handwritten

passwords for touchscreen biometrics. Fig. 1.1 graphically summarises the handwriting and

signature scenarios addressed in this Thesis. The experimental work of the Thesis pretends

4
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1.1 Biometrics

to: i) analyse and alleviate the impact of emerging scenarios on the system performance by

the exploration of robust preprocessing and feature selection techniques, ii) enhance the core

of traditional signature verification systems through the exploration of DL approaches and the

concept of complexity, and iii) incorporate biometrics to traditional password-based mobile

authentication systems, asking the users to draw each digit of the password on the touchscreen

instead of typing them as usual.

This introductory chapter first presents the basics of biometric systems, including proper-

ties, and biometric traits. Then, we focus on handwritten signature biometrics, which is the

main topic of study in this Thesis, and the challenges and opportunities for it on the emerging

scenarios. Later on we summarise the success of DL techniques in many different biometric appli-

cations. Then we motivate the incorporation of handwriting biometric information in traditional

password-based systems as a second level of user authentication. We finish the chapter by stat-

ing the Thesis, giving an outline of the Dissertation, and summarising the research contributions

originated from this Thesis.

Although no special background is required for this chapter, the reader will benefit from

introductory readings in biometrics [Jain et al., 2008, 2016, 2006, 2004, 2011], handwritten

signature verification [Diaz et al., 2018b; Impedovo and Pirlo, 2008; Leclerc and Plamondon,

1994; Plamondon and Lorette, 1989; Plamondon and Srihari, 2000], and DL [Goodfellow et al.,

2016; Schmidhuber, 2015].

1.1. Biometrics

Since biometric traits are generally inherent to an individual, there is a strong and reasonably

permanent link between a person and his/her biometric traits. Thus, biometric recognition

can be used to identify individuals [Jain et al., 2016]. The first scientific study that proved

the possibility of using personal anatomical traits for identity verification dates from the 60s.

In [Trauring, 1963], the author analysed the minutiae in finger-ridge patterns, concluding with

some evidences of the feasibility of those patterns for automatic identity verification. Although

the article was written more than 50 years ago, it is incredible to see the capacity of Trauring

for coming ahead to the biometric scenario applications.

Despite the appearance of biometric studies on early stages, it wasn’t until the last decade

when it was established as an specific research area. This is evidenced by recent reference

texts [Jain et al., 2016, 2011; Ratha and Govindaraju, 2008; Ross et al., 2006; Tistareli et al.,

2009], specific conferences [Boult et al., 2014; Fierrez et al., 2013; Hoque et al., 2017; Singh

et al., 2016], peer-review journals such as the new IEEE Transactions on Biometrics, Behav-

ior, and Identity Science, common benchmark tools and evaluations [Beveridge et al., 2013;

Kemelmacher-Shlizerman et al., 2016; Neves and Proença, 2016; Phillips et al., 2000; Phillips,

2006; Phillips et al., 2011, 2009a,b; Przybocki and Martin, 2004; Yeung et al., 2004], cooperative

international projects [BBfor2, 2010; BioSec, 2004; Biosecure, 2004; COST, 2007; MTIT, 2009;

Tabula Rasa, 2010], international consortia dedicated specifically to biometric recognition [EAB,
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2015, 2017; BC, 2009; BF, 2009; BI, 2009; EBF, 2009], standardization efforts [ANSI/NIST, 2009;

BioAPI, 2009; ISO/IEC JTC 1/SC 27 , 2009; SC37, 2005], and increasing attention both from

government [BWG, 2009; DoD, 2005] and industry [IBIA, 2009; International Biometric Group,

2006].

In general, two different operational modes are studied in biometrics: identification, and

verification [Jain et al., 2016]. The former tries to predict the user’s identity of the query

biometric sample in a database. Therefore, the query biometric sample is compared against

all available templates of the database (one-to-many match). The result of the identification

operation can be one of the following two decisions: i) the identity of one or more users of the

database whose templates produce the highest similarity with the query biometric sample, or ii)

a response from the system indicating that the biometric sample does not match with any of the

user templates of the database. In this case, if the system is forced to output an identity, this is

referred as close-set. Otherwise, it is known as open-set. This operational mode has become a

hot topic for the police forces in the last years as this is usually a time consuming process that

requires a lot of computational resources due to the high number of comparisons that must be

performed in order to identify possible terrorists or criminals among all the world population.

The latter operational mode is the verification. In this case, the query biometric sample is only

compared with the template of the claimed user (one-to-one match).

From the first studies performed on fingerprint until now, biometrics has widen to many dif-

ferent traits such as face [Taigman et al., 2014], iris [Bowyerin and Burge, 2016], fingerprint [Cao

and Jain, 2018], palmprint [Svoboda et al., 2016], ear [Chen et al., 2015], keystroke [Morales

et al., 2016], handwritten signature [Diaz et al., 2018b], touchscreen gestures [Shen et al., 2018],

and voice [Ghahabi and Hernando, 2017], among many others. The variety is so large and the

system performance so good in most of them that sometimes it is difficult to answer the question:

Which biometric trait is the best one? Which one should I choose for my security system?

Despite the impressive results achieved in many different biometrics traits, it is important not

to forget that these biometric recognition systems have to withstand different types of possible

attacks. Among all possible attack points [ISO/IEC JTC1 SC37 Biometrics, 2016; Ratha et al.,

2001], the biometric capture device is probably the most exposed one: no further knowledge

about the inner functioning of the system is required to perform an attack. Such attacks are

known in the ISO/IEC IS 30107 [ISO/IEC JTC1 SC37 Biometrics, 2016] as Presentation Attacks

(PA), and refer to the presentation to the capture device of a Presentation Attack Instrument

(PAI), such as gummy fingerprints [Marasco and Ross, 2015; Sousedik and Busch, 2014] and 3D

facial masks [Galbally et al., 2014; Marcel et al., 2014]. Therefore, Presentation Attack Detection

(PAD) methods must be considered in order to detect such attacks in a first authentication

stage [Tolosana et al., 2018a,e].

1.1.1. Modalities and Applications of Biometric Systems

Biometric traits can be classified into physiological or behavioural. Physiological biomet-

rics includes those traits describing what the person is such as face, fingerprint, iris, hand
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geometry, palmprint, ear, retina, sclera, periocular region, vascular patterns, DNA, electrocar-

diograph (ECG) and electroencephalograph (EEG). Conversely, behavioural biometrics incor-

porates information regarding what the person does or the way humans behave such as the way

we talk (speech), sign/write (signature/handwriting), walk (gait or footsteps), type keyboards

(keystroking), use the mouse (mouse dynamics), or interact with mobile devices (touchscreen

gestures), among others.

In theory, any human characteristic can be used as a biometric identifier as long as it satisfies

these general requirements:

Universality, which indicates to what extent a biometric is present in the world popula-

tion.

Uniqueness or Distinctiveness, which means that the trait has to be unique for every

single person, or at least discriminative enough to distinguish between subjects.

Permanence, which entails that the biometric trait should have a compact representation

permanent or invariant over a sufficiently large period of time.

Collectability, which refers this biometric trait has to be easily measured quantitatively.

Apart from these aforementioned requirements, the following practical criteria are also de-

sired:

Performance, which involves the efficiency, accuracy, speed, robustness and resource

requirements of particular implementations based on the biometric trait.

Acceptability, which refers to whether people are willing to use the biometric trait for

authentication purposes and under which conditions.

Circumvention, which reflects the difficulty to fool a system based on a given biometric

trait by fraudulent methods.

Cost, which refers to all costs that would be necessary to introduce the system in a

real-world scenario.

Proportionality, which refers to the trade-off between the amount of privacy you give to

the system and the services you have in return. For instance, it is not logical to compromise

your fingerprint information to have access to the gym.

In all biometric traits, it is desirable to have both low intra-user variability (i.e., the bio-

metric information remains stable across measurements of the same subject) and high inter-user

variability (i.e., the biometric information differs across measurements of different subjects). In

this case, a biometric security approach will provide good and reliable results. However, bio-

metrics traits are usually subject to variations. For physiological biometric traits such as the

face, the intra-user variability is highly affected by environment changes (e.g., illumination and
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background scene) or other factors such as occlusion, pose or make up [Chan et al., 2014; Chen

et al., 2014; Ding and Tao, 2017]. For behavioural biometric traits, the main source of intra-user

variability resides on the own user. Behavioural traits such as the voice or the handwritten

signature are the result of a complex process that depends not only of the physiological model

of the human (e.g., mouth cavities, vocal chords, and wrist and arm muscles) but also to the

mood (e.g., happy, sad, and nervous). Other aspects that can reduce the accuracy of both

physiological and behavioural biometric systems are related to sensor interoperability (i.e., the

case in which different acquisition devices are considered for the enrolment and test stages) due

to the different acquisition properties presented on them such as the resolution (dots per inch),

sampling frequency, size of the screen, frames per rate, acquisition spectrum, signal to noise

ratio, distance from camera, etc [Nogueira et al., 2016; Poh et al., 2007; Ross and Jain, 2004].

The aforementioned biometric traits are also known as hard biometrics, as they have the

capacity to discriminate identities by themselves. New sources of information such as gender,

age or ethnicity, which are known as soft biometrics as they are not able to distinguish subjects

by themselves, are becoming more and more studied nowadays in order to reduce, for example,

the range of search in an identification process [Dantcheva et al., 2016; Gonzalez-Sosa et al.,

2018].

Therefore, at this point, the unanswered question “Which biometric trait is the best one?”

that arose in Sec. 1.1 seems easier to reply: it depends. It depends on the final application

scenario, the user acceptance, the risk of the operation, the usability, and feasibility of the

approach, among many other factors [Jain et al., 2011]. No single biometric trait is likely to be

optimal and satisfy the requirements of all applications. For this reason it is common to find

multi-biometric systems based on the fusion of multiple biometric traits. The weight of each

of them in the final system performance can be modified for example regarding illumination or

noise conditions [Kasprowski and Harezlak, 2018; Ross et al., 2006].

1.2. Handwritten Signature Verification

Handwritten signature is the result of a complex process that depends on the psychophysical

state of the signer and the conditions under which the signature apposition process occurs [Impe-

dovo and Pirlo, 2008]. We usually start learning how to write at the age of about three years

old. At that age, most children understand that writing is made by combining lines, curves, and

repeated patterns. About a year later, children begin to use letters in their own style. They

usually start experimenting with the letters of their own names, as these are the most familiar

letters to them. Thus, children begin to learn the shape and sequence of the letters in their name

although their motor control is not yet accurate [Ferrer et al., 2015]. In some parts of the world

it is common for the children to improve their handwriting skills through printed worksheets.

Many efforts have been carried out in the last years in order to model the handwritten

signature process and analyse the human movement for handwriting. Some studies describe a

movement with analytical expressions [Alimi, 2003; Hogan, 1984; Plamondon, 1995], while oth-
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ers proceed through the numerical resolution of a system of differential equations [Harris and

Wolpert, 1998; Neilson, 1993]. Among all these types of model representation, the studies car-

ried out in [Plamondon and Parizeau, 1988; Wolpert et al., 1995] prove that kinematics signals

(in particular velocity oriented models) should be preferred over kinetics ones. These guidelines

were followed by the authors in [Reilly and Plamondon, 2009], considering a physiological model

of the human movement production for the generation of signatures. This choice was moti-

vated specially for the advantage of being invariant in regard of cultural or language differences,

whereas systems based on visual characteristics often need to be tailored for Chinese, Arabic,

European, or American signatures. As a result of that work, the Sigma-Lognormal writing gen-

eration model, which is further used nowadays in many different fields such as health [Impedovo

et al., 2013], appeared. This model was later used in [Galbally et al., 2012a,b] for the generation

of synthetic signatures. The approach was based on the combination of the spectral analysis

of real signatures with the Kinematic Theory of rapid human movements in order to generate

totally synthetic specimens. It is worth to highlight the research carried out by the authors Diaz

M. and Ferrer M.A. for the understanding of the intra-personal variability of the signatures

of a signer. The results of their investigation have concluded with great achievements in the

generation of synthetic data [Diaz et al., 2017a; Ferrer et al., 2017a, 2015], improving the system

performance in scenarios with lack of training signatures [Diaz et al., 2016a], and proposing new

discriminative features for user authentication [Diaz et al., 2018a], among many other lines.

Handwritten signature verification is the task of authenticating users through the way they

sign. It has been fully studied along the last 50 years proving to be one of the most reliable and

convenient biometric traits in many relevant sectors such as security, e-government, healthcare,

education, banking or insurance regardless of the age of the user. This fact has been demon-

strated in many different surveys published since its origins [Diaz et al., 2018b; Impedovo and

Pirlo, 2008; Leclerc and Plamondon, 1994; Plamondon and Lorette, 1989; Plamondon and Sri-

hari, 2000]. Despite its high deployment in actual scenarios, handwritten signature verification

is a complex task as signatures from the same user (a.k.a. genuine signatures) can differ signif-

icantly (high intra-user variability) whereas forgeries performed by other subjects can be very

similar to the genuine signatures (low inter-user variability).

Handwritten signature verification can be divided into two main areas regarding the data

acquisition method:

Off-line or static signature verification uses only the image of the signature that is ac-

quired from the paper sheet through imaging devices such as scanners and cameras pro-

viding gray scale images. Different approaches have been proposed in this area [Hou et al.,

2004]. In [Nguyen et al., 2009], the authors proposed the use of global features (e.g., ver-

tical and horizontal projections of the signatures, focusing on key strokes of them) based

on the boundary of a signature. Other authors have focused on the global image level and

measured the gray level variations in the signature images by using statistical texture fea-

ture [Vargas et al., 2011]. Recent studies have also proved the potential of DL technology

for the task [Dey et al., 2017].
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On-line or dynamic signature verification uses special hardware for the acquisition of the

signatures such as digitizing tablets manufactured by Wacom [Jain et al., 2002]. Therefore,

the dynamic information of the complete writing process is acquired. Besides, information

related to the pressure that the user perform on the screen device while signing as well

as the orientation of the pen can be available depending on the quality of the acquisition

device and the input. Therefore, on-line signature verification systems have traditionally

achieved much better results compared to the off-line systems as not only the image of the

signature is available, but also the dynamics [Galbally et al., 2015; Plamondon and Lorette,

1989]. This is the approach considered in this Thesis, and it will be further described in

the following chapters.

For both off- and on-line approaches, the output of the system is binary: accept or reject.

Usually, this decision depends on a similarity threshold. If the similarity (or match score)

resulting of the comparison between the query signature and the model of the claimed user

is higher than a specific threshold, the user is accepted in the system. Otherwise, the user is

rejected. Therefore, two types of errors can be produced in the system: False Acceptance (FA)

and False Rejection (FR). FA is produced when a user that falsely claims to be another user

is accepted by the system as being the genuine user. FR means that a genuine user is rejected

by the system as being an impostor. Given a population of genuine users and impostors and a

series of verification trials, the False Acceptance Rate (FAR) and False Rejection Rate (FRR)

of the verification system can be computed for any similarity threshold.

A common measure to compare the performance of biometric systems is the Equal Error

Rate (EER), which represents the error rate when the decision threshold is set to satisfy that

FAR = FRR. In addition, for an easy comparison between different systems at any decision

threshold, the Receiver Operating Characteristic (ROC) or Detection Error Trade-off (DET)

plots are generally used [Martin et al., 1997].

1.3. Challenges and Opportunities for On-Line Handwritten Sig-

nature Verification on Emerging Scenarios

Signatures have been traditionally acquired in office-like scenarios using devices specifically

designed to capture dynamic signatures and handwriting, in which the stylus has always been

considered as the input device achieving, in general, very good results. This fact is mainly

produced due to the very good conditions and controlled scenarios considered, e.g., the high-

quality digitizer tablets that provide information related to the pressure that the user performs

on the screen device, the pen inclination, and the pen trajectory during pen-ups, which is

invisible information for the impostors.

The high technological evolution and the significant improvement of sensors quality have

given rise to new interesting scenarios and opportunities for the task of on-line handwritten

signature verification. The acquisition of signatures have been expanded from the traditional
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high-quality Wacom devices to new general purpose devices such as smartphones and tablets,

given rise to device interoperability scenarios, i.e., different devices are considered for the acquisi-

tion of signatures during the enrolment and test. In addition, the use of the finger as the writing

input has become a thriving scenario for many real applications due to the stylus is rarely avail-

able in devices such as smartphones. All these factors, together with the fact that handwritten

signature is one of the most socially accepted traits, have produced a massive deployment of

this technology in many relevant sectors regardless of the age of the user [Guest, 2006]. Also,

the high acceptance of the society to use their mobile devices on daily activities [Salehan and

Negahban, 2013] introduces a new scenario where the number of signatures for a specific user

can increase with time, ending up with even dozens or hundreds of signatures acquired in multi-

ple sessions, unlike the traditional scenario considered in signature verification where just a few

genuine signatures from the enrolment session are used for modelling the users.

However, all these novelties and opportunities also bring up some unanswered questions:

What quality and type of information is provided by general purpose devices such as tablets or

smartphones? What is the system performance when using the finger as input? Is the intra- and

inter-user variability highly affected in these new scenarios? How do long-term scenarios affect

the final system performance? Should we consider template and system configuration update

strategies?

1.4. Deep Learning

DL has become a thriving topic in the last years, allowing computers to learn from experience

and understand the world in terms of hierarchy of simpler units [Goodfellow et al., 2016; LeCun

et al., 2015; Schmidhuber, 2015]. DL has enabled significant advances in complex domains such

as natural language processing [Sutskever et al., 2014], computer vision [Szegedy et al., 2016],

healthcare [Miotto et al., 2017] and fashion [Wang et al., 2018], among many others. Biometrics

has also made the most of it [Bhanu and Kumar, 2017; Sundararajan and Woodard, 2018],

e.g., in speech [Graves and Jaitly, 2014], and facial and fingerprint recognition [Chugh et al.,

2018; Parkhi et al., 2015]. The main reasons to understand the high deployment of DL lie

on the increasing amount of available data and also the technological evolution produced in

the field of GPU, allowing the development and training of deep size neural network models.

However, there are still some tasks in which DL has not achieved state-of-the-art results due to

the scarcity of available data and therefore, the inability to train from scratch traditional deep

learning architectures.

One of the fields in which DL has caused more impact in the last years is in handwrit-

ing recognition due to the relationship that exists between current inputs and past and future

contexts. These architectures have been deployed with success in both on- and off-line hand-

writing [Graves et al., 2009; Graves and Schmidhuber, 2009; Zhang et al., 2017].

Despite the good results obtained in the field of on-line handwriting recognition, and the

similarity with the task of on-line handwritten signature, few studies have analysed the use of DL
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approaches to the task of handwritten signature verification [Otte et al., 2014; Tiflin and Omlin,

2003], concluding that DL systems trained with standard mechanisms are not appropriate as

the amount of available data is scarce compared to other tasks such as handwriting recognition.

In this context, the following question comes to my mind: What deep learning architecture

shall we propose to facilitate the training process and generalise well to new unseen samples?

1.5. Handwritten Passwords for Touchscreen Biometrics

Traditionally, the two most prevalent user authentication approaches have been Personal

Identification Number (PIN) and One-Time Password (OTP). While PIN-based authentication

systems require users to memorise their personal passwords, OTP-based systems avoid users

to memorise them as the security system is in charge of selecting and providing to the user

a different password each time is required, e.g., sending messages to personal mobile devices

or special tokens. Despite the high popularity and deployment of PIN- and OTP-based au-

thentication systems in real scenarios, many studies have highlighted the weaknesses of these

approaches [Bonneau et al., 2012; Galbally et al., 2017]. First, it is common to use passwords

based on sequential digits, personal information such as birth dates, or simply words such as

“password” or “qwerty” that are very easy to guess. Second, passwords that are typed on mobile

devices such as tablets or smartphones are susceptible to smudge attacks, i.e., the deposition of

finger grease traces on the touchscreen can be used for the impostors to guess the password [Aviv

et al., 2010]. Finally, password-based authentication is also vulnerable to shoulder surfing. This

type of attack is produced when the impostor can observe directly or use external recording

devices to collect the user information. This attack has attracted the attention of many re-

searchers in recent years due to the increased deployment of handheld recording devices and

public surveillance infrastructures [Shukla et al., 2014; Yue et al., 2014]. Biometrics can cope

with these challenges by combining both security and convenience [Meng et al., 2015].

Two-factor authentication approaches have gained a lot of success in the last years in order

to improve the level of security. These approaches are based on the combination of two authen-

tication stages. For example, one possible case could be the following: 1) the security system

checks that the claimed user introduces its unique password correctly, and 2) its behavioural

biometric information is used for an enhanced final verification [Luca et al., 2012]. This way the

robustness of the security system increases as impostors need more than the traditional password

to get access to the system. This approach has been studied in previous works. In [Angulo and

Wastlund, 2011], the authors proposed a two-factor verification system based on dynamic lock

patterns, achieving a final average value of 10.39% EER against impostors. A similar approach

based on OTP with dynamical lock patterns was considered in [Lacharme and Rosenberger,

2016] extracting features such as the X and Y position, pressure or finger size with very good

results. This approach has also been expanded to periocular biometrics [Jenkins et al., 2017].

In the present Dissertation we evaluate the advantages and potential of incorporating bio-

metrics to password-based mobile authentication systems, asking the users to draw each digit
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of the password on the touchscreen instead of typing them as usual. This way, the traditional

authentication systems are enhanced by incorporating dynamic handwritten biometric informa-

tion. One example of use that motivates our proposed approach is on internet payments with

credit cards. Banks usually send a numerical password (typically between 6 and 8 digits) to

the user’s mobile device. This numerical password must be inserted by the user in the security

platform in order to complete the payment. Our proposed approach enhances such scenario by

including a second authentication factor based on the user biometric information while drawing

the digits.

However, the novelty of our approach brings up some unanswered questions: What is the

discriminative power of each handwritten digit? How robust is our biometric system regarding

the length of the handwritten password or the number of available enrolment samples per user?

Should we follow any password generation strategy to improve the system performance?

1.6. Motivation of the Thesis

The research carried out in this Thesis has been mainly motivated by the following five

observations:

The first observation comes from the fact that at the beginning of this Thesis, there were

no publicly available databases that considered the acquisition of handwritten signatures using

commercial off-the-shelf (COTS) devices over the emerging finger, device interoperability and

mixed writing-input scenarios. All signature databases such as the MCYT or the BiosecurID

considered devices specifically designed to capture dynamic signatures and handwriting using

the stylus as input [Fierrez et al., 2010; Ortega-Garcia et al., 2003].

The second observation is strongly related to the first one. Due to the novelty of these

scenarios and the lack of publicly available databases, there were almost no studies that per-

formed a complete analysis of the functioning of signature verification systems using COTS

devices such as smartphones and tablets general purpose devices. Additionally, scenarios such

as finger input, device interoperability, and mixed writing-input (i.e., different writing tools

are considered for the acquisition of signatures during the enrolment and test) were scarcely

studied [Alonso-Fernandez et al., 2005; Martinez-Diaz et al., 2013; Robertson and Guest, 2015].

The third observation is motivated due to the high acceptance of the society to use their

mobile devices on daily activities [Salehan and Negahban, 2013]. This fact opens the way to new

scenarios where the number of available signatures for a specific user can increase with time,

being possible to configure time-adaptive improved versions of the users’ models in order to

overcome to some extent the aging effect (i.e., the gradual degradation of the system performance

due to the changes suffered by the user’s trait along the time).

The fourth observation comes from the fact that despite the astonishing results achieved

using DL approaches in many different fields, concretely in handwriting recognition and writer

identification [Graves et al., 2009; Graves and Schmidhuber, 2009; Zhang et al., 2017], almost

no research has been carried out on handwritten signature verification. The core of most of the
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state-of-the-art signature verification systems is still almost the same than 20 years ago (e.g.,

Dynamic Time Warping (DTW), Hidden Markov Models (HMM), Gaussian Mixture Models

(GMM) or Support Vector Machines (SVM) [Diaz et al., 2018b; Impedovo and Pirlo, 2008;

Leclerc and Plamondon, 1994; Plamondon and Lorette, 1989; Plamondon and Srihari, 2000]).

The last observation is that, in general, traditional authentication methods based on pass-

words such as PIN and OTP are still commonly used nowadays, despite they can be easily stolen

or forged [Bonneau et al., 2012; Galbally et al., 2017]. Two-factor authentication approaches

can enhance the security of these scenarios including biometric information such as handwriting.

This way impostors need more than the traditional password to get access to the system.

1.7. The Thesis and Main Contributions

The Thesis developed in this Dissertation can be stated as follows:

The high technological evolution and massive deployment of mobile devices in our soci-

ety make possible to use signature- and handwriting-based authentication approaches

in unprecedented scenarios. However, these new opportunities also bring up challenges

that must be carefully tackled. These can be overcome through an exhaustive analysis

of the new scenarios considering robust preprocessing and feature selection techniques,

template update strategies, and also by the improvement of traditional authentica-

tion core matchers through Deep Learning techniques and new concepts such as the

signature complexity.

The main contributions of this Thesis are:

Emerging scenarios: We have performed a complete analysis of traditional on-line signa-

ture verification systems on finger input, device interoperability and mixed writing-input

scenarios. In order to do that, we have first acquired a new signature database (e-BioSign,

which is already publicly available to the research community). Different preprocessing

and feature selection techniques have been proposed, analysing the robustness of both

global and local approaches and selecting the optimal feature subsets for each scenario.

Finally, we have concentrated on the new scenario where the number of available signa-

tures for a specific user can increase with time, acquiring signatures in multiple sessions. In

order to do that, we have first extended the ATVS On-Line Signature Long-Term database

including skilled forgeries. This database comprises a total of 6 different acquisition ses-

sions within a 15-month time span. Then, we have carried out an exhaustive experimental

analysis of template update strategies for three very popular on-line signature verifica-

tion systems, extracting various practical findings related to the template aging effect in

signature biometrics, and configuring time-adaptive improved versions of the considered

baseline approaches overcoming to some extent the template aging.
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Towards the near future: We have explored the potential of DL approaches for on-line

signature verification. Our proposed approach has outperformed other state-of-the-art

systems even with small number of training signatures. Besides, we have evaluated the

concept of complexity in signature verification, extracting specific features for each signa-

ture complexity level, resulting in better system performances compared to the traditional

approaches.

Handwritten passwords for touchscreen biometrics: We have proposed the incorporation

of handwriting biometric information to traditional password-based mobile authentication

systems, asking the users to draw each digit of the password on the touchscreen instead of

typing them as usual. A new database (e-BioDigit) that comprises handwritten numerical

digits from 0 to 9 has been acquired. We have performed a complete analysis of the touch

biometric system regarding the robustness and discriminative power of each handwritten

digit. In addition, we have analysed the potential of our proposed approach when in-

creasing the length of the handwritten password and the number of available enrolment

samples per user. Our proposed approach has achieved remarkable results compared to

other verification traits such as the handwritten signature and graphical passwords, as well

as other recent touchscreen biometrics.

1.8. Outline of the Dissertation

The Thesis is structured according to a traditional complex type with background theory,

practical methods, and experimental studies in which the methods are applied [Paltridge, 2002].

The Dissertation is divided into five parts. Part I introduces the problem statement and the

contributions originated from this Dissertation. Then, there are three experimental parts: Part

II focuses on the new challenging and current signature verification scenarios, Part III describes

the experimental work carried out in order to enhance the core of traditional signature verifica-

tion systems, and finally Part IV addresses the experimental work carried out for incorporating

handwriting biometric information to traditional password-based authentication systems. The

Dissertation concludes with Part V. The chapter structure is as follows:

Part I: Problem Statement and Contributions

� Chapter 1 introduces the topics addressed in this Thesis: biometrics, on-line hand-

written signature verification, deep learning, and handwritten passwords for touch-

screen biometrics.

� Chapter 2 summarises related works which are in line with this Thesis.

� Chapter 3 first gives an overview of the most relevant features of existing on-line sig-

nature databases, making special emphasis on the databases used in the experimental

work of this Thesis. We then present the new e-BioSign and e-BioDigit databases,

as well as the extension of the ATVS On-Line Signature Long-Term database. These
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new databases have been acquired during the realization of the Thesis and are publicly

available to the research community nowadays.

� Chapter 4 describes all the details of the traditional and novel on-line handwritten

signature verification systems considered in this Thesis.

Part II: Emerging Scenarios

� Chapter 5 first analyses the system performance of traditional signature verification

systems on emerging scenarios such as finger input, device interoperability and mixed

writing-input scenarios. Both Biosecure and e-BioSign databases are considered in

the experimental work. Then, we propose a two-stage approach based on robust

preprocessing and feature selection techniques in order to alleviate the degradation

of the system performance on these novel scenarios.

� Chapter 6 explores the scenario where the number of available signatures for a specific

user can increase with time, ending up even with dozens or hundreds of signatures

acquired in multiple sessions. This chapter focuses on the template aging effects on

popular signature verification systems and proposes template and system configura-

tion update strategies in order to reduce the template aging.

Part III: Towards the Near Future

� Chapter 7 evaluates the potential of our proposed on-line signature verification system

based on DL approaches and compares it with state-of-the-art signature verification

systems.

� Chapter 8 explores the concept of complexity in signature biometrics and proposes

on-line signature verification systems adapted to the signature complexity level of the

user

Part IV: Handwritten Passwords for Touchscreen Biometrics

� Chapter 9 studies the incorporation of handwriting biometric information to password-

based mobile authentication systems, asking the users to draw each digit of the pass-

word on the touchscreen instead of typing them as usual.

Part V: Conclusions

� Chapter 10 concludes the Thesis summarising the main results obtained and outlining

future research lines.

The dependence among the chapters is illustrated in Fig. 1.2. For example, before reading

any of the experimental Chapters 5, 6, 7, 8, and 9 (yellow boxes in Fig. 1.2), one should read

first Chapters 1, 2, 3 and 4. Before Chapter 8 it is recommended to read Chapter 5.
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Figure 1.2: Dependence among chapters.

The methods considered in this Thesis are based on two different approaches: i) traditional

approaches from the handwriting and signature recognition literature, and ii) novel deep learning

approaches. The reader is referred to standard texts for a background on the topic [Duda et al.,

2001; Goodfellow et al., 2016; Schmidhuber, 2015; Theodoridis and Koutroumbas, 2008].

1.9. Detailed Research Contributions

The research contributions of this Thesis are the following (some publications appear in

several items of the list, journal publications are in bold):

LITERATURE REVIEWS.

1. Presentation attacks in signature biometrics.
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Chapter 2

Related Works

This chapter summarises previous studies related to the Thesis. First, Sec. 2.1 describes

each module of traditional on-line signature verification systems as well as the two modalities

considered, i.e., feature-based systems (a.k.a. global systems) and time functions-based systems

(a.k.a. local systems). Then, we present in Sec. 2.2 some of the signature verification emerging

scenarios considered in this Dissertation and perform a thorough overview of related works

in this line. Other interesting on-line signature research topics are described in Sec. 2.3. The

importance and success of DL approaches are described in Sec. 2.4 together with a brief overview

of the most famous DL architectures considered nowadays. Lastly, Sec. 2.5 surveys and compares

advantages and limitations of recent touchscreen biometrics approaches.

This chapter is based on the following publications: [Tolosana et al., 2018b, 2017a, 2018c,

2015d].

2.1. On-Line Signature Verification

2.1.1. System Architecture

On-line signature verification systems usually contain the same modules that other bio-

metric traits. Fig. 2.1 shows the architecture of a traditional on-line signature verification

system [Diaz et al., 2018b; Fierrez and Ortega-Garcia, 2008; Impedovo and Pirlo, 2008; Plam-

ondon and Lorette, 1989; Plamondon and Srihari, 2000]. In general, the following modules are

considered:

1. Data Acquisition: Many different devices allow the acquisition of handwritten signatures

nowadays. From the traditional Wacom devices designed specifically for the acquisition of

signatures and handwriting [Ortega-Garcia et al., 2010, 2003], to general purpose devices

such as smartphones and tablets that we use on a daily basis [Antal and Bandi, 2017;

Blanco-Gonzalo et al., 2014; Tolosana et al., 2017a]. The wide variety of acquisition devices

has extended even to the development of new ink pens with the technology necessary for
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Figure 2.1: Traditional architecture of a handwritten signature verification system.

the acquisition of the biometric information during the whole signing process, like those

manufactured by Anoto [Malik et al., 2015]. The signature information captured is highly

dependent on the device (i.e., specifically designed for acquiring handwriting and signature

or general purpose devices such as smartphones and tablets) and also the writing input

considered (i.e., stylus or finger). In general, high-quality devices like those manufactured

by Wacom or Signotec GmbH provide information related to the signature trajectory (i.e.,

X and Y spatial coordinates), pressure and pen orientation (i.e., altitude and azimuth).

However, this information is reduced to just spatial coordinates and pressure when using

general purpose devices. The information available is even more reduced when we consider

the case of using the finger as input. In this scenario only information related to the spatial

coordinates is available. In addition to all these variabilities, it is common to find different

spatial resolutions and also sampling rates among different devices, ranging from 100 Hz

to 200 Hz (the maximum frequencies of the signature time functions are approximately of

20 - 30 Hz [Plamondon and Lorette, 1989]). Finally, all these signature signals are stored

in a file as discrete-time series.

2. Preprocessing: This is an optional module, although it is commonly used nowadays.

The main purpose is to enhance the quality of the raw signature signals captured by

the sensor in order to extract more robust features over different acquisition scenarios

and improve the final performance of the system. Among all the different preprocessing

techniques, it is common to correct sampling errors, normalise the sampling frequency

among different devices using interpolation techniques, normalise the size and position of

the signatures, and remove the first and last samples of the signatures as they correspond

to the time between the operator clicks to start/finish the acquisition and the time the

user starts/finishes signing [Martinez-Diaz et al., 2007; Tolosana et al., 2015c,d].

3. Enrolment: In this step the biometric information of the user is extracted in a preliminary

registration stage before using the authentication system for the first time. Two different

systems are considered, model- and reference-based systems. In model-based systems a
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statistical user model is computed using a set of genuine signatures. The user model is

used for future comparisons against input signatures in the similarity computation mod-

ule [Galbally et al., 2013; Nanni and Lumini, 2005; Tolosana et al., 2015e]. On the other

hand, reference-based systems store the features of each genuine signature as templates.

These templates are then used in the similarity computation module to measure the sim-

ilarity against the input signature features [Galbally et al., 2013; Lei and Govindaraju,

2005; Sae-Bae and Memon, 2014; Tolosana et al., 2015d].

4. Feature Extraction: Two main approaches have been traditionally considered in the

literature [Diaz et al., 2018b; Martinez-Diaz et al., 2015a]. On the one hand, feature-

based systems (a.k.a. global systems) consist on the extraction of global features from

the signature in order to obtain a holistic feature vector that represents the user signa-

ture [Martinez-Diaz et al., 2014; Sae-Bae and Memon, 2014; Tolosana et al., 2015a]. On

the other hand, time functions-based systems (a.k.a. local systems) consider the time se-

quences of the signature provided by the sensor (e.g., X and Y coordinates and pressure)

and other time sequences extracted from the raw signals [Liu et al., 2014; Martinez-Diaz

et al., 2014]. Time sequences related to pen orientation such as the azimuth and altitude

have been reported to be useful for some cases [Houmani et al., 2011; Lei and Govin-

daraju, 2005; Muramatsu and Matsumoto, 2007]. Due to time sequences provide much

more discriminative biometric information of the user, local systems usually outperform

global systems [Martinez-Diaz et al., 2014; Tolosana et al., 2015d; Van et al., 2007].

5. Similarity Computation: This module measures the similarity between the reference

signatures acquired in the enrolment stage and the input query signatures, returning a

matching score value as the output [Diaz et al., 2018b; Martinez-Diaz et al., 2015b]. In

global systems, some of the most famous matching techniques are based on Euclidean and

Mahalanobis distance, Random Forest, Parzen Windows, Support Vector Machines, and

Neural Networks (NNs) [Kareem et al., 2010; Liu et al., 2014; Martinez-Diaz et al., 2014;

Parodi and Alewijnse, 2014; Tolosana et al., 2015a]. Local systems try to make the most

of the dynamic information of the signature using techniques like DTW, HMMs, GMMs,

Time Delay Neural Networks (TDNNs) and Recurrent Neural Networks (RNNs) [Bromley

et al., 1993; Fierrez et al., 2007; Jonas and Andrzej, 2003; Martinez-Diaz et al., 2014;

Tolosana et al., 2018c].

6. Score Normalisation: The matching score may be normalised to a given range using

different techniques such as min-max, z-score or tanh-estimators, among many others [Jain

et al., 2005]. This module is critical when combining scores from multiple classifiers or

in multi-biometric systems [Alonso-Fernandez et al., 2010; Castrillon-Santana et al., 2016;

Kittler et al., 1998; Poh et al., 2007]. More sophisticated techniques like target-dependent

score normalisation can lead to an improved system performance [Fierrez-Aguilar et al.,

2005c].
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Finally, an input query signature will be considered to belong to the claimed user if its

matching score exceeds a given threshold. This threshold could be modified in real applications

depending on the importance of the operation, e.g., do the shopping on Amazon or make a

transaction of 10,000 euros.

2.1.2. Global Systems

Global systems (a.k.a. feature-based systems) have been exhaustively analysed in the last

centuries as a robust way to verify the identity of the user [Diaz et al., 2018b; Fierrez and

Ortega-Garcia, 2008; Plamondon and Srihari, 2000]. This approach consists of extracting dis-

criminative features from the whole signature, creating a final feature vector that represents a

specific user. Many different global features have been proposed along the years. Fierrez et al.

originally proposed a set of 100 features related to time, kinematic, direction and geometry in-

formation [Fierrez-Aguilar et al., 2005b]. Other authors have also evaluated the discriminative

power of other features for user authentication. In [Sae-Bae and Memon, 2014], the authors

proposed a feature vector derived from attributes of several histograms that can be computed in

linear time. Those histogram-based features were designed to capture essential attributes of the

signature as well as relationships between these attributes. Other approaches have extracted fea-

tures related to the Kinematic Theory of the rapid human movements and its associated Sigma

LogNormal model. In [Gomez-Barrero et al., 2015], the authors proposed a set of 4 features in

order to analyse the variations of the neuromuscular responses in the whole signature. A novel

set of features was recently proposed in [Diaz et al., 2018a]. In that study, Diaz et al. proposed

a new feature space based on characterising the movement of the shoulder, the elbow and the

wrist joints when signing. As this motion is not directly obtained from a digital tablet, the new

features were calculated by means of a virtual skeletal arm (VSA) model, which simulated the

architecture of a real arm and forearm. It is also interesting to highlight the approach proposed

in [Zeinali et al., 2017]. In that study the authors applied the concept of i-vectors, widely used

in speaker and language recognition, to the signature verification task extracting a fixed-length

vector for each signature. Other interesting approaches have been also proposed in the following

studies [Galbally et al., 2015; Guru and Prakash, 2009; Lee et al., 1996; Parodi and Alewijnse,

2014; Parziale et al., 2013; Richiardi et al., 2005; Sharma and Sundaram, 2016]. Due to the

large number of features proposed in the literature, it is common to use different algorithms in

order to select the most discriminative features for each scenario. Among all the feature selec-

tion techniques proposed, one of the best performing techniques is Sequential Forward Floating

Search (SFFS) [Jain and Zongker, 1997; Pudil et al., 1994]. This technique is explained in detail

in Sec. 2.1.4. Finally, the similarity computation module is based on techniques such as Eu-

clidean and Mahalanobis distance, Random Forest, Parzen Windows, Support Vector Machines,

Neural Networks, etc [Kareem et al., 2010; Liu et al., 2014; Martinez-Diaz et al., 2014; Parodi

and Alewijnse, 2014; Tolosana et al., 2015a].
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2.1.3. Local Systems

Local systems (a.k.a. time functions-based systems) consider the time sequences of the

signatures to discriminate between users. This way more comprehensive user models can be

created as every single moment of the signing process is considered. Different local features have

been proposed in the literature. In [Fierrez-Aguilar et al., 2005b; Martinez-Diaz et al., 2014]

the authors proposed a set of 27 time functions related to spatial coordinates, pressure, pen

angular orientations and geometric information of the signatures. Other local features related

to the Kinematic Theory of the rapid human movements have been studied in [Diaz et al.,

2016a; Fischer and Plamondon, 2017]. In [Fischer and Plamondon, 2017], the authors proposed

a set of 18 new dynamic features extracted from the Sigma LogNormal writing generation model,

demonstrating that this neuromuscular analysis is complementary to a well-established signature

verification system. Among all the possible techniques studied in signature verification, the most

famous are DTW, HMM, and GMM [Fierrez et al., 2007; Jonas and Andrzej, 2003; Martinez-

Diaz et al., 2014]. These algorithms are explained with more details in Sec. 2.1.3.1 and 2.1.3.2.

Multi-algorithm approaches have been also studied in order to enhance the robustness of the

on-line signature verification systems [Fierrez-Aguilar et al., 2005a; Pirlo et al., 2014; Sharma

and Sundaram, 2017]. Finally, authentication systems based on the combination of global and

local systems have been proposed in the literature as well [Fierrez-Aguilar et al., 2005b].

2.1.3.1. Dynamic Time Warping

DTW is one of the most popular algorithms in on-line signature verification. It achieves very

robust results and does not require to build any statistical user model as it is an elastic technique

algorithm. DTW is an application of Dynamic Programming to the problem of matching time

sequences. Yasuhara and Oka were the first to report in [Yasuhara and Oka, 1978] its suitability

for on-line signature verification, by using the algorithm to match time functions extracted from

digitized signature signals. Their approach was an adaptation of the original algorithm proposed

by [Yasuhara and Oka, 1977] in the field of speech recognition. The goal of DTW is to find an

elastic match among samples of a pair of sequences X and Y that minimise a given distance

measure. The algorithm may be defined as follows [Yasuhara and Oka, 1977]. Let’s define two

sequences

X = x1,x2, ...,xi, ...,xI

Y = y1,y2, ...,yj , ...,yJ

(2.1)

and a distance measure as

d(i, j) = ‖xi − yj‖ (2.2)

between sequence samples. A warping path can be defined as

C = c1, c2, ..., ck, ..., cK (2.3)
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where each ck represents a correspondence (i, j) between samples of X and Y. The initial

condition of the algorithm is set to

g1 = g(1, 1) = d(1, 1) · w(1) (2.4)

where gk represents the accumulated distance after k steps and w(k) is a weighting factor that

must be defined. For each iteration, gk is computed as

gk = g(i, j) = min
ck−1

[gk−1 + d(ck) · w(k)] (2.5)

until the I’th and J ’th sample of both sequences respectively is reached. The resulting normal-

ized distance is

D(X,Y) =
gK∑K

k=1w(k)
(2.6)

where
∑

w(k) compensates the effect of the length of the sequences. The weighting factors wk

are defined in order to restrict which correspondences among samples of both sequences are

allowed.

Despite the algorithm was first used 40 years ago, many authors have recently proposed

new advancements and approaches over the traditional DTW algorithm [Faundez-Zanuy, 2007;

Fischer and Plamondon, 2017; Kholmatov and Yanikoglu, 2005; Sharma and Sundaram, 2017;

Xia et al., 2018]. This fact demonstrates its potential for signature verification, especially in

those scenarios with low number of training signatures [Diaz et al., 2018b, 2016b]. In fact, this

algorithm has defeated other similarity computation algorithms in international competitions

such as BioSecure Signature Evaluation Campaign 2009 (BSEC 2009) and SigWiComp 2013 and

2015 [Houmani et al., 2011; Malik et al., 2015, 2013].

2.1.3.2. Hidden Markov Models and Gaussian Mixture Models

HMM and GMM have been further studied in on-line signature verification, proving to

achieve remarkable results in scenarios where the number of available signatures per user is

large [Dolfing et al., 1998; Fierrez et al., 2007; Galbally et al., 2013; Jonas and Andrzej, 2003;

Martinez-Diaz et al., 2007; Sharma and Sundaram, 2017; Van et al., 2007; Yang et al., 1995].

HMM algorithm [Rabiner, 1989] represents a double stochastic process, governed by an underly-

ing Markov chain, with a finite number of states and random function set that generate symbols

or observations each of which is associated with one state. The basic structure of an HMM-based

system comprises the following elements:

Number of hidden states N.

Number of Gaussian mixtures per state M.
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Probability transition matrix A which contains the probabilities of jumping from one state

to another or staying on the same state.

Finding a reliable and robust model structure for on-line signature verification is not a

trivial task. The selection of the optimal parameters N and M can severely affect the system

performance of our systems as it has been analysed in previous studies [Fierrez et al., 2007].

In that work, Fierrez et al. evaluated the performance of an HMM-based system for different

values of N and M. In the present Thesis we propose to go further, considering template and

system configuration update strategies when the number of user signatures increases with time.

In addition, a GMM-based system, which can be seen as a particular case of an HMM-based

system with only one hidden state, is also considered.

2.1.4. Feature Selection Algorithms

One of the the key factors in signature verification systems is the selection of the optimal

features (i.e., global and local features). In Sec. 2.1.2 and 2.1.3 we have described the widen va-

riety of features proposed in the literature. However, due to the intra- and inter-user variability,

among other factors like the application scenario and writing tool, the best system performance

is usually achieved through feature selection techniques.

Feature selection techniques try to reduce the dimensionality of the feature vector while

optimising the verification performance. Their goal is to find the optimal combination of features

according to a given optimisation criteria. Ideally, given a feature vector of F dimensions, all the

possible feature combinations from 1 to F should be tested in order to find the optimal feature

subset. Unfortunately, this is not feasible in many cases due to the high amount of combinations

to perform, which is
F∑

i=1

(
F

i

)

A critical step when performing feature selection is the choice of the optimisation criterion.

Two main alternatives can be taken: filter and wrapper methods [Theodoridis and Koutroumbas,

2008]. In the former, the optimal feature subset is selected according to intrinsic properties of

the training data such as statistical properties. In the latter, the system performance of the

task under consideration is used as the criterion to be optimised. A reasonable choice for a

signature verification system is a wrapper method in which the verification performance in

terms of the EER is set as the optimisation criterion. Wrapper methods require in general more

computational resources, as the evaluation of the optimisation criterion (e.g., the verification

decision) is commonly more complex than the computation of statistical properties of the training

data.

Many different feature selection approaches have been proposed in the last years for on-line

signature verification. Lee et al. [1996] studied algorithms for selecting and orthogonalising

features in accordance with the availability of training data and the system complexity level.

The authors evaluated these algorithms using several classifiers proposing for the final system a

29



2. RELATED WORKS

selection of only 15 features over the original 42 features. Fierrez-Aguilar et al. [2005a] carried

out some feature selection experiments based on feature ranking according to scalar inter-user

class separability. In order to do that, they computed the scalar Mahalanobis distance between

the features. Richiardi et al. [2005] proposed a new feature selection technique based on a

modification of the traditional Fisher ratio for the cost function of the algorithm. This way the

authors were able to adapt to the signature verification task where small number of samples

are commonly found. Galbally et al. [2007] applied two different Genetic Algorithm (GA)

architectures to the feature selection problem. They first considered standard GAs with binary

coding to find the optimal subset of features that minimise the verification error rate of the

system. Then, they studied the phenomenon of the curse of dimensionality using a GA with

integer coding. Very interesting findings were extracted regarding what type of features are

more discriminative for each type of impostor. Other feature selection techniques based on

GAs have been proposed in [Rúa and Castro, 2012]. Martinez-Diaz et al. [2008] proposed a

new feature selection technique based on Fisher Discriminative Ratio (FDR) in order to analyse

the discriminative power of each feature on mobile scenarios. Finally, Parodi and Gomez [2014]

proposed a fixed-length representation of the time functions associated with the signatures based

on Legendre polynomials series expansions. They also analysed feature combinations in order

to provide some insight on their actual discriminative power for Western and Chinese publicly

available signature databases.

One of the best feature selection techniques is the SFFS algorithm (a specific case of the

floating search), which is considered in this Thesis in order to select the optimal global and local

features for each specific scenario. This algorithm was first proposed by Pudil et al. [1994] so as

to solve some of the problems presented in traditional feature selection techniques, e.g., when

a feature is selected, it can no longer be discarded (the nesting effect). SFFS algorithm offers

a suboptimal solution since it does not take into account all the possible feature combinations,

although it considers correlations between features. This way we can obtain robust feature

vectors in a reasonable amount of time. In all cases we consider the EER as the optimisation

criterion. This algorithm has been used in previous studies with very good results [Galbally

et al., 2013; Jain and Zongker, 1997; Martinez-Diaz et al., 2008, 2014; Tolosana et al., 2015b].

2.1.5. Sequential Forward Floating Search

This section describes the operation of the SFFS algorithm following [Theodoridis and

Koutroumbas, 2008].

Let’s consider a set of F features, from which we wish to find the best performing subset

of N features, N ≤ F in terms of a given criterion C. Let Xn = {x1, x2, ..., xn} be the best

combination of n features and YF−n the set of remaining F − n features. In the algorithm, we

store the best sets of lower dimensions X1,X2, ...,Xn−1. The following steps are performed until

a loop with a stable set Xn is obtained.

1. Inclusion
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Choose the element xn+1 from YF−n which, added to Xn produces the best value of the

optimisation criterion C. Then, Xn+1 = {Xn, xn+1}.

2. Test

a) Find the feature xr that has the least negative (or most positive) effect on the criterion

C when it is removed from Xn+1.

b) If r = n+ 1, change n for n+ 1 and go to step 1.

c) If r 6= n + 1 and C(Xn+1 − {xr}) < C(Xn) go to step 1, that is, if removal of any

feature does not improve the criterion on the previously selected set Xn, no further

backward search is performed.

3. Exclusion

a) Remove xr to get X ′
n = Xn+1 − {xr}.

b) Find the feature xs that has the least negative effect on the criterion C when it is

removed from X ′
n.

c) If C(X ′
n − {xs}) < C(Xn−1) then Xn = X ′

n and go to step 1, that is, if removal of

another feature does not improve the criterion on the previously selected set Xn, no

further backward search is performed.

d) Remove xs by putting X ′
n−1 = X ′

n − {xs} and n = n− 1.

e) Go to step 3.a.

Note that some specific conditions on the first steps have not been considered in order to

simplify the algorithm description.

2.2. On-Line Signature Verification on Emerging Scenarios

The high deployment of mobile devices and acceptance of the society towards the use of

them on daily operations have given rise to new very interesting scenarios and opportunities

for on-line signature verification. However, these new scenarios and opportunities also bring up

some challenges for the system performance that must be tackled.

2.2.1. Device Interoperability and Finger Input

On-line handwritten signature can be easily acquired through many different devices nowa-

days. Yet more, the acquisition of the signatures has been expanded from the traditional stylus

on high-quality Wacom devices to COTS general purpose devices using even our own finger as

the writing input. These aspects have made possible an unprecedented deployment of the sig-

nature technology in many different scenarios and applications. However, it is important not to

forget that each device and acquisition tool provides different user information and quality that
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must be taken into account in order not to degrade the system performance, as it was described

in Sec. 2.1.1.

To the best of our knowledge, one of the first studies that evaluated device interoperability

scenarios was [Alonso-Fernandez et al., 2005]. In that work, the authors studied the variability

of the signatures acquired on access control scenarios using two different tablet PCs (Hewlett-

Packard TC1100 and Toshiba Portege M200) and the stylus as the writing input. The authors

considered a signature verification system based on a total of 14 local features and HMM algo-

rithm for the similarity computation. They evaluated the performance of the system considering

both monosensor and multisensor enrolment and fusion of sensors. Their results shown that,

when using the sensor providing less reliable information, verification performance was not much

affected by the Tablet PC used for enrolment. However, this fact did not occur when testing

with the more reliable sensor, where verification performance drops significantly if they used

the other Tablet PC for enrolment. These results remarked the importance of having enrolment

models generated with good quality data.

Since that preliminary study carried out in 2005, few works have focused on this important

scenario. In [Blanco-Gonzalo et al., 2014], the authors evaluated device interoperability scenarios

using a new database in which signatures were captured using tablet PCs, smartphones and

tablets. They considered random (zero-effort) forgeries with a signature verification system

based on only 4 local features and DTW algorithm. In order to achieve a higher similarity

between signatures acquired through different devices, time- and spatial-based preprocessing

normalisation techniques were applied. In [Smejkal et al., 2017], the authors evaluated this new

scenario using a total of 8 different devices (specifically designed for the acquisition of signatures)

from the company Signotec GmbH, setting up the sampling frequency to 250 Hz in all devices in

order to decrease the variability between them. The authors evaluated the stability of the users

when signing through each of the devices, concluding that signatures are not very affected on

those specific devices. Other studies such as [Sae-Bae and Memon, 2014] indirectly considered

this scenario through the acquisition of a new database in which each user had to sign in his/her

personal smartphone. Despite the importance of the device interoperability scenario in our

society where acquisition devices are replaced constantly, none of these studies have completely

analysed and compensated the countermeasures of device interoperability scenarios for on-line

signature verification.

Finger input scenarios have also attracted the attention of many researchers in the last years.

In [Martinez-Diaz et al., 2013], both pen and finger were considered as input in the experimental

work. For the finger case, users were asked to perform a simplified version of their signatures

(a.k.a. pseudo-signatures) based on their initials or part of their signature flourish. The results

using both inputs were analysed, showing a high degradation of the system performance for

the finger scenario with results in the range of 20.0% EER. In [Robertson and Guest, 2015],

a statistical analysis was conducted to assess consistency between signatures acquired using

pen and finger. The results showed a set of local and global features that maintain stability

in both scenarios. In [Sae-Bae and Memon, 2014], the authors acquired a database composed
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of 6 different sessions. Users were asked to perform their signatures using the finger as input

on their own devices. Regarding the experimental work, they considered a global system whose

features were extracted from histograms related to X and Y coordinates, speed, angles, pressure,

and their derivatives. That approach was evaluated only for random forgeries achieving results

between 3.0% and 8.0% EERs. In [Antal and Bandi, 2017], both pen and finger were considered

as input. For the pen case, the MCYT database was used whereas for the finger case a new

database named MOBISIG was captured using a Nexus 9 tablet with a total of 83 users and

3 acquisition sessions. The results obtained using both global and local signature verification

systems showed the worsening of the system performance when the finger was used as input,

especially for skilled forgeries with EERs ca. 20.0%. Similar results have been also obtained in

other recent studies on the finger scenario using approaches based on autoencoders or simplified

versions of DTW [Nam et al., 2016; Tang et al., 2016].

Finally, it is also interesting to remark that in most studies the authors have focused on

the analysis of the system performance for each individual writing tool. However, it is also

very interesting to analyse the scenario where enrolment and test signatures are captured using

different writing tools as this can be a potential application scenario, for example in banking.

This Thesis performs a complete analysis of the effects of these emerging acquisition scenarios

on the system performance, covering all details of our proposed approach for both research

and industrial applications. Additionally, we acquired and made publicly available the first

handwritten signature database (i.e., e-BioSign) that considers all these acquisition scenarios.

2.2.2. Signature Template Aging

The effect of aging on human biometric traits have been studied for many different applica-

tions. Some studies analyses the aging effect from a medical point of view and early diagnoses

of diseases [Coleman and Grover, 2006; Drempt et al., 2011; Reilly and Plamondon, 2012], while

others analyse the countermeasures for the biometric authentication system performance, espe-

cially for both face and fingerprint traits [Deb et al., 2018; Galbally et al., 2018; Ling et al.,

2007; Mahajan and Sondur, 2018; Modi and Elliott, 2006; Modi et al., 2007; Ramanathan and

Chellappa, 2006].

Aging, in terms of the gradual degradation of a system performance due to the changes

suffered by the user’s trait along the time, has been also studied for on-line signature verification.

Although it cannot be strictly considered as aging, several works have analysed the short-term

variability of signatures using samples captured in the same session (intra-session variability,

within minutes), or in different sessions (inter-session variability, within days/weeks) [Galbally

et al., 2009; Guest, 2006; Houmani et al., 2009]. Among all these studies, it is important

to remark the work carried out in [Sae-Bae and Memon, 2014]. In that study the authors

evaluated the impact of signature aging in short term and the effectiveness of using a cross-

session training strategy. For that purpose, they acquired a database composed of 6 different

sessions. Users were asked to perform their signatures using the finger as the writing tool

on their own devices. Regarding the experimental work, they considered a global system whose
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features were extracted from histograms related to X and Y coordinates, speed, angles, pressure,

and their derivatives. Results obtained in that work showed the degradation of the system

performance when training and test samples belonged to different sessions. Additionally, they

analysed the system performance when signatures from multiple sessions were considered for

training, achieving better results compared to the case of using just one session for training.

The first consistent and reproducible evaluation of the template aging effect for on-line

signature verification was carried out in [Galbally et al., 2013]. In that study, Galbally et al.

generated a new database (ATVS Signature Long-Term) from two previous datasets which were

acquired, under very similar conditions, in 6 sessions distributed in a 15-month time span. In the

evaluation, the authors considered in the experimental work three different systems, representing

the current most popular approaches in signature recognition, proving the degradation suffered

by this trait with the passing of time.

In order to reduce the impact of the aging effect on the system performance, different tem-

plate update strategies have been proposed in [Galbally et al., 2013; Sae-Bae and Memon, 2014].

However, in [Galbally et al., 2013] template update strategies were studied considering only

the case of random forgeries. Additionally, signatures from the same session were considered for

training and testing, so not meaningful conclusions could be extracted. In [Sae-Bae and Memon,

2014] the database considered was acquired with a very small time gap between the first and

last sessions (i.e., only seven days) being difficult to extrapolate these results to real long-term

scenarios (e.g., time gap of several months between the training and test signatures). It would

be also difficult to know whether the improvement achieved in that work was produced due to

the increasing number of signatures used in the different experiments or due to the reduction

of the template aging effect. It is also worth mentioning that only the case of random forgeries

was considered in that work, as skilled forgeries were not performed during the acquisition of

the database. Therefore, we consider necessary to make an exhaustive study of template update

strategies on real long-term scenarios in order to reduce the template aging effect for on-line

signature verification and get feasible authentication systems regarding computational cost and

resources.

In this Thesis we focus on current scenarios where the number of signatures acquired per

user can rapidly increase as in real banking or commercial applications nowadays. Therefore,

these signatures can be used to update users templates and reduce the aging effect. In addition

to perform a complete template update analysis, we also study system configuration update

strategies in order to select the optimal system configuration parameters regarding the number

of available training signatures per user.

2.3. Signature Complexity

Handwritten signature is a biometric trait highly sensitive to the signature complexity. This

aspect has been analysed in previous studies. In [Fairhurst and Kaplani, 1998], a total of 36

subjects were asked to assign a score based on visually appearance complexity to five different
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users whose signatures were of varying length, number of strokes, and with differing degrees of

embellishment in signing execution. The results demonstrated that while at the extremes of the

scale there is a modest spread in the perceived degree of complexity, the intermediate complexity

level appears to be much more difficult to assess and categorise quantitatively. A similar study

focused on assessing how signature complexity affects when forging signatures was carried out

in [Brault and Plamondon, 1993]. In that work an automatic difficulty coefficient was proposed

to measure the difficulty that could be experienced by a typical imitator in reproducing signa-

tures both visually and dynamically. Results obtained using their proposed difficulty coefficient

were compared to the opinions of the imitators themselves and an expert document examiner.

In [Alonso-Fernandez et al., 2007], the authors evaluated the effect of complexity and legibility

of signatures for off-line signature verification (i.e., signatures with no available dynamic infor-

mation) pointing out the differences in performance for several matchers. Signature complexity

has also been associated to the concept of entropy, defining entropy as the inherent information

content of biometric samples [Daugman, 2003; Lim and Yuen, 2016]. In [Houmani et al., 2008]

a “personal entropy” measure based on HMM was proposed in order to analyse the complexity

and variability of on-line signatures regarding three different levels of entropy. Results proved

that lower entropy is achieved for those signatures with a longer production time and an ap-

pearance more related to handwriting. In addition, the same authors have proposed a new

metric known as “relative entropy” for classifying users into animal groups (see the biometric

menagerie [Yager and Dunstone, 2010a]) where skilled forgeries are also considered [Houmani

and Garcia-Salicetti, 2016]. Despite all the studies performed in the on-line signature trait, none

of them have exploited, as far as we are aware, the concept of complexity in order to develop

more robust and accurate on-line signature verification systems, which is one of the objects to

study in this Thesis.

2.4. Deep Learning

2.4.1. Introduction

In general, the main purpose of DL is to change the representation of our original data into a

new dimensional space able to achieve a higher separability between different classes. This fact is

achieved through the combination of linear and nonlinear transformations. Among all nonlinear

transformations, the most common activation functions are sigmoid, softmax, hyperbolic tangent

(a.k.a. tangh) and rectified linear unit (a.k.a. ReLU) [Goodfellow et al., 2016]. The basis of

DL relies on the feedforward deep network (a.k.a. multilayer perceptron (MLP)). These models

are called feedforward as the information flows from the input to the output. There are no

feedback connections in which outputs of the model are fed back into itself. These networks

consist of three or more layers, i.e., one input and output layer and one or more hidden layers.

The input layer is also known as visible layer as it contains the variables of our problem that

we are able to observe whereas hidden layers extract features whose values are not given in the
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original data. Additionally, each layer can be composed of one of more several units. For the

case of the input layer, each input node can refer to a different source of information of our task.

In the hidden layers, these nodes are usually known as hidden units or neurons. Each of them

applies nonlinear operations (e.g., sigmoid or tanh) in order to change the dimensional space of

our original data. Finally, in the output layer, the number of output units change regarding the

purpose of the task. For example, for classification is common to use a softmax activation with

one output unit per class whereas for the task of verification, the sigmoid activation with just

one output unit is considered.

2.4.2. Architectures

2.4.2.1. Multilayer Perceptron

The functioning of MLP is first described for a good understanding of the neural network

basis. The information available to face our task is first inserted to the input layer. This

information flows from the input units to the neurons of the first hidden layer, receiving each of

the neurons a weighted amount of information from the input units that is controlled through the

weight matrixW and bias b. After that, each of the neurons of the hidden layer apply a nonlinear

operation such as sigmoid or tangh in order to change the dimensional space of the original

features. Therefore, the output of one hidden unit can be denoted as y = f(Wx+ b), where y

is the output of the hidden units, f the nonlinear operation and x the original information of

the input layer. Then, the output of this hidden layer serves as the input of the next hidden

layer repeating the same procedure commented before (or directly to the output layer in case

the network consists of a single hidden layer). Therefore, the weight matrices W are the only

parameters that must be learnt for the correct operating of the network. To achieve that,

backpropagation algorithm is usually considered for the minimisation of errors through stochastic

gradient descendent [Goodfellow et al., 2016; Schmidhuber, 2015]. From the original MLP

networks up to now, many different neural network architectures have been proposed.

2.4.2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been one of the most successful network ar-

chitectures for input images in the last years. Some of their key design principles were drawn

from the findings of the Neurophysiologists Nobel Prizes David Hubel and Torsten Wiesel in

the field of human vision [Goodfellow et al., 2016]. CNNs are mainly composed of convolutional

and pooling layers. The former extracts patterns from the images through the application of

several convolutions in parallel to local regions of the images. These convolutional operations

are carried out by means of different kernels (adapted by the learning algorithm) that assign a

weight to each pixel of the local region of the image depending on the type of patterns to be

extracted. Therefore, each kernel of one convolutional layer is focused on extracting different

patterns such as horizontal or vertical edges. The output of these operations produces a set of

linear activations (a.k.a. feature map) that serve as input to nonlinear activations such as the
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ReLU function. Finally, it is common to use pooling layers to make the representation invariant

to small translations of the input. The pooling function replaces the output of the network at a

certain region with a statistical summary of the nearby outputs. For instance, the max-pooling

function selects the maximum value of the region.

2.4.2.3. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are becoming more and more important nowadays for

modelling sequential data with arbitrary length. They are defined as a connectionist model

containing a self-connected hidden layer. One benefit of the recurrent connection is that a

memory of previous inputs remains in the network internal state, allowing it to make use of

past context. However, the range of contextual information that standard RNNs can access

is very limited due to the well-known vanishing gradient problem [Graves et al., 2009]. Long

Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] and Gated Recurrent Unit

(GRU) [Cho et al., 2014a,b; Chung et al., 2014] are RNN architectures that arose with the

aim of resolving the shortcomings of standard RNNs. Additionally, bidirectional schemes (i.e.,

BRNNs) have been studied in order to provide access not only to the past context but also to

the future [Schuster and Paliwal, 1997]. Due to the nature of the on-line signature verification

task (time sequences), this neural network architecture is studied in Chapter 4.2 of the Thesis.

2.4.2.4. Others

In addition to the aforementioned models, it is important to mention some other well-known

DL architectures.

An autoencoder is the combination of an encoder function, which converts the input data

into a different representation, similar to Principal Component Analysis (PCA), and a decoder

function, which converts the new representation back into the original format. Therefore, an

autoencoder is trained to attempt to copy its input to its output. Some examples of use can

be seen in [Hong et al., 2015; Zeng et al., 2018] for the task of human pose recovery and facial

expression recognition.

Generative Adversarial Networks (GANs) comprise two different networks, a gen-

erative model (G) that captures the data distribution, and a discriminative model (D) that

estimates the probability that a sample came from the training data rather than G. The train-

ing procedure for G is to maximize the probability of D making a mistake. This framework

corresponds to a minimax two-player game [Goodfellow et al., 2016, 2014]. This network has

achieved tremendous impact in the last years as it can be seen in the last big conferences such as

Conference on Computer Vision and Pattern Recognition (CVPR) [Chen and Hays, 2018; Choi

et al., 2017; Wang et al., 2017; Yang et al., 2017].

Most of the aforementioned neural network models belong to the supervised learning area.

These networks are trained feeding the input layer of the network with the data of our task and

indicating to the training algorithm the output of the network expected. Therefore, each input
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of the network has its corresponding label. However, unsupervised learning has received a

lot of interest in the last years due to the majority of the available information nowadays is

not labelled. Additionally, unsupervised learning techniques can be very useful to train neural

networks in the first stages [Erhan et al., 2010; Radford et al., 2015].

Finally, DL can be used in two different modes. On the one hand, some authors have

proposed the use of the networks as an end-to-end approach. This term refers to the case where

the network is used for both feature extractor and classification. Therefore, the network is fed

with the raw data and the network is in charge of both selecting the relevant features for the task

and performing the classification. This approach has been studied in many different tasks such

as speech and text recognition [Graves and Jaitly, 2014; Wang et al., 2012]. On the other hand,

the network can be used as a feature extractor in order to obtain a more rich representation of

the task (for example removing the last fully-connected layers of a CNN model). These features

can be then used to feed traditional algorithms such as HMM or SVM [Lozano-Diez et al., 2017;

Nogueira et al., 2016].

2.4.3. Deep Learning for On-Line Signature Verification

Despite the good results obtained in the field of handwriting recognition, and the similarity

with the task of handwritten signature, very few studies have successfully applied RNN DL

architectures to on-line handwritten signature verification. In [Tiflin and Omlin, 2003], the

authors proposed the use of a system based on LSTM for on-line signature verification. Different

configurations based on the use of forget gates and peephole connections were studied considering

in the experimental work a small database with only 51 users. The LSTM system proposed in

that work seemed to authenticate genuine and impostor cases very well. However, as it was

pointed out in [Otte et al., 2014], the method proposed for training the LSTM system was not

feasible for real applications for various reasons. First, the authors considered the same users

for both development and evaluation of the system. Moreover, the system should be trained

every time a new user was enroled in the application. In addition, forgeries were required in that

approach for training, which may not be feasible to obtain as well. Besides, the results obtained

in [Tiflin and Omlin, 2003] cannot be compared to any state-of-the-art signature verification

system as the traditional measures such as the EER or calibrated likelihood ratios were not

considered. Instead, they just reported the errors of the LSTM-outputs. In order to find some

light on the feasibility of RNNs for signature verification purposes, Otte et al. performed in [Otte

et al., 2014] an analysis considering three different real scenarios: i) training a general network

to distinguish forgeries from genuine signatures on a large training set, ii) training a different

network for each writer that works perfectly on the training set, and iii) training the network

considering only genuine signatures. However, all experiments failed obtaining a 23.75% EER

for the best configuration, far away from the best state-of-the-art results and concluding that

LSTM RNN systems trained with standard mechanisms were not appropriate for the task of

signature verification as the amount of available data for this task is scarce compared to other

tasks such as handwriting recognition.
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After the publication of our novel DL study presented in Chapters 4 and 7 of the Thesis,

new DL approaches have been applied to on-line handwritten signature verification with suc-

cess [Ahrabian and Babaali, 2017; Lai et al., 2017]. In [Ahrabian and Babaali, 2017], the authors

proposed first the use of autoencoders as feature extractor, and then a Siamese network based on

MLP for the final verification process. Experiments were carried out using the SigWiComp2013

and GPDS Synthetic databases with very good results. Lai et al. proposed in [Lai et al., 2017]

a new RNN system based on GRU as feature extractor. The training objective was focused on

the minimisation of intra-class variations and the maximisation of the distances between skilled

forgeries and genuine signatures, which was achieved through triplet loss and center loss [Hoffer

and Ailon, 2015; Wen et al., 2016]. Experiments were carried out using SVC-2004 database

achieving a final value of 2.37% EER for skilled forgeries.

2.5. Handwriting Biometrics and Beyond

Touch biometrics are becoming a very attractive way to verify users on mobile devices [Fierrez

et al., 2018b; Tolosana et al., 2017a]. Table 2.1 summarises relevant approaches in this area.

For each study, we include information related to the verification method, features, classifiers

and datasets considered. We also report in Table 2.1 the verification performance for the two

impostor scenarios commonly considered in this area [Tolosana et al., 2018e]: i) imitation attack,

the case in which impostors have some level of information about the user being attacked; and

ii) random attack, the case in which no information about the user being attacked is known.

Note that most algorithms and experimental conditions vary between the listed works, e.g.,

the amount and type of training and testing data. Therefore, Table 2.1 should be mainly

interpreted in general terms to compare different scenarios of use based on touch biometrics,

but not individual algorithms.

Angulo and Wastlund [2011] evaluated the use of lock pattern dynamic systems for user

authentication. Users were asked to draw three different lock patterns a certain number of times

(50 trials for each pattern), with each pattern consisting of six dots. Authors considered a total

of 11 timing-related features extracted from the finger-in-dot time (i.e., the time in milliseconds

from the moment the participant finger touches a dot to the moment the finger is dragged outside

the dot area), and the finger-in-between-dots time (i.e., representing the speed at which the finger

moves from one dot to the next) achieving results above 10.0% EER for imitation attacks. In

[Lacharme and Rosenberger, 2016], the authors incorporated biometric dynamic features related

to the position of the finger, pressure, finger size and accelerometer sensor to the traditional

Android unlock patterns, achieving a final 15.0% EER for imitation attacks using a matching

algorithm based on Hamming Distance. Zezschwitz et al. [2016] presented a similarity metric for

Android unlock patterns to quantify the effective password space of user-defined gestures. The

proposed metric was evaluated using 506 user-defined patterns revealing very similar shapes that

only differ by simple geometric transformations such as rotation. Consequently, they presented

an approach to increase the pattern diversity in order to strengthen user lock patterns.
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Table 2.1: Comparison of different touch biometric approaches for mobile scenarios. Acc = Accuracy.

Study Method Features Classifiers Verification Performance # Participants
Random Attack Imitation Attack (Dataset)

[Angulo and Wastlund, 2011] Lock Pattern Dynamics Timing-related Features Random Forest - EER = 10.39% 32

[Lacharme and Rosenberger, 2016] Lock Pattern Dynamics Dynamic Features Hamming Distance - EER = 15.0% 34

[Zezschwitz et al., 2016] Lock Pattern Dynamics Shape Features Greedy Clustering - - 506

[Buschek et al., 2015b] Keystroke Font Adaptation Features Manual Acc = 94.8% - 91

[Buschek et al., 2015a] Keystroke Touch-specific Features GM, kNN, LSAD EER = 13.74% - 28

[Li et al., 2013] Touchscreen Gestures Static Features SVM EER = 3.0% - 75

[Sae-Bae et al., 2014] Touchscreen Gestures Distance between Points DTW EER = 1.58% - 34

[Shen et al., 2016] Touchscreen Gestures Static Featurs
SVM, Random Forest,
kNN, Neural Networks

EER ∼ 3.0% - 71

[Fierrez et al., 2018b] Touchscreen Gestures Static Features SVM, GMM EER = 10.7% - 190

[Sae-Bae and Memon, 2014] Handwritten Signatures Histogram Static Features Manhattan Distance EER = 5.04% - 180

[Tolosana et al., 2017a] Handwritten Signatures Dynamic Features DTW EER = 0.5% EER = 17.9% 65

[Khan et al., 2011] Graphical Passwords Predefined Symbols Exact Match - - 100

[Martinez-Diaz et al., 2016] Graphical Passwords Dynamic Features DTW, GMM EER = 3.4% EER = 22.1% 100

[Kutzner et al., 2015] Handwritten Password Static and Dynamic Features
Bayes-Nets
KStar, kNN

-
FAR = 10.42%
FRR = unknown

32

[Nguyen et al., 2017a] Handwritten Digits Dynamic Features DTW - EER = 4.84% 20

Proposed Approach Handwritten Digits Dynamic Features DTW, RNNs - EER = 3.8% 93
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Other studies have focused on the potential of keystroke biometrics for user authentication on

mobile scenarios. Buschek et al. [2015b] introduced qualitative aspects like personal expressive-

ness in order to enhance traditional keystroke biometric systems based on quantitative factors

such as error rates and speed. They introduced a dynamic font personalisation framework, Tap-

Script, which adapted a finger-drawn font according to user behavior and context, such as finger

placement, device orientation, and position of the user while typing (i.e., walking or sitting),

resulting in a handwritten-looking font. Following their new approach, users were able to distin-

guish pairs of typists with 84.5% accuracy and walking/sitting scenarios with 94.8%. The same

authors compared in [Buschek et al., 2015a] touch-specific features between three different hand

postures (i.e., one-thumb, two-thumb and index finger typing) and evaluation schemes: Gaus-

sian Model without covariance (GM), k-Nearest-Neighbours (kNN) and Least Squares Anomaly

Detection (LSAD). Authors concluded that spatial touch features reduce the EER by 26.4 -

36.8% compared to the traditional temporal features.

Biometric verification systems based on touchscreen gestures (i.e., scrolling, zooming and

clicking) while using mobile devices in scenarios such as document reading, web surfing or free

tasks are gaining a lot of impact nowadays [Fierrez et al., 2018b; Li et al., 2013; Sae-Bae et al.,

2014; Shen et al., 2016]. These approaches enable active or continuous authentication schemes, in

which the user is transparently authenticated [Patel et al., 2016; Serwadda et al., 2013]. Different

features and algorithms have been proposed in this field achieving very good results against

random attacks. In [Sae-Bae et al., 2014], the authors proposed a set of 22 multitouch gestures

using characteristics of hand and finger movements with an algorithm robust to orientation and

translation achieving a final result of 1.58% EER. In [Fierrez et al., 2018b], a set of 100 static

features extracted from swipe gestures and systems based on SVM and GMM were considered

obtaining performances up to 10.7% EER. Very good results have been also achieved in [Li et al.,

2013; Shen et al., 2016] using verification algorithms such as SVM, kNN, Random Forest and

Neural Networks.

Handwritten signature is one of the most socially accepted biometrics as it has been used

in financial and legal agreements for many years [Diaz et al., 2018b; Fierrez and Ortega-Garcia,

2008; Plamondon and Srihari, 2000; R. Plamondon and G. Pirlo and D. Impedovo, 2014], and it

also finds applications in mobile scenarios. However, a considerable degradation of the system

performance with results around 20.0% EER is obtained for imitation attacks when testing on

mobile scenarios using finger touch as input [Sae-Bae and Memon, 2014; Tolosana et al., 2017a].

The main reason for such degradation of the system performance is studied in the experimental

chapters of this Thesis. Graphical passwords were studied in [Khan et al., 2011; Martinez-

Diaz et al., 2016]. In [Martinez-Diaz et al., 2016], the authors proposed an approach based on

graphical passwords (doodles) achieving final results above 20.0% EER for imitation attacks.

The main reason for such degradation of the system performance laid down on the specific task

that the user needed to perform to be authenticated, e.g., doodles were difficult to memorise for

most of the users as they didn’t use them on a daily basis.

Finally, strongly related to the study carried out in this Thesis, in [Kutzner et al., 2015;
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Nguyen et al., 2017a] the authors proposed the use of handwritten passwords to be authenticated.

In [Kutzner et al., 2015], users had to perform an 8-digit password on the screen of a tablet device.

For each handwritten password, a total of 25 global and local features were extracted and tested

using many different authentication algorithms. However, the authentication scenario considered

in that approach restricts the deployment of the technology in real mobile applications as: i)

the authors considered a large number of training samples (12), and ii) it seems to be only

applicable to devices with large screens (such as tablets) as it would be very difficult for the

users to perform such a long password (8 digits) on a screen of much smaller size. Nguyen

et al. [2017a] evaluated the use of handwritten touch biometrics for PIN-based authentication

systems. Their proposed authentication approach overcame some of the drawbacks previously

cited as they asked users to draw each digit of the PIN one by one. A final 4.84% EER was

achieved using a biometric system composed of 5 local features and a matcher algorithm based

on DTW.

2.6. Chapter Summary and Conclusions

In this chapter we have summarised the main studies related to this Thesis. We have first

described each module of traditional on-line signature verification systems as well as the two

modalities considered, i.e., feature-based systems (a.k.a. global systems) and time functions-

based systems (a.k.a. local systems). Second, we have concentrated on some of the signature

verification emerging scenarios considered in this Dissertation and perform a thorough overview

of related works in this line. Then, other recent interesting on-line signature research topics

have been described. In the fourth section of this chapter we have highlighted the importance

and success of DL approaches. We have also described the basis of deep neural networks, the

different topologies commonly used and its feasibility for on-line signature verification through

preliminary studies. The last section surveys and compares advantages and limitations of current

state-of-the-art touchscreen biometric approaches.
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Chapter 3

Signature and Handwriting

Databases

This chapter is organised as follows. First, Sec. 3.1 gives an overview of the most relevant

features of existing on-line signature databases, making special emphasis on the databases used

in the experimental work of this Thesis. Then, Sec. 3.2 presents the new e-BioSign database, as

well as the extension of the ATVS On-Line Signature Long-Term database, acquired during the

execution of the Thesis. These new on-line signature databases have been already released to the

research community. Sec. 3.3 introduces the new e-BioDigit database acquired for the purpose

of incorporating handwriting biometric information to traditional passwords. Conclusions are

finally drawn in Sec. 3.4.

This chapter is based on the following publications: [Tolosana et al., 2018b, 2017a, 2018d,

2015e; Vera-Rodriguez et al., 2015].

3.1. Existing On-Line Signature Databases

3.1.1. Overview

Many efforts have been carried out in the signature biometrics community in order to cap-

ture large and reliable databases. In Table 3.1 we summarise the most relevant features of the

main existing on-line signature databases. It is important to highlight the two largest databases

acquired (i.e., Biosecure [Ortega-Garcia et al., 2010] and BiosecurID [Fierrez et al., 2010]) with

several hundreds of users, which are extensions of the largely used MCYT [Ortega-Garcia et al.,

2003]. These three databases were collected by public institutions and have been extensively

used by the signature research community for improving the state-of-the-art on many differ-

ent scenarios [Martinez-Diaz and Fierrez, 2015]. However, the type and quality of the devices

used nowadays, apart from the acquisition scenarios considered, have significantly changed com-

pared to the same ones followed in [Fierrez et al., 2010; Ortega-Garcia et al., 2010, 2003]. New

databases have recently appeared in the last years considering COTS devices for the acquisition
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3. SIGNATURE AND HANDWRITING DATABASES

of the signatures. In [Blanco-Gonzalo et al., 2014], the authors considered a total of 7 devices

(tablet PCs, smartphones and tablets) for the acquisition of the signatures. Device interoper-

ability scenarios were evaluated for the case of random forgeries, encouraging further research

to improve the system performance. However, as far as we know, that database is not publicly

available to the research community. Antal and Bandi released the MOBISIG database [Antal

and Bandi, 2017], which comprises pseudo-signatures for a total of 83 users. The database was

captured in three sessions resulting in 45 genuine signatures and 20 skilled forgeries per user.

Regarding the acquisition device, pseudo-signatures were acquired using the finger on a Nexus

9 Tablet device. A more realistic analysis was carried out in [Sae-Bae and Memon, 2014]. In

that work, Sae-Bae and Memon captured a new database for a total of 180 users and 6 differ-

ent acquisition sessions. Users were asked to perform their signatures using the finger as input

on their own devices. Their proposed approach based on features extracted from histograms

achieved results between 3.0% and 8.0% EER for random forgeries. However, as far as we know,

that database is not publicly available to the research community.

The effect of the signature aging on the system performance was first analysed in [Galbally

et al., 2013] through the ATVS On-Line Signature Long-Term database. In that database,

signatures were acquired in six different sessions during a 15-month time interval. An exhaustive

analysis of the aging, template and system configuration update strategies have been carried out

in this Thesis through an extension of the ATVS On-Line Signature Long-Term database. This

database is described in Sec. 3.2.2. An assessment of the age dependency for on-line signature

verification was performed in [Guest, 2006] considering a database with a total of 274 users.

In [Martinez-Diaz et al., 2013], also both stylus and finger were considered as writing tools in

the experimental work. For the finger case, users were asked to perform a simplified version

of their signature (a.k.a. pseudo-signatures) based on their initials or part of their signature

flourish. Results obtained in that preliminary work showed its feasibility and the necessity of

further research toward practical application of such mixed writing-input. In this Thesis, we

have acquired and made public to the research community a large signature database (e-BioSign)

acquired from 5 different COTS devices in total, and considering both pen stylus and also the

finger. The complete design and acquisition of the e-BioSign database is described in Sec. 3.2.1.
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Table 3.1: Most relevant features of existing on-line signature databases.

Year Users Sessions #genuine samples/user/device #forgeries/user/device Device (writing tool) Best performance (EER(%))

MOBISIG* [Antal and Bandi, 2017] 2017 83 3 15 20 Nexus 9 Tablet (finger)
Finger. Skilled: 14.3 [Antal and Bandi, 2017]
Finger. Random: 1.7 [Antal and Bandi, 2017]

e-BioSign* [Tolosana et al., 2017a] 2016 65 2 8 6

Wacom STU-500 (stylus)
Wacom STU-530 (stylus)
Wacom DTU-1031 (stylus)

Samsung Gal. Note (stylus/finger)
Samsung ATIV7 (stylus/finger)

Stylus. Skilled: 7.9 [Tolosana et al., 2017a]
Stylus. Random: 0.0 [Tolosana et al., 2017a]
Finger. Skilled: 17.9 [Tolosana et al., 2017a]
Finger. Random: 0.3 [Tolosana et al., 2017a]

GPDS Synthetic* [Ferrer et al., 2017b] 2016 10,000 - 24 30 Simulated stylus
Stylus. Skilled: 0.25 [Ahrabian and Babaali, 2017]

Stylus. Random: 1.83 [Ferrer et al., 2017b]

SigWiComp 2015 [Malik et al., 2015] 2015 30 - 15 10 Anoto Pen (stylus) Stylus. Skilled: 0.29 (cllr min) [Malik et al., 2015]

ATVS-SLT DB* [Galbally et al., 2013; Tolosana et al., 2015e] 2015 29 6 46 10 Wacom Intuos 3 (stylus)
Stylus. Skilled: 1.4 [Tolosana et al., 2015e]
Stylus. Random: 0.0 [Tolosana et al., 2015e]

[Sae-Bae and Memon, 2014] 2014 180 6 5 - User-Own Devices (finger) Finger. Random: 3.0-8.0% [Sae-Bae and Memon, 2014]

ATVS-DooDB* [Martinez-Diaz et al., 2013] 2013 100 2 30 20 HTC Touch HD (finger)
Finger. Skilled: 21.0 [Martinez-Diaz et al., 2016]
Finger. Random: 7.8 [Martinez-Diaz et al., 2016]

[Blanco-Gonzalo et al., 2014] 2013 43 3 60 -

Wacom Intuos 4 (stylus)
Wacom STU-500 (stylus)

Asus Eee PC Touch (stylus)
Samsung Gal. Note (stylus/finger)

BlackBerry Playbook (finger)
Apple Ipad2 (finger)

Samsung Gal. Tab (finger)

Stylus. Random: 0.58 [Blanco-Gonzalo et al., 2014]
Finger. Random: 0.19 [Blanco-Gonzalo et al., 2014]

SUSIG* [Kholmatov and Yanikoglu, 2009] 2009 100 2
20 (visual subcorpus)

8 - 10 (blind subcorpus)
10

Wacom Graphire2 (stylus)
ePad-ink (stylus)

Stylus. Skilled: 0.77 [Diaz et al., 2016b]
Stylus. Random: 1.23 [Diaz et al., 2016b]

Biosecure* [Ortega-Garcia et al., 2010] 2008
667 (DS2)
713 (DS3)

2 30 20
Wacom Intuos3 (stylus)
PDA HP iPAQ (stylus)

Stylus. Skilled: 6.2 Tolosana et al. [2015d]
Stylus. Random: 2.0 [Tolosana et al., 2015d]

BiosecurID* [Fierrez et al., 2010] 2007 400 4 16 12 Wacom Intuos3 (stylus)
Stylus. Skilled: 4.77 [Gomez-Barrero et al., 2015]
Stylus. Random: 0.50 [Gomez-Barrero et al., 2015]

MBioID [Dessimoz and et al., 2007] 2007 120 (approx.) 2 20 - Wacom Intuos2 (stylus) -

[Guest, 2006] 2006 274 variable 10 - 74 - Graphic tablet (stylus) -

MyIDEA* [Dumas and et al., 2005] 2005 104 (approx.) 3 18 18 Wacom Intuos2 (stylus)
Stylus. Skilled: 13.7 [Humm et al., 2009]
Stylus. Random: 4.0 [Humm et al., 2009]

SVC2004* [Yeung and et al., 2004] 2004 100 2 20 20
Wacom Intuos (stylus)

PDA (stylus)
Stylus. Skilled: 0.83 Diaz et al. [2016b]

Stylus. Random: 0.12 [Diaz et al., 2016b]

MCYT-100* [Ortega-Garcia et al., 2003] 2003 100 1 25 25 Wacom Intuos (stylus)
Stylus. Skilled: 2.85 [Diaz et al., 2016b]
Stylus. Random: 1.04 [Diaz et al., 2016b]

BIOMET* [Garcia-Salicetti and et al., 2003] 2003
130
106
91

1 15 17 Wacom Intuos2 (stylus) -

* publicly available databases.
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3.1.2. BiosecurID Database

The BiosecurID database [Fierrez et al., 2010] is considered in the experimental work of the

Thesis. This database is composed of 16 genuine signatures and 12 skilled forgeries per user,

captured in 4 separate acquisition sessions leaving a two-month interval between them. There

are a total of 400 users and signatures were acquired considering a controlled and supervised

office-like scenario. Users were asked to sign on a piece of paper, inside a grid that marked the

valid signing space, using an inking pen. The paper was placed on a Wacom Intuos 3 pen tablet

that captured the following time signals: X and Y spatial coordinates (resolution of 0.25 mm),

pressure (1024 levels) and timestamp (100 Hz). In addition, pen-up trajectories are available.

All the dynamic information is stored in separate text files following the format used in the first

Signature Verification Competition (SVC) [Fierrez-Aguilar et al., 2005c; Yeung et al., 2004].

The acquisition process was supervised by a human operator whose task was to ensure that the

collection protocol was strictly followed and that the captured samples were of sufficient quality

(e.g., no part of the signature outside the designated space), otherwise the subjects were asked

to repeat the signature.

3.1.3. Biosecure Database

The Biosecure database [Ortega-Garcia et al., 2010] is also considered in the experimental

work of the Thesis. This database comprises two different on-line signature datasets, DS2

and DS3. DS2 dataset was captured under access control scenario where users had to sign

while sitting, whereas the DS3 dataset considered a mobile scenario where users had to sign

while standing and holding the device in one hand, emulating realistic operating conditions.

Furthermore, it is important to highlight that intra-class variability problem is also considered,

as Biosecure DS2 and DS3 datasets contain two different acquisition sessions separated by a 3-

month time gap between them. DS3 dataset was captured using a PDA HP iPAQ hx2790 with

a sampling frequency of 100 Hz, whereas the DS2 dataset was captured with a WACOM Intuos3

A6 pen tablet with a sampling frequency of 100 Hz and signing on a paper sheet placed on top of

the device as it can be seen in Fig. 3.1. For both DS2 and DS3 datasets, there is a subset of 120

common users that is considered in the experimental work reported in this Thesis. This subset

is considered in Chapter 5 of the thesis in order to study the device interoperability effect. The

available information in Biosecure DS2 is the following: X and Y spatial coordinates, pressure,

pen angular orientation (azimuth and altitude angles) and timestamp. However, in Biosecure

DS3 just X and Y spatial coordinates and timestamp are available.

Regarding the number of signatures, there are a total of 30 genuine signatures (i.e., 15

genuine signatures per session) and 20 skilled forgeries (i.e., 10 skilled forgeries per session) per

user and dataset. For the skilled forgeries, users had visual access to the dynamics of the signing

process of the signatures they had to forge.
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(a) (b)

Figure 3.1: (a) Pen tablet acquisition scenario in the Biosecure DS2 - Access Control Scenario dataset.
(b) PDA signature acquisition scenario in the Biosecure DS3 - Mobile Scenario dataset.

3.2. Novel Databases

3.2.1. e-BioSign Database

The e-BioSign database, which is publicly available1, comprises five capturing devices. Three

of them are specifically designed for capturing handwritten data (Wacom devices), while the

other two are general purpose tablets not designed for that specific task (Samsung tablets).

Fig. 3.2 shows an image of the setup used to acquire the database, with all five considered

devices.

It is worth noting that all five devices were used with their own pen stylus. Additionally, the

two Samsung devices were used with the finger as the writing input, allowing us to analyse the

effect of the writing tool on the system performance. The same capturing protocol was used for

all five devices: they were placed on a desktop and subjects were told to feel comfortable when

writing on them, so a small rotation of the devices was allowed.

The software for capturing handwriting and signatures was developed in the same way for

all devices in order to minimise the variability of the user during the acquisition process. A

rectangular area with an horizontal line in the bottom part was represented on the device

screen, including two buttons “OK” and “Cancel” to press after writing if the sample was good

or bad respectively. If the sample was not good, then it was repeated. The nomenclature and a

brief description of each device considered in e-BioSign are given next:

1. W1: Wacom STU-500 . 5-inch TFT-LCD B/W display, with VGA resolution of 640×
480 pixels. It has a sampling rate of 200 Hz, and 512 pressure levels. This device gives a

very natural feel of writing.

2. W2: Wacom STU-530 . Newer version of W1 device. 5-inch TFT-LCD color display,

with VGA resolution of 640 × 480 pixels. It has a sampling rate of 200 Hz, and 1024

pressure levels. This device allows safe transactions as it has AES 256 bit / RSA 2048

embedded data encryption.

1http://atvs.ii.uam.es/atvs/eBioSign-DS1.html
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Figure 3.2: Description of the devices and the acquisition setup considered in the new e-BioSign
database. A total of 65 users and 5 different COTS devices are considered (three Wacom and two Sam-
sung general purpose devices). For the two Samsung devices, data is collected using both a pen stylus and
also the finger.

3. W3: Wacom DTU-1031 . This device has a larger 10.1-inch color LCD display with a

resolution of 1280 × 800 pixels. It has a sampling rate of 200 Hz, and 512 pressure levels.

It also provides the same data encryption as W2. It allows to visualize documents on the

display before signing them.

4. W4: Samsung ATIV 7 . This is a device with Windows 8. It has a 11.6-inch LED

display with a resolution of 1920 × 1080 pixels. It has 1024 pressure levels, and contrary

to the Wacom devices, the sampling rate is not uniform in this case. This tablet allows to

use its own stylus or also the finger, but no pressure information is recorded in this last

case.

5. W5: Samsung Galaxy Note 10.1 . This is an Android device. It has a 10.1-inch LCD

display with a resolution of 1280× 800 pixels. It has 1024 pressure levels and not uniform

sampling rate. This device also allows to use its own stylus or the finger.

Table 3.2 shows the number of samples acquired for each user per session. As previously

mentioned, the database was collected in two sessions with a time gap of at least three weeks

between them. In each session there were three capturing blocks namely Genuine 1, Genuine
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Table 3.2: Handwritten samples captured per user and device in each of the two sessions.

Block Stylus Finger

Signature Genuine 1 2 (W1 - W5) 2 (W4, W5)
Genuine 2 2 (W1 - W5) 2 (W4, W5)
Forgeries 3 (W1 - W5) 3 (W4, W5)

Full name Genuine 1 1 (W1 - W5) -
Forgeries 3 (only W2) -

Full name capital letters Genuine 2 1 (W1 - W5) -
Forgeries 3 (only W2) -

Number sequence Genuine 1 - 2 (W4, W5)
Genuine 2 - 2 (W4, W5)

2 and Forgeries. In Genuine 1 block, two signatures plus the full name are performed for each

device using their own pen stylus. Then, two signatures and a number sequence composed of

numbers from 0 to 9 plus a random letter are performed for the two Samsung devices with the

finger. Next, Genuine 2 block is recorded, which comprises the same information as Genuine 1

block, but in this case the full name is written in capital letters. Finally, the last block Forgeries

is performed, where each user carries out a forgery of the signatures of the three previous users

in the database for each of the 5 devices using the stylus, and also with the finger for the two

Samsung devices. Regarding forgeries of the full name, they are only performed for the Wacom

STU-530 both for lower and upper case writing. In order to perform high-quality forgeries, users

are allowed to visualize a recording of the dynamic realization of the signature to forge.

In the second session, the procedure is identical, except one difference in the Forgeries block.

In this case, impostors forge the same users as in session one, but this time a paper with the

image of the signatures and names to forge is placed over the screen devices so the users can

overwrite to perform the forgeries. Nevertheless, they are not allowed to see the recordings of

the signatures in this case.

In total there are 6,370 signatures, of which 3,640 are genuine samples and 2,730 are skilled

forgeries. From the total, 4,550 were performed with the stylus and 1,820 with the finger. There

are a total of 2,080 handwritten names, of which 1,300 are genuine samples and 780 are forgeries

(only for Wacom STU-530). Also, half of the samples are done with natural writing and the

other half in capital letters. Finally, there are 1,040 genuine alphanumeric sequences carried out

for the two Samsung devices using the finger.

The whole capturing process was supervised by an operator who explained all the steps that

donors had to follow. Therefore, this is a multi-session and multi-device database with samples

captured using both stylus and finger as the writing input for signature and handwritten data.

Fig. 3.3 shows examples of the data collected in e-BioSign for the Samsung Galaxy Note 10.1

(W5), as this device contains all types of information collected, i.e., signatures (genuine and

forgeries) using the pen stylus and the finger, full name in lower and upper cases (only genuine

as the forgeries were only performed for the Wacom STU-530) and number sequences made with

the finger. Fig. 3.3.E and 3.3.F are just examples in order not to reveal the name of any user

of the database. The rest of the samples are contained in the database. It is worth noting

that data collected using the finger for Samsung ATIV 7 and Galaxy Note 10.1 do not contain
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Figure 3.3: Example of the data collected in e-BioSign database for the Samsung Galaxy Note 10.l.
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Figure 3.4: Population statistics of e-BioSign database.

pressure information as this was not provided by these devices, and there is also no information

of the trajectory (X and Y coordinates) during pen-ups. For the case of signatures acquired

using the stylus, pressure information and pen-up trajectories are available for all devices.

Fig. 3.4 shows the population statistics of the e-BioSign database. Regarding the age distri-

bution, the majority of the subjects (69.2%) are between 22 and 27 years old, as the database

was collected in a university environment. Fig. 3.4 also shows the handedness and the gen-

der distributions. The gender was designed to be as balanced as possible, having 61.5% of

males and 38.5% of females. Regarding the handedness distribution, 90.7% of the population is

righthanded.

3.2.2. ATVS On-Line Signature Long-Term Extended Database

The ATVS On-Line Signature Long-Term Extended database is an extension of the database

published in [Galbally et al., 2013]. Fig. 3.5 shows the number of genuine signatures per user

and the general time diagram of the different acquisition sessions of it. This database was

used in [Galbally et al., 2013] taking into account only random forgeries. However, skilled

forgeries have been included in this extended version of the database, which is already publicly

available at https://github.com/BiDAlab/xLongSignDB. This database comprises a total of

29 users. The inter-session variability problem is also considered in this database as signatures

were acquired in 6 different sessions (S1 to S6 in Fig. 3.5) within a 15-month time span. Sessions

from S1 to S4 are composed of 4 genuine signatures per user each and have a two-month interval

between them in a first acquisition campaign (i.e., BioscurID Signature Subset [Fierrez et al.,

2010]). The acquisition of S5 and S6 sessions was performed in a different campaign (i.e.,

Biosecure Signature Subset [Ortega-Garcia et al., 2010]) that started 6 months after the first

campaign had finished. It comprises 30 genuine signatures per user distributed in two acquisition

sessions separated three months. Therefore, the total number of genuine signatures and skilled

forgeries per user are 46 and 10, respectively. To perform skilled forgeries, the users had visual

access to the dynamics of the signing process of the signatures they had to forge as many times as

they wanted. This database allows the research community to perform evaluations over current

emerging scenarios.
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Figure 3.5: General time diagram of the different acquisition sessions and number of genuine signatures
per user that form the ATVS On-Line Signature Long-Term Extended Database.

3.3. Handwriting Touchscreen Databases

3.3.1. e-BioDigit Database

The e-BioDigit database has been captured during this Thesis in order to evaluate the advan-

tages and potential of incorporating handwriting biometric information to traditional password-

based mobile authentication systems. This database comprises on-line handwritten numerical

digits from 0 to 9 acquired using a Samsung Galaxy Note 10.1 general purpose tablet. This

device has a 10.1-inch LCD display with a resolution of 1280×800 pixels.

Regarding the acquisition protocol, subjects had to perform handwritten numerical digits

from 0 to 9, one at a time. The acquisition setup and some examples of the handwritten

numerical digits of the e-BioDigit database are depicted in Fig. 3.6. Additionally, samples

were collected in two sessions with a time gap of at least three weeks between them in order

to consider inter-session variability, very important for behavioural biometric traits [Galbally

et al., 2013]. For each session, users had to perform a total of 4 numerical sequences from 0 to 9

using the finger as input. Therefore, there are a total of 8 samples per numerical digit and user.

Information related to X and Y spatial coordinates and timestamp is captured and stored in

the database.

The software for capturing handwritten numerical digits was developed in order to minimise

the variability of the user during the acquisition process. A rectangular area with a writing

surface size similar to a 5-inch screen smartphone was considered, see Fig. 3.6(a). A horizontal

line was represented on top of the drawing rectangular area, including two buttons “OK” and

“Cancel” to press after writing if the sample was good or bad respectively.

The database comprises a total of 93 users. Regarding the age distribution, the majority

of the subjects (85.0%) are between 17 and 27 years old, as the database was collected in a
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Figure 3.6: (a) Acquisition setup. (b-d) examples of different handwritten numerical digits of the e-
BioDigit database. X and Y denote horizontal and vertical position versus the time samples.

Figure 3.7: Population statistics for the e-BioDigit database.

university environment (36.6% between 17 and 21). Regarding the gender, 66.7% of the subjects

were males and 33.3% females whereas for the handedness distribution, 89.2% of the population

was righthanded. The e-BioDigit statistics are depicted in Fig. 3.7.

3.4. Chapter Summary and Conclusions

This chapter gives an overview of the most well-known on-line signature databases. We have

first described the most relevant features of existing on-line signature databases, making special

emphasis on the databases used in the experimental work of this Thesis. Then, we have described

the new e-BioSign and ATVS On-Line Signature Long-Term Extended databases, which have

been captured during the execution of this Thesis and constitute some of the main contributions.

Finally, the new e-BioDigit database, which has been also captured during this Thesis for the

evaluation and improvement of traditional password-based systems, has been described in detail.

We would like to highlight that all these new databases are already publicly available to the

research community.
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Chapter 4

Proposed Methods

The present Chapter aims to describe all the details of the on-line signature verification

systems considered in this Dissertation.

The chapter is organised as follows. Sec. 4.1 is focused on traditional signature verification

systems. It describes the specific features and matching algorithm configurations considered in

this Thesis. Sec. 4.2 concentrates on novel signature verification systems based on deep learning

architectures. It first explains the basics of RNN systems and gives an overview of the main

relevant studies. Then, the specific details of our proposed end-to-end writer-independent RNN

signature verification systems are described. Conclusions are finally drawn in Sec. 4.3.

This chapter is based on the following publications: [Tolosana et al., 2015a, 2017b, 2018c,f,

2015d,e].

4.1. Traditional Signature Verification Systems

4.1.1. Global System

The global system (a.k.a. feature-based system) considered in this Dissertation is mainly

based on previous studies carried out in our research group. Concretely, we extract for each sig-

nature a set of 117 global features from the normalised signals X and Y spatial coordinates and

pressure [xn, yn, pn]. From those global features, the first 100 were already proposed in [Fierrez-

Aguilar et al., 2005b] as an extension of other sets presented in [Lee et al., 1996; Nelson and

Kishon, 1991; Nelson et al., 1994]. The remaining 17 global features have been proposed in this

Thesis and are mainly based on discriminative information related to the pressure. Tables 4.1

and 4.2 describe the set of 100 and 17 global features considered in this Dissertation.

The entire set of 117 global features can be divided into five different categories corresponding

to the following magnitudes:

Time (25 features): related to signature duration, or timing of events such as pen-ups

or local maxima. Feature numbers are: 1-19, 21-26.
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Table 4.1: Set of 100 global features originally proposed in [Fierrez-Aguilar et al., 2005b]. Table adapted
from [Martinez-Diaz, 2015]. T denotes time interval, t denotes time instant, N denotes number of events,
and θ denotes angle. All notations are defined or referenced in the table.

# Time related feature # Direction related feature
# Kinematic related feature # Geometry related feature
# Pressure related feature

# Feature Description # Feature Description
1 signature total duration Ts 2 (pen-down duration Tw)/Ts

3 (1st t(vmax))/Tw 4 T (vx > 0)/Tw

5 T (vx < 0)/Tw 6 T (vy > 0)/Tw

7 T (vy < 0)/Tw 8 T (vx > 0|pen-up)/Tw

9 T (vx < 0|pen-up)/Tw 10 T (vy > 0|pen-up)/Tw

11 T (vx < y|pen-up)/Tw 12 T (1st pen-up)/Tw

13 T (2nd pen-up)/Tw 14 T (2nd pen-down)/Ts

15 T (3rd pen-down)/Ts 16 (1st t(vy,max))/Tw

17 (1st t(vy,min))/Tw 18 (1st t(vx,max))/Tw

19 (1st t(vx,min))/Tw 20
T ((dy/dt)/(dx/dt)>0)
T ((dy/dt)/(dx/dt)<0)

21 T (curvature > thresholdcurv)/Tw 22 (1st t(xmax))/Tw

23 (2nd t(xmax))/Tw 24 (3rd t(xmax))/Tw

25 (2nd t(ymax))/Tw 26 (3rd t(ymax))/Tw

27 (average velocity v̄)/vmax 28 N(vx = 0)
29 N(vy = 0) 30 v̄/vx,max

31 v̄/vy,max 32 (velocity rms v)/vmax

33 (centripetal acceleration rms ac)/amax 34 (tangential acceleration rms at)/amax

35 (acceleration rms a)/amax 36 (integrated abs. centr. acc. aIc)/amax

37 (velocity correlation vx,y)/v2max 38 standard deviation of vx
39 standard deviation of vy 40 standard deviation of ax
41 standard deviation of ay 42 average jerk ̄
43 ̄x 44 ̄y
45 jmax 46 jx,max

47 jy,max 48 jrms

49 t(jmax)/Tw 50 t(jx,max)/Tw

51 t(jy,max)/Tw 52 N(pen-ups)

53 N(sign changes of dx/dt and dy/dt) 54 T ((dx/dt)(dy/dt)>0)
T ((dx/dt)(dy/dt)<0)

55 θ(initial direction) 56 θ(1st to 2nd pen-down)
57 θ(1st pen-down to 1st pen-up) 58 θ(1st pen-down to 2nd pen-up)
59 θ(2nd pen-down to 2nd pen-up) 60 θ(before last pen-up)
61 θ(1st pen-down to last pen-up) 62 direction histogram s1
63 direction histogram s2 64 direction histogram s3
65 direction histogram s4 66 direction histogram s5
67 direction histogram s6 68 direction histogram s7
69 direction histogram s8 70 direction change histogram c2
71 direction change histogram c3 72 direction change histogram c4

73 Amin=(ymax−ymin)(xmax−xmin)

(∆x=
∑pen-downs

i=1
(xmax |i−xmin |i))∆y

74 (max distance between points)/Amin

75 (x1st pen-down − xmax)/∆x 76 (x1st pen-down − xmin)/∆x

77 (xlast pen-up − xmax)/∆x 78 (xlast pen-up − xmin)/∆x

79 (y1st pen-down − ymax)/∆y 80 (y1st pen-down − ymin)/∆y

81 (ylast pen-up − ymax)/∆y 82 (ylast pen-up − ymin)/∆y

83
(xmax−xmin)∆y

(ymax−ymin)∆x
84 (standard deviation of x)/∆x

85 (standard deviation of y)/∆y 86 (Tw v̄)/(ymax − ymin)
87 (Tw v̄)/(ymax − ymin) 88 (xmax − xmin)/xacquisition range

89 (ymax − ymin)/yacquisition range 90 (x̄− xmin)/x̄
91 spatial histogram t1 92 spatial histogram t2
93 spatial histogram t3 94 spatial histogram t4
95 N(local maxima in x) 96 (x2nd local max − x1st pen-down)/∆x

97 (x3rd local max − x1st pen-down)/∆x 98 N(local maxima in y)
99 (y2nd local max − y1st pen-down)/∆y 100 (y3rd local max − y1st pen-down)/∆y
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Table 4.2: Set of 17 novel global features proposed in this Thesis. z denotes pressure.

# Feature Description # Feature Description
101 average pressure z 102 median pressure
103 N(Pen Downs samples) 104 N(Pen Ups samples)
105 median N(Pen Ups samples) individually 106 average N(Pen Ups samples) individually
107 median N(Pen Downs samples) individually 108 average N(Pen Downs samples) individually
109 z / pmax 110 (z - zmin) / z
111 median pressure last pen-down 112 average pressure last pen-down
113 median pressure first pen-down 114 average pressure first pen-down
115 (zmax - zmin) / z 116 average velocity v
117 average acceleration a

Kinematic (27 features): extracted from the first and second time order derivatives of

the position time functions, like average speed or maximum speed. In this category the

two 116 and 117 new features have been added to the existing ones. Feature numbers are:

27-51, 116-117.

Direction (18 features): extracted from the path trajectory like the starting direction

or mean direction between pen-ups. Feature numbers are: 55-72.

Geometry (32 features): associated to the strokes or signature aspect-ratio. Feature

numbers are: 20, 52-54, 73-100.

Pressure (15 features): associated to pressure information like the mean pressure or

number of pen-down samples. This is a new category proposed in this Dissertation. Feature

numbers are: 101-115.

For the similarity computation, we always consider the Mahalanobis distance as it has pro-

vided very good results in previous studies [Fierrez-Aguilar, 2006; Martinez-Diaz, 2015]. The

Mahalanobis distance [Theodoridis and Koutroumbas, 2008] is used to compare the similarity

between a query signature and a claimed user model. A user model is created from a training set

of genuine signatures. This model is defined as C = (µ,Σ), where µ is a feature vector with the

mean of feature vectors extracted from each signature of this user and Σ is a diagonal covariance

matrix. The matching score is obtained as the inverse of the Mahalanobis distance between the

input signature feature vector x and the claimed user model C:

s(x,C) =
(
(x− µ)T (Σ)−1(x− µ)

)−1/2
(4.1)

If the score s(x,C) is above a specific threshold, the signature is considered genuine. Other-

wise, it is rejected by the system.

4.1.2. Local Systems

The local system (a.k.a. time functions-based system) considered in this Dissertation is

mainly based on previous studies carried out in our research group. Concretely, we extract for

each signature a set of 23 local features from the normalised signals X and Y spatial coordinates
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Table 4.3: Set of 23 local features considered in this Thesis. Local Features 3 and 10 (highlighted in
yellow colour) are not available when using the finger as input of the signature verification system.

# Feature Description

1 X -coordinate xn

2 Y -coordinate yn

3 Pen-pressure zn

4 Path-tangent angle θn = arctan(ẏn/ẋn)

5 Path velocity magnitude υn =
√
ẏn + ẋn

6 Log curvature radius ρn = log(1/κn) = log(υn/θ̇n), where κn is the
curvature of the position trajectory

7 Total acceleration magnitude an =
√
t2n + c2n =

√
υ̇2
n + υ2

nθ
2
n , where tn

and cn are respectively the tangential and cen-
tripetal acceleration components of the pen
motion.

8-14 First-order derivative of features 1-7 ẋn, ẏn, żn , θ̇n, υ̇n, ρ̇n, ȧn

15-16 Second-order derivative of features 1-2 ẍn, ÿn

17 Ratio of the minimum over the maxi-
mum speed over a window of 5 samples

υr
n = min {υn−4, ..., υn}/max {υn−4, ..., υn}

18-19 Angle of consecutive samples and first
order difference

αn = arctan(yn − yn−1/xn − xn−1)

α̇n

20 Sine sn = sin(αn)

21 Cosine cn = cos(αn)

22 Stroke length to width ratio over a win-
dow of 5 samples

r5n =

k=n∑

k=n−4

√
(xk−xk−1)2+(yk−yk−1)2

max{xn−4,...,xn}−min{xn−4,...,xn}

23 Stroke length to width ratio over a win-
dow of 7 samples

r7n =

k=n∑

k=n−6

√
(xk−xk−1)2+(yk−yk−1)2

max{xn−6,...,xn}−min{xn−6,...,xn}

and pressure [xn, yn, pn]. These local features were proposed in [Fierrez et al., 2007; Lei and

Govindaraju, 2005; Martinez-Diaz, 2015; Richiardi et al., 2005]. Other information considered in

previous studies such as the altitude and azimuth (local features related to the pen orientation)

have been discarded in this Dissertation as they are not acquired using general purpose devices.

Table 4.3 describes the set of 23 local features considered in this Dissertation. It is important to

remark that local features 3 and 10 (highlighted in Table 4.3 in yellow colour) are not available

when using the finger as input of the signature verification system.

For the similarity computation, we have considered three different state-of-the-art signature

verification systems. The specific configuration details are described below:

For the DTW system, we consider the same basis described in Sec. 2.1.3.1 with the

implementation details proposed in [Fierrez-Aguilar, 2006; Martinez-Diaz, 2015]. For the
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Figure 4.1: (a) Optimal warping path (red colour) between two sequences obtained with DTW. Point-to-
point distances are represented with different shades of gray, lighter shades representing shorter distances
and darker shades representing longer distances. (b) Example of point-to-point correspondences between
two genuine signatures obtained using DTW. Images extracted from [Martinez-Diaz, 2015].

computation of the distance measure between sequence samples (i.e., d(i, j)), we use Eu-

clidean distance. For the definition of the weighting factors (i.e., wk), only three transi-

tions with the same value equal to 1 are allowed for the computation of gk. Consequently,

Eq. (2.5) becomes

gk = g(i, j) = min




g(i, j − 1) + d(i, j)

g(i− 1, j − 1) + d(i, j)

g(i− 1, j) + d(i, j)


 (4.2)

The accumulated distance between the two sequences is computed as

D = g(I, J)/K (4.3)

where K is the length of the warping path. A normalised match score is obtained as

s̃ = exp(−D).

Fig. 4.1.(a) represents our definition of wk together with an example of a warping path

between two time sequences. In Fig. 4.1.(b), an example of point correspondences between

two signatures is depicted to visually show the results of the elastic alignment.

For the HMM and GMM systems, we consider the same basis described in Sec. 2.1.3.2

with the implementation details proposed in preliminary studies carried out in our research

group [Fierrez-Aguilar, 2006; Martinez-Diaz, 2015]. They are based on a left-to-right

configuration without skipping state transitions (see Fig. 4.2). Systems are trained in

two different steps. First, state transition probabilities and observation statistical models
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Figure 4.2: Graphical representation of a left-to-right N-state HMM, with M Gaussian Mixtures per
state. Image extracted from [Martinez-Diaz, 2015].

are estimated using a Maximum Likelihood algorithm. After this, a re-estimation step is

carried out using the Baum-Welch algorithm [Rabiner, 1989].

For the similarity computation module, the final score is computed as the log-likelihood of

the target signature (using the Viterbi algorithm) divided by the total number of samples

of the signature signal. In order to keep scores between a reasonable range, normalised

scores sn between (0,1) are obtained as sn = exp(s(x,C)/30), where s(x,C) is the score

returned by the HMM algorithm and x and C represent respectively the input signature

to verify and the enroled model of the claimed identity.

4.2. Deep Learning Signature Verification Systems

This section describes our proposed novel writer-independent on-line signature verification

system based on Recurrent Neural Networks with a Siamese architecture whose goal is to learn a

dissimilarity metric from pairs of signatures. To the best of our knowledge, this is the first time

these recurrent Siamese networks are applied to the field of on-line signature verification, which

provides our main motivation. We consider both LSTM and GRU architectures. Additionally,

a bidirectional scheme, which is able to access both past and future context, is considered for

both LSTM- and GRU-based systems.

4.2.1. Exploring RNN DL Architectures

4.2.1.1. Siamese Architecture

The Siamese architecture has been used for recognition and verification applications where

the number of categories is very large and not known during training, and where the number of

training samples for a single category is small. In our case, the main goal of this architecture is

to learn a dissimilarity metric from data minimising a discriminative cost function that drives

the dissimilarity metric to be small for pairs of genuine signatures from the same user, and longer

for pairs of signatures coming from different users. Fig. 4.3 shows this idea visually. In previous
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(a) Genuine case (b) Impostor case

Figure 4.3: Examples of our proposed LSTM and GRU RNN systems based on a Siamese architecture
for minimising a discriminative cost function.

studies such as [Chopra et al., 2005], the authors proposed the use of CNNs with a Siamese archi-

tecture for face verification. Experiments were performed with several databases obtaining very

good results where the number of training samples for a single category was very small. Siamese

architectures have been also studied in early works for on-line signature verification [Bromley

et al., 1993] although not considering RNNs. In [Bromley et al., 1993], the authors proposed

an on-line signature verification system composed of two separated sub-networks based on Time

Delay Neural Networks (TDNNs) that are one-dimensional convolutional networks applied to

time series. Different architectures regarding the number and size of layers were studied. A

total of 8 time functions fixed to the same 200 points length were extracted for X and Y pen

coordinates using an old-fashion NCR 5990 Signature Capture Device. The best performance

was obtained using two convolutional layers with 12 by 64 units in the first layer and 16 by 19

units in the second one. The threshold was set to detect 80.0% of forgeries and 95.5% of gen-

uine signatures, far away from the results that can be achieved nowadays with state-of-the-art

systems [Diaz et al., 2018b, 2016b; Gomez-Barrero et al., 2015; Liu et al., 2014; Martinez-Diaz

et al., 2014].

4.2.1.2. Long Short-Term Memory

LSTM RNNs [Hochreiter and Schmidhuber, 1997] have been successfully applied to many

different tasks such as language identification considering short utterances [Zazo et al., 2016] or

biomedical problems [Petrosian et al., 2000], among many others. However, the analysis and

design of LSTM architectures for new tasks are not straightforward [Pascanu et al., 2014].

LSTM RNNs comprise memory blocks usually containing one memory cell each of them with
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Figure 4.4: Scheme of a single LSTM memory block at different time steps (i.e., Xt−1, Xt and Xt+1).

a forget gate f , an input gate i, and an output gate o. For a time step t:

ft = σ(Wfxt + Ufht−1 + bf ) (4.4)

it = σ(Wixt + Uiht−1 + bi) (4.5)

ot = σ(Woxt + Uoht−1 + bo) (4.6)

C̃t = tanh(WCxt + UCht−1 + bC) (4.7)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4.8)

ht = ot ⊙ tanh(Ct) (4.9)

where W∗ and U∗ are weight matrices and b∗ is the bias vector. The symbol ⊙ represents a

pointwise product whereas σ is a sigmoid activation that outputs values between 0 and 1. The

LSTM does have the ability to remove old information from t − 1 time or add new one from t

time. The key is the cell state Ct that is carefully regulated by the gates. The f gate decides

the amount of previous information (i.e., ht−1) that passes to the new state of the cell Ct. The

i gate indicates the amount of new information (i.e., C̃t) to update in the cell state Ct. Finally,

the output of the memory block ht is a filtered version of the cell state Ct, being the o gate in

charge of it. Fig. 4.4 shows a single LSTM memory block at different time steps (i.e., Xt−1, Xt

and Xt+1) for clarification.
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Figure 4.5: Scheme of a single GRU memory block at different time steps (i.e., Xt−1, Xt and Xt+1).

4.2.1.3. Gated Recurrent Unit

GRU [Cho et al., 2014a,b] is a relatively new type of RNN that has been inspired by the

LSTM unit but is much simpler to compute and implement. In addition, the results obtained

using this novel RNN system seems to be very similar to the LSTM RNN system [Jozefowicz

et al., 2015]. The main difference between GRU and LSTM RNNs resides in the number of

gates used to control the flow of information. Whereas the LSTM unit contains three different

gates (i.e., forget f , input i and output o), the GRU unit only owns two gates (i.e., reset r and

update z). For a time step t:

rt = σ(Wrxt + Urht−1 + br) (4.10)

zt = σ(Wzxt + Uzht−1 + bz) (4.11)

h̃t = tanh(Whxt + Uh(ht−1 ⊙ rt) + bh) (4.12)

ht = zt ⊙ ht−1 + (1 − zt)⊙ h̃t (4.13)

where W∗ and U∗ are the weight matrices and b∗ is the bias vector. The symbol ⊙ represents a

pointwise product whereas σ is a sigmoid activation that outputs values between 0 and 1. The

GRU does have the ability to remove old information from t−1 time or add new one from t time.

The reset gate rt is in charge of keeping in the current cell state (i.e., h̃t) the information of the

previous time step (i.e., ht−1) or reset it with the information of only the current input (i.e.,

xt). Finally, the update gate zt filters how much information from the previous time step and

current cell state will flow to the current output of the memory block (i.e., ht). Fig. 4.5 shows

a single GRU memory block at different time steps (i.e., Xt−1, Xt and Xt+1) for clarification.

63

4ChapterRNNsApproach/pics/GRU_explanation.ps


4. PROPOSED METHODS

Figure 4.6: Scheme of a typical Bidirectional RNN system at different time steps (i.e., Xt−1, Xt and
Xt+1). The bottom part of the scheme propagates the information forward in time (towards the right)
while the top part of the scheme propagates the information backward in time (towards the left). Thus

at each point t, the output units Ot can benefit from a relevant summary of the past in its hf
t input and

from a relevant summary of the future in its hb
t input. Figure adapted from [Goodfellow et al., 2016].

4.2.1.4. Bidirectional RNNs

The RNN schemes explained before in Sec. 4.2.1.2 and 4.2.1.3 are the original ones. These

schemes have access only to the past and present contexts. However, for some applications

such as handwriting or speech recognition the chance of having access to the future context can

further improve the system performance [Graves and Jaitly, 2014; Graves et al., 2009]. Schemes

that also allow access to the future context are known as Bidirectional RNNs (BRNNs) [Schuster

and Paliwal, 1997]. BRNNs combine a RNN that moves forward through time beginning from

the start of the sequence with another RNN that moves backward through time beginning from

the end of the sequence [Goodfellow et al., 2016]. Fig. 4.6 shows a typical scheme of a BRNN

system at different time steps (i.e., Xt−1, Xt and Xt+1) for clarification. The bottom part of

the scheme propagates the information forward in time (towards the right) while the top part of

the scheme propagates the information backward in time (towards the left). Thus at each point

t, the output units Ot can benefit from a relevant summary of the past in its hft input and from

a relevant summary of the future in its hbt input [Goodfellow et al., 2016].

4.2.2. Proposed RNN On-Line Signature Verification Systems

Our proposed end-to-end writer-independent on-line signature verification system is depicted

in Fig. 4.7. This system has been obtained after carrying out an exhaustive analysis in terms

of the number of time functions used to feed the network and the complexity level of the RNN

system (i.e., the number of hidden layers and memory blocks per hidden layer). All details are

described in the experimental part of Chapter 7. The present section aims to summarise the
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4.3 Chapter Summary and Conclusions

Figure 4.7: End-to-end writer-independent on-line signature verification system proposed in this Thesis
based on the use of LSTM and GRU RNNs with a Siamese architecture.

final configuration selected.

We propose both LSTM and GRU systems with a Siamese architecture. In addition, a

bidirectional scheme is considered for both LSTM- and GRU-based systems in order to be able

to access both past and future context. For the input of the RNN system, we extract a set of 23

local features (Table 4.3) per signature from signals related to X and Y spatial coordinates and

pressure. The first layer is composed of two LSTM/GRU hidden layers with 46 memory blocks

each, sharing the weights between them. The outputs of the first two parallel LSTM/GRU

hidden layers are concatenated and serve as input to the second layer, which corresponds to a

LSTM/GRU hidden layer with 23 memory blocks. Finally, a feed-forward neural network layer

with a sigmoid activation is considered, providing an output score between 0 and 1 for each pair

of signatures.

4.3. Chapter Summary and Conclusions

In this chapter we have concentrated on describing the on-line signature verification systems

considered in this Dissertation. First, Sec. 4.1 has focused on traditional signature verification

systems, explaining the specific features and matching algorithm configurations considered in

this Thesis. Then, Sec. 4.2 has described our proposed novel signature verification systems

based on deep learning. We have first explained the basics of RNN systems and gave and

overview of the main relevant studies. Finally, the specific details of our proposed end-to-end

writer-independent RNN signature verification systems have been stated. This architecture has

been also adapted to the task of handwritten passwords for touchscreen biometrics described in

Chapter 9.

65

4ChapterRNNsApproach/pics/LSTM_configuration.ps


Part II

Emerging Scenarios
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Chapter 5

Multi-Device Multi-Input

Acquisition Scenarios

In this chapter, we analyse and adapt traditional on-line signature verification systems to

emerging scenarios focusing on device interoperability, finger input, and mixed writing-input.

Both Biosecure and e-BioSign databases are considered in the experimental work carried out

in this chapter in order to evaluate the system performance using traditional and new COTS

devices.

The chapter is organised as follows. Sec. 5.1 explains our two-stage approach proposed in

order to alleviate the degradation of the system performance on these novel scenarios. Sec. 5.2

describes the experimental protocol considered for both Biosecure and e-BioSign databases.

Then, in Sec. 5.3 we analyse finger input scenarios for on-line signature verification and compare

the results obtained with the traditional stylus scenario. In Sec. 5.4 we first evaluate the system

performance of traditional signature verification systems on device interoperability scenarios,

and then we apply the two-stage approach proposed in the Thesis. Sec. 5.5 finally evaluates the

possibility of using different writing tools during the acquisition of enrolment and test signatures

(i.e., mixed writing-input scenario). Conclusions are finally drawn in Sec. 5.6.

This chapter is based on the following publications: [Tolosana et al., 2017a, 2018e, 2015c,d,

2017d; Vera-Rodriguez et al., 2015].

5.1. Proposed Approach

This section describes the two main stages proposed in this Thesis in order to increase

the robustness of on-line signature verification systems on these novel scenarios. First, a data

preprocessing stage is applied in order to achieve a high similarity between signatures coming

from different devices and writing tools. Second, a new criterion is proposed in order to select

the optimal features for each specific scenario.

In this chapter we use both global and local systems. For the global system, we consider
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Figure 5.1: Signatures from DS2 and DS3 datasets before and after applying the mean and standard
deviation normalisation technique.

the same system described in Sec. 4.1.1 based on 117 initial global features and Mahalanobis

distance algorithm for the similarity computation. For the local system, we consider the same

system described in Sec. 4.1.2 based on 23 initial local features and DTW algorithm for the

similarity computation.

5.1.1. Data Preprocessing Stage

The first stage we propose to compensate multi-device and multi-input acquisition scenarios

is related to data preprocessing. The aim of this first stage is to obtain signatures with the

same type of information (i.e., X and Y spatial coordinates, pressure, etc.) and time and

spatial position standard formats so as to improve the performance of the system in these novel

scenarios. Several statistical data normalisation techniques have been studied in order to correct

variabilities between devices. A graphical example of this effect can be seen in Fig. 5.1 for the

devices considered in Biosecure DS2 and DS3 datasets. The different spatial position of DS2

signatures is due to the acquisition protocol followed in Biosecure where users had to sign in

different boxes on a sheet of paper (see Fig. 3.1(a)) whereas the different size among signatures

from DS2 and DS3 could be due to the screen resolution of the devices (see Fig. 5.1(a)).

In order to compensate the position and spatial variabilities described before, we apply

normalisation techniques based on the mean and standard deviation. Fig. 5.1(b) represents DS2

and DS3 signatures after applying the proposed normalisation. In addition, we also consider

interpolation techniques based on splines [Martinez-Diaz et al., 2007] in order to correct sampling

errors (missing samples) and get the same sampling frequency in all acquisition devices (fixed to

200Hz). Finally, for the e-BioSign database, we remove the first and last samples of the signatures

as they correspond to the time between the operator clicks to start/finish the acquisition and

the time the user starts/finishes signing.
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5.2 Experimental Protocol

5.1.2. Feature Extraction and Selection Stage

The second stage of our proposed approach is focused on the selection of the optimal global

and local features for each specific scenario. The SFFS algorithm described in Sec. 2.1.5 is

considered here in order to obtain an optimal subset of the initial 117 and 23 global and local

features that improves the system performance in terms of EER (%).

In our proposed approach, in order to increase the robustness of the systems on these novel

scenarios, the criterion of the SFFS algorithm has been adapted to each specific scenario con-

sidering the EER obtained from different signature comparisons at the same time. For example,

in order to tackle device interoperability scenarios, the EER of intra- and inter-device signature

comparisons are considered at the same time in our proposed SFFS criterion. All details are

included inside of each scenario.

5.2. Experimental Protocol

5.2.1. Biosecure Database

The first 50 users of the database are considered for the development and training of the

systems whereas the remaining 70 users are used for the final evaluation of the proposed systems.

For each user, the first 5 genuine signatures of the first session are used for training, whereas

the 15 genuine signatures of the second session are left for testing in order to take into account the

inter-session variability. Therefore, the 10 remaining genuine signatures of the first session are

not used in our experiments. Skilled forgery scores are obtained by comparing training signatures

against the 20 available skilled forgeries for the same user whereas random (zero-effort) forgery

scores are obtained by comparing the training signatures with one genuine signature of the

remaining users. For the global system, scores are obtained by comparing signatures against the

user model, while for the local system, the average score of the five one-to-one comparisons is

performed.

The nomenclature followed in the Thesis for the analysis of both intra- and inter-device

scenarios is denoted as:

a — b — c

where a indicates skilled or random forgery cases, and b and c represent the device used for

training and testing respectively.

5.2.2. e-BioSign Database

The experimental protocol proposed for this database has been designed to cover all emerging

scenarios, i.e., device interoperability, finger input, and mixed writing-input. The e-BioSign

database is divided into two different datasets. The first 30 users of the database are considered

for the development and training of the systems, whereas the remaining 35 users are considered

for the final evaluation of the proposed systems.
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Table 5.1: Local features considered in the local baseline system. Local feature # taken from Table 4.3.

# Feature description

1 x-coordinate: xn
2 y-coordinate: yn
8-9 First-order derivate of features 1-2: ẋn, ẏn
15-16 Second-order derivate of features 1-2: ẍn, ÿn
19 First order difference of angle of consecutive samples: α̇n

Regarding the development and training phase, different experimental protocols have been

proposed for each of the three emerging scenarios considered in this Thesis. All details about

the training procedures are given inside each scenario.

Regarding the evaluation phase, the same experimental protocol is considered for all experi-

ments. The 4 genuine signatures of the first session are used for training, whereas the remaining

4 genuine signatures of the second session are left for testing. Skilled forgery scores are obtained

by comparing the training signatures against the 6 available skilled forgeries per user whereas

random (zero-effort) forgery scores are obtained by comparing the training signatures with one

genuine signature of each of the remaining users. For the global system, scores are obtained

by comparing test signatures against the user model obtained with the 4 training signatures

whereas for the local system, the average score of the four one-to-one comparisons is performed.

5.3. Finger Input Scenarios

In this section we assess the feasibility of signature verification systems based on finger

writing input. The local system described in Sec. 5.1 and based on DTW is considered in the

study. The W4 and W5 devices of the new e-BioSign database have been considered in this

experimental work as signatures were acquired using both stylus and finger for the same group

of users. This way we can perform a clear evaluation of this novel scenario compared to the

traditional one based on the stylus.

Two different approaches are considered in this experiment. First, baseline systems whose

local features are fixed from previous works (see Table 5.1). Second, the proposed systems are

adjusted using our proposed two-stage approach described in Sec. 5.1 over the development

dataset in order to improve the system performance. The SFFS algorithm has been individu-

ally applied to each device and writing tool in order to select the optimal feature subsets for

each specific case. The first approach is considered as Baseline (B) whereas the second one is

considered as Proposed (P). Table 5.2 shows results for both Baseline and Proposed approaches

considering the 35 users of the evaluation dataset.

Analysing Table 5.2 for the case of using the stylus as the writing tool, the baseline systems

achieve an average EER of 11.5% and 1.5% for skilled and random forgeries respectively whereas

for the proposed systems the average EER improves to 9.3% and 0.9% for skilled and random

forgeries respectively. These results show the benefits of using our two-stage approach over the

development dataset. A thorough analysis of the compensation effects of our proposed two-stage
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Table 5.2: System performance results in terms of EER (%) on the evaluation dataset. B = Baseline
and P = Proposed.

STYLUS FINGER
W4 W5 W4 W5

B P B P B P B P

Skilled 10.0 7.9 12.9 10.7 24.0 22.1 27.0 26.4

Random 0.8 0.7 2.1 1.0 1.4 0.3 2.3 1.0

approach will be then carried out over the device interoperability scenario. From the results, it is

also important to highlight the good system performance obtained for both W4 and W5 devices,

showing the possibility of considering general purpose devices in real banking and commercial

applications and not only the traditional Wacom devices.

Analysing Table 5.2 for the case of using the finger as the writing input, the baseline systems

achieve an average EER of 25.5% and 1.9% for skilled and random forgeries respectively whereas

for the proposed systems the average EER improves to 24.3% and 0.7% for skilled and random

forgeries respectively, showing again the benefits of using our proposed two-stage approach. An

important effect that can be observed from Table 5.2 is how the system performance changes

regarding the writing input (i.e., stylus and finger) considered during the acquisition process,

especially for skilled forgeries with results almost three times worse than the stylus case.

In order to find out the reasons for such difference in the system performance, an exhaustive

analysis of the finger scenario has been carried out. Two main aspects justify the results ob-

tained. First, we have observed that in general users who perform their signatures using closed

letters (i.e., a, e, o, l, p, q, etc.) tend to perform much larger writing executions in comparison

with other letters due to the lower precision they are able to achieve using the finger. Besides,

users whose signatures are composed of a long name and surname (or two surnames) tend to

simplify some parts of their signatures on the finger scenario. Regarding the sampling frequency

of the acquisition process, it is important to highlight the differences that exist between the

stylus and finger scenarios. For the stylus scenario, all samples of the signature are uniformly

distributed across the whole signing process. However, for the case of using the finger as input,

there are many samples distributed in small parts of the signature instead of the whole signature

as it happens in the stylus scenario. This non-desirable effect is due to the lack of precision ob-

tained using the finger and the friction produced between the screen and the finger. Therefore,

it might not be related to the specific device considered in the experimental work, but to the

use of the finger as the writing input instead. Some differences that exist between both stylus

and finger scenarios are depicted in Fig. 5.2. Despite this effect, and although the number of

samples are very similar in both scenarios, an additional interpolation step based on splines is

required in order to reduce the difference in the sampling effect between the stylus and finger

scenarios.

Finally, it is important to remark the very challenging scenario considered in this experiment

as forgers had access to the dynamic realization of the signatures to forge. A recommendation for

the usage of signature recognition on mobile devices would be for the users to protect themselves
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Figure 5.2: Signatures from the e-BioSign database acquired using both stylus and finger.

from other people that could be watching while signing, as this is more feasible to do in the

mobile scenario compared to the office scenario. This way skilled forgers might have access to

the global shape of the signature but not to the dynamic information. Therefore, the higher

variability together with the challenging forgeries considered in this experiment conclude that

these new finger input scenario can be applied to those scenarios where the knowledge of the

impostor about the user to forge is scarce, e.g., random forgeries.

5.4. Device Interoperability Scenarios

5.4.1. Biosecure Database

We first assess device interoperability scenarios using the traditional devices considered in

Biosecure database. In Sec. 5.4.1.1, we evaluate the data preprocessing first stage of our proposed

approach for the standard case of having a recognition system adjusted specifically to each

device, without considering device interoperability conditions. Signature verification systems

are optimised for the skilled forgery case as it is the most challenging case in on-line signature

verification [Diaz et al., 2018b; Martinez-Diaz et al., 2014; Plamondon and Srihari, 2000]. Due

to the importance of the data preprocessing stage, this first stage is always considered in the rest

of experiments in order to evaluate the second stage based on the selection of the optimal global

and local features for this device interoperability scenario. In Sec. 5.4.1.2, the systems obtained

in Sec. 5.4.1.1 are considered as baseline systems in order to measure the importance of our

proposed second stage in the following experiments. Sec. 5.4.1.3 evaluates the ideal case where

for each system (i.e., global and local) and comparison case, a different optimal subset of global

and local features are selected (i.e., eight different optimal subsets are selected per system, four

for random forgery cases and other four for skilled forgery cases) achieving therefore the best

possible performance (although this could be unrealistic). In Sec. 5.4.1.4, we propose to apply

our two-stage approach in order to select just one optimal subset of local and global features

able to alleviate the degradation of the system performance on device interoperability scenarios.

In Sec. 5.4.1.5, we propose a final fusion of both systems via weighted sum of the match scores
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5.4 Device Interoperability Scenarios

Table 5.3: Exp. 1: System performance results in terms of EER (%) on the development dataset with
and without applying the first data preprocessing stage proposed in this Thesis. Top: local system cases.
Bottom: global system cases.

Local System Skilled forgeries

Training vs Testing Without stage 1 With stage 1

DS2 - DS2 7.1 8.6

DS3 - DS3 28.6 17.1

DS2 - DS3 45.5 27.3

DS3 - DS2 56.6 17.6

Global System Skilled forgeries

Training vs Testing Without stage 1 With stage 1

DS2 - DS2 4.3 4.1

DS3 - DS3 25.3 14.8

DS2 - DS3 30.6 23.5

DS3 - DS2 49.3 46.9

considering the optimal global and local features selected in Sec. 5.4.1.4. In all these experiments

only the development dataset of 50 users is considered.

Finally, our proposed optimal system obtained in Sec. 5.4.1.5 is tested using the remaining

70 users of the database not considered during the development and training process.

5.4.1.1. Experiment 1: Data Preprocessing Stage

This experiment aims to evaluate our proposed data preproccesing first stage. Both global

and local systems are adjusted to each specific device (i.e., intra-device) without considering

device interoperability scenarios yet, which is the common procedure in on-line signature veri-

fication. SFFS algorithm has been applied in order to improve the individually EERs for DS2

and DS3 datasets. Therefore, we consider two optimal feature subsets per system, one adjusted

for DS2 dataset and another one fixed for DS3 dataset. Table 5.3 shows the performance for

both systems. Analysing the device interoperability cases, we can observe a significantly system

performance improvement after applying our proposed data preprocessing stage, specially for

the local system. In case we do not consider this first stage, the performance of the systems

on this device interoperability scenario increases to EERs around 50% in most cases. This first

experiment proves the importance of the proposed preprocessing stage in this novel scenario.

Analysing intra-device cases, the performance of global and local systems are very similar for the

DS2 dataset. A small degradation of the system performance is produced for the local system

after applying the data preprocessing stage due to pen-up information was discarded from DS2

as well as pressure information as this information is not recorded by the DS3 device. Therefore,

for all experiments carried out using our first data preprocessing stage, we consider a total of

100 and 21 global and local initial features respectively. For the DS3 dataset, a high system

performance improvement is achieved after applying the data preprocessing stage due to the

sampling errors were corrected using the interpolation based on splines [Martinez-Diaz et al.,

2007].
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Table 5.4: Exp. 2, 3, and 4: System performance results in terms of EER (%) on the development
dataset. Top: local system cases. Bottom: global system cases.

Local System Skilled forgeries Random forgeries

Training vs Testing Baseline Individually optimised Proposed Baseline Individually optimised Proposed
Exp. 2 Exp. 3 Exp. 4 Exp. 2 Exp. 3 Exp. 4

DS2 - DS2 8.6 8.6 9.3 1.2 0.6 0.9

DS3 - DS3 17.1 17.1 18.1 2.1 0.8 1.5

DS2 - DS3 27.3 21.5 22.9 4.7 2.5 4.3

DS3 - DS2 17.6 13.6 15.7 5.1 1.8 2.9

Global System Skilled forgeries Random forgeries

Training vs Testing Baseline Individually optimised Proposed Baseline Individually optimised Proposed
Exp. 2 Exp. 3 Exp. 4 Exp. 2 Exp. 3 Exp. 4

DS2 - DS2 4.1 4.1 8.3 3.5 1.5 4.0

DS3 - DS3 14.8 14.8 20.5 10.8 5.5 8.6

DS2 - DS3 23.5 16.1 20.0 23.3 9.5 13.7

DS3 - DS2 46.9 13.9 21.9 44.4 7.2 13.2

5.4.1.2. Experiment 2: Baseline System

In this experiment, the systems obtained in Sec. 5.4.1.1, which only considers the first data

preprocessing stage, are now used as baseline systems. The optimal features were selected

considering intra-device scenarios but not device interoperability scenarios. Therefore, the idea

is to use these baseline systems to measure the improvement of our proposed second stage based

on the selection of the optimal feature subsets considering both intra- and inter-device scenarios.

The results obtained using both global and local baseline systems are included in Table 5.4.

Analysing the intra-device cases in Table 5.4, the performance of the system is much better for

DS2 compared to DS3 datasets for both systems and impostor scenarios. This is due to the fact

that DS2 device (pen tablet Wacom) is a higher quality device designed for capturing signatures

and besides, in DS3 dataset signatures were captured under a mobility scenario where people had

to sign standing and holding the PDA in one hand. Analysing the device interoperability cases, a

high degradation of the system performance is produced in both systems and impostor scenarios.

This degradation is more critical for the DS2 device, e.g., the system performance of the DS2 -

DS3 device interoperability case increases up to 6 times for the global system. Therefore, in this

experiment we can conclude that training and testing with different devices has a high impact

on the performance, being the critical case when the quality of the device used for testing is

worse than the quality of the device used for training. The performance of the system on device

interoperability scenarios have been evaluated in recent works for random forgery cases [Blanco-

Gonzalo et al., 2014], but no solutions have been proposed for compensating the degradation of

the performance between different quality devices apart from the data preprocessing stage. For

this reason, the aim of the next experiments is to select just one optimal subset of global and local

features able to alleviate the degradation of the system performance on device interoperability

scenarios.
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Figure 5.3: Exp. 3: System performance results in terms of EER (%) on the development dataset for
each possible size of the optimal feature vector selected by the SFFS algorithm. Top: global system cases.
Bottom: local system cases.

5.4.1.3. Experiment 3: Individually Optimised Systems

In this experiment, the goal is to obtain the best ideal possible performance achieved for

both systems in an individually optimised case. It is important to highlight that this approach

would not be possible to deploy in realistic applications as SFFS algorithm has been individually

applied to each system (global and local) and impostor cases (i.e., 4 for random and 4 for skilled

forgeries). Fig. 5.3 depicts the system performance results in terms of EER (%) for each possible

size of the optimal feature vector selected by the SFFS algorithm. Table 5.4 represents the best

EER obtained for each individually optimised case. The optimal global and local feature subsets

are different for each case as it can be seen in Fig. 5.3, where the number of features selected

for each case is depicted with a marker.

The performance of each individually optimised system is much better compared to the

baseline system, especially for device interoperability cases. This is due to the fact that device
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Figure 5.4: Exp. 4: System performance results in terms of the Average EER (%) on the development
dataset for each possible size of the optimal feature vector selected by the SFFS algorithm. The new SFFS
criterion is considered in order to optimise the systems against device interoperability scenarios.

interoperability scenarios have been taken into account by the SFFS algorithm in this individ-

ually optimised systems. In addition, it considers 16 different optimal feature vectors (one for

each case and system), so this would not be possible to consider in realistic applications. These

results allow us to know the performance limits we would be able to achieve in the best cases.

It is very interesting to remark the cases when the systems are trained and tested with DS3

and DS2 devices respectively (DS3 - DS2) compared to the case of training and testing using

only the DS3 device (DS3 - DS3) for skilled forgery cases, as the system performance results

achieved on device interoperability scenarios are even better than intra-device scenarios for both

global and local systems. Finally, it is also important to note that for both systems the case

DS2 - DS3 provides the worst system performance, so this specific challenging case would be

taken into account by the SFFS algorithm in the next experiment.

5.4.1.4. Experiment 4: Proposed System

The main goal of this experiment is to select just one optimal subset of global and local

features able to alleviate the degradation of the system performance on device interoperability

scenarios. To achieve this, the two-stage approach proposed in this PhD Thesis has been applied,

modifying therefore the criterion of the SFFS algorithm in order to obtain the lowest total EER

(average of the EERs obtained for all the comparison cases) and the lowest EER for the DS2 -

DS3 skilled forgery cases as this specific case provided the worst results in both global and local

systems in Sec. 5.4.1.3. Fig. 5.4 shows the average system performance after applying the SFFS

algorithm with the new criterion proposed. The optimal feature subsets are composed of 28 and

7 global and local features respectively. Features related to the geometry, speed and acceleration

have been the most important ones for the global system whereas for the local system, local

features related to Y -coordinate and velocity are the best performing.
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Figure 5.5: Exp. 5: System performance results in terms of EER (%) on the development dataset
for the fusion of the global and local systems at score level for different values of the fusion weighting
coefficient k.

The system performance of both global and local systems is represented in Table 5.4 for

both skilled and random forgeries. In general, good results have been achieved for device inter-

operability scenarios compared to the original baseline systems. This improvement is especially

noticeable for the global systems.

Analysing the device interoperability cases for the global system, our proposed system pro-

vides an average relative improvement of 40.5% EER for skilled forgeries and 60.3% EER for

random forgeries compared to the baseline system. Besides, it is important to note that an

absolute improvement of 3.5% EER has been achieved for the most challenging case (skilled -

DS2 - DS3) compared to the baseline system.

Analysing the device interoperability cases for the local system, the proposed system provides

an average relative improvement of 14.0% EER for skilled forgeries and 26.5% EER for random

forgeries compared to the baseline system. In addition, and as it happens for the global system,

an absolute improvement of 4.4% EER has been achieved for the most challenging case (skilled

- DS2 - DS3) compared to the baseline system.

5.4.1.5. Experiment 5: Fusion of the Proposed Systems

In this experiment we propose a final fusion of the optimal global and local systems obtained

in Sec. 5.4.1.4 to further improve the system performance. This fusion is performed via weighted

sum of the match scores [Kittler et al., 1998]. Before applying fusion of the systems, all scores

are normalised in a range [0,1] using tanh-estimators [Jain et al., 2005]. The final fusion score

sf is obtained as:

sf = k · sg + (1− k) · sl (5.1)

where sf is the final score, and sg and sl are the match scores of the global and local systems
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Table 5.5: Exp. 5: System performance results in terms of EER (%) on the development dataset for
global and local systems, and final fusion of them.

Skilled forgeries Random forgeries

Training vs Testing Global Local Fusion Global Local Fusion

DS2 - DS2 8.3 9.3 5.2 4.0 0.9 0.4

DS3 - DS3 20.5 18.1 12.7 8.6 1.5 1.9

DS2 - DS3 20.0 22.9 18.3 13.7 4.3 4.3

DS3 - DS2 21.9 15.7 11.5 13.2 2.9 3.2

Table 5.6: Exp. 6: System performance results in terms of EER (%) on the evaluation dataset for
the fusion of the optimal global and local systems via weighted sum of scores. Comparison of the results
obtained by baseline and proposed systems choosing a k value of 0.3 for the fusion.

Fusion of Systems Skilled forgeries Random forgeries

Training vs Testing Baseline Proposed Baseline Proposed

DS2 - DS2 7.1 6.2 3.4 2.0

DS3 - DS3 11.3 12.8 2.6 2.7

DS2 - DS3 21.5 18.9 10.6 4.9

DS3 - DS2 14.8 13.4 4.7 4.7

respectively. The fusion weighting coefficient k has been heuristically set by observing the

performance of the system in terms of the EER and taking into account all the cases at the

same time. Fig. 5.5 depicts the performance of the fusion system for different values of k.

In general, the system performance gets worse for both random and skilled forgeries when we

choose a high value of k, whereas for a low value of k the performance of the system also

gets worse for skilled forgeries. For this reason, a k value of 0.3 has been finally selected as

it provides a good performance for all cases at the same time. Therefore, the local system

outweighs the global system in the final score. Table 5.5 shows the individual performance of

global and local systems (see Sec. 5.4.1.4) and the final fusion performance. The performance

of the proposed fusion system is much better compared to the individual performance of the

systems in most cases, especially for skilled forgeries where the proposed fusion system provides

an average relative improvement of 27.7% EER compared to the local system.

5.4.1.6. Experiment 6: Validation Experimental Results

Our final proposed system based on the fusion of the optimal global and local systems are

now tested using the evaluation dataset composed of the remaining 70 users of the Biosecure

datasets. Fig. 5.6 shows the system performance results in terms of the DET curve. The EERs

achieved for both baseline and proposed systems using a fusion weighting coefficient k = 0.3 are

shown in Table 5.6. Analysing the device interoperability cases, the proposed system provides

an average relative improvement of 11.0% EER for skilled forgeries and 37.3% EER for random

forgeries compared to the baseline system. Therefore, these results are similar compared to the

same ones obtained in the development phase, proving the robustness of the proposed scheme.
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Figure 5.6: Exp. 6: DET curves for the final signature recognition system based on fusion of the
proposed global and local systems on the evaluation dataset.

5.4.1.7. Biosecure Database Conclusions

The experimental work carried out using the Biosecure database has revealed a high degra-

dation of the signature verification systems on device interoperability scenarios. Our proposed

two-stage approach has proved to be very useful, alleviating the degradation of the system

performance on this novel scenario. However, despite the improvement achieved, the system

performance is still highly affected by this challenging scenario with results around 20% EER

for skilled forgeries when the quality of the training device is higher than the testing device (DS2

- DS3).

For this reason, in order to assess the real impact of device interoperability scenarios on

current devices and applications, the new e-BioSign database, which comprises a total of 5

COTS devices (3 Wacom devices specifically designed for capturing handwriting and 2 Samsung

general purpose tablets), is now used in order to evaluate the system performance on current

scenarios after applying our two-stage proposed approach.

5.4.2. e-BioSign Database

Two main experiments are carried out using the e-BioSign database in order to analyse

device interoperability scenarios for both stylus and finger cases. Sec. 5.4.2.1 analyses the system

performance of each individual device considering the scenario of having signatures from the same

device and writing input. Both global and local systems are considered on this analysis. Then,

in Sec. 5.4.2.2 the scenario of considering signatures from different devices but same writing

input for training and testing the system is studied.
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Table 5.7: Global features considered in the global baseline system. Global feature # taken from Ta-
bles 4.1 and 4.2.

# Feature description

1 Signature total duration Ts

2 N(pen-ups)

36 (xmax - xmin) / xacquisition range

67 (ymax - ymin) / yacquisition range

101 Average pressure p

5.4.2.1. Experiment 1: Intra-Device Analysis

Two different approaches are considered in this experiment. First, baseline systems whose

local and global features are fixed from previous works (see Tables 5.1 and 5.7). Second, the

proposed systems are adjusted using our proposed two-stage approach described in Sec. 5.1 over

the development dataset in order to improve the system performance. The SFFS algorithm

has been individually applied to each device and writing input in order to select the optimal

feature subsets for each specific case. The first approach is considered as Baseline (B) whereas

the second one is considered as Proposed (P).

Tables 5.8 and 5.9 show the results for both Baseline and Proposed approaches considering

the 35 users of the evaluation dataset. The global system is only considered for the case of using

the stylus (Table 5.9) as information related to pen ups and pressure is not available in the W5

device when signatures are acquired using the finger.

Analysing Table 5.8 for the case of using the stylus as the writing input, the baseline systems

achieve an average EER of 11.7% and 1.9% for skilled and random forgery cases respectively

whereas for the proposed systems the average EER improves to 10.1% and 1.1% for skilled and

random forgeries respectively. These results show the benefits of using the SFFS algorithm over

a development dataset in order to select the optimal local features. In addition, two important

observations can be highlighted from the results. First, very similar system performance has

been achieved for general purpose devices (i.e., W4 and W5) compared to devices specifically

designed to capture on-line handwriting and signatures (i.e., W1, W2 and W3) for both skilled

and random forgery cases when the stylus is used as the writing input. This shows the feasibility

of general purpose devices in real banking and commercial applications. Second, it is worth

noting a lower performance of the W3 device compared to the other devices despite being a high

quality Wacom device. We attribute this fact to the the user interface as a cross shape marker

was included on the display during the acquisition process in contrast to the other devices, and

this could have been uncomfortable for the users.

Analysing Table 5.8 for the case of using the finger as the writing input, the baseline systems

achieve an average EER of 25.5% and 1.9% for skilled and random forgery cases respectively

whereas for the proposed systems the average EER improves to 24.3% and 0.7% for skilled and

random forgeries respectively. A high degradation of the system performance is produced for

skilled forgery cases when using the finger as the writing input. A thorough analysis of this

novel finger scenario has been already performed in Sec. 5.3.

82



5.4 Device Interoperability Scenarios

Table 5.8: Intra-device scenario: System performance results in terms of EER (%) on the evaluation
dataset for the local systems when signatures are acquired using stylus and finger. B = Baseline and P
= Proposed.

STYLUS FINGER
W1 W2 W3 W4 W5 W4 W5

B P B P B P B P B P B P B P

Skilled 10.0 8.3 10.0 10.0 15.7 13.6 10.0 7.9 12.9 10.7 24.0 22.1 27.0 26.4

Random 1.4 0.0 1.1 0.7 4.3 2.9 0.8 0.7 2.1 1.0 1.4 0.3 2.3 1.0

Table 5.9: Intra-device scenario: System performance results in terms of EER (%) on the evaluation
dataset for the global systems when signatures are acquired using stylus. B = Baseline and P =
Proposed.

STYLUS
W1 W2 W3 W4 W5

B P B P B P B P B P

Skilled 13.6 13.5 12.9 16.4 22.6 19.3 14.3 17.9 19.3 10.0

Random 12.1 10.7 12.1 13.6 20.8 17.9 11.4 12.1 17.9 6.4

Analysing Table 5.9, the average EER for the baseline systems is 16.5% and 14.8% for

skilled and random forgery cases respectively whereas for the proposed systems the average

EER is 15.4% and 12.1% for skilled and random forgery cases respectively. Therefore, global

systems do not achieve as good results as local systems. In particular, the results obtained for

random forgery cases are very critical. For this reason, the global system has been discarded in

the remaining experiments.

Finally, we compare the best system performance results obtained on the e-BioSign database

to the state-of-the-art results obtained using other existing on-line signature databases (see

Table 3.1). However, note that most algorithms and experimental conditions vary between the

listed studies, e.g., the amount and type of training and testing data. For the case of using the

stylus as the writing input, the best results obtained in the present study are 7.9% and 0.0%

EER for skilled and random forgery cases respectively. The result obtained for skilled forgeries

is a bit higher in terms of EER compared to the results obtained in the two largest databases

(i.e., 6.20% and 4.77% EER for Biosecure and BiosecurID databases, respectively). One of the

possible reasons for this effect could be the high quality of the forgeries considered on e-BioSign

database as forgers could even place on the screen device a paper with the image of the signatures

to forge. For the random forgery case, the best result achieved here is 0.0% EER, which is the

best one compared to other databases. Analysing the case of using the finger as the writing

input, the best results obtained are 17.9% and 0.3% EER for skilled and random forgeries,

respectively. For the skilled forgery case, the result obtained using the e-BioSign database has

outperformed the preliminary results obtained in [Martinez-Diaz et al., 2016], in which users

were asked to perform a simplified version of their signature (a.k.a. pseudo-signatures) based on

their initials or part of their signature flourish. For the random forgery case, the result obtained

is very close to zero, similar to the result obtained in [Blanco-Gonzalo et al., 2014].
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Table 5.10: Inter-device scenario: System performance results in terms of EER (%) for the proposed
local system when signatures are acquired using the stylus. Skilled and random forgery results are shown
on top and bottom of each cell respectively.

Test
W1 W2 W3 W4 W5

Train

W1
10.7
0.7

7.9
0.8

15.7
5.0

10.7
0.7

10.7
2.1

W2
11.4
1.1

10.0
0.7

16.4
5.7

14.3
0.7

11.4
1.6

W3
9.3
0.3

8.6
0.7

13.6
2.1

11.2
0.0

11.4
1.4

W4
10.0
0.7

9.3
0.9

17.1
5.0

10.7
0.7

11.4
1.4

W5
12.7
1.4

10.0
1.1

16.9
5.0

12.1
0.7

11.2
1.4

Table 5.11: Inter-device scenario: System performance results in terms of EER (%) for the time
functions-based system when signatures are acquired using the finger. Skilled and random forgery results
are shown on top and bottom of each cell respectively.

Test
W4 W5

Train
W4

19.3
0.7

23.5
0.2

W5
24.2
0.7

22.9
0.3

5.4.2.2. Experiment 2: Inter-Device Analysis

In this experiment we focus on device interoperability scenarios on COTS devices. The idea

is to evaluate the potential of our proposed two-stage approach on current devices as the initial

analysis carried out in Sec. 5.4.1 for the Biosecure database considered old-fashion devices with

a high different quality level. This could be the reason for the high degradation of the system

performance obtained on device interoperability scenarios (i.e., DS2 - DS3 case).

Two different systems are developed for all five devices (one for signatures acquired using the

stylus and another one for the finger) using the 30 users of the development dataset. In order

to select the optimal feature subsets for this novel device interoperability scenario, the SFFS

algorithm has been applied. For the stylus case, a total of 5 genuine signatures (1 signature per

device) of the first session are considered as training signatures whereas a total of 20 genuine

signatures (4 signatures per device) of the second session are left for testing. For the finger

case, a total of 4 genuine signatures (2 signatures per device) of the first session are considered

as training signatures whereas the 8 genuine signatures (4 signatures per device) of the second

session are left for testing. Then the systems developed were tested on the 35 users of the

evaluation dataset. The results achieved are depicted in Tables 5.10 and 5.11.

Table 5.10 shows all possible device combinations for training and testing the systems when

the stylus is used as the writing input. The diagonal of Table 5.10 (highlighted in darker colour)

contains all results without device interoperability. The proposed system developed for this

scenario achieves an average EER for device interoperability cases of 11.9% and 1.8% for skilled
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and random forgery cases respectively whereas for intra-device cases the average EER is 11.2%

and 1.1% for skilled and random forgery cases respectively. Therefore, very similar results have

been achieved for both intra- and inter-device scenarios when the stylus is considered as the

writing input. These results show the importance of applying our proposed two-stage approach

in order to compensate device interoperability scenarios. It is also important to note the system

performance obtained when W3 device is used for testing the system. For these cases, the

average EER increases up to 15.9% and 4.6% for skilled and random forgery cases respectively.

This degradation of the system performance could have been produced due to the same reasons

explained in the previous experiment.

Table 5.11 shows all possible device combinations for training and testing the system when

the finger is considered as the writing input. The proposed system developed for this scenario

achieves an average EER for the device interoperability cases of 23.9% and 0.5% for skilled and

random forgeries respectively whereas for the intra-device scenario the average EER is 21.1% and

0.5% for skilled and random forgeries respectively. Therefore, the same observations previously

extracted for the stylus case can be also applied here when writing with the finger in a general

mobile device, but with a worsening of the system performance due to the higher variability on

this finger input scenario.

Finally, some important conclusions can be extracted from the results obtained using the

e-BioSign and Biosecure databases. The high technological evolution and sensor quality improve-

ment together with our proposed two-stage approach for dealing with device interoperability lead

to very competitive signature verification systems on this novel scenario.

5.5. Mixed Writing-Input Scenarios

In this section we explore a new scenario where on-line signature verification systems are

trained and tested using signatures from the same device but different acquisition tools (i.e.,

stylus and finger). This scenario can be very useful for many real applications where the user

first register in the system using the stylus and then in posterior usages they could make use of

their personal smartphone or tablet devices using the finger as the writing input. Two different

local systems are trained in this section, one for the W4 device and another one for the W5

device. In order to select the optimal feature subsets for the mixed writing-input scenario, the

SFFS algorithm has been applied on the development dataset. SFFS has been individually

applied to W4 and W5 devices considering a total of 4 genuine signatures (2 signatures per

writing tool) as training signatures and 8 genuine signatures (4 signatures per writing tool) of

the second session as testing signatures. Table 5.12 shows the results obtained for each device

in this mixed writing-input scenario considering the 35 users of the evaluation dataset.

Analysing the skilled forgery cases, results show in general a system performance degrada-

tion when signatures acquired using the finger are considered for training or testing the systems.

For this case, an average 19.0% EER is achieved when the finger is considered for both training

and testing the system whereas for the mixed writing-input scenario the average EER is 21.8%.
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Table 5.12: Mixed writing-input scenario: System performance results in terms of EER (%) for
the proposed local systems. Skilled and random forgery results are shown on top and bottom of each cell
respectively.

Test
W4 W5

Stylus Finger Stylus Finger

Train
Stylus

12.9
0.7

22.9
0.7

12.9
0.1

17.9
0.2

Finger
27.9
0.7

20.0
0.7

18.6
0.7

17.9
0.5

Therefore, although the system performance is slightly worse for the mixed writing-input sce-

narios, the main problem resides in the signatures acquired with the finger. In addition, it is

important to note that for both devices the worst mixed writing-input case seems to be when

the system is trained using signatures acquired through the finger and testing with the stylus

but this would not be a common application scenario.

Analysing the random forgery cases, similar results can be observed for both devices when

using the same or different writing input for training and testing. Therefore, the deployment of

signature verification in real applications on this new and challenging finger and mixed writing-

input scenarios seems to be feasible when random forgeries are considered.

5.6. Chapter Summary and Conclusions

This chapter has evaluated the functioning of traditional on-line signature verification sys-

tems on the following emerging scenarios: i) finger input, ii) device interoperability, and iii)

mixed writing-input. For the analysis, both Biosecure and e-BioSign databases have been con-

sidered in the experimental work in order to perform a complete analysis of these novel scenarios

using traditional and COTS devices.

In order to alleviate the degradation of the system performance on these novel scenarios, we

have proposed a two-stage approach based on a first data preprocessing stage applied to achieve

a high similarity between signatures coming from different devices and writing tools, and second,

a new criterion in order to extract and select the optimal features for each specific scenario.

Our proposed approach has proved to be decisive for the system performance on these novel

scenarios, especially for device interoperability and mixed writing-input.

We have first studied the new finger input scenario, showing a higher EER for skilled forgeries

compared to the case of using the stylus as the writing input. We have observed that this

degradation is produced due to two main factors. First, the higher variability as in general users

who perform their signatures using closed letters (i.e., a, e, o, l, p, q, etc.) tended to perform

much larger writing executions in comparison with other letters due to the lower precision they

are able to achieve using the finger. Besides, users whose signatures are composed of a long

name and surname (or two surnames) tend to simplify some parts of their signatures on the

finger scenario. Finally, it is important to remark the very challenging scenario considered in
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this experiment as forgers had access to the dynamic realization of the signatures to forge. A

recommendation for the usage of signature recognition on mobile devices would be for the users to

protect themselves from other people that could be watching while signing, as this is more feasible

to do in a mobile scenario compared to an office scenario. This way skilled forgers might have

access to the global shape of the signature but not to the dynamic information. Therefore, the

higher variability together with the challenging forgeries considered in this experiment conclude

that these new finger input scenario can be applied to those scenarios where the knowledge of

the impostor about the user to forge is scarce, e.g., random forgeries.

Then, we have focused on device interoperability scenarios considering both traditional

and COTS devices. We have first applied our proposed two-stage approach on the Biosecure

database, proving to be very useful against skilled forgeries with average relative improvements

of 40.5% and 14.0% EER for global and local systems, respectively. We have also proposed

a final fusion of the systems with an average relative improvement of 27.7% EER. However,

and despite the improvements achieved, the system performance was still highly affected with

results around 20% EER when the quality of the device considered for training is better than

the testing device (DS2 - DS3). The new e-BioSign database has then considered in order to

analyse our proposed two-stage approach on COTS devices. The high technological evolution

and the sensor quality improvement together with our proposed two-stage approach have led

to very competitive signature verification systems on device interoperability scenarios with an

average EER of 11.9% and 1.8% EER for skilled and random forgeries, respectively.

Finally, we have also evaluated a mixed writing-input scenario as it can be very useful for

many real applications where the user first register in the system using the stylus and then

in posterior usages they could make use of their personal smartphone or tablet devices using

the finger as the writing input. In general, a high degradation of the system performance has

been produced compared to the traditional stylus scenario. An average 19.0% EER is achieved

when the finger is considered for both training and testing the system whereas for the mixed

writing-input scenario the average EER is 21.8%. Therefore, although the system performance is

slightly worse for the mixed writing-input scenarios, the main problem resides in the signatures

acquired with the finger. In addition, it is important to note that for both devices the worst

mixed writing-input case seems to be when the system is trained using signatures acquired

through the finger and testing with the stylus but this would not be a common application

scenario. Therefore, an exhaustive analysis of the finger scenario must be carried out in order

to understand and propose systems that are better adapted to this thriving scenario.
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Chapter 6

Long-Term Multi-Session

Acquisition Scenarios

In this chapter, we explore a novel scenario where the number of stored samples or templates

per user can grow very fast, making it possible to train more robust statistical user models,

improving the performance of the biometric systems and in particular reducing the template

aging effect. This chapter carries out an exhaustive experimental analysis of template update

strategies for three popular on-line signature verification approaches, extracts various practical

findings related to the template aging effect in signature biometrics, and configures time-adaptive

improved versions of the considered baseline approaches overcoming to some extent the template

aging. Fig. 6.1 illustrates the concept of template update as studied here. The Traditional

Approach on top only uses for enrolment an initial collection of genuine signatures. In the

Present Study (Fig. 6.1 bottom), we explore ways to incorporate additional enrolment data

coming across time.

Based on the main scenario in our mind mentioned before (in-branch banking operations),

we assume that signatures coming across time are all genuine (See Fig. 6.1) after some kind of

human validation (typical when collecting signatures in bank branches, e.g., checking ID cards

or knowing the customer). The problem is therefore authenticating a new signature (t = T + 1

in Fig. 6.1) based on a collection of past genuine signatures.

This chapter is structured as follows. Sec. 6.1 describes the methods studied in this work

in order to reduce the template aging effect. Sec. 6.2 describes the three signature systems and

the experimental work carried out. Finally, Sec. 6.3 draws the final conclusions.

This chapter is based on the following publications: [Tolosana et al., 2018f, 2015e].

6.1. Methods

6.1.1. Template Update Strategies

Two different approaches are analysed in the experimental work for template update:
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Figure 6.1: Template update concept compared to the traditional one based only in an initial collection
of enrolment signatures.

1. Adding all the available signatures of the subject at hand across time to the ones from the

enrolment session.

2. Not considering old signatures from the subject at hand for updating the user model.

Several intermediate configurations are also analysed in order to study the performance

evolution of the three systems considered. Besides, it is important to highlight that many

additional factors are considered in this stage (i.e., computational cost, resources, etc.) as they

are very important for practical applications.

6.1.2. System Complexity Configuration

Finding an optimal system configuration for a given task can provide significant improve-

ments of performance. In [Fierrez et al., 2007], a preliminary analysis of the system performance

was carried out considering different system configuration parameters for an HMM-based on-

line signature verification system. The main limitation of that work was that only 5 training

signatures were considered in the user models to study the optimal system configuration param-

eters, so a broader study including different number of training signatures per user model will

be helpful.

An exhaustive analysis of the system performance considering different system configuration

parameters was first carried out in this Thesis for HMM- and GMM-based systems in scenar-

ios where the number of available training signatures per user increases with time. Table 6.1

summarises the optimal system configuration parameters proposed, which are considered in this

chapter as a starting point in order to perform a more comprehensive analysis of template up-

date strategies for the HMM and GMM systems. In Table 6.1 we see that when the number

of available training signatures is small, the optimal system configuration for the HMM system
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Table 6.1: Optimal system configuration parameters regarding the number of available training signa-
tures. N denotes the number of hidden states and M the number of Gaussian mixtures per state.

HMM GMM

# Training Signatures N M M

<15 2 16 32

16 to 31 32 2 128

>31 64 2 512

is based on a small number of hidden states (N = 2) and a medium number of Gaussian mix-

tures per state (M = 16). On the other hand, as the number of available signatures increases

(between 16 and 31 signatures), then the number of optimal hidden states increases (N = 32)

and the number of mixtures per state decreases to M = 2. Finally, the number of hidden states

increases up to N = 64 for the case of having more than 31 available signatures. For a GMM-

based system, as the number of training signatures increases, the number of Gaussian mixtures

also increases (M = 512 for 41 training signatures). For a thorough analysis of these selection

parameters, we encourage the reader to see [Tolosana et al., 2015e].

6.1.3. Statistical Analysis

For interpreting our results we have applied a statistical analysis similar to [Sae-Bae and

Memon, 2015]. In that work the authors proposed a metric to measure the quality of an on-line

signature template derived from a set of enroled signature samples in terms of its distinctiveness

against random forgeries. The use of random and not skilled forgeries for measuring our proposed

template quality (Q) is motivated due to the lack of skilled forgeries in real scenarios for training.

Let (µg,σg) and (µr,σr) be the mean and standard deviation of the genuine and random

matching score distributions provided by the on-line signature verifier, then the template quality

for these two distributions is defined as follows:

Q =
‖µg − µr‖√
(σ2

g + σ2
r )/2

(6.1)

The goal of this template quality metric Q is to measure how separated are the genuine

from the random matching score distributions. The larger the separation between the score

distributions, the higher is Q (note that Q is equivalent to the metric d defined in [Daugman,

2000]). In this work, we compute both the EER and this Q metric in order to analyse the

different template update strategies proposed.

6.2. Experiments

6.2.1. On-Line Signature Verification Systems

Three well-known local systems described in Sec. 4.1.2 are considered here: HMM, GMM

and DTW. In all of them, signals captured by the digitizer (only X and Y coordinates and
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Figure 6.2: General time diagram of the different acquisition sessions and number of genuine signatures
per user that form the ATVS On-Line Signature Long-Term Extended Database.

pressure) are used to extract a set of 23 local features for each signature [Tolosana et al., 2015e].

Information related to pen angular orientation (azimuth and altitude angles) was discarded in

order to consider the same set of local features that we would be able to use in general purpose

devices such as tablets and smartphones. For the HMM- and GMM-based systems considered

in this work, the optimal subset of local features used in the experiments is based on [Martinez-

Diaz et al., 2014] whereas for the DTW-based system is based on [Tolosana et al., 2015d]. Both

subsets comprise 9 local features and were generated using the SFFS algorithm described in

Sec. 2.1.5.

A final fusion of the three systems after applying template update is also performed comput-

ing the sum of the matching scores. The sum rule fusion algorithm is one of the most successful

and easiest approaches used in many related works [Fierrez et al., 2018a; Kittler et al., 1998].

Before applying the fusion, the scores from each system are normalised to a common range [0,1]

using tanh-estimators [Jain et al., 2005].

6.2.2. Experimental Protocol

The experimental protocol has been designed to enable the study of the template aging effect

and template update strategies for on-line signature authentication. For this, the extended

version of the ATVS On-Line Signature Long-Term database, which has been described in

Sec. 3.2.2, is divided into several training sets (in order to analyse different cases and obtain

optimal strategies for each one), but only one test set composed of the last 5 genuine samples

and 10 skilled forgeries samples (i.e., TEST block in Fig. 6.2). This way, fair comparative

analysis can be carried out as all experiments use the same signatures for test. Skilled forgery

scores are obtained by comparing training signatures against the 10 available skilled forgeries

for the same user whereas random or zero-effort forgery scores are obtained by comparing the

training signatures to one genuine signature of the remaining users.
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Table 6.2: Experimental protocol designed to study the template aging effect (Sec. 6.2.3.1), and template
update strategies (Sec. 6.2.3.2 and 6.2.3.3). p/s indicates de number of signatures used per session.

Experiments Training # Signatures # Sessions Aging Analysis Template Update

A S1 4 1 X

B S2 4 1 X

C S3 4 1 X

D S4 4 1 X

E S.5.2 4 1 X

F S.6.2 4 1 X

G S1 4 1 X

H S1-S4 16 4 X

I S1-S5 31 5 X

J S1-S4, S.5.2 20 (4 p/s) 5 X

K S2-S4, S.5.2 16 (4 p/s) 4 X

L S3, S4, S.5.2 12 (4 p/s) 3 X

M S4, S.5.2 8 (4 p/s) 2 X

N S.5.2 4 1 X

O S5 15 1 X

First, Sec. 6.2.3.1 performs an analysis of the template aging effect in on-line signature

verification by comparing sets of training data from different sessions with the test set. Second,

Sec. 6.2.3.2 and 6.2.3.3 carry out an exhaustive search of combinations of training data in order

to find an optimal template update strategy for each of the systems studied. All experiments

considered in this work for studying the aging effect and template update strategies are depicted

in Table 6.2, which details the number of signatures used for training and the session(s) they

come from. A final fusion of the three optimal systems is carried out in Sec. 6.2.3.4 in order to

provide an improved system performance and reduce the template aging effect.

6.2.3. Experimental Results

6.2.3.1. Template Aging Analysis

The aim of this section is to analyse the template aging effect for on-line signature verifica-

tion. Thus, six different experiments (Exp. A to Exp. F, as depicted in Table 6.2) have been

considered. In all cases four signatures from different sessions are used for training. Exp. A

contains training signatures from the first session (S1) with a 15-month time gap with the test

session. For the following experiments the time gap (in months) between the training and test

data are 13, 11, 9 and 3 months for Exp. B, C, D, and E, respectively. Finally in Exp. F

signatures from the same session (S6) are used for training and test, so the time gap in this case

is just a few minutes.

Experiments have been conducted for the three systems considered (i.e., DTW, HMM and

GMM). The system configuration parameters of the HMM-based system chosen for this aging

analysis are N = 2 and M = 16, whereas for the GMM-based system we use M = 32, being

these system configuration parameters the optimal ones depicted in Table 6.1.

Fig. 6.3 shows the performance of the systems for all the experiments and for both skilled

and random forgeries. Analysing the skilled forgery cases in Fig. 6.3(a), a general improvement
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Figure 6.3: Template Aging Analysis. Below each experiment is included the time gap between the
training and testing signatures.

of the performance is achieved for the three systems considered when the elapsed time between

the testing and training signatures is reduced. For example, the average performance in terms

of EER (%) of the three systems taking into account Exp. A is 12.6% whereas for Exp. E is

9.4%.

However, when analysing random forgery cases (Fig. 6.3(b)) the effect of the elapsed time

does not affect in the same way the performance of the three systems. The performance of

the DTW-based system keeps improving as the time between training and testing signatures is

reduced (i.e., from 2.1% EER for Exp. A to 0.5% EER for Exp. E). However, for the HMM

and GMM, the performance does not improve as the time gap is reduced, only showing a very

significant improvement of performance for Exp. F, in which the data used for training and

testing comes from the same session.

In addition, it is important to highlight that DTW achieves much better performance than

HMM and GMM for all the experiments in these conditions. This is due to the fact that DTW

is an elastic technique whereas HMM and GMM are statistical algorithms. Therefore, as the

number of training signatures considered in these experiments is small (i.e., 4 signatures), it

makes sense that DTW works better than HMM and GMM systems, which agrees with previous

works [Fierrez-Aguilar et al., 2005a]. On the other hand, for an increasing volume of enrolment

data, as happens in some of the setups explored in Sec. 6.2.3.2, we will see that the statistical

models HMM and GMM are superior to DTW.

Finally, it is also worth noting the results of Exp. F. This experiment does not consider

inter-session variability as training and testing signatures come from the same session. In this

experiment, the performance for the three considered systems is much better compared to the

previous experiments. However, it is important to highlight this is an unusual case as it would

only happen in a real application during the enrolment day.

As a general conclusion, we can confirm that on-line signature verification is significantly
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affected by aging. These trends coincide with previous experiments performed in [Galbally

et al., 2013] where signatures from S1 were considered as training signatures and the rest of

sessions were used as test, and in [Sae-Bae and Memon, 2014] where the degradation of the

system performance increased when the time lapse between training and test signatures also

increased. The goal of the following sections is to reduce the effect of the template aging for on-

line signature verification considering different template update strategies regarding the number

of available training signatures and the elapsed time between training and testing.

6.2.3.2. Template Update Strategies

This section focuses on template update strategies given a set of training signatures per user

acquired at different sessions, with the final goal of reducing the aging effect. Two different

methods are analysed: 1) Adding newer signatures to the enrolment ones; and 2) removing

signatures from the older sessions from all the available training signatures. All experiments

considered are depicted in Table 6.2 (Exp. G to Exp. O). The template update strategy followed

starts by considering only the enrolment signatures (Exp. G) and adds newer signatures to the

enroled ones (Exp. G to I), this way the time gap between training and test signatures is reduced,

and also as the size of the training data increases, better system performance is expected. Then,

when all available signatures are considered, we follow the strategy to remove signatures from

older sessions (Exp. J to N), in order to analyse whether these signatures with a large time gap

with the test ones can still contribute to obtain optimal system performances or not.

It is worth noting that for HMM and GMM, the optimal system configuration parameters

described in Sec. 6.1.2 regarding the number of available training signatures have been taken

into account in these experiments in order to study the proposed template update strategies

properly.

Fig. 6.4 shows the performance of the three systems for all the experiments considered in

this section, obtaining this way a global figure to analyse the different possibilities for template

update. Results are obtained for both skilled and random forgeries.

Analysing HMM and GMM systems for both skilled and random forgery cases, the perfor-

mance improves when increasing the size of the templates with newer signatures (from Exp. G

to Exp. I). Then, when we remove the older signatures (from Exp. J to Exp. N), the EER

increases slowly achieving significantly worse results for Exp. N. Therefore for both HMM and

GMM the best performance is achieved for Exp. I with 4.8% and 4.1% EER for HMM and

GMM systems respectively for skilled forgery cases, and 0.01% and 0.7% EER respectively for

random forgery cases. However, in Exp. I, we are considering 15 signatures from Session S5,

which is very unlikely that this happens in a realistic scenario. Therefore, we consider the case

of Exp. J, where only four signatures from S5 are used (S.5.2). In this experiment (Exp. J),

a few training signatures from different sessions are considered, achieving very similar results

compared to Exp. I. Anyway, the process of model training for both HMM and GMM is per-

formed off-line, so the score computation time would not be very affected in the case of having

a much larger database with higher number of sessions and signatures.
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Figure 6.4: Template Update Strategies. Below each experiment in brackets the first number in-
dicates the number of training signatures, and the second the number of sessions they come from. Exp.
G corresponds to using 4 training signatures from the enrolment session. From Exp. G to Exp. I we
add training signatures from more recent sessions. Exp. J has 4 training signatures from each of the 5
sessions. Then, from Exp. J to Exp. N, we remove signatures from older sessions. Exp. O is included
for completeness and contains 15 signatures from the closest session to the test.

Another finding worth highlighting is that it is better to build the user’s template considering

training signatures coming from different sessions (i.e., Exp. K) instead of using all of them from

only one session closer in time (i.e., Exp. O), as there is a significant worsening of performance

in this last case. Therefore, the best strategy for both HMM and GMM systems for template

update would be to take into account all available training signatures or at least a few training

signatures but from several sessions in order to generate a more reliable user’s template. This

conclusion agrees with the results obtained in [Sae-Bae and Memon, 2014], in which the on-line

signature verification system further improved for an increasing number of training signatures.

On the other hand, the optimal template update strategy for the DTW system is different

compared to the HMM and GMM as it can be seen in Fig. 6.4. Analysing the performance of

DTW for both skilled and random forgery cases, the best configurations correspond to Exp. I, L

and M with 5.5% EER for skilled forgery cases and 0.01% EER for random forgeries. The first
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Table 6.3: Comparison of the system performance in terms of EER(%) for Baseline, and Proposed
Systems. S stands for Skilled forgeries and R for Random forgeries.

ATVS Signature Long-Term Extended DB

HMM GMM DTW
S R S R S R

Baseline 13.1 5.5 13.8 4.1 11.0 2.1

Proposed 4.1 0.2 4.8 0.7 5.5 0.01

BiosecurID DB (+10,000 signatures from 371 users)

Baseline 10.0 3.8 11.1 4.1 5.8 0.7

Proposed 5.9 2.9 6.4 1.7 3.6 0.2

case considers all available training signatures, but the other two just consider 12 and 8 training

signatures respectively from sessions closer to the test. In this case the trends would suggest

to choose Exp. L and M as the EER increases slowly when we add older training signatures

(i.e., Exp. J and K). It is important to highlight that DTW-based systems carry out one to one

comparisons of the signatures, so as the number of training signatures increases, the number of

DTW comparisons also increases. Thus, it is necessary to establish a limit of comparisons in

order to make this system feasible for real time scenarios. As a conclusion for the DTW-based

system, the optimal template update strategy would be to consider a few training signatures

(i.e., between 8 and 12) from the last sessions closer in time to the test in order to achieve both

optimal performance and feasible computation cost.

Finally, in order to quantify the reduction of the aging effect achieved, our proposed template

update strategy is evaluated on two different databases: i) the ATVS Signature Long-Term Ex-

tended database presented in this study, acquired in a 15-month total time span, and ii) the

remaining 371 users of the BiosecurID database [Fierrez et al., 2010], which is composed of four

different acquisition sessions (from S1 to S4 in Fig. 3.5) with a total 6-month time span. It is im-

portant to remark that the 371 users of the BiosecurID database have not been used during the

analysis of our proposed template update strategy. Table 6.3 shows the performance of our Pro-

posed Systems incorporating template update strategies for both ATVS Signature Long-Term

Extended database and BiosecurID database, respectively. We also include the performance of

the traditional case in signature verification (i.e., Baseline) just using the enrolment data from

the first acquisition session (S1 in Fig. 3.5), which would be the case where the aging effect is

more pronounced.

Analysing in Table 6.3 (top) the results obtained for the ATVS Signature Long-Term Ex-

tended database, the systems proposed in this work achieve a significant improvement of per-

formance, hence a significant reduction of the template aging effect with an average relative

improvement in comparison to the baseline system of 62.0% and 92.2% EER for skilled and

random forgeries, respectively.

Results on the unseen users of the BiosecurID database. Results are depicted in Table 6.3

(bottom). Regarding the experimental protocol, the 4 genuine signatures from the last session

(i.e. S4) are always used as test signatures. For the Baseline system, we just use the 4 genuine
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Figure 6.5: Statistical Analysis. The template quality metric Q is computed for all experiments
from Sect. IV.C.2. Below each experiment in brackets the first number indicates the number of training
signatures, and the second the number of sessions they come from. Exp. G corresponds to using 4 training
signatures from the enrolment session. From Exp. G to Exp. I we add for training signatures from more
recent sessions. Exp. J has 4 training signatures from each of the 5 sessions. Then from Exp. J to
Exp. N we remove signatures from older sessions. Exp. O is included for completeness and contains 15
signatures from the closest session to the test.

signatures from the enrolment session (i.e. S1) for training. However, following our proposed

template update strategy, for the HMM and GMM proposed systems we would select all available

genuine signatures from S1 to S3 (i.e. 12) for building the user models whereas for the DTW

system we would select up to 12 genuine signatures from the last sessions in time, i.e., all

available genuine signatures from S1 to S3 as well. Our proposed template update strategy has

proved to be very effective against the aging effect, achieving an average relative improvement

in comparison to the baseline system of 40.9% and 44.2% EER for skilled and random forgeries,

respectively.

6.2.3.3. Statistical Analysis

Here we explore the template quality metric Q defined in Sec. 6.1.3. It is important to

highlight that only random forgeries are considered in this statistical analysis due to the lack of

skilled forgeries in real scenarios. Fig. 6.5 shows the template quality Q of the three systems for

the same experiments considered in Sec. 6.2.3.2, obtaining this way a global figure to support

the conclusions extracted in Sec. 6.2.3.2. It is important to remark that the higher the Q value

is, the better the template update strategy will be.

Analysing the HMM and GMM systems, the trend of the Q value is to increase with the

number of training samples (from Exp. G to Exp. I) and then to decrease when we remove

the older signatures (from Exp. J to Exp. N). These results make sense as both HMM and

GMM are statistical approaches and they are able to better model the intra-user variability

when increasing the number of training signatures and sessions. Therefore, for both HMM

and GMM systems the highest value of Q is obtained for Exp. I and J respectively when
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training signatures from 5 different sessions are considered. This statistical analysis agrees with

the template update strategies proposed in Sec. 6.2.3.2 where the best system performance is

obtained when all available training signatures or at least a few training signatures from several

sessions are considered.

Analysing the DTW system, the best value of Q is obtained for Exp. I, L and M. In this case

the trend would suggest to choose Exp. L or M as the best template update strategies as the

DTW system carries out one to one comparisons of the signatures and the larger the number of

training signatures is, the higher the computational cost. These statistical results also support

the template update strategies proposed in Sec. 6.2.3.2 for the DTW-based system being the

best approach to select a few training signatures (i.e., between 8 and 12) from the last sessions

closer in time to the test.

In summary, this statistical analysis based on a template quality metric agrees with the

results achieved in the previous sections.

6.2.3.4. Fusion of the Proposed Systems

Fusion of biometric systems has been considered in many different related works [Alonso-

Fernandez et al., 2010; Kittler et al., 1998] as an easy and reliable way of achieving a further

system performance improvement. In this section, the main goal is to carry out the fusion of

the three systems studied in order to achieve an improvement of recognition performance and

to reduce the template aging effect even further, especially for the challenging case of skilled

forgeries. The final fusion is carried out at the score level with the sum rule after normalising the

scores from the three optimal systems to a common range as described in Sec. 6.2.1. For both

HMM and GMM systems, Exp. J has been selected as the optimal template update strategy

as it achieves good performance in a realistic set up. In this case, there is a total of 20 training

signatures coming from five different sessions. The optimal parameters for the HMM system are

N = 32 and M = 2 whereas for the GMM system, M = 128. For the case of the DTW-based

system, the optimal template update strategy considered corresponds to Exp. L, which uses a

total of 12 training signatures from the last three sessions closer in time to the test. In this case,

the final score is the average of all comparisons. The performance of the three systems and the

fusion of all of them is represented using DET plots in Fig. 6.6.

As shown in the figures, the proposed fusion achieves a significant improvement of perfor-

mance, especially for skilled forgery cases. In this case, the performance of the Fusion System

achieves a significant absolute improvement of 2.0% EER compared to the best individual sys-

tem whereas for the random forgery cases, the proposed fusion does not improve the best system

(DTW), which resulted to be almost perfect (i.e., 0.01%). In this case, as the systems being

combined behave quite differently, a weighted sum would be more adequate. Anyway, the fused

performance is still very competitive (0.2% EER).
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Figure 6.6: Fusion of the Proposed Systems. DET curves for the three optimal systems after
applying the proposed template update approach and fusion of all of them via sum rule of scores.

6.3. Chapter Summary and Conclusions

This chapter reports the first significant experimental results regarding the effect of tem-

plate aging and template update strategies for on-line signature authentication considering both

random and skilled forgery cases. For this, we have created an extension of the ATVS On-Line

Signature Long-Term database, in which skilled forgeries are included. The complete signature

database is publicly available at https://github.com/BiDAlab/xLongSignDB.

Experiments have been carried out using three well-known systems based on local features:

HMM, GMM, and DTW. First, the effect of template aging in on-line signatures has been

analysed, concluding that it has a significant impact in the system performance. In order to

compensate for this aging effect, an exhaustive experimental analysis of various template update

strategies has been carried out. For the case of HMM and GMM systems the optimal template

update strategy would be to select all available training signatures or at least a few of them

from several sessions in order to generate a more reliable user’s template. For the DTW system

the optimal would be to consider a few training signatures (i.e., between 8 and 12) from sessions

closer in time to the test. By incorporating the considered template update techniques, we have

demonstrated a significant improvement of performance of the three baseline systems, hence a

significant reduction of the template aging effect with similar results to the ideal case for random

forgeries, and an average relative improvement of 61.9% EER for skilled forgeries.

Finally, a fusion of the three individual systems after applying the best resulting template

update approach has been carried out in order to further improve the recognition performance

achieving an EER of 2.1% and 0.2% for skilled and random forgeries respectively.
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Chapter 7

Deep Learning

In this chapter we evaluate the potential of our proposed RNN on-line signature verification

systems described in Chapter 4.2. A thorough analysis has been carried out considering multiple

RNN approaches and architectures. In addition, different types of impostors (i.e., skilled and

random forgeries) have been considered in our study.

This chapter is structured as follows. Sec. 7.1 summarises our proposed RNN signature

verification system. Sec. 7.2 describes the experimental protocol considered in this chapter. The

results achieved are presented in Sec. 7.3. Sec. 7.4 aims to provide the last new advancements

obtained in this thriving topic. Finally, the conclusions of this chapter are summarised in

Sec. 7.5.

This chapter is based on the following publications: [Tolosana et al., 2019a, 2017b, 2018c].

7.1. Proposed RNN On-Line Signature Verification Systems

This section summarises our proposed end-to-end writer-independent on-line signature ver-

ification system. For a complete understanding of our proposed approach, we recommend the

reader to see Sec. 4.2. Fig. 7.1 graphically summarises our proposed end-to-end signature ver-

ification approach. This system has been obtained after carrying out an exhaustive analysis in

terms of the number of time functions used to feed the network and the complexity level of the

RNN system (i.e., the number of hidden layers and memory blocks per hidden layer). All details

are described in this experimental chapter.

We propose both LSTM and GRU systems with a Siamese architecture. In addition, a

bidirectional scheme is considered for both LSTM- and GRU-based systems in order to be able

to access both past and future context. For the input of the RNN system, we extract a set of 23

local features (Table 4.3) per signature from signals related to X and Y spatial coordinates and

pressure. The first layer is composed of two LSTM/GRU hidden layers with 46 memory blocks

each, sharing the weights between them. The outputs of the first two parallel LSTM/GRU

hidden layers are concatenated and serve as input to the second layer, which corresponds to a

LSTM/GRU hidden layer with 23 memory blocks. Finally, a feed-forward neural network layer
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Figure 7.1: End-to-end writer-independent on-line signature verification system proposed in this Thesis
based on the use of LSTM and GRU RNNs with a Siamese architecture.

with a sigmoid activation is considered, providing an output score between 0 and 1 for each pair

of signatures.

7.2. Experimental Protocol

The experimental protocol has been designed in order to analyse and prove the feasibility of

both LSTM and GRU RNNs for on-line signature verification in practical scenarios. Therefore,

different users and signatures are considered for the two main stages, i.e., development of the

RNNs system (Sec. 7.3.1) and the final evaluation of them (Sec. 7.3.2). Additionally, the two

most common types of impostors are considered here: skilled and random forgeries.

The first 300 users of the BiosecurID database are used for the development of the system,

while the remaining 100 users are considered for the evaluation. For both stages, the 4 genuine

signatures of the first session are used as training signatures, whereas the 12 genuine signatures of

the remaining sessions are left for testing. Therefore, inter-session variability is considered in our

experiments. Skilled forgery scores are obtained by comparing training signatures against the

12 available skilled forgery signatures for each user whereas random forgery scores are obtained

by comparing the training signatures with one genuine signature of 12 other random users.

Finally, three different scenarios are analysed regarding the type of forgery considered for

training the RNN systems: i) “skilled”, the case which considers only pairs of genuine and

skilled forgery signatures, ii) “random”, the case which considers only pairs of genuine and

random forgery signatures, and iii) “skilled + random”, the case which considers pairs of

both genuine/skilled and also genuine/random signatures in order to train just one system for

both types of forgeries.
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7.3 Results

7.3. Results

7.3.1. Development Results

This section describes the development and training of our proposed LSTM and GRU RNN

systems with a Siamese architecture considering the 300 users of the development dataset. Three

different types of pairs of signatures can be used as inputs of the RNN systems: i) two genuine

signatures performed by the same user, ii) one genuine signature from the claimed user and

one skilled forgery signature performed by an impostor, and iii) one genuine signature from

the claimed user and one random forgery signature. For each of these three cases there are a

total of 4× 12 × 300 = 14, 400 comparisons, having the same number of genuine and impostor

signatures for testing. Our RNN systems are implemented under Theano [Bastien et al., 2012]

with a NVIDIA GeForce GTX 1080 GPU.

In order to find the most suitable RNN system architecture we explored different configu-

rations regarding the number of local features used as inputs and the complexity level of the

RNN system (i.e., number of hidden layers and memory blocks per hidden layer). In all cases,

we considered our proposed Siamese architecture in order to learn a dissimilarity from pair of

signatures. Our first attempt was based on the use of the 11 most commonly used local features

from a total of 23 (i.e., xn, yn, zn, θn, vn, ρn, an, ẋn, ẏn, ẍn, and ÿn) with a RNN system based on

two RNN hidden layers (with 22 and 11 memory blocks, respectively), and finally a feed-forward

neural network layer with a sigmoid activation. Both input-to-hidden and hidden-to-hidden lay-

ers are fully-connected. The initial system performance obtained with this configuration over

the evaluation dataset was 8.25% EER. Then, we decided to increase the complexity of the RNN

system in order to achieve better results over the evaluation dataset. First, we added a new

RNN layer composed of 6 memory blocks on top of the second RNN layer providing a 20.00%

EER over the evaluation dataset, so this configuration was discarded. Another approach was

based on the use of the original configuration based on two RNN hidden layers but increasing

the number of memory blocks (44 and 22 per RNN hidden layer, respectively) achieving a final

10.00% EER, being this result worse compared to the 8.25% EER of the original configuration.

We concluded that increasing the complexity of the RNN system always ended up with a worse

generalization over the evaluation dataset (i.e., overfitting). Then we decided to feed the RNN

system with as much information as possible and let the network to select the most important

information for the task, i.e., all 23 available local features described in Table 4.3.

After repeating the same previous exploration, the best topology obtained for both LSTM

and GRU proposed RNNs is based on the use of two RNN hidden layers, and finally a feed-

forward neural network layer with a sigmoid activation. This is the final architecture of our

proposed system described in Sec. 4.2.2. The first layer is composed of two LSTM/GRU hidden

layers with 46 memory blocks each and sharing the weights between them. The outputs provided

for each LSTM/GRU hidden layer of the first layer are then concatenated and serve as input

to the second layer which corresponds to a LSTM/GRU hidden layer with 23 memory blocks.
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Figure 7.2: Considered RNNs cost during training for the “skilled” scenario. A small green vertical line
indicates for each proposed RNN system the training iteration which provides the best system performance
over the evaluation dataset.

Finally, a feed-forward neural network layer with a sigmoid activation is considered, providing

an output score for each pair of signatures. Fig. 4.7 visually represents the architecture of our

proposed end-to-end on-line signature verification system.

Fig. 7.2 shows the training cost of the considered RNNs with the number of training iterations

for the “skilled” scenario. Four different RNN-based systems are considered, i.e., LSTM, GRU

and their bidirectional schemes (i.e., BLSTM and BGRU). A small green vertical line is included

in the figure for each proposed RNN system indicating the training iteration which provides the

best system performance over the evaluation dataset, with a training cost value very close to

zero. Similar results were obtained for both “random” and “skilled + random” scenarios as well.

It is important to remark two different aspects of the figure. First, the difference in the number

of training iterations needed between normal and bidirectional schemes. For example, the best

LSTM configuration is obtained after 140 training iterations whereas only around 50 iterations

are needed for the BLSTM RNN system. This shows the importance of considering both past

and future contexts in order to train RNNs faster and also with a lower value of training cost.

Additionally, it is important to highlight the difference in the number of training iterations

between both LSTM and GRU RNN systems. As the GRU memory block is a simplified version

of the LSTM memory block (see Sec. 4.2.1.3) the number of parameters to train are lower and

therefore, we are able to get similar and even better values of training cost with fewer number

of training iterations compared to the LSTM RNN system.

7.3.2. Evaluation Results

This section analyses the performance of the proposed RNN systems trained in the previ-

ous section for the three different training scenarios considered (i.e., “skilled”, “random” and

“skilled + random” ). The remaining 100 users (not used for development) are considered here.

Regarding the system performance, two different cases are considered. First, the evaluation of
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7.3 Results

Table 7.1: 1vs1 Evaluation Results: System performance in terms of EER(%) for the three different
training scenarios considered, i.e., “skilled”, “random” and “skilled + random”.

Train: “skilled” Train: “random” Train: “skilled + random”
Skilled Random Skilled Random Skilled Random

LSTM 6.44 24.48 13.31 5.38 7.94 6.22
GRU 7.69 29.42 15.63 6.92 7.67 5.98

BLSTM 5.60 24.48 15.31 5.28 6.83 5.38
BGRU 6.31 19.14 12.56 5.33 7.88 5.52

Table 7.2: 4vs1 Evaluation Results: System performance in terms of EER(%) for the three different
training scenarios considered, i.e., “skilled”, “random” and “skilled + random”.

Train: “skilled” Train: “random” Train: “skilled + random”
Skilled Random Skilled Random Skilled Random

LSTM 5.58 24.03 15.17 4.08 6.17 3.67
GRU 6.25 28.69 13.92 4.25 5.58 3.63

BLSTM 4.75 24.03 15.58 3.89 5.50 3.00
BGRU 4.92 19.69 12.33 3.25 5.92 2.92

Table 7.3: 1vs1 and 4vs1 DTW-based Evaluation Results: System performance in terms of
EER(%).

1vs1 4vs1

Skilled 10.17 7.75

Random 0.94 0.50

the system performance considering scores directly from all pairs of signatures (i.e., 1vs1) and

second, the case of performing the average score of the four one-to-one comparisons (i.e., 4vs1) as

there are four genuine training signatures per user. In order to make comparable our approach

to related works, we have considered a highly competitive system based on the popular DTW

approach [Gomez-Barrero et al., 2015] with a total of 9 out of 27 different local features selected

using the SFFS algorithm.

Tables 7.1 and 7.2 show the system performance in terms of EER(%) for our Proposed

RNN-based Systems for both 1vs1 and 4vs1 cases, respectively. In addition, Table 7.3 shows

the system performance in terms of EER(%) for the DTW-based System [Gomez-Barrero et al.,

2015] for both 1vs1 and 4vs1 cases, over the same evaluation set of Tables 7.1 and 7.2. We now

analyse the results obtained for each of the three different training scenarios considered.

Skilled training scenario: First, we analyse in Tables 7.1 and 7.2 the case in which only

pairs of genuine and skilled forgery signatures are used for the development of the systems (i.e.,

“skilled”). Overall, very good results have been obtained for all Proposed Systems when skilled

forgeries are considered. Bidirectional schemes (i.e., BLSTM and BGRU) have outperformed

normal schemes, highlighting the importance of considering both past and future contexts. In

addition, both LSTM and GRU RNN systems have achieved very similar results proving their

feasibility for handwritten signature verification. Analysing the results obtained in Tables 7.1

and 7.3 for the 1vs1 case, our Proposed BLSTM System has achieved the best results with a

5.60% EER, which corresponds to an absolute improvement of 4.57% EER compared to the

10.17% EER achieved for the DTW-based System. This result (i.e., 5.60% EER) outperforms
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related state-of-the-art results for the case of considering just one signature for training [Diaz

et al., 2016b]. Analysing the results obtained in Tables 7.2 and 7.3 for the 4vs1 case, our Pro-

posed BLSTM System achieves a 4.75% EER, which corresponds to an absolute improvement

of 3.00% EER compared to the 7.75% EER achieved for the DTW-based System. Moreover,

it is worth noting that the result obtained with our Proposed BLSTM System for the case of

using just one training signature (1vs1) outperforms the result obtained with the DTW-based

System (i.e., 5.60% vs 7.75% EER) for the 4vs1 case. Additionally, our Proposed BLSTM Sys-

tem outperforms other state-of-the-art signature verification systems such as the one proposed

in [Galbally et al., 2015] based on fusion of a local system with DTW algorithm and a global

system with Mahalanobis distance (i.e., 4.75% vs 4.91% EER) for the case of considering 4

training signatures. These results show the high ability of our proposed approach for learning

even with small amounts of signatures. However, the results obtained in Tables 7.1 and 7.2

for our Proposed RNN Systems when random forgeries are considered are far away from the

state-of-the-art results. The best result has been obtained using our Proposed BGRU System

with a value of 19.14% EER whereas a 0.50% EER is obtained in Table 7.3 for the DTW-based

System. These bad results obtained for the random forgery case make sense as only skilled and

not random forgeries were used for training the RNNs.

Random training scenario: In order to see the ability of the RNN systems to detect

different types of forgeries, Tables 7.1 and 7.2 also show the system performance in terms of

EER(%) for the scenario in which our Proposed RNN Systems are trained using only pairs of

genuine and random forgery signatures (i.e., “random”). Overall, a high improvement of the

system performance is achieved for the case of random forgeries compared to the results previ-

ously analysed in the “skilled” training scenario. The best result corresponds to our Proposed

BGRU System with a 3.25% EER. However, as it happened for the “skilled” training scenario

previously commented, bad results are achieved for the task in which the RNN system is not

trained (i.e., skilled forgeries in this “random” training scenario).

Skilled+random training scenario: Finally, Tables 7.1 and 7.2 show the system perfor-

mance in terms of EER(%) for the case in which our Proposed RNN Systems are trained using

pairs of genuine and skilled forgery signatures and also pairs of genuine and random forgery

signatures (i.e., “skilled + random”). Analysing the results obtained for skilled forgeries, the

best system performance has been obtained using our Proposed BLSTM System with a value of

5.50% EER. Moreover, the result obtained with our Proposed BLTM System for the case of us-

ing just one training signature (1vs1) still outperforms the result obtained with the DTW-based

System for the 4vs1 case (i.e., 6.83% vs 7.75% EER), showing the high ability of our proposed

approach for learning even with small amounts of signatures. Analysing the results obtained

for random forgeries, our Proposed BLSTM System has achieved a 3.00% EER. These results

prove the ability of RNN-based systems to detect two different types of forgeries using just one

system. Despite of the high improvements achieved when both skilled and random forgeries

are used for training the RNNs, the 3.00% EER obtained using our Proposed BLSTM System

can not outperform the 0.5% EER obtained using the DTW-based System against random forg-
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Figure 7.3: System performance results obtained using our Proposed BLSTM System for the 4vs1 case
and “skilled + random” training scenario over the BiosecurID evaluation dataset.

eries. Fig. 7.3 shows the DET curve of both Proposed BLSTM and DTW-based Systems for

the 4vs1 case and “skilled + random” training scenario for completeness. In order to achieve

state-of-the-art results for both skilled and random forgeries, a possible solution is to perform

two consecutive stages similar to [Gomez-Barrero et al., 2015]: 1) first stage based on DTW

optimised for rejecting random forgeries, and 2) our Proposed RNN Systems in order to reject

the remaining skilled forgeries. Another recent example of multiple classifier contribution for

signature is [Tolosana et al., 2015d].

7.4. New Advancements

This final section aims to provide the last new advancements obtained in this thriving topic.

So far this chapter, only the 300 first users of the BiosecurID database were considered for

training our DL models. In order to analyse the potential of DL technology when having more

available training data, we have created the novel DeepSignDB on-line handwritten signature

database. Fig. 7.4 graphically summarises the design, acquisition devices, and writing tools

considered in the DeepSignDB database. This database is obtained through the combination

of some of the most well-known databases, and a novel dataset not presented yet. It comprises

more than 70K signatures acquired using both stylus and finger inputs from a total 1526 users.

Two acquisition scenarios are considered, office and mobile, with a total of 8 different devices.

Additionally, different types of impostors and number of acquisition sessions are considered along

the database.

Regarding the experimental protocol, the DeepSignDB database has been divided into two

different datasets, one for the development and training of the system and the other one for the

final evaluation. The development dataset comprises around 70% of the users of each database
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Figure 7.4: Description of the design, acquisition devices, and writing tools considered in the new
DeepSignDB database. A total of 1526 users and 8 different captured devices are used (5 Wacom and
3 Samsung general purpose devices). For the Samsung devices, signatures are also collected using the
finger. Gen. Sig. = Genuine Signatures, and Sk. Forg. = Skilled Forgeries.

whereas the remaining 30% is included in the evaluation dataset. Therefore, we use 1084 users

in total for training the RNN systems, 3.6 times more users compared to the 300 initial users

considered in the BiosecurID database. Signatures acquired using the stylus are only considered

in this preliminary study, ending up with around 309K genuine and impostor comparisons (247K

and 62K for training and validation, respectively). It is important to remark: i) the same number

of genuine and impostor comparisons are used to train the networks in order to avoid bias, and

ii) only skilled forgeries are used as impostors (the DTW is in charge of detecting the random

forgeries as explained at the end of the previous section).

Table 7.4 describes the system performance results over the same BiosecurID evaluation

dataset considered in the previous sections. Two different approaches are considered: i) train-

ing the networks using only the first 300 users of the BiosecurID development dataset, and ii)

training the networks using the 1084 users of the DeepSignDB development dataset. The same

BGRU RNN system described in the previous sections is considered in this analysis. DTW sys-

tem is also included for completeness. Therefore, Table 7.4 intends to compare the improvements
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Table 7.4: System performance results over the BiosecurID evaluation dataset.

1vs1 4vs1

DTW 10.17 7.75

BGRU (300 users) 5.60 4.75

BGRU (1084 users) 3.90 3.40

achieved when more data is available to train the neural network models.

Analysing the 1vs1 case, the best system performance result is obtained using the BGRU

system trained with the 1084 users of the DeepSignDB development dataset. This system

achieves an absolute improvement of 1.7% EER compared to the same BGRU system but trained

with only the 300 users of the BiosecurID development dataset. This improvement is much higher

if we compare to the DTW system, achieving an absolute improvement of 6.27% EER.

Analysing the 4vs1 case, similar conclusions are obtained compared to the 1vs1 case. The

BGRU system trained using the 1084 users achieves an absolute improvement of 1.35% and 4.35%

EER for the BGRU system trained using the 300 users and the DTW system, respectively.

Finally, it is also interesting to remark that even for the case of using just a single training

signature per user (1vs1), the BGRU system trained using the 1084 users achieves almost the

double system performance improvement compared to the DTW system for the case of using 4

training signatures per user (4vs1). These results prove how importance the amount of data is

for training more robust neural network models.

The DeepSignDB database, experimental protocol proposal and benchmark evaluation of it

has been submitted to the International Conference on Document Analysis and Recognition (IC-

DAR) 2019. All this information (included the database) will be available in GitHub very soon.

Finally, we would also like to highlight that the application of DeepSignDB extends from the

improvement of signature verification systems via deep learning to many other potential research

lines, e.g., studying: i) user-dependent effects, and development of user-dependent methods in

signature biometrics, and handwriting recognition at large [Yager and Dunstone, 2010b], ii)

the neuromotor processes involved in signature biometrics, and handwriting in general [Ferrer

et al., 2018], iii) sensing factors in obtaining representative and clean handwriting and touch

interaction signals [Tolosana et al., 2015d], iv) human-device interaction factors involving hand-

writing and touchscreen signals, and development of improved interaction methods [Harbach

et al., 2016], and v) population statistics around handwriting and touch interaction signals, and

development of new methods aimed at recognising or serving particular population groups.

7.5. Chapter Summary and Conclusions

In this chapter we have assessed the feasibility of different RNN systems in combination with

a Siamese architecture [Chopra et al., 2005] for the task of on-line handwritten signature verifi-

cation. As far as we know, this study has provided the first complete and successful framework

on the use of multiple RNN systems (i.e., LSTM and GRU) for on-line handwritten signature
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verification considering both skilled and random forgery cases. The BiosecurID database com-

posed of 400 users and 4 separated acquisition sessions has been considered in the experimental

work, using the first 300 users for development and the remaining 100 users for evaluation.

Three different impostor scenarios are considered for training the RNN systems (i.e., “skilled”,

“random”, “skilled + random”). Additionally, we have considered two different cases regarding

the number of available training signatures per user. First, the evaluation of the system perfor-

mance considering scores directly from all pairs of signatures (i.e., 1vs1) and second, the case

of performing the average score of the four one-to-one comparisons (i.e., 4vs1) as there are 4

genuine training signatures per user (from the first session).

Regarding the development of our Proposed RNN Systems, it is important to remark the

different number of training iterations needed between normal (i.e., LSTM and GRU) and bidi-

rectional schemes (i.e., BLSTM and BGRU). This shows the importance of considering both

past and future contexts in order to train RNNs faster and also with a lower value of training

cost. In addition, it is important to highlight the different number of training iterations between

both LSTM and GRU RNNs as the GRU memory block is a simplified version of the LSTM

memory block with fewer parameters to train.

Analysing the results obtained using the 100 users of the evaluation dataset, our Proposed

BLSTM System has achieved for the “skilled + random” train scenario and 4vs1 case values

of 5.50% and 3.00% EER for skilled and random forgeries, respectively. Moreover, the result

obtained with our Proposed BLSTM System for the case of using just one training signature

(1vs1) still outperforms the result obtained with the highly competitive system based on the

popular DTW approach for the 4vs1 case (i.e., 6.83% vs 7.75% EER), showing the high ability

of our proposed approach for learning even with small amounts of signatures. It is important to

highlight the results obtained in this work compared to the ones obtained by Otte et al. in [Otte

et al., 2014] where all experiments failed obtaining for the best case a 23.75% EER as systems

were based on standard LSTM architectures.

Finally, the preliminary results obtained here using the novel DeepSignDB database prove

how importance the amount of data is for training more robust neural network models, as an

absolute improvement of 1.7% EER has been obtained when training the models with 1084 total

users instead of the 300 initial users of the BiosecurID development dataset.
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Chapter 8

Signature Complexity

In this chapter we propose an on-line signature verification system adapted to the signature

complexity level of the user. Despite all the studies performed in the on-line signature trait, none

of them have exploited, as far as we know, the complexity concept for the development of more

robust and accurate on-line signature verification systems. This chapter further investigates this

line considering both stylus- and finger-based scenarios.

The chapter is structured as follows. Sec. 8.1 introduces our proposed complexity-based

on-line signature verification system. Then, Sec. 8.2 presents the experimental protocol followed

in this chapter. The results achieved are described in Sec. 8.3. Conclusions are finally drawn in

Sec. 8.4.

This chapter is based on the following publications: [Tolosana et al., 2017c; Vera-Rodriguez

et al., 2019, 2018].

8.1. Proposed Approach

Our proposed complexity-based signature verification system, which is composed of two main

modules, is depicted in Fig. 8.1. The first module is the signature complexity detector, which

considers as features the number of lognormals from the Sigma LogNormal writing generation

model. For the second one, we propose a separate local feature extraction module adapted to

each signature complexity level. Both modules are further described in Sec. 8.1.1 and 8.1.2.

8.1.1. Signature Complexity Detector

We propose a signature complexity detector based on the number of lognormals extracted

from the Sigma LogNormal writing generation model, which was first introduced to on-line sig-

nature in [Reilly and Plamondon, 2009], and it has been widely used in many different tasks such

as signature verification [Fischer and Plamondon, 2017; Gomez-Barrero et al., 2015], recovering

on-line signatures from image-based specimens [Diaz et al., 2017b] and to monitor a range of

neuromuscular diseases [Impedovo et al., 2013; Stefano et al., 2017], among many others.
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8. SIGNATURE COMPLEXITY

Figure 8.1: Architecture of our proposed methodology focused on the development of an on-line signature
verification system adapted to the signature complexity level. The proposed approach is analysed for the
stylus, finger and mixed writing-input scenarios considering e-BioSign and BiosecurID databases.

The model emulates the physiological human movement production for the generation of

signatures. The idea is based on the fact that one signature can be decomposed into strokes in

which each stroke i follows a lognormal velocity distribution ~vi(t):

|vi(t)| =
Di√

2πσi(t− t0i)
exp(−(ln(t− t0i)− µi)

2

2σ2
i

) (8.1)

where t0i is the starting time of the stroke, Di its length, µi the logtime delay and σi the

logresponse time. In addition, the angular position of each stroke along a pivot direction is

expressed through the start angle θs and the end angle θe. Thus, each stroke is represented by

(Di, t0i, µi, σi, θsi, θei). The complete velocity profile of one signature can be modelled as a

sum of the different individual stroke velocity profiles as:

~v(t) =

N∑

i=1

~vi(t) (8.2)

where N represents the number of strokes involved in the generation of a given signature. Fig.

8.2 shows the lognormal velocity profiles extracted for each stroke of one example signature.

We propose to use the number of lognormals (N) that models each signature as a measure of

the complexity level of the signature. Once this parameter is extracted for all available enrolment

signatures of a particular user, that user is classified into a complexity level using the majority

voting algorithm (i.e., the signature complexity level of the majority of the enrolment signatures

of that user). At the test stage, we consider the complexity level of the claimed user (see Fig.

8.1). In the case that there is no claimed identity, e.g., in signature identification, the complexity

level of the identity being compared with the test signature would be used. The advantage of this

approach is that the signature complexity detector can be trained and developed as a previous
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Figure 8.2: Trace and velocity profile of one reconstructed on-line signature using the Sigma LogNormal
model. A single stroke of the signature and its corresponding lognormal profile are highlighted in red
colour. Individual strokes are segmented within the LogNormal algorithm [Reilly and Plamondon, 2009].

off-line process thereby avoiding time consuming delays and making it feasible to be applied at

the verification stage in real time scenarios.

8.1.2. Complexity-based Signature Verification System

Once the user is classified into a signature complexity level, we propose to develop a separate

local feature extraction module adapted to the signature complexity level as it is depicted in

Fig. 8.1.

First, for each signature acquired using the stylus or the finger, signals related to X and

Y spatial coordinates are used to extract an initial set of 21 local features (see Table 4.3).

In addition, the same two-stage approach proposed in Sec. 5.1 is first considered in order to

mitigate the degradation performance on mixed writing-input scenarios.

Second, the SFFS algorithm described in Sec. 2.1.5 is applied here in order to select the

optimal local feature subset for each complexity level. This way we can increase the robustness

of the features selected and improve the final system performance.

Finally, DTW algorithm is used to compute the similarity between the local features ex-

tracted from the query input signature and the training signatures of the claimed user. Therefore,

it is important to highlight that for the signature verification stage, the same DTW algorithm

is always considered for obtaining the similarity score but different subsets of local features are

selected for each complexity level and database.

8.2. Experimental Protocol

The experimental protocol is designed in order to allow the development and evaluation

of the following modules: i) signature complexity detector, and ii) a separate local feature

extraction module for each signature complexity level. Both BiosecurID and e-BioSign databases

are divided into development (40% of the users) and evaluation (60% of the remaining users)

datasets.

For the evaluation of each module, the 4 genuine signatures of the first session of each

database are used as training signatures, whereas the remaining genuine signatures (i.e., 4 and
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12 for the e-BioSign and BiosecurID databases, respectively) are used for testing. Skilled forgery

scores are obtained by comparing the training signatures against the available skilled forgeries

for each user (i.e., 6 and 12 for the e-BioSign and BiosecurID databases, respectively) whereas

random (zero-effort) forgery scores are obtained by comparing the training signatures with one

genuine signature of each of the remaining users. The final score is obtained after performing

the average score of the four one-to-one comparisons.

Finally, the following nomenclature is proposed in order to facilitate the readability and

understanding of the paper about the different input scenarios considered: “training-testing”,

where “training” and “testing” mean the writing tool considered for the training and testing

signatures, respectively. For example, the case “stylus-finger” means that signatures considered

for training are acquired using the stylus whereas signatures considered for testing are acquired

using the finger as input.

8.3. Results

8.3.1. Signature Complexity Detector

The signature complexity detector was developed in two different stages. First, each user of

the BiosecurID database was manually labelled in one of the signature complexity levels (low,

medium, high). This process was carried out by visualising the image of just one genuine signa-

ture per user and was performed by two annotators twice each in order to keep consistency on

the results. Three different complexity levels were considered based on previous works [Houmani

and Garcia-Salicetti, 2016]. Users with signatures with a longer writing time and with an ap-

pearance more similar to handwriting were labelled as high-complexity users whereas those users

with signatures shorter in time and with generally simple flourish with no legible information

were labelled as low-complexity users. This first stage served as a ground truth. Following

this stage, the number of lognormals N form the Sigma LogNormal model was extracted from

each available genuine signature of the BiosecurID database (i.e., a total of 400 × 16 = 6400

genuine signatures). Then, we represented for each complexity level their corresponding distri-

bution of lognormals according to the ground truth performed during the first stage. Fig. 8.3

shows the distributions of the number of lognormals obtained for each complexity level using

all genuine signatures of the BiosecurID database. The three proposed complexity-dependent

decision thresholds are highlighted by black dashed lines. They were selected in order to min-

imise the number of misclassifications between different signature complexity levels. Signatures

with lognormal values equal or less than 17 are classified as low-complexity signatures whereas

those signatures with more than 27 lognormals are classified into the high-complexity group.

Otherwise, signatures are categorised into medium-complexity. Additionally, an analysis of the

stability regarding the number of lognormals for different signatures of the same user is carried

out in order to assess the feasibility of our proposed signature complexity detector. In general,

low standard deviation values are obtained. Users with a low signature complexity level provide
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Figure 8.3: Probability density function of the number of lognormals for each manually annotated
complexity level using all genuine signatures of the BiosecurID database. The three proposed complexity-
dependent decision thresholds are highlighted by black dashed lines.
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Figure 8.4: Signatures categorised into each complexity level using our proposed signature complexity
detector. From top to bottom: low, medium and high complexity.

an average number of 12.5 lognormals and a standard deviation of 1.3 whereas medium and high

signature complexity levels achieve averages of 21.1 and 31.3 lognormals with standard devia-

tions of 2.6 and 3.9, respectively. These results make sense as the intra-user variability increases

with the signature complexity level. The same thresholds are extrapolated to the e-BioSign

database. Fig. 8.4 shows some of the signatures classified into each complexity level for both

BiosecurID and e-BioSign databases.

We now evaluate our proposed signature complexity detector following the same procedure

carried out in [Houmani and Garcia-Salicetti, 2016], analysing the system performance for dif-

ferent complexity groups considering state-of-the-art signature verification systems as Baseline

Systems [Gomez-Barrero et al., 2015; Tolosana et al., 2017a]. These Baseline Systems are based

on DTW and a selection of the best local features through SFFS for each database regardless

of the signature complexity level.

Table 8.1 shows the system performance in terms of EER(%) for each complexity level

using the evaluation datasets and the stylus scenario. It is important to remark that each user

is classified into a complexity level applying the majority voting algorithm to the 4 training

signatures of the user.

Results show different system performance regarding the signature complexity level. Users
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Table 8.1: Signature complexity detector: System performance results (EER in %) of each complexity
level using the BiosecurID and e-BioSign evaluation datasets for the stylus scenario. Skilled and random
forgeries results are shown on top and bottom of each cell respectively.

Low C. Medium C. High C.

BiosecurID
13.8
1.5

7.5
0.7

6.2
0.9

e-BioSign
11.1
0.1

8.3
0.1

5.6
0.1

with a high complexity level have achieved an absolute improvement of 7.6% and 5.5% EER

compared to users categorised into a low complexity level for the BiosecurID and e-BioSign

databases, respectively. Similar results were obtained in previous studies using other approaches

[Houmani and Garcia-Salicetti, 2016]. In that work, users categorised into a high complexity

level achieved an absolute improvement of 8.5% EER compared to users categorised into a

low complexity level for the MCYT database. These results prove the effectiveness of our

proposed signature complexity detector based on the number of lognormals and the capacity to

be applicable to other databases and scenarios.

In the following sections we analyse the idea of considering an on-line signature verification

system adapted to the signature complexity level so as to further reduce the system performance.

8.3.2. Complexity-based Signature Verification System

This section aims to analyse which are the most discriminative and robust local features for

each signature complexity level applying the SFFS over the development datasets. It is impor-

tant to highlight that for the signature verification stage, the same DTW is always considered

for obtaining the similarity score but different subsets of local features are selected for each

complexity level and database.

For the BiosecurID database, a total of 4 genuine signatures from the first session and 12

genuine signatures from the remaining sessions are considered as training and testing signatures,

respectively.

For the e-BioSign database, we obtain a separate optimal feature vector for each complexity

level regardless of the writing input used while signing. This approach is achieved using training

and testing signatures acquired by means of both stylus and finger inputs in order to select the

best discriminative local features for all scenarios together. A total of 4 genuine signatures from

the first session (2 signatures per writing input) and 8 genuine signatures from the second session

(4 signatures per writing input) are considered as training and testing signatures, respectively.

The following three cases are analysed after applying the SFFS to each signature complexity

level using the development dataset:

1. Local features selected for all three signature complexity levels.

2. Local features selected only for medium and high signature complexity levels.

3. Local features selected only for low and medium signature complexity levels.
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Table 8.2: Local features selected for each case and database using SFFS.

Case 1) Case 2) Case 3)

BiosecurID ȧn, v
r
n v̇n, ÿn, α̇n cn

e-BioSign yn, ẋn θ̇n, ẏn, v
r
n xn, sn

Table 8.3: Stylus scenario: System performance results (EER in %) on the BiosecurID and e-BioSign
evaluation datasets for each complexity level. Skilled and random forgery results are shown on top and
bottom of each cell respectively.

Low C. Medium C. High C.
Baseline Proposed Baseline Proposed Baseline Proposed

BiosecurID. Stylus-Stylus
13.8
1.5

10.1
1.3

7.5
0.7

5.2
0.5

6.2
0.9

4.6
0.9

e-BioSign. Stylus-Stylus
11.1
0.1

8.3
0.1

8.3
0.1

10.2
0.1

5.6
0.1

5.6
0.1

Table 8.2 shows the local features selected for each case and database. For the first case,

the time functions ȧn and vrn are selected in all systems of the BiosecurID database as robust

local features regardless of the signature complexity level whereas for the e-BioSign database

the local features selected are yn and ẋn. While for the BiosecurID database the local features

selected are more related to the acceleration and speed of the users performing their signatures,

for the e-BioSign database local features related to the position of the writing tool (i.e., X and

Y spatial coordinates) are more stable for all complexity levels. The reason why local features

related to the acceleration and speed are not selected for the e-BioSign database is due to the

fact that both stylus and finger writing tools are considered during training, and therefore, the

way subjects sign on each input scenario is much more different than the local features related to

the spatial position of the signature. For the second case, very similar local features have been

selected for BiosecurID and e-BioSign databases for both medium and high signature complexity

levels. These local features provide information related to the variation of the velocity, vertical

acceleration and variation of angle, local features more related to the geometry of characters and

therefore, to handwriting. Finally, local features such as cn and sn are selected for the third case

and provide information related to the angles as signatures with low and medium complexity

level are usually categorised for having simple flourishes with no legible information.

8.3.3. Stylus Scenario

This section evaluates our proposed complexity-based signature verification system for the

case of using the stylus as input (i.e., Stylus-Stylus). Table 8.3 shows the results achieved for

both BiosecurID and e-BioSign evaluation datasets. The same Baseline System described and

used in Sec. 8.3.1 are considered here in order to make comparable our proposed approach. The

only two differences between the Proposed and Baseline Systems are: i) the signature complexity

detector, and ii) selection of the local features for each complexity level.

Analysing the results obtained for the BiosecurID database, our Proposed System achieves

an average absolute improvement of 2.5% EER compared to the Baseline System for the skilled
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(a) BiosecurID (b) e-BioSign

Figure 8.5: Stylus scenario: False Rejection Rates (FRR) at different values of False Acceptance
Rate (FAR) for both Proposed and Baseline Systems on the evaluation dataset.

forgery case. It is important to remark that for the most challenging users (users with low

complexity), our proposed approach achieves an absolute improvement of 3.7% EER compared

to the Baseline System. Analysing the results obtained for random forgeries, our Proposed

System also achieves improvements. For this case, the improvement is lower compared to the

skilled forgery case due to SFFS is developed focusing on the most challenging impostor scenarios

(i.e., skilled forgeries).

Analysing the results obtained for the e-BioSign database, our Proposed System also achieves

the same trends. The improvement is slightly lower compared to the BiosecurID database due

to the fact that a single system is developed for each complexity level considering not only the

stylus, but also the finger and mixed writing-input scenarios.

Finally, Fig. 8.5 shows the performance of the Baseline and Proposed Systems considering all

complexity levels together in terms of the FRR at different values of FAR. Our Proposed System

achieves an average absolute improvement of 3.7% FRR for both BiosecurID and e-BioSign

databases with a final value of 3.9% and 4.6% FRR for a value of FAR = 10.0% for BiosecurID

and e-BioSign databases, respectively. These results show the importance of considering an

on-line signature verification system adapted to the signature complexity level so as to increase

the robustness of the system with more discriminative local features.

We now compare our proposed complexity-based signature verification system with other

existing state-of-the-art approaches that have been evaluated in related publications using the

BiosecurID database. The comparison is not straightforward as different experimental protocols

are considered in each of the studies. This is something worth highlighting, not only for this

comparison, but also for future experiments as results can vary significantly depending on the

particular protocol used. For this reason, in order to perform a fair comparison to other studies,

Table 8.4 depicts not only the FAR and FRR values achieved for each approach but also other

very important features that affect the final system performance such as the complexity level

of the considered users or the effect of the inter-session variability when testing. Our Proposed

System outperforms the results achieved in previous works using a baseline system based on
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8.3 Results

Table 8.4: Stylus scenario: System performance results (FAR and FRR in %) on the BiosecurID
database. Comparison to previous works. It is worth noting that the % of users of different complexity
levels shown for the different approaches have been computed by the complexity detector system proposed
in this work.

Work Algorithm
Inter-Session
Variability

# Training
Signatures

% Users
Low C.

% Users
Medium C.

% Users
High C.

FAR FRR

[Ferrer et al., 2017b] DTW-based No 5 7.6 39.4 53.0 3.1 3.1

[Diaz et al., 2017b] Manhattan-based No 5 8.0 36.0 56.0 3.2 3.2

[Galbally et al., 2015] DTW-based Yes 4 7.6 39.4 53.0 6.9 6.9

[Gomez-Barrero et al., 2015]
Impostor Detector

+
DTW-based

Yes 4 7.2 38.0 54.8 4.8 4.8

Baseline System DTW-based Yes 4 9.6 37.9 52.5 5.0 10.4

Proposed Approach
Complexity-based

DTW
Yes 4 9.6 37.9 52.5 5.0 5.8

the DTW algorithm, but without considering the signature complexity concept [Galbally et al.,

2015]. Besides, very similar results are achieved compared to [Gomez-Barrero et al., 2015], in

which a skilled forgery detector was incorporated to an already competitive baseline system.

Finally, our proposed approach is also compared to other approaches based on Manhattan

distance [Diaz et al., 2017b], producing worse results due to a different number of training

signatures, percentages of users in the complexity levels, and mainly due to the inter-session

variability effect was not considered. This critical effect can be observed in [Ferrer et al., 2017b]

as well, where better results are achieved when applying a simple DTW approach based only on

X and Y coordinates and their derivatives.

8.3.4. Finger and Mixed Writing-Input Scenarios

This section evaluates our proposed complexity-based approach considering COTS devices

on two different scenarios: 1) the case of using only the finger as input for acquiring signatures

(i.e., Finger-Finger), and 2) mixed writing-input (i.e., Stylus-Finger and Finger-Stylus) where

signatures acquired using different inputs (i.e., stylus or finger) are independently considered for

training and testing the system. Therefore, only the e-BioSign evaluation dataset is used in this

section as signatures acquired using the finger are not available for the BiosecurID database.

The same Baseline and Proposed Systems considered in the previous section are analysed here

across both scenarios.

First, we analyse the results obtained for the case of using only the finger as input (i.e.

Finger-Finger). Analysing the skilled forgery results depicted in Table 8.5, our Proposed System

achieves an average absolute improvement of 3.4% EER compared to the Baseline System.

Similar to the stylus scenario, the highest improvement is achieved for the most challenging users

(i.e., users with low complexity level) with an absolute improvement of 5.6% EER compared to

the Baseline System. Regarding random forgeries, the same very good results (close to 0.0%

EER) are achieved with our proposed approach.

Despite the high improvement achieved in the finger scenario using our proposed approach,

there is still a high difference in the system performance between both stylus and finger scenarios
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8. SIGNATURE COMPLEXITY

Table 8.5: Finger and mixed writing-input scenarios: System performance results (EER in %)
on the e-BioSign evaluation dataset for each complexity level and scenario. Skilled and random forgery
results are shown on top and bottom of each cell respectively.

Low C. Medium C. High C.
Baseline Proposed Baseline Proposed Baseline Proposed

Stylus-Stylus
11.1
0.1

8.3
0.1

8.3
0.1

10.2
0.1

5.6
0.1

5.6
0.1

Finger-Finger
16.7
0.1

11.1
0.1

19.4
0.1

15.7
0.1

11.1
0.1

10.2
0.1

Stylus-Finger
30.6
0.1

27.8
0.1

22.2
0.1

16.7
0.1

11.1
0.1

11.1
0.1

Finger-Stylus
27.8
0.1

25.0
0.1

19.4
0.1

16.7
0.1

25.0
0.1

11.1
0.1

(Stylus-Stylus vs Finger-Finger). The results obtained using our Proposed System on the finger

scenario show an absolute worsening of 4.3% EER compared to the stylus scenario. The reasons

for this worsening of the system performance when using the finger were already explained in

Chapter 5, and was mainly based due to the high variability of the users while signing in this

novel scenario (e.g., closed letters such as a, e, and o tend to be much larger writing executions

in comparison with other letters due to the lower precision users are able to achieve using the

finger). Also, it is important to remark the challenging finger scenario considered in this work as

forgers had access to the dynamic realization of the signatures to forge. A recommendation for

the usage of signature recognition on mobile devices would be for the users to protect themselves

from other people that could be watching while signing, as this is more feasible to do in a mobile

scenario compared to an office scenario. This way skilled forgers might have access to the global

shape of a signature but not to the dynamic information.

Now we describe the results obtained for the mixed writing-input scenarios (i.e., Stylus-Finger

and Finger-Stylus), where signatures acquired using stylus and finger inputs are independently

considered for training and testing the system. Analysing the results obtained in Table 8.5 for

skilled forgeries, our Proposed System achieves an average absolute improvement of 2.8% and

6.5% EER compared to the Baseline System for the Stylus-Finger and Finger-Stylus scenarios,

respectively. For the case of skilled forgeries, it is important to remark the significant worsening

of the system performance for those users with a low complexity level with results around 25.0%

EER. These results are much higher compared to the case of using the same writing input for

testing. However, for users with medium and high complexity levels, the system performance

on mixed writing-input scenarios are very close to the Finger-Finger scenario with results of

16.7% and 11.1% EER for medium and high complexity levels, respectively. Therefore, two

very important conclusions can be extracted from our analysis on mixed writing-input scenarios

and skilled forgery cases. The first is that mixed writing-input scenarios are feasible in practi-

cal applications for users with medium and high complexity levels. Users categorised into low

complexity level should perform a more robust signature in order to be able to use these mixed

writing-input scenarios. The second is that the degradation of the system performance on mixed

writing-input scenarios seems to almost disappear for those users with medium and high com-

plexity levels after applying our proposed approach based on the use of the signature complexity
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(a) Finger-Finger (b) Stylus-Finger (c) Finger-Stylus

Figure 8.6: Finger and mixed writing-input scenarios: FRR at different values of FAR for both
Proposed and Baseline Systems on the evaluation dataset.

detector and the selection of the most discriminative local features for each complexity level,

obtaining similar results to the Finger-Finger scenario.

Finally, Fig. 8.6 shows the performance of both Baseline and Proposed Systems for the finger

and mixed writing-input scenarios considering all complexity levels together in terms of FRR at

different values of FAR. For the Finger-Finger scenario, our Proposed System achieves an average

absolute improvement of 13.6% FRR compared to the Baseline System, with a final value of

13.9% FRR for a value of FAR = 10.0%. For the mixed writing-input scenarios, our Proposed

System achieves an average absolute improvement of 8.8% and 10.7% FRR for the Stylus-Finger

and Finger-Stylus scenarios, respectively. It is important to note the higher improvements

achieved on the finger and mixed writing-input scenarios compared to the stylus scenario after

applying our proposed approach proving the importance of exploiting the concept of complexity

on these new challenging scenarios. Final values of 19.4% and 24.0% FRR are achieved for

the Stylus-Finger and Finger-Stylus scenarios for a value of FAR = 15.0%. Therefore, the

deployment of real applications on the Stylus-Finger scenario seems to be more feasible with

rates below 20.0% of FRR and FAR. However, a possible recommendation for real applications

could be to ask clients to perform their signatures using both stylus and finger writing tools

during the enrolment stage in order to obtain better results, or at least for those users with low

complexity level to avoid modifications of their signatures.

8.4. Chapter Summary and Conclusions

In this chapter we have proposed the first methodology focused on the development of on-

line signature verification systems adapted to the signature complexity level of the user. This

approach comprises two main modules: i) a new signature complexity detector based on the

number of lognormals from the Sigma LogNormal writing generation module, and ii) a separate

local feature extraction module adapted to each signature complexity level.

Our proposed approach has been tested on traditional and emerging scenarios, e.g., finger

and mixed writing-input. Two well-known databases have been used in the experimental work of

this Chapter: i) BiosecurID, which is considered for the traditional stylus scenario and comprises
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8. SIGNATURE COMPLEXITY

a total of 400 users, and ii) e-BioSign, a new database that comprises signatures acquired using

COTS devices on stylus, finger and mixed writing-input scenarios for a total of 65 users.

The proposed signature complexity detector has shown to be very effective despite of being

based only on the number of lognormals. Signatures longer in time and with an appearance

more similar to handwriting were labelled as high-complexity signatures whereas signatures

shorter in time and with generally simple flourish with no legible information were labelled

as low-complexity signatures. Additionally, an analysis of the stability regarding the number

of lognormals for different signatures of the same user has been carried out in order to assess

the feasibility of our proposed signature complexity detector. This simple approach has proven

to be as useful and applicable to other databases and scenarios as other more sophisticated

approaches.

Finally, our proposed complexity-based signature verification system has outperformed pre-

vious studies through the selection of the optimal subset of local features for each complexity

level and input scenario. Analysing the results obtained for the stylus scenario, our Proposed

System has achieved for the BiosecurID database an average absolute improvement of 2.5% EER

for skilled forgeries compared to the Baseline System (the case where the local features are fixed

to all complexity levels). Analysing the results obtained for the finger scenario, our Proposed

System has achieved an absolute improvement of 5.6% EER for the most challenging users (i.e.,

users with low complexity level). We have concluded giving some recommendations in order

to improve the performance of the on-line signature verification systems on real scenarios, and

increase the security of the users against impostors.
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Handwritten Passwords for
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Chapter 9

Handwritten Passwords for

Touchscreen Biometrics

This chapter evaluates the advantages and potential of incorporating biometrics to password-

based mobile authentication systems, asking the users to draw each digit of the password on the

touchscreen instead of typing them as usual. This way, the traditional authentication systems

are enhanced by incorporating dynamic handwritten biometric information. One example of use

that motivates our proposed approach is on internet payments with credit cards. Banks usually

send a numerical password (typically between 6 and 8 digits) to the user’s mobile device. This

numerical password must be inserted by the user in the security platform in order to complete

the payment. Our proposed approach enhances such scenario by including a second authentica-

tion factor based on the user biometric information while drawing the digits. Fig. 9.1 shows a

general architecture of our proposed password-based mobile authentication approach. The three

following main modules are analysed in this study: i) enrolment set, ii) password generation,

and iii) touch biometric system. Depending on the final application (i.e., PIN or OTP), the

handwritten digits can be first recognised using for example an Optical Character Recognition

(OCR) system in order to verify the authenticity of the password. After this first authentication

stage, the biometric information of the handwritten digits is compared in a second authentica-

tion stage to the enrolment data of the claimed user, comparing each digit one by one. In this

study we focus on the second authentication stage based on the behavioral information of the

user while performing the handwritten digits as the recognition of numerical digits has already

shown to be an almost solved problem with errors close to 0% [Liang and Hu, 2015; Wan et al.,

2013]. Therefore, in this study we make the assumption that impostors pass the first stage of

the security system (i.e., they know the password of the user to attack) and thus, the attack

would have 100% success rate if our proposed approach was not present.

This chapter is organised as follows. Sec. 9.1 describes our proposed touch biometric system.

Sec. 9.2 and 9.3 describe the experimental protocol and results achieved using our proposed

approach, respectively. Sec. 9.4 discusses specific details for the deployment of our proposed ap-
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Figure 9.1: Architecture of our proposed password-based mobile authentication approach including hand-
written touch biometrics in a two-factor authentication scheme applicable both to user-generated PIN and
OTP systems.

proach on current PIN- and OTP-based authentication systems, including password generation

strategies. Sec. 9.5 aims to provide the last new advancements in the topic. Finally, Sec. 9.6

draws the final conclusions.

This chapter is based on the following publications: [Tolosana et al., 2018b,d, 2019b].

9.1. Touch Biometric System

9.1.1. Digit-based Feature Extraction

In this chapter we evaluate the potential of touch biometric verification systems based on

local features. Signals captured by the digitizer (i.e., X and Y spatial coordinates) are used to

extract the same set of 21 local features described in Chapter 4 for each numerical digit sample

(see Table 4.3). Information related to pressure, pen angular orientations or pen ups broadly

used in other biometric traits such as handwriting and handwritten signature is not considered

in this chapter as this information is not available in all mobile devices when using the finger

touch as input.

SFFS algorithm is used for the DTW algorithm in some of the experiments in order to select

the best subsets of local features for each handwritten digit and improve the system performance

in terms of EER (%).
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9.1 Touch Biometric System

Figure 9.2: Proposed end-to-end writer-independent BLSTM touch biometric system based on a Siamese
architecture.

9.1.2. Similarity Computation

9.1.2.1. Dynamic Time Warping

The same DTW configuration described in Chapter 4 is used here to compare the similarity

between genuine and query input samples. Scores are obtained as score = e−D/K , where D

and K represent respectively the minimal accumulated distance and the length of the warping

path [Martinez-Diaz et al., 2015b].

9.1.2.2. Recurrent Neural Networks

In this study we adapt the original BLSTM system proposed in Chapter 4 for handwritten

signature verification to handwritten passwords for touchscreen biometrics. To the best of our

knowledge, this is the first study to date that studies recurrent Siamese networks to model

handwritten password authentication systems. Fig. 9.2 shows our proposed end-to-end writer-

independent BLSTM touch biometric system based on a Siamese architecture. For the input of

the system, we feed the network with as much information as possible, i.e., all 21 local features

per digit. The first layer is composed of two BLSTM hidden layers with 21 memory blocks

each, sharing the weights between them. The outputs of the first two parallel BLSTM hidden

layers are concatenated and serve as input to the second layer, which corresponds to a BLSTM

hidden layer with 42 memory blocks. Finally, a feed-forward neural network layer with a sigmoid

activation is considered, providing an output score for each pair of digits. It is important to

highlight that our approach is trained to distinguish between genuine and impostor patterns

from all numerical digits and users. Thus, we just train one writer-independent system for all

digits and users through a development dataset.

129

9ChapterHandwrittenPasswords/pics/LSTM_configuration.ps


9. HANDWRITTEN PASSWORDS FOR TOUCHSCREEN BIOMETRICS

9.2. Experimental Protocol

The experimental protocol designed in this study intends to cover all details of the two

following main modules of our proposed password-based touch biometric system (see Fig. 9.1):

Enrolment Set: When designing biometric authentication systems for real applications,

there are usually two conflicting factors: i) the amount of data requested to the user during

the enrolment, and ii) the security level provided by the biometric system. From the point

of view of the security system, it seems clear that the ideal case would be to have as much

information of the user as possible. However, in most real scenarios, the feasibility and

success depend on the development of user-friendly applications.

This aspect has shown to be crucial for different tasks such as the handwritten signature.

In Chapter 6, we evaluated this effect using statistical systems based on HMM and GMM,

achieving an absolute improvement of 11.7% EER when training the user models with 41

genuine signatures instead of just 4. In this chapter, we analyse the intra-user variability

on this new authentication scenario and perform a complete analysis of how the biometric

system performance changes with the number of enrolment samples acquired per digit.

Password Generation: The selection of a password that is robust enough for a specific

application is a key factor. The number of digits that comprise the password depends

on the scenario and level of security considered in the final application. For example, for

everyday applications such as Facebook or Gmail, it is not reasonable from the point of

view of the users to memorise passwords composed of 12 digits. Additionally, OTP-based

systems could request longer passwords compared to PIN-based systems as users do not

have to memorise them, i.e., the security system is in charge of selecting and providing the

password to the user.

In this experimental chapter we evaluate the robustness of handwritten passwords regard-

ing the three following features: i) which digits better discriminate users, ii) whether

repetitions of the same numerical digits in a password can help to discriminate users or

not, and iii) the length of the password. For short passwords (i.e., fewer than 6 digits),

this analysis is carried out performing all possible digit combinations, whereas for longer

passwords, the SFFS algorithm is used to select the best digit combinations due to the

high cost of performing all possible comparisons.

In order to perform a complete analysis of these two modules, the e-BioDigit database

described in Chapter 3 is divided into development (the first 50 users) and evaluation (the

remaining 43 users) datasets.

For the development of our proposed handwritten touch biometric systems, N genuine signa-

tures (up to 4) from the first session can be used as enrolment samples, whereas the 4 remaining

genuine samples from the second session are used for testing. Impostor scores are obtained by
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Table 9.1: Local features for the Baseline System.

# Feature description

1 X -coordinate: xn
2 Y -coordinate: yn
7-8 First-order derivate of features 1-2: ẋn, ẏn
13-14 Second-order derivate of features 1-2: ẍn, ÿn

comparing the N enrolment samples with one genuine sample of each of the remaining users

(simulating this way the imitation attack in which the impostor knows the password).

For the evaluation of our proposed touch biometric system, different scenarios are generally

considered regarding the number of available enrolment samples per user (i.e., Nvs1), in which

the final score is performed as the average score of N one-to-one comparisons. In addition, in

case of using passwords composed of several digits, the final score is produced after averaging

the different one by one digit score comparisons.

It is important to highlight that the inter-session variability problem is also considered in

the experimental protocol carried out in this study as genuine digit samples from different

sessions are used as enrolment and testing samples respectively. This effect has proven to

be very important for many behavioral biometric traits such as the case of the handwritten

signature [Galbally et al., 2013].

9.3. Experimental Results

9.3.1. One-Digit Analysis

This section analyses the potential of each numerical digit (i.e., from 0 to 9) for the task

of user authentication. We consider three different systems: i) a baseline DTW system, ii) an

adapted DTW considering feature selection, and iii) a system based on RNNs.

Experimental results on the evaluation dataset for these three systems are shown in Table 9.2

and 9.3 in terms of EER (%) for the cases of 1vs1 and 4vs1 comparisons, respectively.

9.3.1.1. DTW Baseline System

In order to provide an easily reproducible framework, we first consider a baseline system

based on DTW with the same fixed local features for all numerical digits. Table 9.1 shows the

local features selected, which are commonly used as baseline in other biometric traits such as

the handwritten signature [Blanco-Gonzalo et al., 2014; Tolosana et al., 2017a].

Analysing the first rows of Tables 9.2 and 9.3 we can see how very good authentication results

are obtained by the DTW Baseline System taking into account that we only consider one digit

and the same local features for all numerical digits.

Analysing in Table 9.2 the extreme scenario of having just one available digit sample during

the enrolment (1vs1), the numerical digit 7 achieves the best result with 22.5% EER. In addition,

other numerical digits such as 4 or 5 achieve similar results with EERs below 25.0%. This first
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Table 9.2: System performance as EER(%) of each numerical digit for the 1vs1 case on the evaluation
dataset.

Numerical Digit
0 1 2 3 4 5 6 7 8 9

DTW Baseline System 34.9 32.3 32.8 35.0 23.5 24.4 36.9 22.5 26.0 29.6

DTW Adapted System 33.0 34.0 30.9 32.3 22.0 21.7 33.6 21.8 21.8 27.0

BLSTM System 32.8 30.8 32.8 32.3 26.2 19.6 35.2 28.5 21.7 23.8

Table 9.3: System performance as EER(%) of each numerical digit for the 4vs1 case on the evaluation
dataset.

Numerical Digit
0 1 2 3 4 5 6 7 8 9

DTW Baseline System 33.1 28.5 30.2 32.6 18.0 20.3 36.6 19.2 22.7 25.0

DTW Adapted System 31.4 33.1 27.9 29.7 19.2 16.9 29.7 20.3 18.6 23.3

BLSTM System 31.4 27.9 31.4 26.2 24.4 17.4 35.4 24.4 18.0 20.9
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Figure 9.3: Examples of the numerical digit 7 performed by two different users.

experiment puts in evidence the discriminative power of each handwritten digit. Fig. 9.3 shows

examples of the digit 7 performed by two different users in order to observe the low intra- and

high inter-user variability of this number. This effect is produced as different users tend to

perform a specific digit in a different way, i.e., starting from a different stroke of the digit or

even removing some of them such as the crossed horizontal stroke of the number 7.

Analysing in Table 9.3 the scenario of using four enrolment samples (4vs1), an average

absolute improvement of 3.2% EER is achieved compared to the 1vs1 scenario showing the

importance of acquiring more than one sample during the enrolment stage, if possible. For this

scenario, the digit 4 achieves the best result with 18.0% EER.

9.3.1.2. DTW Adapted System

We now apply SFFS over the development dataset in order to enhance the DTW touch

biometric system through the selection of specific local features for each handwritten digit.

Fig. 9.4 shows the number of times each local feature is selected in our DTW Adapted System

from the 21 total local features described in Chapter 4, Table 4.3. In general, we can highlight
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9.3 Experimental Results

Figure 9.4: Histogram of local features selected by SFFS for our DTW Adapted System. Local features
described in Table 4.3.

the importance of xn, yn local features as they are selected for 70% of the numerical digits. In

addition, local features ẋn, ẏn related to X and Y time derivatives seem to be very important

as they are selected for near half of the digits. Other local features such as ρn, ρ̇n, α̇n and

sn related to geometrical aspects of the numerical digits are proven not to be very useful to

discriminate between genuine and impostor users.

The second rows of Tables 9.2 and 9.3 show the results achieved for each digit using our

DTW Adapted System over the evaluation dataset for both 1vs1 and 4vs1 cases, respectively. In

general, better results are achieved compared to the DTW Baseline System. Analysing the 1vs1

scenario, our DTW Adapted System achieves an average absolute improvement of 2.0% EER,

being the numerical digit 5 the one that provides the best result with a 21.7% EER. Analysing

the 4vs1 scenario, our DTW Adapted System achieves an average absolute improvement of 1.6%

EER, being again the numerical digit 5 the one that achieves the best result with a 16.9% EER.

These results put in evidence the importance of considering different local features for each digit

in order to develop more robust biometric authentication systems against attacks.

9.3.1.3. BLSTM System

We now explore the potential of state-of-the-art deep learning technology applied to our

touch biometric data. Our proposed end-to-end writer-independent BLSTM system is trained

using only the 50 users of the development dataset. Samples from all numerical digits (i.e.,

from 0 to 9) and development users are considered together during training as we intend to

distinguish between genuine and impostor handwritten digit samples regardless of the user and

the numerical digit. This approach resulted in better generalisation results compared to the case

of training one system per numerical digit. Therefore, our BLSTM system is trained considering

two different cases: i) pairs of genuine digit samples drawn by the same user, and ii) pairs of

genuine and impostor digit samples, one performed by the claimed user and the other one by an

impostor. For each case there are a total of 4 train samples× 4 test samples× 10 numerical digits

× 50 users ≃ 8,000 comparisons, having the same number of genuine and impostor comparisons.

Our BLSTM System has been implemented under Keras using Tensorflow as back-end, with
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a NVIDIA GeForce RTX 2080 Ti GPU. Adam optimizer is considered with a learning rate of

0.001 and a loss function based on binary cross-entropy.

The third rows of Tables 9.2 and 9.3 show the results achieved for each digit using our BLSTM

System over the evaluation dataset for both 1vs1 and 4vs1 cases, respectively. In general, better

results are achieved compared to the DTW Baseline System. Analysing the 1vs1 scenario, our

BLSTM System achieves an average absolute improvement of 1.4% EER, being the numerical

digit 5 the one that provides the best result with a 19.6% EER. Analysing the 4vs1 scenario,

our BLSTM System achieves an average absolute improvement of 0.9% EER, being again the

numerical digit 5 the one that achieves the best result with a 17.4% EER.

Finally, we compare our BLSTM System to the DTW Adapted System. In general, very

similar results have been achieved for both authentication systems. The BLSTM System has

outperformed the DTW Adapted System for some numerical digits (e.g., numerical digits 1 and

9 in Tables 9.2 and 9.3), proving the potential of deep learning technologies even in the scenario

considered here where only a small amount of data is available during the training process. De-

spite these improvements, the DTW Adapted System outperforms slightly the BLSTM System

in general, achieving an average absolute improvement of 0.5% and 0.7% EER for the 1vs1 and

4vs1 cases, respectively.

9.3.2. Digit Combinations

This section explores the robustness of our proposed approach when increasing the length of

the password and also the number of available enrolment samples. The DTW Adapted System

is considered in this analysis as it has outperformed the other systems studied. Regarding the

type of digits that comprises the password, repetitions of the same numerical digits are allowed.

However, the number of repetitions is restricted to 4, e.g., “2 5 8 8 8 8”. The reason for this

limitation is motivated due to only 4 samples were acquired per digit during the second session

of the e-BioDigit database. Table 9.4 shows the evolution of the system performance in terms

of EER (%) on the evaluation dataset when increasing the length of the handwritten password

(from 1 to 8 digits) and also the number of available enrolment samples (from 1 to 4).

First, we analyse how the length of the handwritten password affects the system perfor-

mance. In general, a considerable system performance improvement is achieved when adding

more handwritten digits to the password. For example, for the case of having just one enrolment

sample per user (1vs1), a password that is composed of just two handwritten digits achieves a

14.0% EER, an absolute improvement of 7.7% EER compared to the case of using a password

with just one digit. This result is further improved when increasing the number of handwritten

digits of the password with a final 8.5% EER for the case of considering a 6-digit password.

However, there seems to exist a limit in the system performance improvement with the number

of digits that comprise the password. In our experiments, the best results are obtained for

passwords with a length of 6 and 7 digits.

Now, we analyse the effect of the number of available enrolment samples on the system

performance. In general, the system performance improves with the number of enrolment sam-
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Table 9.4: Evolution of the system performance in terms of EER (%) on the evaluation dataset. The
best system performance achieved and the corresponding handwritten digits selected are shown on top and
bottom of each cell respectively.

# Digits that comprise the password
1 2 3 4 5 6 7 8

1
21.7
[5]

14.0
[5, 8]

11.6
[5, 7, 9]

11.6
[1, 5, 7, 9]

9.3
[2, 5, 6, 7, 8]

8.5
[2, 3, 5, 6, 7, 8]

8.5
[1, 2, 3, 5, 6, 7, 8]

8.5
[2, 3, 4, 5, 6, 7, 8, 9]

# Enrolment
samples

2
18.6
[5]

11.6
[5, 8]

9.3
[2, 5, 8]

7.4
[2, 5, 8, 9]

7.3
[1, 2, 5, 7, 9]

4.6
[2, 5, 6, 7, 8, 9]

4.6
[1, 2, 3, 5, 7, 8, 9]

4.6
[1, 2, 3, 4, 5, 6, 7, 8]

3
16.3
[5]

9.5
[2, 8]

7.4
[1, 2, 8]

5.9
[2, 5, 8, 9]

4.7
[1, 2, 5, 8, 9]

4.6
[1, 2, 3, 5, 8, 9]

3.8
[1, 2, 3, 4, 5, 8, 9]

4.6
[0, 1, 2, 3, 4, 5, 7, 8]

4
16.9
[5]

11.6
[5, 8]

7.0
[7, 8, 9]

6.1
[5, 7, 8, 9]

4.7
[1, 5, 7, 8, 9]

4.6
[1, 2, 5, 7, 8, 9]

4.3
[1, 2, 3, 5, 7, 8, 9]

4.8
[0, 1, 2, 3, 4, 5, 7, 8]

ples. For example, for the case of having just one enrolment sample and a password composed

of just one digit, the biometric system achieves a 21.7% EER. This result is further improved

when increasing the number of enrolment samples to 4, achieving a final value of 16.9% EER,

an absolute improvement of 4.8% EER. However, there seems to exist a limit in the system

performance improvement with the number of enrolment samples. In our experiment, very sim-

ilar results are obtained when considering 3 or 4 enrolment samples, achieving a final value

of 3.8% EER when considering 3 enrolment samples and a handwritten password of 7 digits.

This interesting finding is different compared to other behavioral biometric traits such as the

handwritten signature as the system performance keeps improving even with large number of

enrolment samples (see Chapter 6). This effect may be due to the lower intra-user variability of

our proposed touch biometric approach compared to other behavioral biometrics as well as the

DTW similarity computation algorithm considered.

Finally, we pay attention to the content and the number of possible combinations of the

best handwritten passwords using our proposed touch biometric system so as to achieve the

best system performance. Table 9.4 indicates in the bottom of each cell the best handwritten

digits selected but not their order, as the final score of our proposed touch biometric system

is produced after averaging the different one by one digit score comparisons. Therefore, for

the case of having a password comprised of n digits, there are a total of n! possible password

combinations (note that in our experiments we did not have any case of repetitions of digits

achieving the best results).

9.3.3. Comparison to the State of the Art

Our proposed approach is now compared to other state-of-the-art biometric authentication

approaches described in Table 2.1. In order to perform a fair analysis, we compare our proposed

approach to all studies that consider the same type of impostors, i.e., imitation attacks.

In general, our proposed approach achieves better results than other touch biometric ap-

proaches. For the case of lock pattern dynamic systems [Angulo and Wastlund, 2011; Lacharme

and Rosenberger, 2016], the best system performance reported was an average 10.39% EER. Our

proposed approach also outperforms other biometric methods such as the handwritten signature
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or graphical passwords. In Chapter 5 of this Thesis, we have analysed handwritten signature

verification systems adapted to mobile scenarios, i.e., using mobile devices such as smartphones

and tablets with the finger as input, achieving EERs around 20.0%. In [Martinez-Diaz et al.,

2016], the authors proposed the use of graphical doodles and pseudosignatures (i.e. simplified

versions of the signatures drawn with the finger). EERs above 20.0% were obtained in both

cases for skilled forgeries.

Finally, our proposed approach has been compared to other state-of-the-art authentication

systems based on handwritten passwords. In [Kutzner et al., 2015], the authors proposed the use

of handwritten passwords with a fixed length of 8 characters, achieving a final False Acceptance

Rate (FAR) of 10.42% when using a total of 12 training samples per user (the False Rejection

Rate FRR was not provided by the authors). Nguyen et al. [2017a] evaluated the potential of

drawing each digit of a 4-digit PIN one by one, achieving a final result of 4.84% EER when

considering a total of 5 enrolment samples. Our proposed approach achieves a final value of

3.8% EER and it is able to mitigate the limitations of [Kutzner et al., 2015] about the size of

the touchscreen, as users perform numerical digits one at a time. Additionally, we only consider

3 enrolment samples and not 5 as in [Nguyen et al., 2017a] in order to improve the usability of

our approach.

9.4. Password Generation and System Setup

In this section we discuss specific details for the deployment of our proposed approach in real

scenarios considering the same experimental protocol described in Sec. 9.2. The DTW Adapted

System has been considered for this analysis.

First, we focus on PIN-based systems. For this scenario, we propose to use passwords based

on 4 digits as users have to memorise them and it is not feasible from the point of view of the user

to consider longer passwords. Regarding the enrolment stage, we propose to request 3 enrolment

samples per digit to each user. We consider this as something feasible for real applications as

users would have to perform a total of 4 digits × 3 samples/digit = 12 samples, i.e., 12 samples

× 2 seconds/sample ≃ 25 seconds.

Once we have fixed the number of enrolment samples and digits parameters, we design

what type of passwords we let users to use (i.e., we design the Password Generation module in

Fig. 9.1). The following cases are considered regarding both the system performance and number

of possible combinations: i) ALL password combinations are allowed, and ii) only combinations

using the BEST 4 digits selected in Table 9.4 and with no repetitions (recall in Sect. 9.3.2

we obtained that the most discriminative password combinations in terms of touch biometric

information didn’t include repeated digits). Fig. 9.5 shows the EER distribution values obtained

for all possible password combinations. On the box, the central mark indicates the median, and

the left and right edges of the box indicate the 25th and 75th percentiles, respectively. The

whiskers extend to the most extreme data points not considered outliers, and the outliers are

plotted individually. In general, we can see that the 75% of password combinations provide
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0 5 10 15 20 25 30 35

EER(%)

Figure 9.5: PIN System: Boxplot for the case of considering all 4-digit password combinations. On
the box, the central mark indicates the median, and the left and right edges of the box indicate the 25th
and 75th percentiles, respectively.

Table 9.5: OTP System: number of 7-digit possible combinations and system performance results.

# Password Combinations EER(%)

Case ALL 107 3.8 to 14.0

Case BEST 5,040 3.8

results below 16.2% EER. Analysing the case ALL, the system performance results achieved are

between 5.9% and 35.7% EER with a total of 104 combinations. The performance is improved

in the case BEST with a 5.9% EER for all considered combinations. However, users would

be able to choose only among 4! combinations (i.e., 24). Besides, the security level of the

first authentication stage would decrease as fewer password combinations would be possible.

Therefore, a good choice could be to select all possible passwords that provide results in a range

of EERs. For example, permitting between 5.9% and 10.0% EER. This approach would allow

users to choose among 2,956 different 4-digit passwords.

Now, we analyse the OTP-based system. For this scenario, we propose to use passwords

composed of 7 digits, similar to current OTP-based applications, as users do not have to mem-

orise the password, i.e., the system is in charge of selecting and providing different passwords

to the user each time is required. Regarding the enrolment stage, we also propose to request 3

enrolment samples per digit so users would have to perform a total of 10 digits × 3 samples/digit

= 30 samples, i.e., 30 samples × 2 seconds/sample ≃ 1 minute.

Once we have fixed both the number of enrolment samples and the length of the password,

we analyse the content of the passwords. For this scenario, the following cases are considered:

i) ALL digit combinations are allowed, and ii) only combinations using the BEST 7 digits

selected in Table 9.4 with no repetitions. Table 9.5 depicts the number of possible combinations

as well as the EER (%) for both cases. Analysing the case in which users can choose any

possible combination, the system performance results achieved are between 3.8% and 14.0%

EER. However, it is important to remark that for this case (longer passwords) results were

obtained due to experimental restrictions using the SFFS algorithm and limiting the maximum

number of digit repetitions to 4, so the final 14.0% EER might get a bit worse in practice when

considering all possible digit combinations. This approach is further improved in the case BEST

with a final 3.8% EER. For this scenario we propose to use this second case as there would be a

total of 7! (i.e., 5,040) combinations that provide the best system performance for our proposed
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Figure 9.6: Different interfaces designed for the acquisition app. Both portrait and landscape orienta-
tions are considered in order to analyse different user experiences while drawing.

touch biometric approach.

9.5. New Advancements

This final section aims to provide the last new advancements obtained in this interesting

approach. So far this chapter, we have analysed the potential of drawing each digit of the

password on the touchscreen instead of typing them as usual. Very good results have been

obtained taking into account that the impostor would have 100% success rate if our proposed

approach was not present. Therefore, and after performing this first study, we decided to extend

this approach to more practical scenarios through the acquisition of a novel mobile touch on-

line database named MobileTouchDB. The database contains more than 64K on-line character

samples performed by 218 users, using 94 different smartphone models, with an average of 314

samples per user. In each acquisition session, users had to draw all numbers (from 0 to 9),

upper- and lower-case letters (54), different symbols (8), and passwords composed of 4 numbers

(6). Regarding the acquisition protocol, MobileTouchDB comprises a maximum of 6 captured

sessions per subject with a time gap between them of at least 2 days. This database studies an

unsupervised mobile scenario with no restrictions in terms of position, posture, and devices.

Regarding the acquisition, we implemented an Android application. Fig. 9.6 represents the

different interfaces designed for the acquisition. All interfaces are composed of: i) the character

to draw (top, middle) and two buttons “OK” (top, right) and “Cancel” (top, left) to press after

drawing if the sample was good or bad respectively. If the sample was not good, then it was

repeated. And ii) a rectangular area to perform the character or password. In order to study

an unsupervised mobile scenario, the acquisition app was uploaded to the Google Play Store.

This way all participants could download and use the app on their own devices without any

kind of supervision, simulating a practical scenario in which users can generate handwritten

information in any possible scenario, e.g., standing, sitting, walking, indoors, outdoors, etc. As
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Figure 9.7: Description of the design and number of available users of the new MobileTouchDB.

a result, 94 different models from the following 16 brands were used during the acquisition:

Alcatel, Blackberry, BQ, Coolpad, Doogee, Google, Huawei, LeTV, LG, Motorola, OnePlus,

Samsung, Sony, UMIDIGI, Xiaomi, and ZTE. The acquisition app was designed to capture the

following time signals: X and Y spatial coordinates, the area covered by the finger, timestamp,

accelerometer, and gyroscope. However, information related to the area covered by the finger,

accelerometer, and gyroscope was not available in some cases depending on how old was the

acquisition device.

The acquisition protocol considered in the MobileTouchDB database is depicted in Fig. 9.7.

It comprises a total of 6 sessions (i.e., S1-S6) with different time gaps among them. It is

important to highlight that in all sessions, the time gap refers to the minimum time between

one user finishes a session and the following session is available. However, participants usually

performed their corresponding sessions later on thanks to notifications sent automatically by

the acquisition app to the users. Regarding the data acquired, each session comprises 8 different

capturing blocks (i.e., from Block1 to Block8). Fig. 9.8 shows some examples of each of the

eight acquisition blocks for two different users (indicated in blue and red colours). The green

dashed lines indicate pen ups trajectories between strokes. In Block1, we asked users to draw all

numbers (from 0 to 9). Block2 and Block3 comprise upper- and lower-case letters respectively,

with a total of 27 letters each. Block4 is composed of 8 different symbols (i.e., “?”, “#”, “*”,

“@”, “%”, “=”, “ǫ”, and “α”). It is important to remark that inside each block, characters

were randomised before asking users to draw them. This way, each user performs a different

character sequence in each session. From Block1 to Block4, the acquisition interface was designed

as portrait to provide a better user experience (see Fig. 9.6, left). After finishing the first 4 blocks

focused on performing one single character at a time (one sample per character), we asked users

to draw passwords composed of 4 numbers (always “5 7 8 4”) in different ways (6 samples in

total). In Block5, users performed the password twice using a landscape orientation interface

(see Fig. 9.6, right). We provided the users with a graphical visualization of the numbers while
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Figure 9.8: Example of the data collected in MobileTouchDB database. Blue and red colours represents
samples drawn by different users. The green dashed lines indicate pen ups trajectories between strokes.
Curves under each character represent X and Y trajectories over time.

140

9ChapterHandwrittenPasswords/pics/imagen_global_MobileTouchDB.ps


9.5 New Advancements

drawing them (i.e., visible mode). Then, in Block6, users had to repeat once the same task

considered in Block5 but this time in an invisible mode, i.e., we did not provide to the users any

visualization of the numbers while drawing them. The main motivation of this novel acquisition

scenario is to protect us against shoulder surfing attacks, as commented in [Nguyen et al., 2017b].

In Block 7, users had to draw each number of the password inside of each of the four available

boxes (two times), considering first a visible mode (see Fig. 9.6, middle). Finally, in Block8 users

had to repeat once the same task considered in Block7 but this time in an invisible mode. In

both Block7 and Block8 the acquisition interface was kept portrait to analyse the user experience

in different settings.

Regarding the MobileTouchDB population statistics, 218 users completed the S1 acquisition

session. S1 and S2 were completed by 159 users. Finally, a total of 109 users completed the six

acquisition sessions. This participant reduction between S1 and S6 sessions is produced due to

the challenging acquisition scenario considered in this study as it was completely unsupervised

and comprised several acquisition sessions along time. Regarding the age distribution, 36.2%

of the participants are younger than 22 years old, 31.9% are between 22 and 27 years old, and

the remaining 31.9% are older than 27 years old. Regarding the gender, 63% of the participants

were males, and 37% females. 96% of the population was righthanded.

Preliminary results carried out using a baseline system based on DTW and the same fixed

time functions for all characters (i.e., X and Y coordinates over time and their first- and second-

order derivatives) prove the discriminative power of lower- and -upper case letters, and symbols

compared to the initial results obtained using only the numbers. Lower-case letters achieve

an average absolute improvement of 1.9% EER compared to numbers whereas for symbols and

upper-case letters the average absolute improvement is 1.8% and 0.9% EER, respectively. For

future work, we expect to further reduce the EER through more advanced techniques based on

feature selection and deep learning. Additionally, we will study the discriminative power of new

features acquired in the database such as the area covered by the finger, accelerometer, and

gyroscope in order to further improve the system performance. Finally, we will also analyse the

user experience in different acquisition settings through the analysis of the information acquired

from Block5 to Block8 of the MobileTouchDB.

The MobileTouchDB database, experimental protocol, and benchmark evaluation of it has

been submitted to the Conference on Computer Vision and Pattern Recognition Workshops

(CVPRw) [Tolosana et al., 2019b]. All these information will be available in GitHub very soon.

Finally, we would also like to highlight that the application of MobileTouchDB can be also use-

ful for other research lines beyond touchscreen biometric authentication, e.g.: i) user-dependent

effects [Yager and Dunstone, 2010b], and development of user-dependent methods for hand-

writing recognition, ii) the neuromotor processes involved in writing over touchscreens [Ferrer

et al., 2018], iii) sensing factors in obtaining representative and clean touch interaction sig-

nals [Tolosana et al., 2015d], iv) human-device interaction factors involving touchscreen signals,

and development of improved interaction methods [Harbach et al., 2016], and v) population

statistics around touch interaction signals, and development of new methods aimed at recognis-
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ing or serving particular population groups.

9.6. Chapter Summary and Conclusions

In this chapter we have evaluated the advantages and potential of incorporating touch bio-

metrics to password-based mobile authentication systems. The new e-BioDigit database, which

is described in Sec. 3.3.1, is used in the experiments reported in this chapter. Data was collected

in two sessions with a time gap of at least three weeks between them for a total of 93 subjects.

Handwritten numerical digits were acquired using the finger as the writing input on a Samsung

Galaxy Note 10.1 general purpose tablet device.

For the new e-BioDigit database, we report a benchmark evaluation using two different state-

of-the-art approaches: i) DTW in combination with the SFFS function selection algorithm,

and ii) RNN deep learning technology. In addition, we perform a complete analysis of the

touch biometric system regarding the discriminative power of each handwritten digit, and the

robustness of our proposed approach when increasing the length of the password and the number

of enrolment samples per user.

Our proposed approach achieves remarkable results with EERs ca. 4.0% when considering

skilled forgeries, outperforming other traditional biometric verification traits such as the hand-

written signature or graphical passwords on similar mobile scenarios. Additionally, we discuss

specific details for the deployment or our proposed approach on current PIN- and OTP-based

authentication systems.

Finally, the preliminary results obtained here using the novel MobileTouchDB database

over a DTW baseline system prove the higher discriminative power of lower- and upper case

letters, and symbols compared to numbers, with average absolute improvements ranging from

1-2% EERs. For future work, we expect to further reduce the EER through more advanced

techniques based on feature selection and deep learning.
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Chapter 10

Conclusions and Future Work

This final chapter brings together and summarises the main points and important results

presented in this Dissertation with reference to the research objectives of Chapter 1. This The-

sis is divided into five main parts. Part I concentrates on the problem statement and main

contributions of this Dissertation. This part comprises Chapters 1, 2, 3, and 4. There are three

experimental parts: Part II, Part III, and Part IV. Part II focuses on the new challenging and

current signature verification scenarios, comprising Chapters 5, and 6. Part III describes the ex-

perimental work carried out in order to enhance traditional signature verification systems. This

part is composed of Chapters 7 and 8. Part IV addresses the experimental work carried out for

incorporating handwriting biometric information to traditional password-based authentication

systems, including Chapter 9. Lastly, Part V concludes the Dissertation.

The major contributions made in this Thesis are:

Analysis and adaptation of on-line signature verification systems to emerging scenarios

such as finger input, device interoperability and mixed writing-input through robust pre-

processing and feature selection techniques.

An exhaustive experimental analysis of template update strategies for three very popular

on-line signature verification approaches, extracting various practical findings related to

the template aging effect in signature biometrics, and configuring time-adaptive improved

versions of the considered baseline approaches overcoming to some extent the template

aging.

Exploring the potential of Deep Learning approaches for on-line signature and handwriting

verification. We have proposed a novel end-to-end writer-independent on-line signature

verification system based on Recurrent Neural Networks with a Siamese architecture, which

has outperformed other state-of-the-art systems.

Improvement of traditional signature verification systems through the incorporation of the

signature complexity concept.
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Enhancement of traditional PIN and OTP authentication systems through the incorpora-

tion of handwriting biometric information as a second level of user authentication.

Acquisition of new unprecedented handwriting and signature databases, making them

freely available to the research community.

Part of the research presented in this Thesis has been deployed successfully in a pilot

project in which on-line signature verification will be used massively in the Spanish banking

sector.

In what follows, we proceed to describe in more detail the particular findings corresponding

to the major contributions.

10.1. Conclusions

Chapter 1 first introduced the basics of biometric systems, including properties, and biomet-

ric traits. Then, we focused on handwritten signature biometrics, which is the main topic of

study in this Thesis, and the challenges and opportunities for it on emerging scenarios. Later

on we summarised the success of DL techniques in many different biometric applications, which

motivated the exploration carried out in this Dissertation. Then, we motivated the incorporation

of handwriting biometric information in traditional password-based authentication approaches.

We finished the chapter by stating the Thesis, giving an outline of the Dissertation, and sum-

marising the research contributions originated from this work.

Chapter 2 first described each module of a traditional on-line signature verification systems

as well as the two modalities considered, global systems (a.k.a. feature-based systems), and local

systems (a.k.a. time functions-based systems). Then, the chapter reviewed related works of this

Thesis: i) emerging scenarios for signature biometrics such as finger input, device interoperabil-

ity, mixed writing-input, and signature template aging, ii) the importance and reasons for the

success of DL together with a brief overview of the most famous DL architectures nowadays,

and iii) advantages and limitations of recent touchscreen biometrics approaches.

Chapter 3 first gave an overview of the most relevant features of existing on-line signature

databases, making special emphasis on the databases used in the experimental work of this

Thesis. Then, we presented the new e-BioSign database as well as the extension of the ATVS

On-Line Signature Long-Term database, acquired in this Thesis. Finally, we introduced the new

e-BioDigit database acquired for the analysis of handwriting biometric information on password-

based scenarios.

Chapter 4 first focused on traditional signature verification systems, describing the specific

features and matching algorithm configurations considered in the experimental parts of the

Thesis. Then, we concentrated on novel signature verification systems based on deep learning

architectures. We first explained the basics of RNN systems and gave an overview of the main

relevant studies. Then, the specific details of our proposed end-to-end writer-independent RNN

signature verification systems were described.
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Chapter 5 is the first experimental chapter of Part II, which focused on the new challenging

and current signature verification scenarios. It first analysed the system performance of tradi-

tional signature verification systems on emerging scenarios such as finger input, device interop-

erability and mixed writing-input. Both Biosecure and e-BioSign databases were considered in

the experimental work. Then, we proposed a two-stage approach based on robust preprocessing

and feature selection techniques in order to alleviate the degradation of the system performance

on these novel scenarios. The key findings of this chapter were:

The high technological evolution and sensor quality improvement together with our pro-

posed two-stage approach led to very competitive signature verification systems on device

interoperability scenarios with an average EER of 11.9% and 1.8% EER for skilled and

random forgery cases, respectively.

A high variability is produced when using the finger as input. This is due to two main

reasons: i) users who performed their signatures using closed letters (i.e., a, e, o, l, p,

q, etc.) tended to perform much larger writing executions in comparison with other let-

ters due to the lower precision they were able to achieve using the finger, and ii) users

whose signatures were composed of a long name and surname (or two surnames) tended

to simplify some parts of their signatures. As a result, a high degradation of the system

performance was produced compared to the stylus case, with an average EER of 25.5%

and 1.9% for skilled and random forgeries, respectively.

A recommendation for the usage of signature recognition on mobile devices would be for

the users to protect themselves from other people that could be watching while signing,

as this is more feasible to do in a mobile scenario compared to an office scenario. This

way skilled forgers might have access to the global shape of the signature but not to the

dynamic information.

An analysis of mixed writing-input scenarios, concluding that the main problem resides in

the signatures acquired with the finger.

Part II of the Thesis also comprises Chapter 6. This chapter studied the novel scenario where

the number of stored samples or templates per user can grow very fast, making it possible to train

more robust statistical user models, improving the performance of the biometric systems, and in

particular, reducing the template aging effect. We first introduced the methods studied in this

work in order to reduce the template aging effect. Then, we described the three popular signature

systems (DTW, HMM, and GMM) and the experimental protocol and results achieved using

the ATVS Signature Long-Term Extended Database. The main contributions of this chapter

were:

We analysed the effect of template aging in on-line signature biometrics concluding that

it has a significant impact in the system performance.
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In order to compensate for this template aging effect, an exhaustive experimental analysis

of various template update strategies were carried out. For the case of HMM and GMM

systems the optimal template update strategy would be to select all available training

signatures or at least a few of them from several sessions in order to generate a more

reliable user’s template. For the DTW system the optimal one would be to consider a few

training signatures (i.e., between 8 and 12) from sessions closer in time to the test.

By incorporating the considered template update techniques, we demonstrated a significant

improvement of performance with respect to the three baseline systems, hence we achieved

a significant reduction of the template aging effect with similar results to the ideal case for

random forgeries, and an average relative improvement of 61.9% EER for skilled forgeries.

A final fusion of the three individual systems after applying the best resulting template

update approach was carried out in order to further improve the recognition performance

achieving an EER of 2.1% and 0.2% for skilled and random forgeries, respectively.

Chapter 7 and 8 in Part III proposed new ways to improve traditional signature verification

systems. Concretely, Chapter 7 evaluated the potential of our proposed end-to-end writer-

independent on-line signature verification system based on RNNs with a Siamese architecture.

We first described the experimental protocol considered based on the BiosecurID database, and

the results achieved on the development and evaluation datasets for both skilled and random

forgery cases. The key contributions were:

The first complete and successful framework on the use of multiple RNN systems (i.e.,

LSTM and GRU) for on-line handwritten signature verification considering both skilled

and random forgery cases.

Regarding the development stage, it is important to remark the different number of training

iterations needed between normal (i.e., LSTM and GRU) and bidirectional schemes (i.e.,

BLSTM and BGRU). This showed the importance of considering both past and future

contexts in order to train RNNs faster and also with a lower value of training cost. In

addition, it is important to highlight the different number of training iterations between

both LSTM and GRU RNNs as the GRU memory block is a simplified version of the

LSTM memory block with fewer parameters to train.

For the scenario of using just one training signature per user, our Proposed BLSTM System

achieved a 5.60% EER for skilled forgeries, which corresponded to an absolute improvement

of 4.57% EER compared to the 10.17% EER achieved for the highly competitive DTW

System. It is important to remark that our proposed system outperformed the result

obtained with the DTW-based System for the case of using 4 training signatures even just

using one signature (i.e., 5.60% vs 7.75% EER).

When training for both skilled and random forgery cases, our Proposed BLSTM System

achieved for the case of using 4 training signatures values of 5.50% and 3.00% EER for
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skilled and random forgeries, respectively. Despite the very good results achieved for

skilled forgeries, the 3.00% EER obtained for random forgeries could not outperform the

0.5% EER obtained using the DTW-based System. A possible solution is to perform two

consecutive stages similar to [Gomez-Barrero et al., 2015]: i) first stage based on DTW

optimised for rejecting random forgeries, and ii) our Proposed RNN System in order to

reject the remaining skilled forgeries.

Chapter 8 proposed on-line signature verification systems adapted to the signature com-

plexity level of the user. Despite all the studies performed in the on-line signature trait, none

of them exploited, as far as we know, the concept of complexity for the development of more

robust and accurate on-line signature verification systems. This chapter further investigated

this line considering both stylus- and finger-based scenarios. We first presented our proposed

complexity-based on-line signature verification system. Then, we introduced the experimental

protocol based on both e-BioSign and BiosecurID databases. Finally, we conducted the experi-

ments for the evaluation of our proposed signature complexity detector, and the final proposed

signature verification system which selected the optimal feature subset for each complexity level.

The main findings attained in this chapter were:

The proposed signature complexity detector showed to be very effective despite of its

simplicity. Signatures longer in time and with an appearance more similar to handwrit-

ing were labelled as high-complexity signatures whereas signatures shorter in time and

with generally simple flourish with no legible information were labelled as low-complexity

signatures.

Our proposed complexity-based signature verification system outperformed previous stud-

ies through the selection of the optimal subset of features for each complexity level and

input scenario (i.e., stylus and finger). Analysing the results obtained for the stylus sce-

nario, our Proposed System achieved for the BiosecurID database an average absolute

improvement of 2.5% EER for skilled forgeries compared to the Baseline System (the case

where the local features are fixed to all complexity levels). Analysing the results obtained

for the finger scenario, our Proposed System achieved an absolute improvement of 5.6%

EER for the most challenging users (i.e., users with low complexity level).

Finally, Chapter 9 in Part IV evaluated the incorporation of handwriting biometric infor-

mation to traditional authentication systems based on passwords, asking the users to draw each

digit of the password on the touchscreen instead of typing them as usual. This chapter performed

a complete analysis of our proposed biometric system in terms of the discriminative power of

each handwritten digit and the robustness when increasing the length of the password and the

number of enrolment samples. The new e-BioDigit database was considered in the experimental

work of the chapter. Concretely, the major contributions of this chapter were:

A baseline system composed of a set of simple and fixed local features for all numerical

digits in order to make our experimental work easily reproducible.
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An study of the best features for each handwritten numerical digit through the SFFS

algorithm on the e-BioDigit development dataset.

A complete analysis of our proposed touch biometric system regarding the most discrimi-

native handwritten digits and how robust the system is when increasing the length of the

password and the number of enrolment samples per user.

Our proposed approach achieved remarkable results with EERs ca. 4.0% when considering

skilled forgeries, outperforming other traditional biometric verification traits such as the

handwritten signature or graphical passwords on similar mobile scenarios.

Specific details for the deployment or our proposed approach on current PIN- and OTP-

based authentication systems.

10.2. Future Work

A number of research lines arise from the work carried out in this Thesis. We consider of

special interest the following ones:

The emerging finger input scenario allows a high deployment of signature authentication

technology on a daily basis. However, the preliminary analysis carried out in this Disser-

tation has shown the challenge of this new scenario. A more in-depth analysis of the finger

input scenario needs to be done in order to understand the higher variability observed

in this Thesis compared to the traditional stylus scenario. A long-term study should be

conducted focusing on how the technology advancements and age population sectors are

affected on this emerging scenario. Finally, new core matchers unlike the traditional ones

should be designed in order to better adapt the higher variability observed.

The effect of template aging has shown to have a significant impact in the system perfor-

mance. The analysis carried out in this Dissertation should be extended to other state-

of-the-art signature verification systems based on, for example, deep learning [Tolosana

et al., 2018c; Zhang et al., 2017]. In addition, more efficient techniques should be studied

in order to retrain user models with new samples instead of generating them from scratch

every time new samples are available. This aspect it is very important for capacity storage

as the number of enrolled samples can further increase with time.

Deep learning approaches have outperformed several state-of-the-art signature verification

systems for many different cases, such as skilled forgeries with low number of training

signatures. However, the study carried out in this Dissertation has been only a small

demonstration of the potential of this groundbreaking technology. New DL architectures

should be proposed in order to i) better generalise against different levels of forgeries, and

ii) feeding the network with a set of training signatures instead of a single one in order to

better model the user and take the final decision. This can be carried out using our novel
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DeepSignDB on-line handwritten signature database composed of 1526 different users and

more than 70K signatures [Tolosana et al., 2019a].

The signature complexity concept has proved to be very important for the system per-

formance. Very good results have been achieved using our proposed approach. However,

the study conducted on this Thesis was very basic. A more in-depth study should be

carried out proposing more robust signature complexity detectors [Houmani and Garcia-

Salicetti, 2016; Houmani et al., 2008; Lim and Yuen, 2016], and also studying the signature

complexity over others state-of-the-art signature systems.

The incorporation of handwriting biometric information to traditional password-based au-

thentication systems has proved to further increase the security against impostors through

a user-friendly interface. However, the study carried out in this Dissertation should be

further investigated through the following lines: i) considering not only numbers but also

lower- and upper-case letters, and especial symbols, ii) proposing different configurations

for introducing the passwords in order to provide more robust systems against shoulder-

surfing and smudge attacks, and iii) enhancing the authentication systems through the

incorporation of deep learning techniques [Tolosana et al., 2018c; Zhang et al., 2017]. This

can be carried out using our novel unsupervised MobileTouchDB database [Tolosana et al.,

2019b], which contains more than 64K on-line character samples performed by 218 users,

using 94 different smartphone models, with an average of 314 samples per user.
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Apéndice A

Resumen Extendido de la Tesis

Aproximaciones Disruptivas para la Mejora de

Sistemas de Autenticación basados en Firma y Escritura Manuscrita

A.1. Resumen

La firma manuscrita es uno de los rasgos biométricos más aceptados en la sociedad debido

a su amplio uso en el ámbito legal y de las finanzas. Sin embargo, ¿está la tecnoloǵıa de firma

realmente adaptada a los escenarios modernos? Con el despliegue masivo de los dispositivos

móviles tales como smartphones y tablets, nuevos e interesantes escenarios han surgido más allá

del tradicional escenario de oficina bancaria en el que las firmas son capturadas en condiciones

muy controladas. Además, a pesar de la gran evolución tecnológica producida en los últimos años,

y en concreto el gran éxito de las tecnoloǵıas basadas en deep learning gracias al uso de GPUs,

el nucleo algoŕıtmico de la mayoŕıa de los sistemas de verificación de firma manuscrita dinámica

sigue siendo el mismo que el de hace 20 años. La pregunta es, ¿por qué las aproximaciones

basadas en deep learning no han mejorado por el momento a las tradicionales como ocurre en

otros campos de investigación?

La última motivación de la Tesis está relacionada con los sistemas basados en contraseña.

Tradicionalmente, los dos enfoques de autenticación de usuarios más frecuentes han sido PIN y

OTP. Sin embargo, y a pesar de la gran popularidad y despliegue de los mismos en escenarios de

la vida diaria, muchos estudios han resaltado las debilidades de estos enfoques al ser muy fáciles

de adivinar o robar (i.e., mediante ataques del tipo shoulder-surfing y smudge). Sin embargo, ¿es

posible aumentar la seguridad de estos sistemas que utilizamos en el d́ıa a d́ıa al mismo tiempo

que brindamos una buena experiencia a los usuarios?

Con el objetivo de encontrar las respuestas a estas preguntas, esta Tesis se centra princi-

palmente en el análisis de las nuevas oportunidades que presentan estos nuevos escenarios y

tecnoloǵıas en el ámbito de la firma manuscrita, aśı como los retos que deben ser abordados

para lograr resultados en el estado del arte.

Esta Disertación consta de cinco partes diferentes. La primera parte se centra en la declara-
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ción del problema y de las principales contribuciones de la Tesis, aśı como un amplio resumen

del estado del arte. Los caṕıtulos experimentales se dividen en tres partes, Parte II, Parte III y

Parte IV. Por último, la Parte V concluye la Tesis.

La Parte I primero introduce los conceptos básicos de la biometŕıa, centrándose en la firma

manuscrita dinámica, que es el tema principal de estudio en esta Tesis, y los desaf́ıos y oportu-

nidades que ofrece este rasgo biometŕıco a lo largo de una visión exhaustiva del estado del arte.

Posteriormente, se describen las caracteŕısticas más relevantes de las bases de datos de firma

manuscrita dinámica, haciendo especial hincapié en todas las bases de datos adquiridas durante

la realización de la Tesis. Finalmente, la Parte I concluye explicando primero los detalles más

espećıficos de los sistemas tradicionales de verificación de firma considerados en las partes expe-

rimentales de esta Tesis, y finalmente, las nuevas aproximaciones propuestas en esta Tesis (i.e.,

deep learning y complejidad de la firma).

La primera parte experimental (Parte II de esta Disertación) comienza analizando el ren-

dimiento de los sistemas de verificación de firma tradicionales en escenarios emergentes como

la adquisición de firmas con el dedo, la interoperabilidad de dispositivos y el uso de múltiples

útiles de escritura. Debido a la alta degradación del rendimiento del sistema en estos nuevos

escenarios, se propone en esta Tesis un enfoque basado en técnicas de preprocesado de los datos

y selección de las caracteŕısticas más robustas. Posteriormente se estudia el nuevo escenario en

el que el número de muestras o patrones biométricos almacenados por usuario puede aumen-

tar con el paso del tiempo a través de múltiples sesiones de captura, lo que permite entrenar

modelos estad́ısticos más robustos, mejorar el rendimiento, y en particular, reducir el efecto del

envejecimiento de los patrones biométricos. La investigación realizada en esta parte tiene como

objetivo responder a las siguientes preguntas: ¿Cómo se ve afectado el rendimiento del sistema

en estos nuevos escenarios? ¿Qué enfoque debemos considerar para superar estos retos?

En la segunda parte experimental (Parte III de esta Disertación) se proponen nuevas formas

de mejorar los sistemas tradicionales de firma manuscrita. Concretamente, primero se evalúa el

potencial de deep learning a través del diseño de una nueva arquitectura (Siamesa) más adaptada

a la tarea de verificación de firma. Finalmente se analiza el concepto de complejidad en el ámbito

de la firma, proponiendo mejoras respecto a los sistemas tradicionales a través de la selección

de las caracteŕısticas más robustas para cada nivel de complejidad de la firma.

Finalmente, la Parte IV de esta Disertación evalúa la incorporación de información biométri-

ca de escritura en los sistemas de autenticación tradicionales basados en contraseñas, solicitando

al usuario que dibuje cada d́ıgito de la contraseña en la pantalla táctil del dispositivo, en lugar

de teclearlos como de costumbre.

La investigación llevada a cabo en esta Disertación ha logrado las siguientes contribuciones:

i) el análisis y adaptación de los sistemas de verificación de firma dinámica a los escenarios

emergentes, tales como la adquisición de firmas con el dedo, la interoperabilidad de dispositivos

y útiles de escritura gracias a las técnicas de preprocesado de los datos y selección de caracteŕısti-

cas más robustas, ii) un análisis experimental exhaustivo de las estrategias de actualización de

los modelos o patrones biométricos para tres sistemas populares en el mundo de la firma manus-
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crita, extrayendo varias conclusiones prácticas relacionados con el efecto del envejecimiento de

los modelos y patrones biométricos, y proponiendo configuraciones adaptadas en el tiempo que

permitan superar dicho envejecimiento de los sistemas, iii) explorar el potencial de los enfoques

basados en deep learning en el ámbito de la firma manuscrita dinámica. El sistema propuesto en

esta Tesis está basado en una arquitectura Siamesa, más adaptada a la tarea de autenticación

de firmas, y que ha superado en rendimiento a otros sistemas en el estado del arte, iv) mejora

de los sistemas tradicionales de verificación de firma a través de la incorporación del concepto

de complejidad de la firma, v) mejora de los sistemas tradicionales de autenticación de PIN y

OTP mediante la incorporación de información biométrica de escritura como un segundo nivel

de autenticación del usuario, vi) adquisición de nuevas bases de datos de escritura y firma ma-

nuscrita en escenarios sin precedentes, aśı como su libre disposición para la comunidad cient́ıfica,

y vii) gran parte de la investigación presentada en esta Tesis se ha implementado con éxito en

un proyecto piloto. Dicha tecnoloǵıa será utilizada de forma masiva en el sector bancario español

en un futuro cercano.

A.2. Conclusiones

Esta Tesis se ha centrado en el análisis y adaptación de los sistemas de firma manuscrita

dinámica a los escenarios actuales, las nuevas oportunidades que surgen para este rasgo biométri-

co con la creciente cantidad de datos y recursos hardware disponibles, aśı como la mejora de los

sistemas de autenticación tradicionales basados en PIN y OTP por medio de la incorporación

de información biométrica de escritura. En concreto, esta Disertación se encuentra estructurada

en 5 partes principales. La primera parte (Parte I ) se centra en la definición del problema a

estudiar y su contexto. Esta primera parte engloba los Caṕıtulos 1, 2, 3, y 4. Posteriormente,

se definen las 3 partes experimentales de esta Tesis: Parte II, Parte III y Parte IV. La Parte II

estudia el comportamiento de los sistemas de firma manuscrita en los nuevos escenarios emer-

gentes, y engloba los Caṕıtulos 5 y 6. La Parte III describe las nuevas arquitecturas propuestas

con el objetivo de mejorar los sistemas tradicionales de firma manuscrita dinámica. Esta parte

se compone de los Caṕıtulos 7 y 8. La última parte experimental (Parte IV ) aborda la mejora

de los sistemas tradicionales de autenticación basados en PIN y OTP por medio de la incorpo-

ración de información biométrica de escritura sobre los dispositivos móviles. Esta última parte

experimental engloba el Caṕıtulo 9. Finalmente, la Parte V concluye la Disertación.

El Caṕıtulo 1 introdujo los fundamentos básicos de los sistemas biométricos, sus propiedades

y algunos de los rasgos biométricos más utilizados hoy en d́ıa. Posteriormente, se estudió los

sistemas biométricos basados en firma manuscrita dinámica, que constituye el tema principal

de estudio de esta Tesis. Más tarde, se hizo hincapié en el gran éxito actual de las tecnoloǵıas

basadas en deep learning, que sirvió de motivación para explorar su potencial en el ámbito de la

firma manuscrita dinámica. Tras esto, se destacaron las razones que motivaron la incorporación

de información biométrica de escritura en los sistemas tradicionales de autenticación basados

en contraseñas. El caṕıtulo concluye con la motivación de la Tesis, y las contribuciones fruto de
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esta Disertación.

El Caṕıtulo 2 describió en primer lugar cada uno de los módulos de los que se compone

los sistemas tradicionales de firma manuscrita dinámica, aśı como las dos grandes vertientes

existentes: i) sistemas basados en caracteŕısticas (a.k.a. sistemas globales) y ii) sistemas basados

en funciones temporales (a.k.a. sistemas locales). Posteriormente, se resumió los trabajos en el

estado del arte en las temáticas de estudio de esta Tesis.

El Caṕıtulo 3 resumió las principales caracteŕısticas de las bases de datos de firma manuscrita

dinámica más utilizadas hoy en d́ıa, haciendo especial hincapié en las bases de datos utilizadas en

las partes experimentales de esta Tesis. Posteriormente, se describieron las nuevas bases de datos

capturadas durante el periodo de realización de la Tesis: e-BioSign, aśı como la extensión de la

base de datos ATVS On-Line Signature Long-Term. Finalmente, se presentó la base de datos

e-BioDigit, adquirida con el objetivo de estudiar las ventajas de la incorporación de escritura

manuscrita en los sistemas tradicionales de autenticación basados en contraseñas.

El Caṕıtulo 4 describió los fundamentos básicos de cada uno de los módulos de los que se

componen los sistemas basados en redes neuronales recurrentes (RNNs), aśı como los principales

trabajos que hacen uso de ellas. Finalmente, se introdujo el sistema de firma manuscrita dinámica

propuesto en esta Tesis basado en RNNs con una arquitectura Siamesa cuyo principal objetivo

es aprender las similitudes y diferencias entre pares de firmas genuinas e impostoras.

El Caṕıtulo 5 constituye el primer caṕıtulo experimental de la Parte II, y se centra en el

análisis de los nuevos escenarios de firma manuscrita. Concretamente, en primer lugar se estudió

el rendimiento de los sistemas en escenarios donde la firma es capturada utilizando el dedo

como útil de escritura, múltiples dispositivos de capturada y útiles de escritura (dedo/stylus)

en las fases de entrenamiento y testeo de los mismos. Para ello, las bases de datos Biosecure y

e-BioSign fueron utilizadas en la parte experimental. Tras el análisis preliminar de los sistemas

en estos nuevos escenarios de captura, se propuso una aproximación basada en 2 etapas con el

objetivo de reducir la degradación del rendimiento de los sistemas. En primer lugar, una etapa

de preprocesado robusta frente a los cambios producidos en la adquisición, a la que siguió una

etapa basada en la selección óptima de las caracteŕısticas ante los nuevos escenarios descritos.

Las conclusiones más importante de este caṕıtulo fueron:

El gran desarrollo tecnológico y mejora de la calidad de los sensores junto con el enfoque

propuesto en esta Tesis han producido como resultado sistemas de verificación de firma

muy competitivos en escenarios de interoperabilidad de dispositivos con un EER promedio

de 11.9% y 1.8% para falsificaciones de tipo skilled y random, respectivamente.

Se ha observado una gran variabilidad en los escenarios en los que el dedo se ha utilizado

como útil de escritura. Esto se debe principalmente a dos razones: i) los usuarios que

realizaron sus firmas con letras compuestas por trazos cerrados (i.e., a, e, o, l, p, q, etc.)

tend́ıan a realizar ejecuciones de escritura mucho más grandes en comparación con el resto

de letras debido a la menor precisión que pod́ıan lograr usando el dedo, y ii) los usuarios

cuyas firmas estaban compuestas de un nombre largo y un apellido (o dos apellidos) tend́ıan
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a simplificar algunas partes de sus firmas debido a las limitaciones de espacio. Esto ha

supuesto una alta degradación del rendimiento del sistema en comparación con el caso

tradicional de utilizar el stylus como útil de escritura, con un EER promedio de 25.5% y

1.9% para falsificaciones skilled y random, respectivamente.

Una posible recomendación para el usuario final de cara a mejorar la seguridad frente a

ataques seŕıa la de intentar protegerse del resto de usuarios que puedan observar o incluso

grabar el proceso de captura de su firma, ya que esto es más factible en un escenario móvil

en comparación con un escenario de oficina. De esta manera, los falsificadores expertos

podŕıan tener acceso a la imagen de la firma pero no a la información dinámica.

El análisis de los escenarios con múltiples útiles de escritura en el entrenamiento y testeo

de los sistemas concluye que el principal problema reside en la captura de la firma con el

dedo, más que en el propio escenario en śı.

La Parte II de la Tesis se compone también del Caṕıtulo 6. Este caṕıtulo estudió el novedoso

escenario en el que el número de muestras o patrones biométricos por usuario puede crecer con el

paso del tiempo a través de múltiples sesiones de captura, lo que hace posible entrenar modelos

estad́ısticos más robustos, permitiendo una mejora del rendimiento, y en particular, reduciendo

el efecto de envejecimiento de los modelos. En este caṕıtulo se introdujo en primer lugar las

distintas aproximaciones estudiadas en esta Tesis para reducir el efecto de envejecimiento de

los modelos biométricos. A continuación, se describieron los tres sistemas de verificación de

firma propuestos (DTW, HMM y GMM), aśı como el protocolo experimental y los resultados

obtenidos a través del uso de la base de datos ATVS Signature Long-Term Extended Database.

Las principales aportaciones de este caṕıtulo fueron:

Análisis del efecto de envejecimiento de los modelos y patrones biométricos en los sistemas

de firma manuscrita dinámica, concluyendo que tiene un elevado impacto en el rendimiento

del sistema.

Con el objetivo de compensar el efecto de envejecimiento, se realizó un exhaustivo análisis

experimental de varias estrategias de actualización de los modelos. Para el caso de los

sistemas basados en HMM y GMM, la estrategia optima de actualización consistió en la

selección de todas las muestras o patrones biométricos disponibles, o al menos algunas de

ellas pero procedentes de al menos varias sesiones de captura con el objetivo de modelar

mejor la variabilidad del usuario. Para el caso del sistema basado en DTW, la estrategia

óptima consistió en utilizar entre 8 y 12 muestras o patrones biométricos procedentes de

sesiones de captura cercanas en el tiempo a la muestra de test.

Aplicando las actualizaciones propuestas, se consiguió una mejora significativa del rendi-

miento en comparación con los sistemas tradicionales basados únicamente en el uso de las

muestras o patrones biométricos adquiridos en la primera etapa de registro. En concre-

to, para el caso de falsificaciones de tipo random, los resultados conseguidos fueron muy
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similares al caso ideal (i.e., el caso de considerar muestras de la misma sesión en el en-

trenamiento y testeo de los sistemas), mientras que para el caso de falsificaciones de tipo

skilled, se consiguió una mejorar relativa en media del 61.9% EER.

Finalmente se realizó una fusión de los tres sistemas estudiados tras aplicar las poĺıticas de

actualización propuestas con el objetivo de mejorar el rendimiento de los sistemas, alcan-

zando un 2.1% y 0.2% EER para falsificaciones de tipo skilled y random, respectivamente.

Los Caṕıtulos 7 y 8 de la Parte III se centran en las nuevas aproximaciones estudiadas para

mejorar el rendimiento de los sistemas tradicionales de firma manuscrita dinámica. En concreto,

el Caṕıtulo 7 estudia el potencial de nuestro sistema propuesto basado en redes neuronales

recurrentes con una arquitectura Siamesa. En primer lugar se describió el protocolo experimental

propuesto, en el que se utilizó la base de datos BiosecurID, para finalizar analizando los resultados

obtenidos tanto en la etapa de desarrollo de los sistemas, como en su posterior evaluación

utilizando usuarios totalmente distintos. Ambos tipos de falsificaciones, skilled y random, fueron

considerados en los experimentos. Las contribuciones claves fueron:

El primer estudio detallado y completo que demuestra el gran potencial de múltiples

sistemas basados en RNNs (i.e., LSTM y GRU) en el campo de verificación de firma

manuscrita dinámica, tanto para falsificaciones de tipo skilled como random.

Con respecto a la etapa de desarrollo de los sistemas, es importante destacar la gran di-

ferencia existente en el número de épocas de entrenamiento entre los esquemas normales

(i.e., LSTM y GRU) y bidireccionales (i.e., BLSTM y BGRU). Estos resultados demues-

tran la importancia de considerar tanto el contexto pasado como futuro para entrenar los

sistemas RNN de manera más rápida al mismo tiempo que se consigue un valor inferior de

la función de coste. Además, es importante resaltar la variación que existe en el número de

épocas de entrenamiento entre los sistemas LSTM y GRU, ya que el bloque de memoria

GRU es una versión simplificada del bloque de memoria LSTM, con menos parámetros

que entrenar.

Para el escenario en el que solamente se dispone de una firma de entrenamiento por usuario,

nuestro sistema BLSTM propuesto logró un EER de 5,60% para falsificaciones de tipo

skilled, consiguiendo aśı una mejora absoluta de 4,57% EER en comparación con el 10,17%

EER logrado para el sistema DTW. Es importante destacar que nuestro sistema propuesto

incluso superó el resultado obtenido por el sistema DTW para el caso de utilizar 4 firmas

de entrenamiento en lugar de solo una (i.e., 5.60% EER frente a 7.75% EER).

Para el caso de entrenar los sistemas para ambos tipos de falsificaciones, skilled y random,

nuestro sistema BLSTM propuesto logró alcanzar resultados de 5.50% y 3.00% EER para

falsificaciones de tipo skilled y random, respectivamente. A pesar de los buenos resultados

logrados para las falsificaciones de tipo skilled, el EER del 3.00% obtenido para las falsi-

ficaciones de tipo random no pudo superar el 0.5% EER obtenido por el sistema DTW.
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Una posible solución seŕıa considerar un sistema compuesto por dos etapas consecutivas,

similar a [Gomez-Barrero et al., 2015]: i) primera etapa basada en un sistema DTW opti-

mizado para rechazar falsificaciones de tipo random, y ii) nuestro sistema RNN propuesto

para rechazar las falsificaciones de tipo skilled.

El Caṕıtulo 8 propuso sistemas de verificación de firma dinámica adaptados al nivel de com-

plejidad de la firma. A pesar de todos los estudios realizados en firma manuscrita dinámica,

ninguno de ellos ha explotado, hasta donde sabemos, el concepto de complejidad de la firma

para el desarrollo de sistemas de verificación de firma más robustos y precisos. Este caṕıtulo

investigó el efecto de la complejidad en escenarios de captura basados en el stylus y el dedo.

En primer lugar, se presentó nuestro sistema de verificación de firma manuscrita dinámica pro-

puesto basado en complejidad. Posteriormente, se describió el protocolo experimental utilizado,

basado en las bases de datos e-BioSign y BiosecurID. Finalmente, se realizaron los experimentos

que permitieron la evaluación de nuestro detector de complejidad de firma propuesto y el nuevo

sistema de verificación de firma propuesto, en el que se selecciona para cada nivel de compleji-

dad el subconjunto de caracteŕısticas más óptimo. Los principales hallazgos alcanzados en este

caṕıtulo fueron:

El detector de complejidad de firma propuesto demostró ser muy efectivo a pesar de su

simplicidad. Las firmas más largas en el tiempo y con una apariencia más similar a la

escritura fueron etiquetadas como firmas de alta complejidad, mientras que las firmas más

cortas en el tiempo y con una apariencia generalmente más simple y sin información legible

fueron etiquetadas como firmas de baja complejidad.

El sistema de verificación de firma propuesto basado en la complejidad consiguió mejorar

los resultados obtenidos en los estudios previos. La selección de un subconjunto óptimo

de caracteŕısticas para cada nivel de complejidad y escenario de captura (i.e., stylus y

dedo) demostró proporcionar sistemas más robustos frente ataques. En el caso de utilizar

el stylus como útil de escritura, nuestro sistema propuesto logró para la base de datos

BiosecurID una mejora absoluta promedio de 2.5% EER para falsificaciones de tipo skilled

en comparación con el sistema tradicional (el caso donde el mismo vector de caracteŕısticas

es utilizado para todos los niveles de complejidad). Para el escenario de captura con el dedo,

nuestro sistema propuesto logró una mejora absoluta de 5.6% EER para los usuarios más

sencillos de falsificar (i.e., usuarios con un nivel de complejidad bajo).

Finalmente, la Parte IV de esta Tesis doctoral se compone del Caṕıtulo 9, en el que se evalúa

la incorporación de información biométrica de escritura manuscrita en los sistemas tradicionales

de autenticación basados en contraseñas sobre escenarios móviles. Para ello, se le solicita al

usuario que dibuje cada d́ıgito de la contraseña en la pantalla táctil de su dispositivo móvil,

en lugar de teclearlos como de costumbre. Este caṕıtulo realizó un profundo análisis de nuestro

sistema biométrico propuesto, tanto en términos del poder discriminativo de cada d́ıgito, como

de la robustez del sistema a medida que se aumenta la longitud de la contraseña y el número de
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muestras o patrones biométricos de entrenamiento disponibles. La nueva base de datos e-BioDigit

fue considerada en el trabajo experimental de este caṕıtulo. Las principales aportaciones de este

caṕıtulo fueron:

Un sistema de referencia compuesto por un conjunto de caracteŕısticas simple y fijo pa-

ra todos los d́ıgitos con el fin de hacer que nuestro trabajo experimental sea fácilmente

reproducible.

Un estudio de las mejores caracteŕısticas seleccionadas para cada d́ıgito a través del algo-

ritmo de selección de caracteŕısticas SFFS en el conjunto de datos de desarrollo.

Un análisis exhaustivo del sistema biométrico táctil propuesto con respecto a qué d́ıgitos

son más discriminativos y cómo de robusto es el sistema a medida que se incrementa

la longitud de la contraseña y el número de muestras de entrenamiento disponibles por

usuario.

Nuestro enfoque propuesto logró muy buenos resultados con EERs sobre el 4.0% para

falsificaciónes de tipo skilled, superando aśı a otros rasgos biométricos tradicionales, tales

como la firma manuscrita o las contraseñas gráficas en escenarios móviles similares.

Detalles espećıficos para la implementación de nuestro enfoque propuesto en escenarios

reales de autenticación basados en PIN y OTP.

A.3. Ĺıneas de Trabajo Futuro

Se proponen las siguientes ĺıneas de trabajo futuro relacionadas con el trabajo desarrollado

en esta Tesis:

El escenario de adquisición de firmas en el que se utiliza nuestro propio dedo como útil

de escritura hace posible un alto despliegue de la tecnoloǵıa de autenticación de firma

en la vida diaria. Sin embargo, el análisis preliminar realizado en esta Disertación ha

puesto en evidencia el reto que supone este nuevo escenario de cara a mantener las buenas

tasas de reconocimiento. Por este motivo, se debe realizar un análisis más exhaustivo de

este nuevo escenario de captura, comprendiendo aśı los verdaderos motivos que originan

esta alta variabilidad intra-usuario en comparación con el escenario tradicional de usar el

stylus como útil de escritura. Por lo tanto, pensamos que se debe realizar un estudio a

largo plazo centrado en dos objetivos fundamentales: i) el rápido avance tecnológico que

permita mejorar la sensación de usabilidad por parte del usuario, y ii) cómo se ve afectado

el rendimiento de los sistemas para distintos sectores de edad de la población, ya que la

mayor parte de los jovenes hoy en d́ıa han aprendido a interactuar desde pequeños con los

dispositivos móviles. Finalmente, es necesario desarrollar nuevos nucleos de comparación

distintos de los tradicionales que sean capaces de adaptarse mejor a las variaciones intra-

usuario observadas.
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El efecto del envejecimiento de los patrones biométricos ha demostrado tener un elevado

impacto en el rendimiento de los sistemas de firma manuscrita dinámica. El análisis rea-

lizado en esta Disertación debe extenderse a otros sistemas de verificación de firma en el

estado del arte, por ejemplo, en sistemas basados en deep learning [Tolosana et al., 2018c;

Zhang et al., 2017]. Además, deben estudiarse técnicas más eficientes que permitan reentre-

nar el modelo de un usuario con nuevos patrones biométricos disponibles sin necesidad de

disponer de todos los patrones biométricos anteriores. Este aspecto es muy importante en

términos de capacidad de almacenamiento para entornos reales con millones de usuarios.

Los enfoques basados en deep learning han superado ya algunos de los sistemas de ve-

rificación de firma y escritura más potentes para algunos escenarios, por ejemplo, para

falsificaciones de tipo skilled con un bajo número de firmas de entrenamiento. Sin embar-

go, el estudio realizado en esta Disertación ha sido sólo una pequeña demostración del

potencial de esta tecnoloǵıa. Nuevas arquitecturas deben ser estudiadas con el objetivo de:

i) generalizar mejor contra diferentes niveles de falsificaciones, y ii) alimentar los sistemas

con un conjunto de firmas de entrenamiento en lugar de con una sola firma para modelar

mejor al usuario y tomar una decisión final más robusta. Estas mejoras pueden llevarse

a cabo gracias a la reciente base de datos construida al final de esta Tesis, DeepSignDB,

compuesta de un total de 1526 usuarios y más de 70 mil firmas [Tolosana et al., 2019a].

El concepto de complejidad de la firma ha demostrado ser muy importante para el rendi-

miento del sistema. Se han logrado muy buenos resultados utilizando el enfoque propuesto.

Sin embargo, el estudio realizado en esta Tesis es sólo el comienzo de un largo camino.

Todav́ıa queda mucho por mejorar, concretamente, se debe realizar un estudio más ex-

haustivo que proponga detectores de complejidad de firma más robustos [Houmani and

Garcia-Salicetti, 2016; Houmani et al., 2008; Lim and Yuen, 2016], y que evalue también

el efecto de la complejidad en sistemas de última generación, por ejemplo basados en deep

learning.

La incorporación de información biométrica de escritura en los sistemas tradicionales de

autenticación basados en contraseñas ha demostrado una mejora considerable de la se-

guridad frente a ataques a través del uso de una interfaz fácil de usar. Sin embargo, el

estudio realizado en esta Disertación debe investigarse más a fondo a través de las siguien-

tes ĺıneas de trabajo: i) incorporando a las contraseñas no solo números sino también letras

mayúsculas y minúsculas, y śımbolos especiales, ii) proponiendo diferentes configuraciones

para introducir las contraseñas con el fin de proporcionar sistemas más robustos contra los

ataques shoulder-surfing y smudge, y iii) mejorar los sistemas de autenticación mediante la

incorporación de técnicas de deep learning [Tolosana et al., 2018c; Zhang et al., 2017]. Estas

mejoras pueden llevarse a cabo gracias a la reciente base de datos capturada al final de esta

Tesis, MobileTouchDB, compuesta de más de 64 mil muestras de caracteres procedentes

de 218 usuarios distintos, y utilizando hasta 94 dispositivos móviles diferentes [Tolosana

et al., 2019b].
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