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Abstract—This paper presents a comparative evaluation of
methods for remote heart rate estimation using face videos, i.e.,
given a video sequence of the face as input, methods to process
it to obtain a robust estimation of the subject’s heart rate at
each moment. Four alternatives from the literature are tested,
three based in hand-crafted approaches and one based on deep
learning. The methods are compared using RGB videos from the
COHFACE database. Experiments show that the learning-based
method achieves much better accuracy than the hand-crafted
ones. The low error rate achieved by the learning-based model
makes possible its application in real scenarios, e.g. in medical
or sports environments.

Index Terms—Remote Plethysmography, Heart Rate, Face
Biometrics, Hand-crafted, Deep Learning

I. INTRODUCTION

Photoplethysmography (PPG) [1] is a low-cost technique

for measuring the cardiovascular Blood Volume Pulse (BVP)

through changes in the amount of light reflected or absorbed

by human vessels. This information can be used to estimate

parameters such as heart rate, arterial pressure, blood glucose

level, or oxygen saturation levels. PPG signals are usually

measured with contact sensors placed at the fingertips, the

chest, or the feet. This type of contact measurement may be

suitable for a clinic environment, but it can be uncomfortable

and inconvenient for other application fields such as driver

monitoring, sport events, or face antispoofing. Remote PPG

(rPPG) consists in applying PPG techniques to face video

sequences. These techniques look for changes in the color

of the user’s face caused by the variation of the oxygen

concentration in the blood.

Classic rPPG works, usually called hand-crafted rPPG,

use signal processing techniques for analyzing the images,

and looking for slight color and illumination changes related

with the BVP. More recent approaches use learning-based

alternatives in order to train models capable of estimating

the heart rate when receiving a face video in their input. A

selection of works related to remote photoplethysmography is

shown in Table I.

One of the drawbacks of heart rate estimation using rPPG,

compared to contact-based PPG techniques, is that rPPG is

very sensitive to variability in the acquisition scenario. Some

sources of this variability are [14]: changes in the illumina-

tion, blur, movement of the subject, vibration of the camera,

resolution, frame rate, etc. Under constrained conditions, hand-

crafted methods are able to achieve high accuracy levels, but

(a) (b)

Fig. 1. Example images from the COHFACE database for its two illumination
scenarios: (a) controlled illumination, and (b) uncontrolled illumination.

in unconstrained scenarios learning-based approaches appear

to dominate.

The target of the present work is to perform a comparative

study of state-of-the-art rPPG methods for heart rate estima-

tion. We compare different methods presented in the literature,

both hand-crafted and learning-based, tested against the same

selection of videos from the COHFACE database [15]. We

check the performance of both types of approaches, identifying

their respective strengths and weaknesses.

The rest of the paper is structured as follows. In Sect. II we

describe the database, the methods, and the experimental pro-

tocol. The results of the experiments are reported in Sect. III.

Conclusions and future work are finally drawn in Sect. IV.

II. EXPERIMENTAL FRAMEWORK

A. Database

The database used for the experiments is COHFACE [15].

This database is composed of 160 videos accompanied by

the corresponding groundtruth heart rates of the subjects.

In total 40 people participated and 4 videos were obtained

from each of them. The duration of the recorded videos is 1
minute each. The physiological signals relative to the heart

rate were obtained by contact photoplethysmography (PPG).

Both signals (video and PPG) are synchronized. The video

sequences have a resolution of 640 × 480 pixels and were

captured with a sampling frequency of 20 frames per second.

The heart rate signal was acquired at 256 Hz. Videos were

recorded in a laboratory. Regarding illumination conditions,

for each subject two videos were obtained with controlled

lighting, and other two with natural lighting. Examples of the

database are shown in Fig. 1.

http://arxiv.org/abs/2005.11101v1


TABLE I
SELECTION OF WORKS THAT USE DIFFERENT TYPES OF IMAGES TO IMPLEMENT RPPG FOR HEART RATE EXTRACTION OR OTHER RELATED TASKS LIKE

FACE ANTISPOOFING OR STRESS DETECTION. THE WORKS EVALUATED IN THIS PAPER ARE HIGHLIGHTED IN BOLD.

Method Type of Images Database used Video Length Target Performance

Garbey et al. 2007 [2] Thermal self-collected 120 secs. HR Estimation Accuracy = 99%
Verkruysse et al. 2008 [3] RGB self-collected 10 secs. HR & Respiration Estimation Qualitative
Poh et al. 2011 [4] RGB self-collected 60 secs. HR Estimation RMSE = 5.63%
De Haan et al. 2013 [5] RGB self-collected 2-30 secs. HR Estimation RMSE = 0.5 bpm
Tasli et al. 2014 [6] RGB self-collected 90 secs. HR Estimation MAE = 4.2 %
Chen et al. 2014 [7] Hyperspectral self-collected 30-60 secs. Stress Estimation Qualitative
McDuff et al. 2014 [8] Multiband (RGBCO) self-collected 120 secs. HR Estimation Correlation = 1.0
Chen et al. 2016 [9] RGB + NIR self-collected 90 secs. HR Estimation RMSE = 1.65%
Li et al. 2016 [10] RGB 3DMAD and self-collected 10 secs. Face Antispoofing EER = 4.71%
Wang et al. 2017 [11] RGB self-collected 2-30 secs. HR Estimation SNR = 5.16
Hernandez et al. 2018 [12] RGB and NIR 3DMAD and self-collected 1-60 secs. HR Estimation EER = 22% (RGB) — 0% (NIR)
Chen et al. 2018 [13] RGB and NIR HCI and self-collected 10 secs. Face Antispoofing MAE = 4.57 bpm
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Fig. 2. Example of the workflow of a hand-crafted rPPG system for heart rate estimation using face videos. First, the different channels of the videos are
processed to obtain raw rPPG signals. After that, the signals are postprocessed in order to extract a value for the heart rate for each temporal window.

We decided to use this database for the evaluation because

of several reasons. First, it is one of the few publicly available

datasets oriented to heart rate extraction. It also presents

enough amount of data for being able to train a learning-based

model from scratch. Finally, it also presents a good balance

between favorable and challenging conditions with respect to

frame rate, resolution and illumination.

B. Methods under Evaluation

The methods compared in this paper can be split into two

different categories: hand-crafted and learning-based.

Hand-crafted methods apply signal processing techniques

to the video frames acquired by the camera sensors. These

techniques analyze the video sequences and extract predefined

features from the frames in order to estimate the heart rate

signal. Hand-crafted methods have a major limitation: they

may fail to model properly the highly nonlinear processes

that may be occurring in the phenomenon they are trying to

measure, as it happens in most of the processes related to

human physiology, e.g. heart rate and respiration. An example

of the typical workflow of a hand-crafted heart rate estimation

method can be seen in Fig. 2.

The 4 hand-crafted methods that we compare in this work

are: [3], which emphasizes the role of luminance for obtaining

physiological information; [4], which uses Blind Source Sepa-

ration through ICA; [5], which focuses on chrominance as the

source of information; and [11], which uses what the authors

call The Plane Orthogonal to Skin−Tone (a linear function

applied to the input data). Public open source implementations

have been used for these 4 hand-crafted methods [16].

As a representative example that illustrates typical hand-

crafted methods, we now sketch the method [4]. In this case

the authors try to estimate the heart rate from a RGB video

using Blind Source Separation (BSS) based on Independent

Component Analysis (ICA), see Fig. 2:

• A facial Region Of Interest (ROI) is obtained for each

frame using automatic face tracking. The ROI is separated

into its three RGB channels and the pixels of each channel

are spatially averaged to obtain their mean values in each

frame. This way the raw rPPG signals x1(t), x2(t) and

x3(t) are generated by concatenating the mean values

of all the processed frames. Subsequent processing is

carried out using temporal windows of 30 seconds with a

window overlap of the 96.7% (increments of 1 second).

Normalization is applied to the raw rPPG signals in order

to obtain signals with zero mean and unitary standard

deviation.

• ICA is used to break down the normalized signals into

three independent sources. Although the components ob-

tained from ICA are not ordered, typically the second

component contains a strong plethysmographic signal.

Finally, the Fast Fourier Transform (FFT) is applied to the

selected component in order to obtain its representation in

the frequency domain. The final estimation of the heart



TABLE II
RESULTS OF THE COMPARISON OF HEART RATE ESTIMATION METHODS

FROM FACE VIDEOS. MAE IS COMPUTED FOR 3 DIFFERENT VIDEO

LENGTHS: 60, 30, AND 15 SECONDS. HIGHLIGHTED IN BOLD ARE THE

BEST RESULTS OBTAINED HERE FOR EACH VIDEO DURATION. IN ITALIC

ARE THE RESULTS PUBLISHED BY CHEN ET AL. 2018 [13].

MAE (bpm) 60 s 30 s 15 s Mean

Verkruysse et al. 2008 [3] 12.86 14.30 16.91 14.69
Poh et al. 2011 [4] 16.51 13.75 14.90 15.05

De Haan et al. 2013 [5] 12.76 12.61 14.51 13.29
Wang et al. 2017 [11] 24.40 23.38 24.81 24.20

Chen et al. 2018 [13] (COHFACE) 4.20 3.79 5.71 4.57
Chen et al. 2018 [13] (HCI) - 4.57 - 4.57

rate will be the frequency component that corresponds

to the maximum peak of the spectrum inside the band

of frequencies considered physiologically possible for

human heart rate.

On the other hand, learning-based methods for heart rate

estimation are of recent development. In our experimental

comparison we include the DeepPhys model [13]. The main

limitation of hand-crafted methods (i.e. its limited ability to

model complex nonlinear functions) motivated the authors in

[13] for designing a deep learning model that uses a Convo-

lutional Attention Network (CAN) to perform physiological

measurements from videos. This model achieves better results

than traditional techniques since it is able of adapting its

parameters to the non-linear nature of the heart rate signals.

In addition, DeepPhys also permits the spatio-temporal visu-

alization of physiological signals from RGB videos, e.g. the

blood perfusion under the face skin.

C. Experimental Protocol

We have split the COHFACE database into train, develop-

ment, and test subsets. Of the 40 subjects in the database, 30
have been used for training, 1 has been used for validation

and the remaining 9 have been used for testing. We had 120
minutes of video for training, 4 minutes for validation, and 36
minutes for testing.

First, for the hand-crafted methods, as they don’t need

training, the performance and error measures are directly

obtained from the test subset of COHFACE. The learning-

based model, i.e. DeepPhys, needs to be trained to learn how

to estimate the heart rate from video sequences. The original

model pretrained in [13] is not public, so we have replicated

its architecture and we have trained it from scratch with the

training and validation partitions of COHFACE.

Tests have been performed for video sequences of 15,

30, and 60 seconds of duration, and a sliding step of 1
second, in order to evaluate the possible application of the

methods when different amounts of data are available. The

estimated and the groundtruth heart rates have been compared

in beats per minute (bmp). The metric chosen to check the

performance of the models is the Mean Absolute Error (MAE),

which evaluates the distance between the estimated heart rate

obtained and the groundtruth measure.

III. RESULTS

A. Average Performance Comparison

Table II shows the results obtained with the hand-crafted

and the learning-based approaches. It can be seen that for each

method there are slight differences depending on the duration

of the test videos. The mean MAE across the three lengths of

the test videos is also presented.

Among the hand-crafted methods, the first three are per-

forming similarly with mean MAE values around 15 bpm.

However, the last one is obtaining worse error rates (around

24 bpm mean MAE). In that paper, the authors presented

an alternative rPPG method where they defined a projection

Plane Orthogonal to the Skin−Tone (POS). As they wanted to

keep the algorithm as simple as possible, they did not use

the common band-pass filtering usually employed in other

rPPG methods. Due to its characteristics, the use of the

POS algorithm is interesting in those cases with favorable

conditions, but it is more vulnerable to external factors like

a heterogeneous illumination spectra, i.e. when two or more

illumination sources are present. The COHFACE videos used

for testing contain both controlled and uncontrolled illumi-

nation conditions, and this is likely the reason of the poor

performance of the method from [11] compared to the other

hand-crafted alternatives. In general, the level of accuracy

shown by the hand-crafted methods does not allow to apply

them in many scenarios in which an error around 15 bpm may

be too high.

The results in Table II also show that the DeepPhys model

performs significantly better than the hand-crafted alternatives.

This large difference in the performance is mainly caused by

the ability of DeepPhys to apply the knowledge acquired from

the training data, adapting its parameters to the conditions of

each particular scenario. The learning-based model is capable

of improving the hand-crafted results by around a 66% (from

15 bpm to 5 bpm of mean MAE). This is caused by its

ability to capture the non-linear nature of the physiological

data. In addition, the hand-crafted models have been designed

to operate under certain conditions of illumination, resolution,

etc, while the learning process allows to adapt the DeepPhys

model to each specific scenario. On the other hand, the

drawback of the learning-based approaches is that a high

amount of data is needed in order to train a deep model from

scratch, while hand-crafted methods do not need that training

stage, being able to work directly on the test data. However,

it is possible to reduce the necessary amount of training data

using a model that has been previously trained with a similar

dataset. That model can be then fine-tuned with few additional

data to get adapted to the new scenario.

Regarding the video duration, increasing the length above

30 seconds does not improve the accuracy of the methods

significantly. With video segments of at least 15 seconds

the rPPG algorithms achieve their best results, so in case of

wanting to apply this technology to a real scenario it seems

that it will not be necessary to process longer videos.
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Fig. 3. Accuracy for heart rate estimation using a hand-crafted algorithm (Poh et al. [4]) and our model of DeepPhys trained with COHFACE. MAE is
computed for a video length of 15 seconds, with a sliding step of 1 second. We have selected the videos that obtain the highest and the lowest accuracy for
both methods. The performance is higher (lower MAE) when dealing with videos with controlled illumination and low movement (left column). Results are
worse when the illumination is natural and unconstrained (right column).

We should also mention that in [13] the authors trained their

DeepPhys model with videos from the Mahnob-HCI database

[18] with a duration of 30 seconds, achieving a MAE value

of 4.57 bpm, close to the performance obtained on average

with the data we used in our experiments. It seems that

the Convolutional Atention Network of DeepPhys is able to

perform robustly even when facing data with different levels

of illumination, resolution, and frame rate.

B. Comparison across Time on Selected Videos

Here we compare one of the best performing hand-crafted

algorithms, Poh et al. [4], with the DeepPhys model trained

in this paper, using a window length of 15 seconds and a

sliding step of 1 second. In this setup, we selected the video

with the highest accuracy and the one with the lowest for each

method. The accuracy values and some frames of these videos

are shown in Fig. 3.

We have found that both methods obtain inaccurate results

when the videos contain a high amount of movement, when

the person blinks with excessive strength, or when he/she

does any type of unwitting movement. For both methods, the

videos with the best accuracy for heart rate estimation belong

to the controlled illumination scenario. On the other hand,

the worst results are obtained in videos with uncontrolled

illumination. Hand-crafted methods like Poh et al. [4] look

for changes in the skin tone at some Regions Of Interest

(ROI) inside the face. Due to the unconstrained illumination

conditions at these regions, e.g. one of the cheeks in the images

shown in Fig. 3 (right column), the ROI image levels can vary

significantly across time according to the varying illumination,

degrading the raw rPPG signal and making the accuracy to

drop significantly.

In order to illustrate the relevance of the illumination

conditions when using hand-crafted rPPG algorithms, we have

selected a pair of videos from the testing dataset, one of

them captured under controlled illumination conditions and the

other with uncontrolled illumination, and we have magnified

their color using Eulerian Video Magnification [17], a method

that highlights the color changes across the frames. These

changes may be caused by the pulse, the external illumination

variability, or both. Fig. 4 shows how the color changes due

to human pulse are easier to see in the controlled illumination

scenario. This explains why hand-crafted rPPG methods such

as Poh et al. [4] obtain higher accuracy under these acquisition

conditions.

According to the general results shown in Table II, the

performance is significantly higher when using DeepPhys

compared to the hand-crafted methods. However, there are

also cases in which the deep learning algorithm obtains

inaccurate results. Taking a look to the MAE obtained for

each individual video, it seems that the drop in the accuracy

of the deep learning approach is not so intimately related

with the illumination conditions, but with other factors like

if the users are wearing complements (e.g. glasses) or their
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Fig. 4. Examples of heart rate estimation. The top row presents the estimation vs. the groundtruth for two videos, one with uncontrolled illumination (that
obtained low accuracy with Poh et al. algorithm [4]) and other with controlled illumination (that achieved high accuracy with Poh’s algorithm). For both cases
we show the heart rate estimation using [4] and also our DeepPhys [13] model implementation trained with COHFACE. HR is computed for a video length
of 15 seconds, with a sliding step of 1 second. The second and third rows show some frames from both videos, whose color has been magnified using [17]
for showing how the pulse can be extracted more clearly in the case of controlled illumination acquisition.

skin tone. The training process has made the CNN more

robust to illumination variability, since the training set contains

the same number of videos with controlled and uncontrolled

illumination conditions. This made possible for the network

to learn how to extract a precise heart rate estimation in both

cases. However, the number of samples of users with dark skin

tones or wearing glasses is not so frequent in the training set,

so DeepPhys did not learn so accurately how to deal with these

conditions. In order to improve the accuracy of DeepPhys it

will be interesting to feed the network with a dataset that

contains a higher number of these types of samples.

Summarizing, learning-based models have the potential of

achieving accuracy values much higher than the ones from

hand-crafted approaches, as far as they are properly trained

with enough representative data. These methods are also

more robust to external factors such as low illumination or

resolution. On the other hand, their main drawback is the need

for a high amount of data for training the models, which are

not always available.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we performed a comparative evaluation of

heart rate estimation methods using face videos. This study

has taken into account both hand-crafted and learning-based

state-of-the-art methods. Results have been provided using the

COHFACE database, which is publicly available [15].

For the evaluation we have selected 4 different hand-crafted

methods from the most relevant in the literature. Each one of



these methods emphasizes a particular aspect from the vector

space generated by the camera sensors. All of these methods

have obtained a fairly similar performance.

Under our test scenario conditions, the hand-crafted meth-

ods have found a performance barrier around 15 bpm MAE.

Human physiology turns out to be complex and highly non-

linear and this may be the reason why hand-crafted methods

fail to achieve better results.

On the other hand, the suitability of the learning-based

models for estimating heart rate measurements through rPPG

has been verified. Our DeepPhys implementation has obtained

better results than the hand-crafted methods, reaching an error

around 5 bpm MAE, similar to the experiments reported

by Chen and McDuff in [13], even though in the present

work, the COHFACE database contained videos with less

controlled illumination than the ones used in the original work,

making us think that this type of models could be applied to

even more challenging scenarios. The deep neural network

is capable of capturing non-linearity thanks to the training

process. This result encourages the research in learning-based

methods for heart rate detection using face videos, and also

for studying other physiological signals that may present a

non-linear behavior [19].

For future work it could be interesting to test learning-

based methods with input data acquired in less controlled

conditions. This could be done by increasing the distance

between the camera and the subject, introducing a higher

amount of movement in the videos, making illumination

conditions even less controlled, etc. The objective is to develop

a model capable of accurately estimating a person’s heart rate

through rPPG from a recording made in the wild [20]. Fine-

tuning pre-trained models for adapting them to new scenarios

is also an alternative that may be explored, in order to surpass

the lack of training data in some cases. Using other parts of the

body apart from the face for rPPG is another possibility, e.g.

the skin of the torso, the arms, or the legs. This could help to

make the heart rate estimation more robust in the cases where

the face data is of low quality [21] or directly non available.
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