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Abstract In this chapter, we investigate how to detect intruders with low latency for
Active Authentication (AA) systems with multiple-users. We extend The Quickest
Change Detection (QCD) framework is extended to the multiple-user case and
the Multiple-user Quickest Intruder Detection (MQID) algorithm is formulated.
Furthermore, the algorithm is extended to the data-efficient scenario where intruder
detection is carried out with fewer observation samples. The effectiveness of the
method is evaluated on two publicly available AA datasets on the face modality.

1 Introduction

Balancing the trade-offs between security and usability is one of the major
challenges in mobile security [4]. Longer passwords with a combination of digits,
letters and special characters are known to be secure but they lack usability in
the mobile applications. On the other hand, swipe patterns, face verification and
fingerprint verification have emerged as popular mobile authentication methods
owing to the ease of use they provide. However, security of these methods are
challenged due to different types of attack mechanisms employed by intruders
ranging from simple shoulder attacks to specifically engineered spoof attacks. In this
context, Active Authentication (AA), where the mobile device user is continuously
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monitored and user’s identity is continuously verified, has emerged as a promising
solution [5, 20, 23].

Authors in [28] identified three characteristics that are vital to a practical AA
system; accuracy, latency and efficiency. However, for AA to be deployed in the
real-world, it needs to be equipped with another functionality – transferability.
Mobile devices are not private devices that people use in isolation. In practice, it is
common for mobile devices to be used interchangeably among several individuals.
For example, these individuals could be the members of a family or a set of
professionals operating in a team (such as physicians in a hospital). Therefore,
it is important that the AA systems facilitate smooth transition between multiple
enrolled individuals [26].

The presence of multiple enrolled subjects poses additional challenges to an
AA system. Detecting intrusions with low latency in this scenario is even more
challenging. With this new formulation, the device cannot simply declare an
intrusion when there is a change in the device usage pattern. This is because two
legitimate users operating on the phone could potentially have different behavior
patterns. As a result, the systems is not only expected to identify intrusions, but
also to provide smooth functioning when there is a transfer of legitimate users. For
example, consider the scenario shown in Fig. 1. There are two legitimate users of the
device in this scenario. The first user operates the mobile device between frames (a)
and (c). At frame (d), the device is handed over to a second legitimate user. At this
point, although there is a change in pattern in device usage, the AA system should
not declare an intrusion. On the other hand, when an intruder starts using the device
at frame (h), the device is expected to declare an intrusion.

In this chapter, we extend the work proposed in [28] and study the effectiveness
of Quickest Change Detection (QCD) algorithm for multiple-user AA. Specifically,
we study possible strategies that can be used to extend Mini-max QCD in AA to
the case where multiple users are enrolled in the device. Furthermore, we study the
effectiveness of data-efficient sampling for this case. In the experimental results
section, we show that the QCD algorithm and it’s data-efficient extension are
effective even in the case of multiple-user AA.

Fig. 1 Problem of quickest detection of intruders in multiple-user active authentication. In this
example, there are two users enrolled in the mobile device. First user uses the device between
frames (a) to (c). At frame (d), another legitimate user starts using the device. The second user
uses the device between frames (d) to (g). At frame (h), an intruder starts using the device (In
this work we assume that intruders do not attempt to hide their identity using a spoofing method).
The goal of quickest intrusion detection is to detect the change with the lowest possible latency.
However, intruder detector should not declare a false detection prior to frame (h)
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2 Related Work

Initial works of AA predominantly focused on introducing new biometric modalities
or increasing the performance of well-known modalities. Gait [15, 34], keystroke
[9, 13], voice, swipe patterns [11, 30] and face images [6, 8, 17, 19, 21] are some of
the commonly used modalities in mobile AA. In addition, micro movements of the
user’s touch gestures [3] and behavioral profiling based on stylometry, GPS location
and web browsing patterns [12] have also been used for AA in the literature.

More recent works in AA focused on obtaining better authentication performance
either by improving the performance in each individual modality or by fusing two
or more biometric modalities. In [14], adaboost classifier and LBP features are
used for face detection and face authentication in mobile devices. In [29], a facial
attribute-based continuous face authentication was proposed for AA. A domain
adaptive sparse dictionary-based AA system was proposed in [33], by projecting
observations of different domains into a common subspace through an iterative
procedure. McCool et al. [19] proposed to fuse face and voice data for obtaining
more robust AA. In [6], face modality was fused with gyroscope, accelerometer,
and magnetometer modalities for more robust authentication.

However, all of these methods focus on the single user authentication problem.
Furthermore, the latency of decision making is not quantified in these works. In
[26], the problem of single user AA was extended to the multiple user scenario. The
authors proposed an SVM-based solution where the scores of each SVM output are
fused using a new fusion rule. In speaker recognition, the need to have multiple user
systems have been previously discussed [7, 18]. In [24] multiple user authentication
is formulated as a conjunction between a classification task and a verification task.
Based on the same principle, the authors of [27] introduced sparse representation-
based intruder detection scheme for multiple-user AA. In [25], authors proposed
to use the principles of QCD for AA. In [28], this formulation was extended with
data-efficient QCD with the aim of producing highly accurate predictions with low
latency while obtaining low number of sensor observations. In this work, we extend
the algorithms presented in [28] and [25] to the multiple-user case and study it’s
effectiveness in face-based mobile AA.

3 Proposed Method

When a user or multiple users start using a mobile device, typically they are required
to register with the device. This process is called enrollment of the user(s) to the
mobile device. During enrollment, the device gathers sensor observations of the
legitimate users and creates user-specific classifiers. Let m be the number of users
enrolled in a given device. Technically, m could be any finite number greater or
equal to one. However, in practice, it’s not common for a mobile device to be shared
between more than 5–7 individuals (i.e. normal family size).
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For each user i, the device gathers enrollment data Yi = {yi,1, yi,2, . . . , yi,k}.
Then, the device develops a set of user specific classifiers ci for each user which
produces a classification score for each user. This classifier can be a simple template
matching algorithm or a complex neural network. In our experiments, we consider
a template matching algorithm due to the easiness in training the classifier. Our
template matching classifier ci generates a user specific score si = ci(y) =
min(cos(y, Yi)) for a given input y where cos(.) is the Cosine angle between the
two inputs.1

In addition, matched and non-match distributions with respect to the learned
classifier are obtained and stored during the enrollment phase. Match distribution
f0,i (.) of user i can be obtained by considering pairwise score values of Yi with
respect to ci . On the other hand, a known set of negative samples can be used
to obtain the non-matched scores f1,i (.) of user i. This process is illustrated in
Fig. 2. In this work, we approximate the score distribution of intruders with the
non-matched distribution. Therefore, we use the terms matched distribution and
pre-change distribution interchangeably. Similarly, in the context of this paper, non-
matched distribution and post-change distribution will also mean the same.

As the AA system receives observations {x1, x2, . . . , xn}, at time n, it produces
a decision dn = f (C1(x1), . . . , Cn(xn)) ∈ {0, 1} based on the set of classifiers
C = {c1, . . . , cm} where f (.) is a mapping function. If dn = 1, an intrusion is
declared. Given this formulation, the goal of an AA system is to detect intrusions

Fig. 2 Overview of the problem setup for the case of two enrolled users. For each enrolled user,
i, the enrolled images are obtained during the enrollment phase. These images are used to train a
user specific classifier ci . A matched score distribution f0,i and a non-matched distribution f1,i is
obtained for each user. A known set of negative users are used to obtain the latter. If more users
are present the same structure will be cascaded. During inference, Multi-user Quickest Intruder
Detection (MQID) module will produce a decision (d) by considering the obtained distributions
and past decision scores

1Score si represents dissimilarity.
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with the lowest possible latency when a new observation is received. If an intrusion
occurs at time T , the following two properties are desired from the AA system.

• Low detection delay. The latency between an intrusion occurring and the system
detecting the intrusion should be low. If the system detects an intrusion at time τ ,
detection delay is given by (τ −T )+ where [(x)+] denotes the positive part of x.
For all users, this property is quantified using Average Detection Delay (ADD)
defined as ADD(τ) = E[(τ − T )+]. Here T denotes the real change point.

• Low false detections. In practice, detection delay alone cannot characterize the
desired functionality of an AA system. It is also desired that the AA system does
not produce false detections prior to the intrusion point. This phenomena can be
quantified by considering Probability of False Detections (PFD) as PFD(τ) =
P [τ < T ].

It is desired for an AA system to have low ADD and low PFD.

3.1 Quickest Change Detection (QCD)

Quickest Change Detection is a branch of statistical signal processing that thrives to
detect the change point of statistical properties of a random process [1, 2, 31]. The
objective of QCD is to produce algorithms that detect the change with a minimal
delay (ADD) while adhering to false alarm rate constraints (PFD). Consider a
collection of obtained match scores, s1, s2, · · · , sn, from the AA system. Assuming
that the individual scores are mutually independent, QCD theory can be used to
determine whether a change has occurred before time n or not. In the following
subsections we present two main formulations of QCD.

QCD has been studied both in Baysian and a Mini-max frameworks in previous
works. In the Baysian setting, it is assumed that the system has prior information
about the distribution of intrusions. However, in the case of AA, probability of an
intrusion happening cannot be modeled. Therefore, this assumptions does not hold.
Therefore, for this work we only consider QCD in a non-Bayesian setting. MiniMax
QCD formulation treats the change point τ as an unknown deterministic quantity
[1, 2]. However, as mentioned before, it is assumed that pre-change distribution, f0,
and post-change distribution, f1, are known.

Due to the absence of prior knowledge on the change point, a reasonable measure
of PFD is the reciprocal of mean time to a false detection as follows

PFD(τ) = 1

E∞[τ ] .

Based on this definition of PFD, Lorden proposed a minimax formulation for QCD
[2, 16]. Consider the set of stopping times Dα for a given constraint α such that
Dα = {τ : PFD(τ) � α}. Adhering to this constraint, Lorden’s formulation
optimizes a cost function to solve the minimax QCD problem. In particular, the cost
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function is the supremum of the average delay conditioned on the worst possible
realizations as follows

WADD(τ) = sup
n�1

ess sup En[(τ − n)+|Sn].

Lorden’s formulation tries to minimize the worst possible detection delay subjected
to a constraint on PFD [16]. It was shown in [1], that the exact optimal solution for
Lorden’s formulation of QCD can be obtained using the CumSum algorithm [22].

3.1.1 CumSum Algorithm

Define the statistic W(n) such that

W(n) = max
1�k�n+1

n∑

i=k

log(L(si)),

and W0 = 0, where L(sn) = f1(sn)/f0(sn) is the log likelihood ratio. It can be
shown that the statistic W(n) has the following recursive form

Wn+1 = (Wn + log(L(sn+1))
+).

Time at which a change occurred (τ ) is chosen such that τc = inf{n � 1 : Wn � b},
where b is a threshold. More details about the CumSum algorithm can be found in
[1, 2, 22, 31].

3.2 Efficient Quickest Change Detection

Quickest Change Detection (QCD) is a branch of statistical signal processing that
thrives to detect the change point of statistical properties of a random process
[1, 2, 31]. The objective of QCD is to produce algorithms that detect the change
with a minimal delay (ADD) while adhering to false alarm rate constraints (PFD).
Consider a collection of obtained match scores, s1, s2, · · · , sn, from the AA system.
Assuming that the individual scores are mutually independent, QCD theory can be
used to determine whether a change has occurred before time n or not.

Consider a sequence of time instances t = 1, 2, · · · , i in which the device
operates. At each time i, i > 0, a decision is made whether to take or skip an
observation at time i + 1. Let Mi be the indicator random variable such that Mi = 1
if the score xi is used for decision making, and Mi = 0 otherwise. Thus, Mi+1 is a
function of the information available at time i, i.e. Mi+1 = φi(Ii), where φi is the
control law at time i, and Ii = [M1,M2, · · · ,Mi, s

M1
1 , s

M2
2 , · · · , s

Mi

i ] represents the
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information at time i. Here, s
Mi

i represents si if Mi = 1, otherwise xi is absent from
the information vector Ii . Let S be the stopping time on the information sequence
{Ii}. Then, average percentage of observations (APO) obtained prior to the change

point can be quantified as APO = E

[
1
S

∑S
n=1 Mn

]
.

In a non-Bayesian setting, due to the absence of a priori distribution on the
change point, a different quantity should be used to quantify the number of
observations used for decision making. Work in [1, 2], proposes change Duty Cycle

(CDC) as CDC = limn sup 1
n
En

[∑n−1
k=1 Mk|τ ≥ n

]
for this purpose. It should be

noted that both CDC and APO are similar quantities. With the definition of CDC,
efficient QCD in a minimax setting can be formulated as the following optimization
problem

minimize
φ,τ

ADD(φ, τ)

subject to PFD(φ, τ) ≤ α, CDC(φ, τ) ≤ β.

(1)

In [2], a two threshold algorithm called DE-CumSum algorithm, is presented as
a solution to this optimization problem. For suitably selected thresholds chosen
to meet constraints α and β, it is shown to obtain the optimal lower bound
asymptotically as α → 0. The DE-CumSum algorithm is presented below.

Start with W0 = 0 and let μ > 0, A > 0 and h ≥ 0. For n ≥ 0 use the following
control rule Mn+1 = 0 if Wn < 0 otherwise 1 if Wn ≥ 0. Statistic Wn is updated as
follows

Wn+1 =
{

min(Wn + μ, 0), if Mn+1 = 0

max(Wn + log L(sn+1),−h), if Mn+1 = 1,

where L(s) = f1(s)
f0(s)

. A change is declared at time τW , when the statistic Wn passes
the threshold A for the first time as τW = inf{n ≥ 1 : Wn > A}.

3.3 Multi-user Quickest Intruder Detection (MQID)

Based on the discussion above, we introduce the Multiple-user Quickest Intruder
Detection (MQID) algorithm. Whether an intrusion has occurred or not is deter-
mined using a score value. When the score value is above a pre-determined
threshold, an intrusion is declared. At initialization, it is assumed that the user
operating the device is a legitimate user; therefore the score is initialized with zero.
The algorithm updates the score value when new observations are observed. During
the update step, the algorithm considers matched and non-matched distributions of



186 P. Perera et al.

all users along with the current score value to produce the updated score. Pseudo
code of the algorithm is shown in Algorithm 1.

The algorithm has three arguments. Argument Efficient determines whether to
use data-efficient version of QCD or not. If data-efficient QCD is used then the
parameter γ determines the floor threshold. Parameter D governs how fast the score
is increased.

During training, enrolled images of each user along with the known negative
dataset is used to construct matched and non-matched score distributions. In
addition, enrolled images of the user are used to construct a classifier ci . During
inference, given an observation x, first classification scores from each classifier are
obtained. Then, the likelihood of the obtained classifier score is evaluated using the
likelihood ratio of each matched and non-matched distribution belonging to each
user. The minimum likelihood ratio is considered as the statistic to update the current
score of the system.

Updating the score based on the distribution is done as per the Algorithm
considering the parameters as well as the magnitude of previous score value.

Algorithm 1: Algorithm to update the score based on the observations for
the proposed method

input : score, xn, {f0,i , f1,i , ci |∀i}, γ,D, Efficient
output: score

L = mini log(
f1,i (ci (xn))

f0,i (ci (xn))
)

if Efficient then
if score < 0 then

score = min(score + D, 0);
else

score ← max(score + L,−γ ) ;
end

else
score ← score + L ;

end
Return (score);

4 Experimental Results

We test the proposed method on two publicly available Active Authentication
datasets – UMDAA01 [8] and UMDAA02 [17] using the face modality. First, we
explain the protocol used for evaluation. Then, we describe the performance metric
used. Finally, we introduce the two datasets and present evaluation performance on
these datasets (Fig. 3).



Quickest Multiple User Active Authentication 187

Fig. 3 Sample face images from the (a) UMDAA01 dataset and (b) UMDAA02 dataset used for
evaluation. Samples from the same subject are shown in each column

Fig. 4 Policy used to select the enrolled users for testing. The enrolled users considered together
for a trial are denoted in the same color. For the case of 7 enrolled users, there are three trials. For
the case of a single user, there are 22 trials

4.1 Protocol and Metrics

In both datasets, the first 22 users were used as possible enrolled users. Users 23–
33 were used as the known negative samples. Remaining users were considered as
intruders. From the enrolled users 10% of data were randomly chosen to represent
the enrolled images. These image frames were removed from the test set. For each
dataset, we varied the number of enrolled users from 1 to 7. If the number of enrolled
users is m, we partitioned the first 22 users into disjoint groups of m and carried out
floor(22/m) trials. For example, in the case of 7 users, users 1–7 were considered
to be enrolled in the first trial. For the second trial, users 8–14 were considered to
be enrolled. Remaining users were not considered for testing. An illustration of the
partitions obtained for several trials is shown in Fig. 4. In each trial, the intruder
classes were considered one at a time and an intrusion was simulated.

In order to simulate an intrusion, the following process was followed. The entire
video clips of the enrolled users were appended in the order of their index to form
an augmented video for each trial. Then, each intruder from the intruder set was
considered one at a time. Considered intruder’s video clip was appended at the end
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of the augmented video clip to produce the test video clip. Shown in Fig. 1 is a
summary of such a clip for the case of two enrolled users.

During training, we extracted the image frames from the video clip with a
sampling rate of 1 image per 3 seconds. We used the Viola-Jones face detector
to detect faces in the extracted image frame and performed local histogram
normalization. The extracted image was resized to 224 × 224 and image features
were extracted from the ResNet18 deep architecture which was pre-trained on the
ImageNet dataset. For all cases, we considered the distance to the nearest neighbor
as the user specific classifier ci .

The performance of a quickest change detection scheme depends on ADD and
PFD. Ideally, an AA system should be able to operate with low ADD and PFD. In
order to evaluate performance of the system following [28], we used the ADD-PFD
graph. We report ADD values required to obtain a PFD of 2% and 5% in Tables 1
and 2, respectively. These tables indicate the latency of detecting an intrusion in
average while guaranteeing a false detection rate of 2% and 5%, respectively.

4.2 Methods

We evaluated the following methods using the protocol presented. For a fair
comparison, in all cases except for in Pn(FG17) we used the statistic L =
mini log(

f1,i (ci (xn))

f0,i (ci (xn))
) as the score value to perform intrusion detection.

Single score-based authentication (SSA) Present score value L alone is used to
authenticate the user. If the score value is above a predetermined threshold, the user
is authenticated otherwise treated as an intrusion.

Time decay fusion (Sui et al.) [32] In this method, two score samples fused by a
linear function is used along with a decaying function to determine the authenticity
of a user as, sn = wLn−1 + (1 − w)Ln × eτδt , where, w, τ are constants and δt is
the time elapsed since the last observation.

Confidence functions (Crouse et al.) [6] A sequential detection score Slogin is
calculated by incorporating time delay since the last observation and a function of
the present score xn. The detection score is evaluated as, Slogin,n = Slogin,n−1 +
fmapsn + ∫ tnow

tprev
fdecdt. Functions fmap and fdec are empirical functions presented

in [6].

Probability of Negativity (Pn(FG17)) [26] This method is proposed for multi-
user AA. Matched and non-matched distributions of each user is used to produce an
individual score. These uncertainty scores are then fused to produce the Probability
of Negativity (Pn). For this baseline, we combined Pn score values sequentially
using the method proposed in [32].

Multi-user Quickest Intruder Detection (MQID) The method proposed in this
paper with the Min-Max formulation.
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Data Deficient Multi-user Quickest Intruder Detection (DEMQID): The
method proposed in this paper using the Min-Max formulation with data-efficient
constraints. We selected parameter D by constraining the average number of
observations to be 50% of all observations for the case of the single user. In
our experiments we found this parameter to be 100.

4.3 Results

We carried experiments on the UMDAA01 and UMDAA02 datasets. The ADD-
PFD curves are shown in Figs. 5 and 6 when the number of users are varied from 1
to 7. ADD values obtained for PFD of 2% and 5% are tabulated for UMDAA01 and
UMDAA02 in Tables 1 and 2, respectively.

UMDAA01 Face Dataset The UMDAA-01 dataset [8] contains images captured
using the front-facing camera of an iPhone 5S mobile device of 50 different
individuals captured across three sessions with varying illumination conditions.
Images of this dataset contain pose variations, occlusions, partial clippings as well
as natural facial expressions as evident from the sample images shown in Fig. 3a. For
our experiments we concatenated videos from all three sessions to form 50 classes.

In all considered cases MQID method has performed better than the other
baseline methods when it was desired to achieve a PFD of 2%. It is also seen that
Pn(FG17), which is a method proposed for multi-user AA has also outperformed
SSH method which uses log-likelihood ratio in all cases. Furthermore, data-efficient
version of the algorithm, DEMQID, has performed on par with MQID, even
performing better in certain cases. Average percentage of observations obtained in
DEMQID for this dataset was 0.304.

However, it can be observed that when 5% of PFD is allowed, even other baseline
methods perform reasonably well. For example, in majority of the cases SSH has
performed on par with MQID. We also observe that DEMQID is slightly worse
than MQID in this case. This suggests that for the employed deep feature, a PFD
rate of 5% can be obtained even when the sequence of data are not considered.
DEMQID takes more sparse samples when deciding the score value. As a result,
when the score function is noisy, DEMQID is not affected by the noise as much as
MQID. Even-though sparser sampling would result in some latency in detection,
overall trade-off can be beneficial. This is why, DEMQID outperforms MQID
when decision making is more challenging (as was the case when PFD of 2% was
considered).

However, when the decision making becomes easier, DEMQID does not con-
tribute towards improving the detection accuracy as score values are less noisy. This
is why in the case of 5% of PFD, DEMQID performs worse than MQID.

UMDAA02 Face Dataset The UMDAA-02 Dataset [17] is an unconstrained
multimodal dataset with 44 subjects where 18 sensor observations were recorded
across a two month period using a Nexus 5 mobile device. Authors of [17] have
made the face modality and the touch-data modality[10] publicly available. In our
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Fig. 5 The ADD-PFD curves corresponding to the UMDAA01 dataset when the number of users
are varied from 1 to 7
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Fig. 6 The ADD-PFD curves corresponding to the UMDAA02 dataset when the number of users
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work we only consider the face modality to perform tests. A sample set of images
obtained from this dataset is shown in Fig. 3b. UMDAA02 is a more challenging
dataset compared to UMDAA01 as apparent from the sample images shown in
Fig. 3. In particular, we note the existence of a huge intra-class variations in this
dataset in terms of poses, partial faces, illumination as well as appearances of the
users.

As a result of having higher complexity, detecting intruders become more
challenging in UMDAA02 compared to UMDAA01. However, due the challenging
behavior of the dataset, the importance of the proposed method is magnified. In all
ADD-PFD curves obtained for UMDAA02 in Fig. 6, it is evident that the proposed
methods significantly outperform the baseline methods. Furthermore, DEQID has
outperformed QID in most of the cases showing the significance of data efficient
QCD.

In our evaluations we show that even when the number of users are increased, the
performance of the proposed system does not drop drastically. For the UMDAA01
dataset, only 2.35 additional samples were required to maintain a probability of false
detection of 2% when the users were increased from 1 o 7. In a more challenging
UMDAA02 dataset, 4.33 more samples were required on average to maintain the
same false detection rate.

5 Concluding Remarks

It has been previously showen that AA yields superior detection performance when
the QCD algorithm is used [28]. In this chapter we study the problem of quickest
change detection in a multiple-user AA scenario. We proposed MQID algorithm for
multiple-user AA with low latency. Furthermore, we extended the initial formulation
to a data efficient version by proposing DEMQID algorithm. We evaluated the
performance of the proposed methods on the UMDAA01 and UMDAA02 datasets.
Our experiments suggest that the proposed method is more effective compared to
the baseline methods we considered. It was also shown that, the proposed method
allows the number of enrolled users to be increased with a relatively smaller cost in
terms of observations. Only 2.35 and 4.33 observations were required on average to
maintain a false detection rate of 2% when the users were increased from 1 to 7 in
the UMDAA01 and UMDAA02 datasets, respectively.
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