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Abstract— Passwords are still used on a daily basis for all
kind of applications. However, they are not secure enough
by themselves in many cases. This work enhances password
scenarios through two-factor authentication asking the users to
draw each character of the password instead of typing them as
usual. The main contributions of this study are as follows: i) We
present the novel MobileTouchDB public database, acquired in
an unsupervised mobile scenario with no restrictions in terms
of position, posture, and devices. This database contains more
than 64K on-line character samples performed by 217 users, with
94 different smartphone models, and up to 6 acquisition sessions.
ii) We perform a complete analysis of the proposed approach
considering both traditional authentication systems such as
Dynamic Time Warping (DTW) and novel approaches based on
Recurrent Neural Networks (RNNs). In addition, we present a
novel approach named Time-Aligned Recurrent Neural Networks
(TA-RNNs). This approach combines the potential of DTW and
RNNs to train more robust systems against attacks. A complete
analysis of the proposed approach is carried out using both
MobileTouchDB and e-BioDigitDB databases. Our proposed
TA-RNN system outperforms the state of the art, achieving a
final 2.38% Equal Error Rate, using just a 4-digit password
and one training sample per character. These results encourage
the deployment of our proposed approach in comparison with
traditional typed-based password systems where the attack would
have 100% success rate under the same impostor scenario.

Index Terms— Biometrics, passwords, handwriting, touch bio-
metrics, TA-RNNs, RNN, DTW, MobileTouchDB, e-BioDigitDB.

I. INTRODUCTION

MOBILE devices have become an indispensable tool
for most people nowadays [1]. The rapid and con-

tinuous deployment of mobile devices around the world has
been motivated not only by the high technological evolution
and new features incorporated but also to the new internet
infrastructures like 5G that allows the communication and
use of social media in real time, among many other factors.
In this way, both public and private sectors are aware of the
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importance of mobile devices for the society and are trying to
deploy their services through user-friendly mobile applications
ensuring data protection and high security.

Passwords are still the most common way to authenticate
users nowadays. They can range from Personal Identifica-
tion Numbers (PIN) that require users to memorise them
to One-Time Passwords (OTP) where the security system is
in charge of selecting and providing to the user a different
password each time it is required, e.g., sending messages to
personal mobile devices or special tokens. We use passwords
on a daily basis for all kinds of applications. However,
are passwords secure enough? Apparently not, at least by
themselves. Recent news put in evidence this fact, e.g., in Jan-
uary 2019 a total of 21 million passwords from all parts of the
world were released together with their corresponding emails
addresses [2]. This important problem is related not only to
data breaches, but also to many other attack scenarios, as it
has been pointed out in different studies [3], [4]. First, it is
common to use passwords based on sequential digits (e.g.,
“1 2 3 4 5 6”), personal information such as birth dates,
or simply words such as “password” or “qwerty” that are
very easy to guess [5]. Second, passwords that are typed on
mobile devices such as tablets or smartphones are susceptible
to “smudge attacks”, i.e., the deposition of finger grease
traces on the touchscreen can be used by the impostors to
guess lock patterns or passwords [6]. Finally, password-based
authentication is also vulnerable to “shoulder surfing”. This
type of attack is produced when the impostor can observe
directly or use external recording devices to collect the user
information. This attack has attracted the attention of many
researchers in recent years due to the increased deployment of
handheld recording devices and public surveillance infrastruc-
tures [7], [8]. So, if we know that traditional passwords are
not secure enough by themselves, but they continue to be
present in our lives, how can we improve this authentication
scenario?

Two-factor authentication approaches have been very suc-
cessful in the last years. These approaches are based on
the combination of two authentication stages. For example:
i) the security platform sends the password to the per-
sonal email or mobile number of the claimed user, and
ii) the claimed user introduces this password for the final
verification. Behavioral biometric information has also been
considered for two-factor authentication approaches. In [9],
the authors proposed a two-factor verification system based on
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Fig. 1. Architecture of our proposed touchscreen biometric system based on time-aligned recurrent neural networks. S denotes one character sample,
and T F and T F the original and pre-aligned 21 time functions, respectively. The recurrent neural networks block is enlarged in Fig. 2 for a better
understanding.

timing-related features for dynamic lock patterns, achieving a
final average Equal Error Rate (EER) of 10.39% for imitation
attacks. A similar two-factor authentication approach was
proposed in [10] for traditional Android unlock patterns but
considering biometric dynamic features related to the position
of the finger, pressure, finger size, and accelerometer sensor
achieving a final 15.0% EER for imitation attacks. Two-
factor authentication approaches have also been expanded to
physiological biometric traits. In [11], Jenkins et al. proposed
a system based on features extracted from periocular images
acquired using an iPhone 5, achieving very good results for
the task of identification.

In this article we propose two-factor authentication
approaches based on the incorporation of touch biometrics
to password authentication systems, asking the users to draw
each character of the password on the touchscreen instead
of typing them as usual. One example of use that motivates
our proposed approach is on internet payments with credit
cards. Banks usually send a password (typically between 6 and
8 characters) to the user. This password must be inserted
by the user in the security platform in order to complete
the payment. Our proposed approach enhances such scenario
by including a second authentication factor based on touch
interaction biometrics.

The main contributions of this study are related to the novel
MobileTouchDB database, our proposed architecture, and the
competitive results obtained with respect to related research:

• We present and describe the acquisition process of the
new MobileTouchDB database. This database contains
more than 64K on-line character samples performed by
217 users, using 94 different smartphone models. Mobile-
TouchDB considers an unsupervised mobile scenario with
a maximum of 6 captured sessions per subject and it is
publicly available in GitHub.1

• The MobileTouchDB database opens the doors to many
different applications: i) analyse the discriminative power
of novel human touch interaction dynamics, ii) enhance
traditional password authentication systems through the
incorporation of touch biometric information as a sec-

1https://github.com/BiDAlab/MobileTouchDB

ond level of user authentication, and iii) analyse the
way we interact with mobile devices on a daily
basis in order to enhance continuous authentication
systems.

• We present a novel approach named Time-Aligned Recur-
rent Neural Networks (TA-RNNs).2 Fig. 1 represents the
general architecture of our proposed approach. It com-
bines the potential of Dynamic Time Warping (DTW) and
Recurrent Neural Networks (RNNs) to train more robust
systems against attacks.

• We perform a complete analysis of our proposed approach
using both MobileTouchDB and e-BioDigitDB public
databases. Three experiments are considered: i) one-
character analysis in order to evaluate the discrimina-
tive power of each character, ii) character combina-
tion analysis so as to measure the robustness of our
proposed approach when increasing the length of the
passwords from 1 to 9 characters, and iii) template update
analysis.

• We compare our proposed TA-RNN system with both tra-
ditional and state-of-the-art authentication systems. Our
proposed TA-RNN system outperforms the state of the
art, achieving a final 2.38% EER, using just a 4-digit
password and one training sample per character.

• We demonstrate the application of TA-RNNs for other
time sequence tasks, i.e., on-line handwritten signature
verification, outperforming in large margin the state of
the art as well.

MobileTouchDB can be also useful for other research
lines, e.g.: i) user-dependent effects [12], and develop-
ment of user-dependent methods for handwriting recogni-
tion [13], ii) the neuromotor processes involved in writing
over touchscreens [14], [15], iii) sensing factors in obtaining
representative and clean touch interaction signals [16], [17],
iv) human-device interaction factors involving touchscreen
signals [18], [19], and development of improved interaction
methods, and v) population statistics around touch interaction
signals, and development of new methods aimed at recognising
or serving particular population groups [20].

2Spanish Patent Application (P202030060)
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TABLE I

COMPARISON OF DIFFERENT TOUCHSCREEN PASSWORD BIOMETRIC APPROACHES FOR MOBILE SCENARIOS

The remainder of the paper is organised as follows. Sec. II
summarises related works in touchscreen password biometrics.
Sec. III describes our proposed TA-RNN biometric system.
Sec. IV describes both e-BioDigitDB and the novel Mobile-
TouchDB database considered in the experiments of this
article. Sec. V and VI describe the experimental protocol and
results achieved using our proposed approach, respectively.
Finally, Sec. VIII draws the final conclusions and points out
some future work lines.

II. RELATED WORKS

Touch biometrics are becoming a very attractive way to ver-
ify users on mobile devices [19], [26]. Table I summarises the
most relevant approaches in the area of touchscreen password
biometrics on mobile scenarios. For each study, we include
information related with classifiers and databases considered.
We also report in Table I the best verification performance
results in addition to other important system settings such
as the length of the password, and the number of training
samples. Regarding the attack scenario, all studies consider
the case in which impostors know the password of the user,
i.e., an imitation attack [27].

In [21], Kutzner et al. asked the users to perform an
8-digit password on the screen of a tablet device. For each
handwritten password, a total of 25 static and dynamic features
were extracted and tested using different authentication algo-
rithms such as Bayes-Nets, K Star, and kNN. Their proposed
approach achieved a final 10.42% False Acceptance Rate
(FAR). The False Rejection Rate (FRR) is not available.
However, the authentication scenario considered in this pre-
liminary approach restricted the deployment of the technology
in real mobile applications as i) the authors considered a
large number of training samples (i.e., 12), and ii) it seems
to be only applicable to devices with large screens (such
as tablets) as it would be very difficult for the users to
perform such a long password (8 characters) on a screen of
much smaller size. In [22], Nguyen et al. evaluated the use
of handwritten touch biometrics for PIN-based authentication
systems. Their proposed authentication approach overcame
some of the drawbacks previously cited as they asked users to
draw each character of a 4-digit PIN one by one. A final 4.84%

EER was achieved using 5 training samples, and a biometric
system composed of 5 dynamic features and DTW algorithm.
In [23], we released e-BioDigitDB, the first touchscreen
password biometric public database, containing only numbers
from 0 to 9. In addition, we reported a benchmark evaluation
of biometric authentication using two different state-of-the-
art approaches: i) DTW, and ii) RNNs. Despite the good
results obtained using RNNs (outperforming DTW for 50%
of the numerical characters), DTW still improved the RNN
results with an average 0.5% EER absolute improvement.
In [24], Le Lan et al. also evaluated RNN approaches using
the e-BioDigitDB database. Their proposed approach achieved
a final 4.90% EER using 4-digit passwords and 4 training
samples per digit. Finally, a preliminary study of the work
presented here was published in [25]. In that work we per-
formed an initial analysis of MobileTouchDB considering only
a DTW baseline system so as to provide an easily reproducible
framework.

The study presented here extends the preliminary analysis
carried out in [25]. The main improvements over [25] are:

• Sec. II has been included to survey and compare advan-
tages and limitations of recent research on touchscreen
password biometrics on mobile scenarios.

• Our preliminary touch biometric system in [25] based
on DTW has been extended by incorporating RNNs and
presenting a novel approach not published yet, named TA-
RNNs (Sec. III). This approach combines the potential
of DTW and RNNs with a Siamese architecture to train
more robust systems against attacks.

• The results achieved in the present study outperform
the results achieved in [25], and also the state of the
art, achieving a final 2.38% EER. This improvement
is achieved considering more user-friendly scenarios,
i.e., using just a 4-digit password and one training sample
per character.

III. PROPOSED APPROACH

This section describes our proposed Time-Aligned Recur-
rent Neural Networks for touchscreen password biometrics.
A graphical representation is included in Fig. 1.
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TABLE II

SET OF TIME FUNCTIONS CONSIDERED IN THIS WORK

A. Time-Functions Extraction

Our proposed touchscreen password biometric system is
based on time functions. For each character sample acquired
(i.e., Senrolled and Stest in Fig. 1), signals related to X and Y
spatial coordinates are used to extract a set of 21 time functions
(i.e., T Fenrolled and T Ftest in Fig. 1), similar to [23]. This
set of 21 time functions is widely used in on-line signature
verification [28], [29]. The complete set of time functions is
described in Table II.

B. Time-Functions Alignment

One crucial point when comparing the similarity among
time sequences is the proper alignment of them prior to
calculating the similarity score through distance measurement
functions (e.g., the Euclidean distance). DTW is one of the
most popular algorithms in the literature, in particular for
signature biometrics [30]. The goal of DTW is to find the
optimal warping alignment path of a pair of time sequences
A and B that minimises a given distance measure. The algo-
rithm can be defined as follows. Let’s define two sequences
as:

A = a1, a2, . . . , an, . . . , aN

B = b1, b2, . . . , bm , . . . , bM (1)

and a distance measure among sequence samples as:
d(an, bm) = (an − bm)2 (2)

A warping path can be defined as:
C = c1, c2, . . . , ck, . . . , cK (3)

where each ck represents a correspondence (n, m) between
samples of A and B . The initial condition of the algorithm is
set to:

g1 = g(1, 1) = d(a1, b1) · w(1) (4)

where gk represents the accumulated distance after k steps
and w(k) is a weighting factor that must be defined. For each
iteration, gk is computed as:

gk = g(n, m) = min
ck−1

[
gk−1 + d(ck) · w(k)

]
(5)

until the N’th and M’th sample of both sequences respectively
is reached. The resulting normalised distance is:

D(A, B) = gK∑K
k=1 w(k)

(6)

where
∑

w(k) compensates the effect of the length of the
sequences. The weighting factors w(k) are defined in order
to restrict which correspondences among samples of both
sequences are allowed. In this work, only three transitions with
the same value equal to 1 are allowed for the computation of
gk , which is the most common implementation found in the
literature. Consequently, Eq. (5) becomes:

gk = g(n, m) = min

⎡
⎣

g(n, m − 1) + d(an, bm)
g(n − 1, m − 1) + d(an, bm)
g(n − 1, m) + d(an, bm)

⎤
⎦ (7)

In this study we consider an improved version of the
basic DTW algorithm named Sliding Window Dynamic Time
Warping (SW-DTW), proposed in [31]. This updated version
overcomes some of the incorrect alignments generated by the
original DTW. This is produced due to the original DTW
considers an element-to-element distance. SW-DTW modifies
the original distance in Eq. (2) to consider the context by incor-
porating a weighted average of the neighbouring distances.

In our proposed approach, SW-DTW is applied in a first
stage in order to convert the 21 original time functions (i.e.,
T Fenrolled and T Ftest in Fig. 1) into 21 pre-aligned time func-
tions (i.e., T Fenrolled and T Ftest in Fig. 1) before introducing
them to the RNNs. This way our proposed RNN system is
able to extract more meaningful features as time sequences
have been previously normalised through the optimal warping
path.

C. Recurrent Neural Networks

New trends based on the use of RNNs, which is a specific
neural network architecture, are becoming more and more
important nowadays for modelling sequential data with arbi-
trary length. In this study we adapt the original verification
system proposed in [28] for on-line handwritten signature to
touchscreen password biometrics. In [28] we proposed RNN
systems based on a Siamese architecture. The main goal
was to learn a dissimilarity metric from data minimising a
discriminative cost function that drives the dissimilarity metric
to be small for pairs of genuine samples from the same subject,
and higher for pairs of samples coming from different subjects.
In particular, we consider in this study a Bidirectional Long
Short-Term Memory (BLSTM) network, which allows access
to past, present, and future context, achieving much better
results compared with the original LSTM.

Fig. 2 shows our proposed writer-independent BLSTM
touch biometric system based on a Siamese architecture. For
the input of the system, we feed the network with as much
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Fig. 2. Proposed writer-independent BLSTM Siamese architecture.

information as possible, i.e., all 21 pre-aligned time functions
per character previously normalised through SW-DTW. The
first layer is composed of two BLSTM hidden layers with
42 memory blocks each, sharing the weights between them.
The outputs of the first two parallel BLSTM hidden layers
are concatenated and serve as input to the second layer, which
corresponds to a BLSTM hidden layer with 84 memory blocks.
Then, we add a third BLSTM hidden layer with 168 memory
blocks. The activation functions considered in all BLSTM
memory blocks are based on the standard approach [28].
Finally, a feed-forward neural network layer with a sigmoid
activation is considered, providing an output score for each
pair of characters. It is important to highlight that our approach
is trained to distinguish between genuine and impostor patterns
from all characters and users. Thus, we just train one writer-
independent system for all characters and users through a
development dataset.

IV. DATABASES

A. e-BioDigitDB

e-BioDigitDB database3 is composed of 93 users and was
originally captured in order to perform a preliminary study of
handwritten passwords for touchscreen biometrics [23]. This
database comprises on-line handwritten numerical characters
from 0 to 9 acquired using a Samsung Galaxy Note 10.1 gen-
eral purpose tablet. This device has a 10.1-inch LCD display
with a resolution of 1280 × 800 pixels.

Regarding the acquisition protocol, subjects had to perform
handwritten numerical characters one at a time, in a supervised
and office-like scenario. Samples were collected in two ses-
sions with a time gap of at least three weeks between them in
order to consider inter-session variability, very important for
behavioral biometric traits [32]. For each session, users had to
perform a total of 4 numerical sequences from 0 to 9 using

3https://github.com/BiDAlab/eBioDigitDB

Fig. 3. Different interfaces designed for the acquisition app. Both portrait
and landscape orientations are considered in order to analyse different user
experiences while drawing.

the finger as input. Therefore, there are a total of 8 samples
per numerical digit and user.

B. MobileTouchDB

MobileTouchDB is a novel handwritten character mobile
touch biometric database composed of more than 64K on-line
character samples performed by 217 users. For the acquisition,
we implemented an Android application. Fig. 3 represents the
different interfaces designed for the acquisition. All interfaces
are composed of: i) the character/password to draw (top,
middle) and two buttons “OK” (top, right) and “Cancel”
(top, left) to press after drawing if the sample was good or
bad respectively. If the sample was not good, then it was
repeated; and ii) a rectangular area to perform the character or
password. In order to study an unsupervised mobile scenario,
the acquisition app was uploaded to the Play Store. This
way all participants could download and use the app on their
own devices without any kind of supervision, simulating a
practical scenario in which users can generate touchscreen
information in any possible scenario, e.g., standing, sitting,
walking, indoors, outdoors, etc. As a result, 94 different
models from the following 16 brands were collected during
the acquisition: Alcatel, Blackberry, BQ, Coolpad, Doogee,
Google, Huawei, LeTV, LG, Motorola, OnePlus, Samsung,
Sony, UMIDIGI, Xiaomi, and ZTE. The acquisition app was
designed to capture the following time signals: X and Y
spatial coordinates, the area covered by the finger, timestamp,
accelerometer, and gyroscope. However, information related to
the area covered by the finger, accelerometer, and gyroscope
was not available in some cases depending on how old the
acquisition device was.

The acquisition protocol considered in MobileTouchDB is
depicted in Fig. 4. It comprises a total of 6 sessions (i.e.,
S1-S6) with different time gaps among them. It is important
to highlight that in all sessions, the time gap refers to the
minimum time between one user finishes a session and the
following session is available. However, participants usually
performed their corresponding sessions later on thanks to noti-
fications sent automatically by the acquisition app to the users.
Regarding the data acquired, each session comprises 8 dif-
ferent capturing blocks (i.e., from Block1 to Block8). Fig. 5
shows some examples of each of the eight acquisition blocks
for two different users (indicated in blue and red colours).
The green dashed lines indicate pen up trajectories between
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Fig. 4. Description of the design and number of available users of the new MobileTouchDB database.

strokes. In Block1, we asked users to draw all numbers (from
0 to 9). Block2 and Block3 comprise upper- and lower-case
letters respectively, with a total of 27 letters each. Block4 is
composed of 8 different symbols (i.e., “?”, “#”, “*”, “@”,
“%”, “=”, “ε”, and “α”). It is important to remark that
inside each block, characters were randomised before asking
users to draw them. This way, each user performs a different
character sequence in each session. From Block1 to Block4,
the acquisition interface was designed as portrait to provide
a better user experience (see Fig. 3, left). After finishing the
first 4 blocks focused on performing one single character at
a time (one sample per character), we asked users to draw
passwords composed of 4 numbers (always “5 7 8 4”) in
different ways (6 samples in total). In Block5, users performed
the password twice using a landscape orientation interface
(see Fig. 3, right). We provided the users with a graphical
visualization of the numbers while drawing them (i.e., visible
mode). Then, in Block6, users had to repeat once the same
task considered in Block5 but this time in an invisible mode,
i.e., we did not provide to the users any visualization of the
numbers while drawing them. The main motivation of this
novel acquisition scenario is to protect us against shoulder
surfing attacks, as commented in [22]. In Block 7, users had
to draw each number of the password inside each of the four
available boxes (two times), considering first a visible mode
(see Fig. 3, middle). Finally, in Block8 users had to repeat
once the same task considered in Block7 but this time in an
invisible mode. In both Block7 and Block8 the acquisition
interface was kept portrait to analyse the user experience in
different settings.

Regarding the MobileTouchDB population statistics, 217
users completed the S1 acquisition session. S1 and S2 were
completed by 159 users. Finally, a total of 105 users completed
the six acquisition sessions. This participant reduction between
S1 and S6 sessions is produced due to the challenging acqui-
sition scenario considered in this study as it was completely
unsupervised and comprised several acquisition sessions along
time. Regarding the age distribution, 36.2% of the participants
are younger than 22 years old, 31.9% are between 22 and
27 years old, and the remaining 31.9% are older than 27
years old. Regarding the gender, 63% of the participants

were males, and 37% females. 96% of the population was
righthanded.

V. EXPERIMENTAL PROTOCOL

Three different experiments are considered: i) one-character
analysis in order to evaluate the discriminative power of each
character, ii) character combination analysis so as to measure
the robustness of our proposed approach when increasing the
length of the passwords from 1 to 9 characters, and iii) analysis
of the system performance when samples performed in differ-
ent acquisition sessions are considered for training. Due to
the large amount of information acquired in MobileTouchDB,
in this paper we focus on characters performed one at a time.
Complete passwords acquired from Block5 to Block8 will be
analysed in future studies.

Both e-BioDigitDB and MobileTouchDB are divided into
development and evaluation datasets. For the e-BioDigitDB,
we consider the same experimental protocol proposed in [23].
Thus, the first 50 users are considered for development
whereas the remaining 43 users are left for the final evalu-
ation of the systems. For MobileTouchDB, users are divided
into development (175, ≈80%) and evaluation (42, ≈20%)
datasets. Finally, the development dataset of both databases
is also split into training (≈80%) and validation (≈20%)
datasets in order to train the weights of the neural networks
and select the best models. It is important to remark that
for MobileTouchDB, all users included in the evaluation
dataset (i.e., 42) contain the maximum number of acqui-
sition sessions, i.e., 6. This way we can perform a fair
evaluation of our trained models on different experimental
conditions.

For the development of our proposed handwritten touch
biometric systems (Sec. VI-A), Z genuine samples per char-
acter from the first session (i.e., 1 for MobileTouchDB and
up to 4 for e-BioDigitDB) are used as enrolment samples,
whereas the remaining genuine samples from the second
session are used for testing. This way we consider the inter-
session variability problem as genuine samples from different
acquisition sessions are used as enrolment and testing sam-
ples, respectively. Finally, impostor scores are obtained by
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Fig. 5. Example of the data collected in MobileTouchDB database. Blue and red colours represent samples drawn by different users. The green dashed lines
indicate pen up trajectories between strokes. Curves under each character represent X and Y trajectories over time.
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TABLE III

PERFORMANCE AS EER(%) OF EACH INDIVIDUAL UPPER- AND LOWER-CASE LETTER ON THE EVALUATION DATASET OF MOBILETOUCHDB

comparing the Z enrolment samples with one genuine sample
of each of the remaining users of the same database (simulat-
ing this way the imitation attack in which the impostor knows
the password).

For the final evaluation of our proposed touch biometric sys-
tems, different scenarios are generally considered regarding the
number of available enrolment samples per user (i.e., Zvs1),
in which the final score is performed as the average score
of Z one-to-one comparisons. In addition, for the character
combination analysis (Sec. VI-B), the final score is produced
by fusing the different one by one character score comparisons
using the sum of the scores [13].

VI. EXPERIMENTAL RESULTS

A. One-Character Analysis

This section analyses the potential of each individual char-
acter for the task of user authentication. Four different touch
biometric systems are considered in the analysis: i) the original
DTW system considered in previous studies [23], [25], ii)
the recent SW-DTW approach that overcomes the incorrect
alignments generated by the original DTW [31], iii) the state-
of-the-art RNN Siamese architecture proposed in [23], and
finally iv) the TA-RNN Siamese architecture proposed in this

work that combines SW-DTW alignment with RNNs. For
the development of the systems, we follow the experimental
protocol described in Sec. V. Samples from all characters
of the development datasets of both MobileTouchDB and e-
BioDigitDB databases are considered together during training
as we intend to distinguish between genuine and impostor
handwritten samples regardless of the user and the character.
This approach resulted in better generalisation results com-
pared with the case of training one system per user and
character. Therefore, both RNNs and TA-RNNs systems are
trained considering two different cases: i) pairs of genuine
characters drawn by the same user, and ii) pairs of genuine
and impostor characters, one performed by the claimed user
and the other one by the impostor.

Both RNN and TA-RNN systems have been implemented
under Keras framework using Tensorflow as back-end, with a
NVIDIA GeForce RTX 2080 Ti GPU. The weights of the
BLSTM and feed-forward layers are initialised by random
values drawn from the zero-mean Gaussian distribution with
standard deviation 0.05. Adam optimiser is considered with
default parameters (learning rate of 0.001) and a loss function
based on binary cross-entropy

Tables III and IV show the results of each character over the
evaluation dataset of MobileTouchDB, grouped according to
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TABLE IV

PERFORMANCE AS EER(%) OF EACH INDIVIDUAL NUMBER AND SYMBOL
ON THE EVALUATION DATASET OF MOBILETOUCHDB

TABLE V

PERFORMANCE AS EER(%) OF EACH INDIVIDUAL NUMBER

ON THE EVALUATION DATASET OF E-BIODIGITDB

their corresponding acquisition block. The evaluation results
achieved over the e-BioDigitDB database are also depicted
in Table V. Finally, we also provide the average EER obtained
for each authentication system and acquisition block for a
better comprehension of the results.

We first compare the system performance results when
drawing letters (Table III). Analysing upper-case letters,
the original DTW system achieves an average 28.57% EER,
being the letter “X” the one that provides the best system
performance with a final 19.05% EER. The SW-DTW system
outperforms the original DTW system, achieving an aver-
age 27.06% EER, which demonstrates the better alignment
carried out using this improved DTW version. Both DTW
approaches are also compared with state-of-the-art recurrent

neural networks. The RNN system outperforms the results
achieved using both DTW and SW-DTW, achieving an aver-
age 23.72% EER, an absolute improvement of 4.85% and
3.34% EERs compared with DTW and SW-DTW, respectively.
Finally, our proposed TA-RNN system is also evaluated in the
same conditions, outperforming the results achieved by the
other biometric systems for most upper-case characters. Our
TA-RNN system obtains an average 20.99% EER, outperform-
ing in large margin the results achieved by DTW approaches,
and also the state-of-the-art RNN system with an absolute
improvement of 2.73% EER. It is interesting to remark
the considerable improvements achieved by our proposed
TA-RNN system in some upper-case letters such as “A”, “B”,
and “Z”, with absolute improvements higher than 4.5% EER
compared with the second best approach. Finally, the proposed
TA-RNN system achieves the best system performance result
with an EER as low as 11.90% for the letter “B”, achieving
absolute improvements of 7.15%, 7.15%, and 4.77% EERs
compared with DTW, SW-DTW, and RNNs, respectively.
These results remark the potential of our proposed TA-RNN
system, outperforming all previous results achieved in the
literature.

We now compare the results achieved when drawing upper-
and lower-case letters (Table III). In general, better results are
obtained when drawing lower-case letters. For the DTW and
SW-DTW systems, lower-case letters achieve average absolute
improvements of 1.94% and 2.19% EERs in comparison with
upper-case letters, respectively. Similar improvements are also
produced for both RNNs and TA-RNNs, with average absolute
improvements of 3.52% and 2.29% EERs, respectively. These
results remark the higher discriminative power of lower-case
letters compared with upper-case letters. We believe this is
produced because most upper-case letters are based mostly on
simple straight strokes, and not so much in curved strokes,
providing therefore less variability among users. In addition,
we usually write using lower-case letters, adapting our original
writing model to more user-specific features compared with
upper-case letters. One example that justifies our hypothesis
is letter “r/R”. Letter “r” provides the best result with a 11.90%
EER for the TA-RNN system. However, the EER increases up
to 16.67% when using letter “R”. Similar observations apply
to other letters such as “v/V” and “y/Y”. Nevertheless, there
are some cases where both upper- and lower-case letters obtain
very similar results, such as letters “s/S” and “g/G” as they are
mainly curved strokes in both lower- and upper-case letters.
Finally, the same trends along the authentication systems
are observed for lower-case letters. Our TA-RNN system
obtains an average 18.70% EER, achieving average absolute
improvements of 7.93%, 6.1%, and 1.5% EERs compared with
DTW, SW-DTW, and RNNs, respectively.

Characters based on symbols and numbers are also con-
sidered in this analysis. Tables IV and V include the results
achieved using the evaluation datasets of MobileTouchDB
and e-BioDigitDB, respectively. For the case of drawing
numbers, our proposed TA-RNN system outperforms the other
systems for both MobileTouchDB and e-BioDigit databases.
For the MobileTouchDB database (Table IV), the proposed
TA-RNNs achieves an average 20.24% EER whereas for the
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Fig. 6. System performance in terms of EER (%) when increasing the length
of the password for the MobileTouchDB evaluation dataset.

e-BioDigitDB database this result increases up to 24.36%
EER. We believe this is produced due to two main reasons:
i) the time gap considered between train and test samples in
the MobileTouchDB is about two days (i.e., s1 vs. s2) whereas
in the e-BioDigitDB this time gap increases up to three weeks;
and ii) the different acquisition scenario considered, office-like
(e-BioDigitDB) and in the wild (MobileTouchDB). Finally,
the symbol characters acquired in MobileTouchDB are also
analysed in Table IV. In general, we can observe the same
trends described before. However, it is interesting to remark
the lower discriminative power of symbols compared with
the other characters of MobileTouchDB when considering our
proposed TA-RNN system.

B. Character Combination Analysis

This section evaluates the robustness of our proposed
touchscreen password biometric approach when increasing the
length of the password from 1 to 9 characters. The same touch
biometric systems studied in Sec. VI-A are considered in this
experiment. The final score of each password is produced by
fusing the different one by one character score comparisons
using the sum of the scores [13]. Fig. 6 shows the evolution of
the system performance in terms of EER (%) when increasing
the length of the password for the MobileTouchDB evaluation
dataset. Passwords are created following the results extracted
in the one-character analysis of Sec.VI-A, including the top
ranked most discriminative characters in order, one at a time,
e.g., the “B” and “r” characters are used for a 2-digit password
for the TA-RNN system.

Analysing the results obtained in Fig. 6, our proposed TA-
RNN system further outperforms the results achieved in [25]
using the original DTW system. For example, for a 3-digit
password, our proposed TA-RNN system achieves an absolute
improvement of 10.74% EER compared with the DTW system.
In general, we achieve an average absolute improvement
of 7.52% EER when considering all length passwords (from
1 to 9 characters). Our proposed TA-RNN system achieves
a final 2.38% EER using just a 4-digit password. However,
for the DTW system, the best system performance result

is a 5.9% EER when considering a 9-digit password. The
results achieved in this experiment prove the success of our
proposed touchscreen password biometric approach and also
the proposed TA-RNN system in terms of both usability (just
a 4-digit password is required to achieve a 2.38% EER, not
9) and system performance (2.38% EER vs. 5.90% EER).
Finally, it is important to note that in Fig. 6 no further
improvement is observed by our proposed TA-RNN system
when passwords comprise more than 4 characters. This might
be produced due to passwords are created including the top
ranked most discriminative characters, one at a time, avoiding
repetitions. As a result, the discriminative power of the new
characters included in the password is not enough to further
improve the system performance.

C. Template Update Analysis
This section conducts some experiments in order to analyse

the inter-session variability effect on the system performance.
MobileTouchDB is considered in this experiment, with sam-
ples acquired in 6 different acquisition sessions with different
time gaps between them, emulating practical scenarios. First,
we focus on how the system performance can be improved
along time when using samples from different acquisition ses-
sions as training samples. Fig. 7 shows the average EER (%)
of all 72 individual character comparisons of the evaluation
dataset of MobileTouchDB. For each experiment, the first
number indicates the training sessions (one sample per ses-
sion), and the second one indicates the test session (i.e.,
the sixth session in all experiments). We first add training
samples from sessions closer to the test. Then, we remove
samples from older sessions in time.

First, we analyse the scenario where samples from ses-
sions closer to the test are included for training. The results
achieved in Fig. 7 show very similar trends for both DTW
and the proposed TA-RNN systems. The system performance
improves when we include samples from different acquisition
sessions. For the DTW system, an average 28.80% EER is
achieved when training samples are coming only from the
first session (1 vs. 6). This system performance is further
improved when increasing the number of training samples,
e.g., an absolute improvement of 5.41% EER is achieved
when using five training samples (1-5 vs. 6). Then, when we
remove samples from sessions older to the test, the system
performance gets worse. For the DTW system, an average
24.64% EER is achieved when using just one sample from the
previous session to the test (5 vs. 6), an average 2.25% wors-
ening compared with the case of using five training samples
(1-5 vs. 6).

The same trend is observed when using our proposed
TA-RNN system, but with a high system performance
improvement compared with the DTW system. Our proposed
system achieves an average absolute improvement of 8.52%
EER. The best system performance achieved is a final 13.23%
EER, which is 9.16% EER lower compared with the best
result achieved by the DTW system. These results prove the
robustness of our proposed TA-RNN approach with time, when
samples form multiple acquisition sessions can be considered
for training.
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Fig. 7. Template update analysis: For each experiment, the first number indicates the training sessions, and the second one the test session (i.e., the sixth
session in all experiments). We first add training samples from sessions closer to the test. Then, we remove samples from older sessions to the test.

Fig. 8. Intra-user analysis on the evaluation dataset of MobileTouchDB.

Finally, we also analyse the intra-user variability while
drawing the characters along time. Fig. 8 shows the system
performance in terms of EER(%) on the evaluation dataset
of MobileTouchDB. Each experiment compares samples from
one session with the same samples but for the next session
in order to analyse the intra-user variability and the learning
curve of the users. For both DTW and TA-RNN systems,
the same trend is observed: the system performance improves
with time. For the DTW system, an absolute improvement
of 3.10% EER is achieved when we compare the 1 vs. 2 case
with the 5 vs. 6 case whereas for the TA-RNN system,
an absolute improvement of 3.57% EER is achieved for the
same comparison. These results highlight how users tend to
feel more comfortable with the system along time, reducing its
variability while drawing the characters, and therefore, being
possible to further improve the system performance with the
number of acquisition sessions.

VII. TA-RNNS: FURTHER APPLICATIONS

Finally, our proposed TA-RNN system can be applied to
many other different applications in which a direct comparison
or verification of time sequence signals is performed, for
example, in speech or gait [33], [34]. A related topic is signa-
ture verification. In this section we test our proposed TA-RNN
approach for on-line signature verification considering the
same experimental framework considered in [28], i.e., the
first 300 users of BiosecurID are considered for development

Fig. 9. System performance results of our proposed TA-RNN approach for
the task of on-line signature verification.

TABLE VI

FURTHER APPLICATIONS OF OUR PROPOSED TA-RNN
SYSTEM: PERFORMANCE AS EER(%) FOR

SIGNATURE VERIFICATION

whereas the remaining 100 users are considered for evaluation.
It is important to remark that we consider just one training
signature per user in this experiment (i.e., 1vs1 case) to show
the real potential of TA-RNNs. Table VI shows the evaluation
results in terms of EER (%) for both skilled and random
forgery scenarios [27]. We also depict in Fig. 9 the results
achieved in terms of Detection Error Tradeoff (DET) curves,
for completeness. Our proposed TA-RNN system is com-
pared with the state-of-the-art DTW and RNN configurations
proposed for signature verification [35]. For skilled forgery
scenarios, our proposed TA-RNN system achieves 1.66% EER,
an absolute improvement of 8.51% and 5.17% EERs compared
with the DTW and RNN systems respectively, which is a
very important reduction of EER. Analysing random forgery
scenarios, our proposed TA-RNN system achieves 0.87% EER,
an absolute improvement of 4.51% EER compared with the
RNN system proposed in [28]. It is important to remark that
in [28], the RNN system was not able to outperform the
DTW system for both skilled and random forgery scenarios.
Nevertheless, our proposed TA-RNN system can learn better
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feature representations of both type of impostors after the pre-
warping of the time functions, outperforming the state of the
art for both types of impostors.

VIII. CONCLUSIONS

This work enhances password scenarios through two-factor
authentication approaches asking the users to draw each char-
acter of the password instead of typing them as usual. The
main contributions of this study are as follows: i) We present
the novel MobileTouchDB public database, acquired in an
unsupervised mobile scenario with no restrictions in terms of
position, posture, and devices. This database contains more
than 64K on-line character samples performed by 217 users,
with 94 different smartphone models, and up to 6 acquisition
sessions. ii) We perform a complete analysis of the proposed
approach considering both traditional authentication systems
such as DTW and novel approaches based on RNNs. In addi-
tion, we present a novel approach named Time-Aligned Recur-
rent Neural Networks (TA-RNNs). This approach combines
the potential of DTW and RNNs to train more robust systems
against attacks.

In this study we have performed a complete analysis of
the proposed approach using both MobileTouchDB and e-
BioDigitDB. Our proposed TA-RNN system has outperformed
the state of the art, achieving a final 2.38% EER, using just
a 4-digit password and one training sample per character.
These results encourage the deployment of our approach in
comparison with traditional systems where the attack would
have 100% success rate under the same impostor scenario.

In addition, we have also demonstrated the application of
our proposed TA-RNNs for another time sequence recogni-
tion task, i.e., on-line handwritten signature verification. The
proposed TA-RNN system has achieved 1.66% and 0.87%
EERs for skilled and random forgery scenarios respectively,
outperforming in large margin the state of the art.

Future work will be oriented to study the discriminative
power of new features acquired in MobileTouchDB such as
the area covered by the finger, accelerometer, and gyroscope in
order to further improve the system performance [36]. We will
also analyse the user experience in different acquisition set-
tings through the analysis of the information acquired from
Block5 to Block8 of the MobileTouchDB. Finally, we will
evaluate the usability and performance improvement of our
proposed TA-RNN approach for other behavioural biometric
traits such as keystroke biometrics [37] and also on identifi-
cation scenarios [38].
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