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Abstract—This work enhances traditional authentication systems based on Personal IdentificationNumbers (PIN) andOne-Time

Passwords (OTP) through the incorporation of biometric information as a second level of user authentication. In our proposed approach,

users draweach digit of the password on the touchscreenof the device instead of typing themasusual. A complete analysis of our proposed

biometric system is carried out regarding the discriminative power of each handwritten digit and the robustnesswhen increasing the length

of the password and the number of enrolment samples. The new e-BioDigit database, which comprises on-line handwritten digits from0 to

9, has been acquired using the finger as input on amobile device. This database is used in the experiments reported in this work and it is

available together with benchmark results inGitHub.1 Finally, we discuss specific details for the deployment of our proposed approach on

current PIN andOTP systems, achieving results with Equal Error Rates (EERs) ca. 4.0 percent when the attacker knows the password.

These results encourage the deployment of our proposed approach in comparison to traditional PIN andOTP systemswhere the attack

would have 100 percent success rate under the same impostor scenario.

Index Terms—Biometrics, passwords, handwriting, touch biometrics, mobile, deep learning, RNN, LSTM, DTW, e-BioDigit

Ç

1 INTRODUCTION

MOBILE devices have become an indispensable tool for
most people nowadays [1]. The rapid and continu-

ous deployment of mobile devices around the world has
been motivated not only by the high technological evolu-
tion and new features incorporated but also to the new
internet infrastructures like 5G that allows the communi-
cation and use of social media in real time, among many
other factors. In this way, both public and private sectors
are aware of the importance of mobile devices for the
society and are trying to deploy their services through
user-friendly mobile applications ensuring data protec-
tion and high security.

Traditionally, the two most prevalent user authentica-
tion approaches have been Personal Identification Num-
bers (PIN) and One-Time Passwords (OTP). While PIN-
based authentication systems require users to memorize
their personal passwords, OTP-based systems avoid users
to memorize them as the security system is in charge of
selecting and providing to the user a different password
each time is required, e.g., sending messages to personal
mobile devices or special tokens. Despite the high popular-
ity and deployment of PIN- and OTP-based authentication
systems in real scenarios, many studies have highlighted
the weaknesses of these approaches [2], [3]. First, it is com-
mon to use passwords based on sequential digits, personal

information such as birth dates, or simply words such
as “password” or “qwerty” that are very easy to guess.
Second, passwords that are typed on mobile devices such
as tablets or smartphones are susceptible to “smudge
attacks”, i.e., the deposition of finger grease traces on the
touchscreen can be used for the impostors to guess the pass-
word [4]. Finally, password-based authentication is also
vulnerable to “shoulder surfing”. This type of attack is pro-
duced when the impostor can observe directly or use exter-
nal recording devices to collect the user information. This
attack has attracted the attention of many researchers in
recent years due to the increased deployment of handheld
recording devices and public surveillance infrastruc-
tures [5], [6]. Biometric recognition schemes are able to
cope with these challenges by combining both a high level
of security and convenience [7].

This study evaluates the advantages and potential of
incorporating biometrics to password-based mobile authen-
tication systems, asking the users to draw each digit of the
password on the touchscreen instead of typing them as
usual. This way, the traditional authentication systems are
enhanced by incorporating dynamic handwritten biometric
information. One example of use that motivates our pro-
posed approach is on internet payments with credit cards.
Banks usually send a numerical password (typically between
6 and 8 digits) to the user’s mobile device. This numerical
password must be inserted by the user in the security plat-
form in order to complete the payment. Our proposed
approach enhances such scenario by including a second
authentication factor based on the user biometric informa-
tionwhile drawing the digits. Fig. 1 shows a general architec-
ture of our proposed password-based mobile authentication
approach. The three following main modules are analyzed
in this study: i) enrolment set, ii) password generation,
and iii) touch biometric system. Depending on the final

1. https://github.com/BiDAlab/eBioDigitDB
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application (i.e., PIN or OTP), the handwritten digits can be
first recognized using for example an Optical Character Rec-
ognition (OCR) system in order to verify the authenticity of
the password. After this first authentication stage, the bio-
metric information of the handwritten digits is compared in
a second authentication stage to the enrolment data of the
claimed user, comparing each digit one by one. In this study
we focus on the second authentication stage based on the
behavioral information of the user while performing the
handwritten digits as the recognition of numerical digits has
already shown to be an almost solved problem with errors
close to 0 percent [8], [9]. Therefore, in this study we make
the assumption that impostors pass the first stage of the secu-
rity system (i.e., they know the password of the user to
attack) and thus, the attack would have 100 percent success
rate if our proposed approachwas not present.

The main contributions of this study are related to our
proposed architecture, the competitive results obtained with
respect to related research, and our experimental findings:

� We survey and compare advantages and limitations
of recent research on touch biometrics for mobile
authentication.

� We incorporate biometrics to password-based
mobile authentication. Two different state-of-the-art
approaches are studied for the similarity computa-
tion: i) Dynamic Time Warping (DTW), which is
widely used in many different fields such as hand-
writing and speech; and ii) Recurrent Neural Net-
works (RNNs), which are specific deep learning
architectures considered for modelling sequential
data with arbitrary length.

� We perform a complete analysis of the touch bio-
metric system regarding the discriminative power of
each handwritten digit. In addition, we analyze
the robustness of our proposed approach when
increasing the length of the handwritten password
and the number of available enrolment samples per
user.

� We discuss specific details for the deployment of our
proposed approach on current PIN- and OTP-based
authentication systems, including various strategies
for password generation.

� We achieve better results than other verification
schemes such as the handwritten signature and
graphical passwords, as well as other recent works
on touch biometrics.

� We introduce the new e-BioDigit database, which
comprises on-line handwritten numerical digits from
0 to 9 for a total of 93 users, captured on a mobile
device using finger touch interactions. Handwritten
digits were acquired in two different sessions in order
to capture the intra-user variability. This database is
publicly available to the research community.

The remainder of the paper is organised as follows.
Section 2 summarizes related works in touch biometrics for
mobile scenarios. Section 3 describes our proposed touch
biometric system. Section 4 describes the new e-BioDigit
database, which comprises on-line handwritten numerical
digits from 0 to 9. Sections 5 and 6 describe the experimental
protocol and results achieved using our proposed approach,
respectively. Section 7 discusses specific details for the
deployment of our proposed approach on current PIN- and
OTP-based authentication systems, including password
generation strategies. Finally, Section 8 draws the final con-
clusions and points out some future work lines.

2 RELATED WORKS

2.1 Handwriting Biometrics and Beyond

Touch biometrics are becoming a very attractiveway to verify
users on mobile devices [18], [20]. Table 1 summarizes rele-
vant approaches in this area. For each study, we include infor-
mation related to the verification method, features, classifiers
anddatasets considered.We also report in Table 1 the verifica-
tion performance for the two impostor scenarios commonly
considered in this area: i) imitation attack, the case in which
impostors have some level of information about the user being

Fig. 1. Architecture of our proposed password-based mobile authentication approach including handwritten touch biometrics in a two-factor authenti-
cation scheme applicable both to user-generated PIN and OTP systems.
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attacked [26]; and 2) random attack, the case in which no infor-
mation about the user being attacked is known. Note that
most algorithms and experimental conditions vary between
the listedworks, e.g., the amount and type of training and test-
ing data. Therefore, Table 1 should be mainly interpreted in
general terms to compare different scenarios of use based on
touch biometrics, but not individual algorithms.

In [10], Angulo et al. evaluated the use of lock pattern
dynamic systems for user authentication. Users were asked
to draw three different lock patterns a certain number of
times (50 trials for each pattern), with each pattern consist-
ing of six dots. Authors considered a total of 11 timing-
related features extracted from the finger-in-dot time (i.e.,
the time in milliseconds from the moment the participant
finger touches a dot to the moment the finger is dragged
outside the dot area), and the finger-in-between-dots time
(i.e., representing the speed at which the finger moves from

one dot to the next) achieving results above 10.0 percent
EER for imitation attacks. In [11], Lacharme et al. incorpo-
rated biometric dynamic features related to the position of
the finger, pressure, finger size and accelerometer sensor to
the traditional Android unlock patterns, achieving a final
15.0 percent EER for imitation attacks using a matching
algorithm based on Hamming Distance. Zezschwitz et al.
presented in [12] a similarity metric for Android unlock pat-
terns to quantify the effective password space of user-
defined gestures. The proposed metric was evaluated using
506 user-defined patterns revealing very similar shapes that
only differ by simple geometric transformations such as
rotation. Consequently, they presented an approach to
increase the pattern diversity in order to strengthen user
lock patterns.

Other studies have focused on the potential of keystroke
biometrics for user authentication on mobile scenarios.

TABLE 1
Comparison of Different Touch Biometric Approaches for Mobile Scenarios

Study Method Features Classifiers Verification Performance # Participants

Random Attack Imitation Attack (Dataset)

Angulo et al. (2011)
[10]

Lock Pattern
Dynamics

Timing-related
Features

Random Forest - EER = 10.39% 32

Lacharme et al. (2016)
[11]

Lock Pattern
Dynamics

Dynamic Features Hamming Distance - EER = 15.0% 34

Zezschwitz et al. (2016)
[12]

Lock Pattern
Dynamics

Shape Features Greedy Clustering - - 506

Buschek et al. (2015)
[13]

Keystroke Font Adaptation
Features

Manual Acc = 94.8% - 91

Buschek et al. (2015)
[14]

Keystroke Touch-specific
Features

GM, kNN, LSAD EER = 13.74% - 28

Li et al. (2013)
[15]

Touchscreen
Gestures

Static Features SVM EER = 3.0% - 75

Sae-Bae et al. (2014)
[16]

Touchscreen
Gestures

Distance between
Points

DTW EER = 1.58% - 34

Shen et al. (2016)
[17]

Touchscreen
Gestures

Static Features SVM, Random
Forest, kNN, Neural

Networks

EER � 3.0% - 71

Fierrez et al. (2018)
[18]

Touchscreen
Gestures

Static Features SVM, GMM EER = 10.7% - 190

Sae-Bae et al. (2014)
[19]

Handwritten
Signatures

Histogram Static
Features

Manhattan Distance EER = 5.04% - 180

Tolosana et al. (2017)
[20]

Handwritten
Signatures

Dynamic Features DTW EER = 0.5% EER = 17.9% 65

Khan et al. (2011)
[21]

Graphical
Passwords

Predefined Symbols Exact Match - - 100

Martinez-Diaz et al. (2016)
[22]

Graphical
Passwords

Dynamic Features DTW, GMM EER = 3.4% EER = 22.1% 100

Kutzner et al. (2015)
[23]

Handwritten
Password

Static and Dynamic
Features

Bayes-Nets,KStar,
kNN

- FAR = 10.42%
FRR = unknown

32

Nguyen et al. (2017)
[24]

Handwritten Digits Dynamic Features DTW - EER = 4.84% 20

Tolosana et al. (2018)
[25]

Handwritten Digits Dynamic Features DTW - EER = 5.5% 93

Proposed Approach Handwritten
Digits

Dynamic Features DTW, RNNs - EER = 3.8% 93

Acc = Accuracy.

1534 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 7, JULY 2020

Authorized licensed use limited to: Universidad Autonoma de Madrid. Downloaded on June 09,2020 at 12:40:36 UTC from IEEE Xplore.  Restrictions apply. 



In [13], Buschek et al. introduced qualitative aspects like
personal expressiveness in order to enhance traditional
keystroke biometric systems based on quantitative factors
such as error rates and speed. They introduced a dynamic
font personalisation framework, TapScript, which adapted
a finger-drawn font according to user behavior and con-
text, such as finger placement, device orientation, and
position of the user while typing (i.e., walking or sitting) -
resulting in a handwritten-looking font. Following their
new approach, users were able to distinguish pairs of
typists with 84.5 percent accuracy and walking/sitting
scenarios with 94.8 percent. The same authors compared
in [14] touch-specific features between three different hand
postures (i.e., one-thumb, two-thumb and index finger
typing) and evaluation schemes: Gaussian Model without
covariance (GM), k-Nearest-Neighbours (kNN) and Least
Squares Anomaly Detection (LSAD). Authors concluded
that spatial touch features reduces the Equal Error Rates
(EER) by 26.4 - 36.8 percent compared to the traditional
temporal features.

Biometric verification systems based on touchscreen ges-
tures (i.e., scrolling, zooming and clicking) while using
mobile devices in scenarios such as document reading, web
surfing or free tasks are gaining a lot of impact nowa-
days [15], [16], [17], [18]. These approaches enable active or
continuous authentication schemes, in which the user is
transparently authenticated [27], [28]. Different features and
algorithms have been proposed in this field achieving very
good results against random attacks. In [16], the authors
proposed a set of 22 multitouch gestures using characteris-
tics of hand and finger movements with an algorithm robust
to orientation and translation achieving a final result of
1.58 percent EER. In [18], a set of 100 static features
extracted from swipe gestures and systems based on
Support Vector Machines (SVM) and Gaussian Mixture
Models (GMM) were considered obtaining performances
up to 10.7 percent EER. Very good results have been also
achieved in [15], [17] using verification algorithms such as
SVM, kNN, Random Forest and Neural Networks.

Handwritten signature is one of the most socially
accepted biometrics as it has been used in financial and legal
agreements for many years [29], [30], [31], [32], and it also
finds applications in mobile scenarios. In [33], the authors
explored the use of new algorithms based on RNNs on tradi-
tional desktop scenarios for pen-based signature recognition
achieving results below 5.0 percent EER for imitation attacks.
However, a considerable degradation of the system perfor-
mance with results around 20.0 percent EER is obtained for
imitation attacks when testing on mobile scenarios using fin-
ger touch as input [19], [20]. The main reason for such degra-
dation of the system performance when using finger touch
compared to pen-based desktop scenarios is the fact that
users tend to modify the way they sign between both
approaches, e.g., users who perform their signatures using
closed letters with a pen input tend to perform much larger
writing executions when using the finger. Besides, users
whose signatures are composed of a long name and surname
(or two surnames) tend to simplify some parts of their signa-
tures due to the small surface of the screen to sign on. Graph-
ical passwords were studied in [21], [22]. In [22], the authors
proposed an approach based on graphical passwords

(doodles) achieving final results above 20.0 percent EER for
imitation attacks. The main reason for such degradation of
the system performance lays down on the specific task that
the user needs to perform to be authenticated, e.g., doodles
were difficult to memorize for most of the users as they
didn’t use them on a daily basis.

Finally, strongly related to the present work, in [23], [24]
the authors proposed the use of handwritten passwords to
be authenticated. In [23], Kutzner et al. asked the users to
perform an 8-digit password on the screen of a tablet device.
For each handwritten password, a total of 25 static and
dynamic features were extracted and tested using many dif-
ferent authentication algorithms. However, the authentica-
tion scenario considered in that approach restricts the
deployment of the technology in real mobile applications
as: i) the authors considered a large number of training
samples (12), and ii) it seems to be only applicable to devices
with large screens (such as tablets) as it would be very
difficult for the users to perform such a long password
(8 digits) on a screen of much smaller size. In [24], Nguyen
et al. evaluated the use of handwritten touch biometrics
for PIN-based authentication systems. Their proposed
authentication approach overcame some of the drawbacks
previously cited as they asked users to draw each digit of
the PIN one by one. A final 4.84 percent EER was achieved
using a biometric system composed of 5 dynamic features
and a matcher algotithm based on DTW. Finally, a prelimi-
nary study of the work presented here was published
in [25]. In that work we performed an initial analysis of
the touch biometric system only for OTP authentication
schemes. In addition, DTW was the only approach consid-
ered for the similarity computation.

The study presented here extends the preliminary analy-
sis carried out in [25]. The main improvements over [25] are:

� Our preliminary touch biometric system in [25]
based on DTW has been extended by incorporating
RNN deep learning architectures. To the best of our
knowledge, this is the first work to date that studies
recurrent Siamese networks to model handwritten
password authentication systems.

� Our analysis in [25] studied only OTP schemes. Here
we also study PIN authentication, as depicted in
Fig. 1.

� The system architecture includes 2 new blocks with
respect to [25]: i) enrolment set, and ii) password
generation; which are discussed in the text and eval-
uated experimentally.

� Section 2 has been included to survey and compare
advantages and limitations of recent research on
touch biometrics for mobile authentication.

� The results achieved in the present study outper-
form our initial results presented in [25] with a
final 3.8 percent EER, a relative improvement of
30.9 percent EER compared to [25]. This result out-
performs other touch biometric approaches and
considers fewer enrolment samples.

� Section 7 has been included to discuss specific details
for the deployment of our proposed approach on
practical PIN and OTP authentication systems,
including various strategies for password generation.

TOLOSANA ET AL.: BIOTOUCHPASS: HANDWRITTEN PASSWORDS FOR TOUCHSCREEN BIOMETRICS 1535

Authorized licensed use limited to: Universidad Autonoma de Madrid. Downloaded on June 09,2020 at 12:40:36 UTC from IEEE Xplore.  Restrictions apply. 



2.2 Two-Factor Password Authentication

The incorporation of biometric information on traditional
password-based systems can improve the security through a
second level of user authentication. Two-factor authentica-
tion approaches have been very successful in the last years.
These approaches are based on the combination of two
authentication stages. For example: i) the security system
checks that the claimed user introduces its unique password
correctly, and ii) its behavioral biometric information is used
for an enhanced final verification [24], [34]. This way the
robustness of the security system increases as impostors
need more than the traditional password to get access to the
system. This approach has been studied in previous works.
In [10], the authors proposed a two-factor verification system
based on timing-related features for dynamic lock
patterns, achieving a final average EER of 10.39 percent
for imitation attacks. A similar two-factor authentication
approach was proposed in [11] for traditional Android
unlock patterns but considering biometric dynamic features
related to the position of the finger, pressure, finger size and
accelerometer sensor achieving a final 15.0 percent EER for
imitation attacks. Two-factor authentication approaches
have also been expanded to physiological biometric traits.
In [35], Jenkins et al. proposed a system based on features
extracted for periocular images acquired using an iPhone 5,
achieving very good results for the task of identification.

3 TOUCH BIOMETRIC SYSTEM

3.1 Digit-Based Feature Extraction

In this workwe evaluate the potential of touch biometric ver-
ification systems based on time functions [36]. Signals cap-
tured by the digitizer (i.e., X and Y spatial coordinates) are
used to extract a set of 21 time functions for each numerical
digit sample (see Table 2). Information related to pressure,
pen angular orientations or pen ups broadly used in other
biometric traits such as handwriting and handwritten signa-
ture is not considered here as this information is not available
in all mobile devices when using the finger touch as input.

Sequential Forward Floating Search (SFFS) algorithm is
used for the DTW algorithm in some of the experiments in
order to select the best subsets of time functions for each
handwritten digit and improve the system performance in
terms of EER (%).

3.2 Similarity Computation

3.2.1 Dynamic Time Warping

DTW is used to compare the similarity between genuine
and query input samples, finding the optimal elastic match
among time sequences that minimizes a given distance mea-
sure. Scores are obtained as score ¼ e�D=K , where D and K
represent respectively the minimal accumulated distance
and the length of the warping path [37].

3.2.2 Recurrent Neural Networks

Some of the fields in which RNNs have caused more impact
in the last years is in handwriting recognition and writer
identification [38], [39]. This study explores the potential of
RNNs for the task of handwritten passwords. In particular,
we consider an adaptation of our original RNN systems
proposed in [33] for the task of on-line handwritten signa-
ture verification. In that work we proposed RNN systems
based on a Siamese architecture. The main goal was to learn
a dissimilarity metric from data minimizing a discrimina-
tive cost function that drives the dissimilarity metric to be
small for pairs of genuine samples from the same subject,
and higher for pairs of samples coming from different sub-
jects. Both Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) systems were studied in [33], outper-
forming a state-of-the-art DTW system in challenging sce-
narios where skilled forgeries were considered. In addition,
in [33] we also studied bidirectional schemes (i.e., BLSTM
and BGRU), which allow access to future context, achieving
much better results compared to the original schemes that
only had access to past and present contexts.

In this study we adapt the original BLSTM system pro-
posed in [33] to handwritten passwords for touchscreen
biometrics. To the best of our knowledge, this is the
first work to date that studies recurrent Siamese net-
works to model handwritten password authentication
systems. Fig. 2 shows our proposed end-to-end writer-

TABLE 2
Set of Time Functions Considered in this Work

# Feature

1 X-coordinate: xn

2 Y-coordinate: yn
3 Path-tangent angle: un
4 Path velocity magnitude: vn
5 Log curvature radius: rn
6 Total acceleration magnitude: an
7-12 First-order derivative of features 1-6:

_xn; _yn; _un; _vn; _rn; _an
13-14 Second-order derivative of features 1-2: €xn; €yn
15 Ratio of the minimum over the maximum speed over

a 5-samples window: vrn
16-17 Angle of consecutive samples and first-order

derivative: an, _an

18 Sine: sn
19 Cosine: cn
20 Stroke length to width ratio over a 5-samples

window: r5n
21 Stroke length to width ratio over a 7-samples

window: r7n

Fig. 2. Proposed end-to-end writer-independent BLSTM touch biometric
system based on a Siamese architecture.
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independent BLSTM touch biometric system based on a
Siamese architecture. For the input of the system, we
feed the network with as much information as possible,
i.e., all 21 time functions per digit. The first layer is com-
posed of two BLSTM hidden layers with 21 memory
blocks each, sharing the weights between them. The out-
puts of the first two parallel BLSTM hidden layers are
concatenated and serve as input to the second layer,
which corresponds to a BLSTM hidden layer with 42
memory blocks. Finally, a feed-forward neural network
layer with a sigmoid activation is considered, providing
an output score for each pair of digits. It is important to
highlight that our approach is trained to distinguish
between genuine and impostor patterns from all numeri-
cal digits and users. Thus, we just train one writer-
independent system for all digits and users through a
development dataset.

4 DATABASE E-BIODIGIT

The new e-BioDigit database was captured in order to per-
form the experimental work included in this article. This
database comprises on-line handwritten numerical digits
from 0 to 9 acquired using a Samsung Galaxy Note 10.1 gen-
eral purpose tablet. This device has a 10.1-inch LCD display
with a resolution of 1280 � 800 pixels.

Regarding the acquisition protocol, subjects had to per-
form handwritten numerical digits from 0 to 9, one at a
time. The acquisition setup and some examples of the hand-
written numerical digits of the e-BioDigit database are
depicted in Fig. 3. Additionally, samples were collected in
two sessions with a time gap of at least three weeks between
them in order to consider inter-session variability, very
important for behavioral biometric traits [40]. For each ses-
sion, users had to perform a total of 4 numerical sequences
from 0 to 9 using the finger as input. Therefore, there are a
total of 8 samples per numerical digit and user.

The software for capturing handwritten numerical digits
was developed in order to minimize the variability of the
user during the acquisition process. A rectangular area with
a writing surface size similar to a 5-inch screen smartphone
was considered, see Fig. 3a. A horizontal line was

represented on top of the drawing rectangular area, includ-
ing two buttons “OK” and “Cancel” to press after writing if
the sample was good or bad respectively.

The database comprises a total of 93 users. Regarding the
age distribution, the majority of the subjects (85.0 percent) are
between 17 and 27 years old, as the database was collected in
a university environment (36.6 percent between 17 and 21).
Regarding the gender, 66.7 percent of the subjects were males
and 33.3 percent females whereas for the handedness distri-
bution, 89.2 percent of the populationwas righthanded.

5 EXPERIMENTAL PROTOCOL

The experimental protocol designed in this study intends to
cover all details of the two following main modules of our
proposedpassword-based touch biometric system (see Fig. 1):

� Enrolment Set. When designing biometric authentica-
tion systems for real applications, there are usually
two conflicting factors: i) the amount of data
requested to the user during the enrolment, and ii)
the security level provided by the biometric system.
From the point of view of the security system, it seems
clear that the ideal case would be to have as much
information of the user as possible. However, in most
real scenarios, the feasibility and success depend on
the development of user-friendly applications.

This aspect has shown to be crucial for different
tasks such as the handwritten signature. In [41], we
evaluated this effect using statistical systems based
on HMM and GMM, achieving an absolute improve-
ment of 11.7 percent EERwhen training the usermod-
els with 41 genuine signatures instead of just 4. In this
work, we analyze the intra-user variability on this
new authentication scenario and perform a complete
analysis of how the biometric system performance
changes with the number of enrolment samples
acquired per digit.

� Password Generation. The selection of a password that
is robust enough for a specific application is a key
factor. The number of digits that comprise the pass-
word depends on the scenario and level of security

Fig. 3. (a) Acquisition setup. (b)-(d) Examples of different handwritten numerical digits of the e-BioDigit database. X and Y denote horizontal and
vertical position versus the time samples.
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considered in the final application. For example, for
everyday applications such as Facebook or Gmail, it
is not reasonable from the point of view of the users
to memorize passwords composed of 12 digits.
Additionally, OTP-based systems could request lon-
ger passwords compared to PIN-based systems as
users do not have to memorize them, i.e., the security
system is in charge of selecting and providing the
password to the user.

In this experimental work we evaluate the robust-
ness of handwritten passwords regarding the three
following features: i) which digits better discriminate
users, ii) whether repetitions of the same numerical
digits in a password can help to discriminate users
or not, and iii) the length of the password. For short
passwords (i.e., fewer than 6 digits), this analysis is
carried out performing all possible digit combina-
tions, whereas for longer passwords, the SFFS algo-
rithm is used to select the best digit combinations
due to the high cost of performing all possible
comparisons.

In order to perform a complete analysis of these two
modules, the e-BioDigit database is divided into develop-
ment (the first 50 users) and evaluation (the remaining 43
users) datasets.

For the development of our proposed handwritten touch
biometric systems, N genuine signatures (up to 4) from the
first session can be used as enrolment samples, whereas
the 4 remaining genuine samples from the second session
are used for testing. Impostor scores are obtained by com-
paring the N enrolment samples with one genuine sample
of each of the remaining users (simulating this way the imi-
tation attack in which the impostor knows the password).

For the evaluation of our proposed touch biometric sys-
tem, different scenarios are generally considered regarding
the number of available enrolment samples per user (i.e.,
Nvs1), in which the final score is performed as the average
score of N one-to-one comparisons. In addition, in case of
using passwords composed of several digits, the final score

is produced after averaging the different one by one digit
score comparisons.

It is important to highlight that the inter-session variabil-
ity problem is also considered in the experimental protocol
carried out in this work as genuine digit samples from dif-
ferent sessions are used as enrolment and testing samples
respectively. This effect has proven to be very important for
many behavioral biometric traits such as the case of the
handwritten signature [40].

6 EXPERIMENTAL RESULTS

6.1 One-Digit Analysis

This section analyzes the potential of each numerical digit
(i.e., from 0 to 9) for the task of user authentication. We con-
sider three different systems: i) a baseline DTW system, ii)
an adapted DTW considering feature selection, and iii) a
system based on RNNs.

Experimental results on the evaluation dataset for these
three systems are shown in Tables 3 and 4 in terms of EER
(%) for the cases of 1vs1 and 4vs1 comparisons, respectively.

6.1.1 DTW Baseline System

In order to provide an easily reproducible framework, we
first consider a baseline system based on DTW with the
same fixed time functions for all numerical digits. Table 5
shows the time functions selected, which are commonly
used as baseline in other biometric traits such as the hand-
written signature [20], [42].

Analyzing the first rows of Tables 3 and 4 we can see how
very good authentication results are obtained by the DTW
Baseline System taking into account that we only consider
one digit and the same time functions for all numerical digits.

Analyzing in Table 3 the extreme scenario of having just
one available digit sample during the enrolment (1vs1), the
numerical digit 7 achieves the best result with 22.5 percent
EER. In addition, other numerical digits such as 4 or 5
achieve similar results with EERs below 25.0 percent. This
first experiment puts in evidence the discriminative power
of each handwritten digit. Fig. 4 shows examples of the digit
7 performed by two different users in order to observe the
low intra- and high inter-user variability of this number.
This effect is produced as different users tend to perform a
specific digit in a different way, i.e., starting from a different
stroke of the digit or even removing some of them such as
the crossed horizontal stroke of the number 7.

Analyzing in Table 4 the scenario of using four enrol-
ment samples (4vs1), an average absolute improvement of
3.2 percent EER is achieved compared to the 1vs1 scenario
showing the importance of acquiring more than one sample
during the enrolment stage, if possible. For this scenario,
the digit 4 achieves the best result with 18.0 percent EER.

TABLE 3
System Performance as EER(%) of Each Numerical Digit for

the 1vs1 Case on the Evaluation Dataset

Numerical Digit

0 1 2 3 4 5 6 7 8 9

DTW Baseline 34.9 32.3 32.8 35.0 23.5 24.4 36.9 22.5 26.0 29.6
DTWAdapted 33.0 34.0 30.9 32.3 22.0 21.7 33.6 21.8 21.8 27.0
BLSTM 32.8 30.8 32.8 32.3 26.2 19.6 35.2 28.5 21.7 23.8

TABLE 4
System Performance as EER(%) of Each Numerical Digit for the

4vs1 Case on the Evaluation Dataset

Numerical Digit

0 1 2 3 4 5 6 7 8 9

DTW Baseline 33.1 28.5 30.2 32.6 18.0 20.3 36.6 19.2 22.7 25.0
DTWAdapted 31.4 33.1 27.9 29.7 19.2 16.9 29.7 20.3 18.6 23.3
BLSTM 31.4 27.9 31.4 26.2 24.4 17.4 35.4 24.4 18.0 20.9

TABLE 5
Time Functions Selected for the Baseline System

# Time-function description

1 X-coordinate: xn

2 Y-coordinate: yn
7-8 First-order derivate of features 1-2: _xn; _yn
13-14 Second-order derivate of features 1-2: €xn; €yn
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6.1.2 DTW Adapted System

We now apply SFFS over the development dataset in order
to enhance the DTW touch biometric system through the
selection of specific time functions for each handwritten
digit. Fig. 5 shows the number of times each time function is
selected in our DTW Adapted System from the 21 total time
functions described in Table 2. In general, we can highlight
the importance of xn, yn time functions as they are selected
for 70 percent of the numerical digits. In addition, time func-
tions _xn; _yn related to X and Y time derivatives seem to be
very important as they are selected for near half of the dig-
its. Other time functions such as rn, _rn, _an and sn related to
geometrical aspects of the numerical digits are proven not
to be very useful to discriminate between genuine and
impostor users.

The second rows of Tables 3 and 4 show the results
achieved for each digit using our DTW Adapted System
over the evaluation dataset for both 1vs1 and 4vs1 cases,
respectively. In general, better results are achieved com-
pared to the DTW Baseline System. Analyzing the 1vs1 sce-
nario, our DTW Adapted System achieves an average
absolute improvement of 2.0 percent EER, being the numer-
ical digit 5 the one that provides the best result with a 21.7
percent EER. Analyzing the 4vs1 scenario, our DTW
Adapted System achieves an average absolute improvement
of 1.6 percent EER, being again the numerical digit 5 the one
that achieves the best result with a 16.9 percent EER. These

results put in evidence the importance of considering differ-
ent time functions for each digit in order to develop more
robust biometric authentication systems against attacks.

6.1.3 BLSTM System

We now explore the potential of state-of-the-art deep learn-
ing technology applied to our touch biometric data. Our
proposed end-to-end writer-independent BLSTM system is
trained using only the 50 users of the development dataset.
Samples from all numerical digits (i.e., from 0 to 9) and
development users are considered together during training
as we intend to distinguish between genuine and impostor
handwritten digit samples regardless of the user and the
numerical digit. This approach resulted in better generalisa-
tion results compared to the case of training one system per
numerical digit. Therefore, our BLSTM system is trained
considering two different cases: i) pairs of genuine digit sam-
ples drawn by the same user, and ii) pairs of genuine and
impostor digit samples, one performed by the claimed user
and the other one by an impostor. For each case there are a
total of 4 train samples �4 test samples �10 numerical digits
�50 users ’ 8,000 comparisons, having the same number of
genuine and impostor comparisons. Our BLSTM System has
been implemented under Keras using Tensorflow as back-
end, with a NVIDIA GeForce RTX 2080 Ti GPU. Adam opti-
mizer is considered with a learning rate of 0.001 and a loss
function based on binary cross-entropy.

Fig. 4. Examples of the digit 7 performed by two different users.

Fig. 5. Histogram of functions selected by SFFS for our DTW adapted system. Functions described in Table 2.
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The third rows of Tables 3 and 4 show the results
achieved for each digit using our BLSTM System over the
evaluation dataset for both 1vs1 and 4vs1 cases, respec-
tively. In general, better results are achieved compared to
the DTW Baseline System. Analyzing the 1vs1 scenario, our
BLSTM System achieves an average absolute improvement
of 1.4 percent EER, being the numerical digit 5 the one that
provides the best result with a 19.6 percent EER. Analyzing
the 4vs1 scenario, our BLSTM System achieves an average
absolute improvement of 0.9 percent EER, being again the
numerical digit 5 the one that achieves the best result with a
17.4 percent EER.

Finally, we compare our BLSTM System to the DTW
Adapted System. In general, very similar results have been
achieved for both authentication systems. For example, ana-
lyzing the 1vs1 case in Table 3, the BLSTM System has out-
performed the DTW Adapted System for the 50 percent of
the numerical digits (i.e., 0, 1, 5, 8, and 9), proving the poten-
tial of deep learning technologies even when just a single
enrolment sample is considered. Despite these improve-
ments, the DTW Adapted System outperforms slightly the
BLSTM System in general, achieving an average absolute
improvement of 0.5 and 0.7 percent EER for the 1vs1 and
4vs1 cases, respectively.

6.2 Digit Combinations

This section explores the robustness of our proposed
approach when increasing the length of the password and
also the number of available enrolment samples. The DTW
Adapted System is considered in this analysis as it has outper-
formed the other systems studied. Regarding the type of digits
that comprises the password, repetitions of the same numeri-
cal digits are allowed. However, the number of repetitions is
restricted to 4, e.g., “2 5 8 8 8 8”. The reason for this limitation
is motivated due to only 4 samples were acquired per digit
during the second session of the e-BioDigit database. Table 6
shows the evolution of the system performance in terms of
EER (%) on the evaluation dataset when increasing the length
of the handwritten password (from 1 to 8 digits) and also the
number of available enrolment samples (from 1 to 4).

First, we analyze how the length of the handwritten pass-
word affects the system performance. In general, a consider-
able system performance improvement is achieved when
adding more handwritten digits to the password. For

example, for the case of having just one enrolment sample
per user (1vs1), a password that is composed of just two
handwritten digits achieves a 14.0 percent EER, an absolute
improvement of 7.7 percent EER compared to the case of
using a password with just one digit. This result is further
improved when increasing the number of handwritten dig-
its of the password with a final 8.5 percent EER for the case
of considering a 6-digit password. However, there seems to
exist a limit in the system performance improvement with
the number of digits that comprise the password. In our
experiments, the best results are obtained for passwords
with a length of 6 and 7 digits.

Now, we analyze the effect of the number of available
enrolment samples on the system performance. In general,
the system performance improves with the number of enrol-
ment samples. For example, for the case of having just one
enrolment sample and a password composed of just one
digit, the biometric system achieves a 21.7 percent EER.
This result is further improved when increasing the number
of enrolment samples to 4, achieving a final value of
16.9 percent EER, an absolute improvement of 4.8 percent
EER. However, there seems to exist a limit in the system
performance improvement with the number of enrolment
samples. In our experiment, very similar results are
obtained when considering 3 or 4 enrolment samples,
achieving a final value of 3.8 percent EER when considering
3 enrolment samples and a handwritten password of 7
digits. This interesting finding is different compared to
other behavioral biometric traits such as the handwritten
signature as the system performance keeps improving even
with large number of enrolment samples [41]. This effect
may be due to the lower intra-user variability of our pro-
posed touch biometric approach compared to other behav-
ioral biometrics as well as the DTW similarity computation
algorithm considered.

Finally, we pay attention to the content and the number
of possible combinations of the best handwritten passwords
using our proposed touch biometric system so as to achieve
the best system performance. Table 6 indicates in the bottom
of each cell the best handwritten digits selected but not their
order, as the final score of our proposed touch biometric
system is produced after averaging the different one by one
digit score comparisons. Therefore, for the case of having a
password comprised of n digits, there are a total of n!

TABLE 6
Evolution of the System Performance in Terms of EER (%) on the Evaluation Dataset

# Digits that comprise the password

1 2 3 4 5 6 7 8

# Enrolment
samples

1 21.7
[5]

14.0
[5, 8]

11.6
[5, 7, 9]

11.6
[1, 5, 7, 9]

9.3
[2, 5, 6, 7, 8]

8.5
[2, 3, 5, 6, 7, 8]

8.5
[1, 2, 3, 5, 6, 7, 8]

8.5
[2, 3, 4, 5, 6, 7, 8, 9]

2 18.6
[5]

11.6
[5, 8]

9.3
[2, 5, 8]

7.4
[2, 5, 8, 9]

7.3
[1, 2, 5, 7, 9]

4.6
[2, 5, 6, 7, 8, 9]

4.6
[1, 2, 3, 5, 7, 8, 9]

4.6
[1, 2, 3, 4, 5, 6, 7, 8]

3 16.3
[5]

9.5
[2, 8]

7.4
[1, 2, 8]

5.9
[2, 5, 8, 9]

4.7
[1, 2, 5, 8, 9]

4.6
[1, 2, 3, 5, 8, 9]

3.8
[1, 2, 3, 4, 5, 8, 9]

4.6
[0, 1, 2, 3, 4, 5, 7, 8]

4 16.9
[5]

11.6
[5, 8]

7.0
[7, 8, 9]

6.1
[5, 7, 8, 9]

4.7
[1, 5, 7, 8, 9]

4.6
[1, 2, 5, 7, 8, 9]

4.3
[1, 2, 3, 5, 7, 8, 9]

4.8
[0, 1, 2, 3, 4, 5, 7, 8]

The best system performance achieved and the corresponding handwritten digits selected are shown on the top and bottom of each cell, respectively.
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possible password combinations (note that in our experi-
ments we did not have any case of repetitions of digits
achieving the best results).

6.3 Comparison to the State of the Art

Our proposed approach is now compared to other state-of-
the-art biometric authentication approaches described in
Table 1. In order to perform a fair analysis, we compare our
proposed approach to all studies that consider the same
type of impostors, i.e., imitation attacks.

In general, our proposed approach achieves better
results than other touch biometric approaches. For the
case of lock pattern dynamic systems [10], [11], the best
system performance reported was an average 10.39 per-
cent EER. Our proposed approach also outperforms other
biometric methods such as the handwritten signature or
graphical passwords [20], [22]. In [20], the authors pro-
posed handwritten signature verification systems adapted
to mobile scenarios, i.e., using mobile devices such as
smartphones and tablets with the finger as input, achiev-
ing EERs around 20.0 percent. In [22], the authors pro-
posed the use of graphical doodles and pseudosignatures
(i.e., simplified versions of the signatures drawn with the
finger). EERs above 20.0 percent were obtained in both
cases for imitation attacks.

Finally, our proposed approach has been compared to
other state-of-the-art authentication systems based on hand-
written passwords. In [23], the authors proposed the use of
handwritten passwords with a fixed length of 8 characters,
achieving a final False Acceptance Rate (FAR) of 10.42 percent
when using a total of 12 training samples per user (the False
Rejection Rate FRR was not provided by the authors).
In [24], Nguyen et al. evaluated the potential of drawing each
digit of a 4-digit PIN one by one, achieving a final result of
4.84 percent EER when considering a total of 5 enrolment
samples. Our proposed approach achieves a final value of
3.8 percent EER and it is able tomitigate the limitations of [23]
about the size of the touchscreen, as users perform numerical
digits one at a time. Additionally, we only consider 3 enrol-
ment samples and not 5 as in [24] in order to improve the
usability of our approach.

7 PASSWORD GENERATION AND SYSTEM SETUP

In this section we discuss specific details for the deployment
of our proposed approach in real scenarios considering the

same experimental protocol described in Section 5. The
DTWAdapted System has been considered for this analysis.

First, we focus on PIN-based systems. For this scenario,
we propose to use passwords based on 4 digits as users
have to memorize them and it is not feasible from the point
of view of the user to consider longer passwords. Regarding
the enrolment stage, we propose to request 3 enrolment
samples per digit to each user. We consider this as some-
thing feasible for real applications as users would have to
perform a total of 4 digits �3 samples/digit ¼ 12 samples,
i.e., 12 samples �2 seconds/sample ’25 seconds.

Oncewe have fixed the number of enrolment samples and
digits parameters, we design what type of passwords we let
users to use (i.e., we design the PasswordGenerationmodule
in Fig. 1). The following cases are considered regarding both
the system performance and number of possible combina-
tions: i) ALL password combinations are allowed, and ii)
only combinations using the BEST 4 digits selected in Table 6
andwith no repetitions (recall in Section 6.2 we obtained that
the most discriminative password combinations in terms of
touch biometric information didn’t include repeated digits).
Fig. 6 shows the EER distribution values obtained for all pos-
sible password combinations. On the box, the central mark
indicates the median, and the left and right edges of the box
indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not consid-
ered outliers, and the outliers are plotted individually. In
general, we can see that the 75 percent of password combina-
tions provide results below 16.2 percent EER. Analyzing the
case ALL, the system performance results achieved are
between 5.9 and 35.7 percent EER with a total of 104 combi-
nations. The performance is improved in the case BEST with
a 5.9 percent EER for all considered combinations. However,
users would be able to choose only among 4! combinations
(i.e., 24). Besides, the security level of the first authentication
stage would decrease as fewer password combinations
would be possible. Therefore, a good choice could be to select
all possible passwords that provide results in a range of
EERs. For example, permitting between 5.9 and 10.0 percent
EER. This approach would allow users to choose among
2,956 different 4-digit passwords.

Now, we analyze the OTP-based system. For this scenario,
we propose to use passwords composed of 7 digits, similar to
current OTP-based applications, as users do not have to
memorize the password, i.e., the system is in charge of select-
ing and providing different passwords to the user each time
is required. Regarding the enrolment stage, we also propose
to request 3 enrolment samples per digit so users would
have to perform a total of 10 digits �3 samples/digit ¼ 30
samples, i.e., 30 samples �2 seconds/sample’1 minute.

Once we have fixed both the number of enrolment sam-
ples and the length of the password, we analyze the content
of the passwords. For this scenario, the following cases are
considered: i) ALL digit combinations are allowed, and ii)
only combinations using the BEST 7 digits selected in Table 6
with no repetitions. Table 7 depicts the number of possible
combinations as well as the EER (%) for both cases. Analyz-
ing the case in which users can choose any possible combi-
nation, the system performance results achieved are
between 3.8 and 14.0 percent EER. However, it is important
to remark that for this case (longer passwords) results were

Fig. 6. PINSystem: Boxplot for the case of considering all 4-digit password
combinations. On the box, the central mark indicates the median, and the
left and right edges of the box indicate the 25th and 75th percentiles,
respectively.
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obtained due to experimental restrictions using the SFFS
algorithm and limiting the maximum number of digit repe-
titions to 4, so the final 14.0 percent EER might get a bit
worse in practice when considering all possible digit combi-
nations. This approach is further improved in the case BEST
with a final 3.8 percent EER. For this scenario we propose to
use this second case as there would be a total of 7! (i.e.,
5,040) combinations that provide the best system perfor-
mance for our proposed touch biometric approach.

8 CONCLUSIONS

This work evaluates the advantages and potential of incorpo-
rating handwritten touch biometrics to password-basedmobile
authentication systems. The new e-BioDigit database that com-
prises handwritten numerical digits from 0 to 9 is used in the
experiments reported in this work and it is available together
with benchmark results in GitHub.2 Data were collected in two
sessions for a total of 93 subjects. Handwritten numerical digits
were acquired using the finger touch as the input on a Sam-
sung Galaxy Note 10.1 general purpose tablet device.

For the new e-BioDigit database, we report a benchmark
evaluation using two different state-of-the-art approaches:
i) DTW in combination with the SFFS function selection
algorithm, and ii) RNN deep learning technology. Both
approaches have been compared, achieving very good
results even for the case of using just a single enrolment
sample. In addition, we perform a complete analysis of the
touch biometric system regarding the discriminative power
of each handwritten digit, and the robustness of our pro-
posed approach when increasing the length of the password
and the number of enrolment samples per user.

Our proposed approach achieves good results with EERs
ca. 4.0 percent when considering imitation attacks, outper-
forming other traditional biometric verification traits such
as the handwritten signature or graphical passwords on
similar mobile scenarios. Additionally, we discuss specific
details for the deployment or our proposed approach on
current PIN- and OTP-based authentication systems.

Future work will be oriented to enlarge the current e-BioDi-
git database in order to consider lower- and upper-case letters
and also to train more complex deep learning architectures.
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