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A B S T R A C T

In this paper we study the suitability of a new generation of CAPTCHA methods based on smartphone
interactions. The heterogeneous flow of data generated during the interaction with the smartphones can be used
to model human behavior when interacting with the technology and improve bot detection algorithms. For this,
we propose BeCAPTCHA, a CAPTCHA method based on the analysis of the touchscreen information obtained
during a single drag and drop task in combination with the accelerometer data. The goal of BeCAPTCHA is
to determine whether the drag and drop task was realized by a human or a bot. We evaluate the method by
generating fake samples synthesized with Generative Adversarial Neural Networks and handcrafted methods.
Our results suggest the potential of mobile sensors to characterize the human behavior and develop a new
generation of CAPTCHAs. The experiments are evaluated with HuMIdb1 (Human Mobile Interaction database),
a novel multimodal mobile database that comprises 14 mobile sensors acquired from 600 users. HuMIdb is
freely available to the research community.
. Introduction

The research interest in smartphone devices has been constantly
rowing in the last years. The capacity of these devices to acquire,
rocess, and storage a wide range of heterogeneous data offers many
ossibilities and research lines (e.g. user authentication, Fierrez et al.,
018b; Frank et al., 2013; Monaco and Tappert, 2018; Patel et al.,
016, health monitoring, Albert et al., 2012; Arroyo-Gallego et al.,
017; BioSpace, 2014, behavior monitoring, Chen et al., 2015; Dua
t al., 2019; Pei et al., 2010; Tavakolian et al., 2019, etc.). Besides,
he usage of mobile phones is ubiquitous. According to Mobile World
ongress (2018), mobile lines exceeded world population in 2018, and
he amount of smartphones devices sold surpassed world population in
014 (Independent, 2014). This is one of the fastest growing manmade
henomena ever, from 0 to 7.2 billion in barely three decades. In the
ame way, this widget has changed the way we access and create con-
ents on the internet. Recent surveys reveal that nearly three quarters
72.6%) of internet users will access the web via their smartphones by
025. In fact, almost 51% of web accesses are actually made through
obile phones (CNBC, 2019).

On the other hand, mobile web hazards are growing very fast as
ell. Malicious malware is also adapting to this new mobile era. Mobile
ots employ the capacities of smartphones affecting multiples types
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of online services, such us: social media (e.g. mobile bots accounts
propagate fake twitter messages, Chu et al., 2019), ticketing/travel,
e-commerce, finance, gambling, ATO/Fraud, DDoS attacks, and price
scrapping, among others. According to Distil Research Lab Threat
Report (2020), these mobile bots use cellular networks by connecting
through cellular gateways. Mobile bots can perform highly advanced
attacks while remaining hidden in plain sight. In addition, they are
very unlikely to be detected by IP address blocking. Distil Research Lab
Threat Report (2020) showed that 5.8% of all mobile devices on cellu-
lar networks are used in malicious bot attacks. In other study (Threat
Metrix, 2018), researchers reveal that mobile fraud reached 150 million
global attacks in the first half of 2018 with attack rates rising 24%
year-over-year.

In this context, new countermeasures against fraud adapted to
mobile scenarios are necessary. One of the most popular methods to dis-
tinguish between humans and bots is known as CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans Apart).
These algorithms determine whether the user is human by presenting
challenges associated to the cognitive capacities of the human beings.
The most common challenges are: recognizing characters from a dis-
torted image (text-based CAPTCHAs); identifying class-objects in a set
of images (image-based CAPTCHAs); speech translation from distorted
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Fig. 1. Block diagram of our proposed bot detection system. The response of the bot detector is a combination of responses from two different modalities: touch and accelerometer.
𝜏 is a decision threshold.
audios (sound-based audio CAPTCHAs); or newer systems that replace
traditional cognitive tasks by a transparent algorithm capable of detect-
ing bots and humans from their web behavior (Anon., 2019). However,
recent advances in areas such as computer vision, speech recognition,
or natural language processing have increased the vulnerabilities of
CAPTCHA systems (Bursztein et al., 2011; Bock et al., 2017; Akrout
et al., 2019). Major advances in deep learning applied in those areas
enable the generation of synthetic data of very natural appearance,
therefore increasingly difficult to detect if used by bots.

Most of the current CAPTCHAs have been designed to be used in
a web interaction based on mouse and keyboard interfaces. In this
paper we explore the potential of mobile devices to model human–
machine interaction for bot detection applications. In particular, we
focus here on building a CAPTCHA system (called BeCAPTCHA) based
on swipe gestures (i.e. drag and drop task). We model this gesture
according to features obtained from the touchscreen and accelerometer
sensors in order to extract cognitive and neuromotor human features
that help us to discriminate between bots and human users just with
simple drag and drop gestures (see Fig. 1 for details). To evaluate
the CAPTCHA, we employ human samples and synthetic ones (bot-
like samples) generated using two different generators: a handcrafted
synthesis method and a Generative Adversarial Networks (GANs) gen-
eration method. We assume a challenging scenario where the attacker
(malicious bot developer) can generate synthetic gestures trying to
mimic the sensor signals derived from human–mobile interaction. The
goal is to determine whether a simple swipe gesture has been performed
by a human or generated by a bot. The main contributions of this work
are as follows:

(i) Summary of relevant recent works in touchscreen biometrics and
accelerometer signals for modeling and exploiting the interac-
tion in smartphones.

(ii) A new method to generate synthetic swipe gestures using GANs
and samples acquired during real human–device interaction.
This method allows to generate synthetic samples that mimic the
human behavior.

(iii) A new bot detection approach based on modeling the user be-
havior in smartphone interaction using multiple inbuilt sensors:
BeCAPTCHA. We also experiment with a particular implemen-
tation of the proposed approach by combining touch dynamics
and accelerometer data from HuMIdb, acquired when the users
perform swipe gestures. This is a very common gesture used
in many touch interfaces (e.g. unlock devices, confirm will to
advance to other step).

(iv) Discussion of relevant CAPTCHA approaches in comparison with
the proposed BeCAPTCHA.

(v) The new public HuMIdb1 dataset (Human Mobile Interaction
database) that characterizes the interaction of 600 users ac-
cording to 14 sensors during normal human–mobile interac-
tions in an unsupervised scenario with more than 200 different

smartphone models.

2

A preliminary version of this article was presented in Acien et al.
(2020a). This article significantly improves (Acien et al., 2020a) in the
following aspects:

(i) We significantly augment the positioning with respect to related
works.

(ii) We improve the bot detection accuracy training with real and
synthetic samples generated with the adversarial method pro-
posed.

(iii) We consider a larger number of classifiers and provide an abla-
tion study, exposing the strengths and weakness of the classifiers
in each scenario evaluated.

(iv) We provide a qualitative comparison with traditional CAPTCHA
methods and their complementarity with the new method.

(v) We provide an analysis of user perception about CAPTCHAs
technologies: issues and ethics concerns.

The rest of the paper is organized as follows: Section 2 analyzes the
capacity of touchscreen, accelerometer and gyroscope mobile sensors
for modeling human–machine interaction and summarizes the main
existing mobile databases incorporating touchscreen and accelerometer
data. In Section 3 we introduce HuMIdb, a new multimodal mobile
database collected for this work that comprises 14 mobile sensors
acquired from 600 users. Section 4 describes the proposed BeCAPTCHA
architecture. Section 5 analyzes the results obtained. Section 6 makes
a comparison with traditional CAPTCHA methods and the suitability
of the proposed BeCAPTCHA to complement the existing ones. Finally,
Section 7 summarizes the conclusions and future work.

2. Mobile sensors for modeling human–machine interaction: Ac-
celerometer and touchscreen

Accelerometer, gyroscope, gravity sensor, touchscreen gestures,
keystrokes, light sensor, WiFi, Bluetooth, camera, and microphone are
some examples of sensors/signals acquired by a smartphone while we
interact with it or just carry it with us during our daily routines. Those
data can be used to model human–machine interaction and human
behavior. In this section we present examples of different research fields
that exploit accelerometer, gyroscope and touch signals obtained or
derived from mobile sensors.

• Accelerometer and gyroscope are both useful to measure the
movements that the smartphone is exposed to: the accelerome-
ter measures the magnitude and direction of acceleration forces
applied over the mobile device and the gyroscope measures ori-
entation. These sensors have been studied for mobile user authen-
tication with good results in the last years (Deb et al., 2019).
For example, in Barra et al. (2018) they used these mobile sen-
sors for user recognition through simple gestures like answering
a call in four different user states: standing, sitting, walking,
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Table 1
Summary of existing mobile databases incorporating at the same time Touchscreen (Tou) and Accelerometer (Acc) signals. Other sensors: Bluetooth (Blu), Front
camera (Cam), Gravity (Gra), Gyroscope (Gyr), GPS, Keystroke (Key), Light sensor (Lig), Linear Accelerometer (LAc), Magnetometer (Mag), Microphone (Mic),
Orientation (Ori), Power consumption (Pow), Pressure (Press), Proximity (Prox), Temperature (Temp), WIFI. Task column shows whether the mobile sensors were
recorded in the wild or while users completed prefixed tasks. Devices refer the number of smartphones employed in the acquisition protocol.

Ref. Sensors #Users Sessions/user Supervised Public # Devices Task

Mahbub et al. (2016) 13 (Tou, Acc, Blu, Cam, Gyr,
GPS, Key, Lig, Mag, Press, Prox,
Temp, WIFI)

54 ∼248 No Yes 1 Free

Liu et al. (2018) 5 (Tou, Acc, Gyr, Mag, Pow) 10 3 h Yes No 1 Free
Tolosana et al. (2019) 3 (Touch, Acc, Gyr) 217 ≤ 6 Sessions No Yes <217 Fixed

HuMIdb (Present paper) 14 (Tou, Acc, Blu, Gra, GPS,
Gyr, Key, LAc, Lig, Mag, Mic,
Ori, Prox, WIFI)

600 ≤ 5 Sessions No Yes 600 Fixed
and running. In other example, Gafurov et al. (2006) extracted
gait patterns from a mobile device attached to the lower part
of the leg in three directions: vertical, forward–backward, and
sideways motion. They achieved error rates between 5% and 9%
for gait authentication combining all three acceleration measures.
Accelerometer has been also studied to measure the daily physical
activities with the main goal of changing people’s sedentary
lifestyle (Sun et al., 2010). Mobile apps employing accelerometer
and gyroscope to measure physical activity are broadly used
among runners, athletes, and healthy people, resulting in a very
profitable market. In other research field, accelerometer and gy-
roscope has demonstrated to be a promising tool for Parkinson
disease estimation, identifying Parkinson disease (PD) through
physical activities (e.g. walking, standing, sitting, holding) (Albert
et al., 2012) or hand tremor (Kostikis et al., 2014). El-Zayat
et al. (2011) measured the extent of shoulder rotation using the
gyroscope. In a similar way, researchers from Korea used the
gyroscope sensor to measure the range of motion of the shoulder
in subjects suffering from unilateral symptomatic shoulder. They
found that this sensor shows an acceptable reliability and high
correlation with manual goniometer readings (Shin et al., 2012).

• Touchscreen gestures involve all kind of finger movements that
we perform over the smartphone screen (e.g. swipe, tap, zoom).
These signals have been studied for user mobile authentication in
the last years (Fierrez et al., 2018b; Frank et al., 2013). Neverthe-
less, it has been shown not to have enough discriminative power
to replace traditional authentication technologies such as pass-
words or swipe patterns, but they achieve good performance in
combination with other mobile biometric traits (Shi et al., 2011;
Acien et al., 2019). In other research fields, a recent study (Acien
et al., 2018) demonstrates how touch gestures can discriminate
between children and adults just with swipe and tap gestures
achieving error rates under 5%. That work suggests that touch
gestures are ruled by the neuromotor cortex, less developed in
children. Touchscreen patterns also provide the possibility to
measure aspects of cognitive function. As an example, Apple
Research Kit includes tools for standard cognitive tests used in
clinical research adapted for smartphone devices such as the
spatial memory test, the paced auditory/visual serial addition test
(PVSAT), and the simple reaction time test (Apple Inc, 2018). In
other example, the Project EVO app is a mobile game that it is cur-
rently being tested in a wide range of clinical studies and patient
populations including ADHD, autism, depression, traumatic brain
injury, and, more recently, as a biomarker to assess Alzheimer in
clinical trials (BioSpace, 2014).
In summary, the literature demonstrates the potential of mo-
bile sensors to model inner human features including cognitive
functions, neuromotor skills, and human behaviors/routines.

.1. Mobile datasets with touchscreen and accelerometer data

Table 1 summarizes previous multimodal mobile databases that
nclude at the same time accelerometer and touchscreen signals and
3

compares them with the new HuMIdb dataset introduced in the present
paper.

UMDAA-02 (Mahbub et al., 2016) is a multimodal mobile database
that includes 14 mobile sensors: front camera, touchscreen, gyroscope,
accelerometer, magnetometer, light sensor, GPS, Bluetooth, WiFi, prox-
imity sensor, temperature sensor, and pressure sensor. The data was
collected during 2 months from 48 volunteers in an unsupervised
scenario with 248 sessions per user in average and using the same
smartphone (Nexus 5). In other work (Liu et al., 2018), the authors
collect touch gestures, power consumption, accelerometer, gyroscope,
and magnetometer mobile signals from 10 participants under labora-
tory conditions and with the same mobile device (supervised scenario)
during a period of three hours. In Tolosana et al. (2019) the authors col-
lected a database of mobile touch on-line data named MobileTouchDB.
The database is focused on mobile touch patterns and contains more
than 64K on-line character samples performed by 217 users with a total
of 6 sessions. They also acquired accelerometer and gyroscope signals
under unsupervised conditions.

3. The HuMIdb database

In this section we introduce the Human Mobile Interaction database
(HuMIdb), a novel multimodal mobile database that comprises more
than 5 GB from a wide range of mobile sensors acquired under un-
supervised scenario. The database includes 14 sensors (see Table 2
for the details) during natural human–mobile interaction performed by
600 users. For the acquisition, we implemented an Android application
that collects the sensor signals while the users complete 8 simple tasks
with their own smartphones and without any supervision whatsoever
(i.e., the users could be standing, sitting, walking, indoors, outdoors,
at daytime or night, etc.) The acquisition app was launched on Google
Play Store and advertised in our research web site and various research
mailing lists. After that, the participants were self-selected around the
globe producing more varied participants than previous state-of-the-art
mobile databases. All data captured in this database have been stored
in private servers and anonymized with previous participant consent
according to the GDPR (General Data Protection Regulation).

The different tasks are designed to reflect the most common interac-
tion with mobile devices: keystroke (name, surname, and a pre-defined
sentence), tap (press a sequence of buttons), swipe (up and down
directions), air movements (circle and cross gestures in the air), hand-
writing (digits from 0 to 9), and voice (record the sentence ‘I am not
a robot’). Additionally, there is a drag and drop button between tasks
(see Appendix for details).

The acquisition protocol comprises 5 sessions with at least 1-day
gap among them. It is important to highlight that in all sessions, the
1-day gap refers to the minimum time between one user finishes a
session and the next time the app allows to have the next session.
At the beginning of each task, the app shows a brief pop-up message
explaining the procedure to complete each task. The application also
captures the orientation (landscape/portrait) of the smartphone, the
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Fig. 2. Full set of data generated during one of the HuMIdb task.
Table 2
Description of all sensor signals captured in HuMIdb. E = Event-based acquisition. The timestamp parameter
is captured for all sensors.

Sensors Sampling rate Features Power consumption

Accelerometer 200 Hz 𝑥, 𝑦, 𝑧 Low
L.Accelerometer 200 Hz 𝑥, 𝑦, 𝑧 Low
Gyroscope 200 Hz 𝑥, 𝑦, 𝑧 Low
Magnetometer 200 Hz 𝑥, 𝑦, 𝑧 Low
Orientation NA Landscape or Portrait Low
Proximity NA cm Low
Gravity NA m∕s2 Low
Light NA 𝑙𝑢𝑥 Low
TouchScreen E 𝑥, 𝑦, 𝑝 Medium
Keystroke E key, 𝑝 Medium
GPS NA Lat., Lon., Alt., Bearing, Accuracy Medium
WiFi NA SSID, Level, Info, Channel, Frequency High
Bluetooth NA SSID, MAC Medium
Microphone 8 KHz Audio High
screen size, resolution, the model of the device, and the date when the
session was captured.

Regarding the age distribution, 25.6% of the users were younger
than 20 years old, 49.4% are between 20 and 30 years old, 19.2%
between 30 and 50 years old, and the remaining 5.8% are older than
50 years old. Regarding the gender, 66.5% of the participants were
males, 32.8% females, and 0.7% others. Participants performed the
tasks from 14 different countries (52.2%/47.0%/0.8% are European,
American, and Asian respectively) using 230 different smartphone
models.

Fig. 2 shows an example of the handwriting task (for digit ‘‘5’’)
and the information collected during the task. Note how a simple task
can generate a heterogeneous flow of information related with the user
behavior: the way the user holds the device, the power and velocity of
the gesture, the place, etc.

3.1. HuMIdb research opportunities

In this paper we explore the potential of HuMIdb for bot detection,
but the richness in number of sensors acquired and population diversity
offer many other research possibilities. Some of the possible research
lines to explore with this dataset include:

• Demographic modeling: HuMIdb comprises users from the 4 con-
tinents and 14 different countries. The database is diverse in
gender and age of the participants.
4

• Cross-sensor interoperability: HuMIdb includes signals from 600
different devices. Analyzing the impact of different device char-
acteristics on human behavior is a challenging research line.

• User recognition: HuMIdb comprises behavioral patterns from
600 users. Continuous authentication based on biometric behav-
ioral patterns is a popular research line with applications in the
security market. See for example Acien et al. (2020b) that could
be extended to do continuous authentication.

4. BeCAPTCHA: Methods and experimental protocol

HuMIdb offers the opportunity to model human behavior. Among
the multiple applications, in this work we explore the use of human
interaction to develop a new generation of CAPTCHA systems based on
mobile inbuilt sensors. In this section we describe the methods and ex-
perimental protocol followed for developing BeCAPTCHA, a CAPTCHA
system based on swipe gestures plus accelerometer signals (i.e. a drag
and drop action when the user scrolls the Next button to the right in
HuMIdb). First, we describe how to model this gesture according to
features obtained from the touchscreen and accelerometer in order to
extract cognitive human features that help us to discriminate between
bots and human users (Section 4.1). To evaluate the CAPTCHA, we
will employ human samples (from HuMIdb) and synthetic ones (bot-
like samples) generated using two different approaches: a handcrafted
synthesis and using GANs (Section 4.2). The goal is to determine
whether a simple swipe gesture has been performed by a human or
generated by a bot. For this, the experimental protocol is described in
Section 4.3.



A. Acien, A. Morales, J. Fierrez et al. Engineering Applications of Artificial Intelligence 98 (2021) 104058

p
s

d

Fig. 3. The proposed architecture to train a GAN Generator of synthetic swipe gestures characterized by touch 𝐬T and accelerometer 𝐬A sequences. The Generator learns the human
features of the swipe gestures and generate human-like ones from Gaussian Noise and human sequences 𝐬T, 𝐬A.
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Table 3
Touch features extracted for the characterization of the gestures.

Parameters Description

Duration (𝐷) 𝑡𝑁−1 − 𝑡0
Distance (𝐿) ‖

‖

(𝑥𝑁−1 , 𝑦𝑁−1) − (𝑥0 , 𝑦0)‖‖

Displacement (𝑃 )
𝑁−1
∑

𝑖=0

‖

‖

(𝑥𝑖+1 , 𝑦𝑖+1) − (𝑥𝑖 , 𝑦𝑖)‖‖

Angle (𝛼) tan−1
(

‖

‖

(𝑦𝑁−1 − 𝑦0)‖‖ ∕ ‖‖(𝑥𝑁−1 − 𝑥0)‖‖
)

Mean velocity (𝑉 ) 1
𝑁

𝑁−1
∑

𝑖=0

‖

‖

(𝑥𝑖+1 , 𝑦𝑖+1) − (𝑥𝑖 , 𝑦𝑖)‖‖ ∕
(

𝑡𝑖+1 − 𝑡𝑖
)

Move efficiency (𝐸) 𝑃∕𝐿

4.1. Feature extraction: Characterizing swipe gestures

To characterize swipe gestures from the touchscreen and accelerom-
eter signals, we have adapted two feature sets previously employed in
Li and Bours (2018) and Chu et al. (2018) for user authentication and
bot detection respectively.

The interaction of the user with the Touchscreen is defined by a time
sequence 𝐬T = {𝐱, 𝐲,𝐩, 𝐭} with length N, composed by the coordinates
{𝐱, 𝐲}, the pressures 𝐩 (when available), and the timestamps 𝐭. First, the
coordinates {𝐱, 𝐲} are normalized by the size of the screen. Second, the
ressure is discarded as it is not available in most of the devices. Third,
ix global features are generated according to Table 3.

The Accelerometer signal is defined by a sequence 𝐬A = {𝐱, 𝐲, 𝐳, 𝐭}.
The feature set chosen for the accelerometer signal was adapted from Li
and Bours (2018), in which they calculate the mean, median, root-
mean-square, and standard deviation of the three accelerometer axes
{𝐱, 𝐲, 𝐳} for user authentication.

4.2. Generating human-like gestures: Bot samples

A swipe gesture can be defined by a spatial trajectory (sequence
of points {𝐱, 𝐲}) and a velocity profile determined by the timestamp
sequence 𝐭. To generate synthetic swipe patterns, we will follow two
approaches: handcrafted synthesis and Generative Adversarial Network
(GAN) synthesis.

4.2.1. Method 1: Handcrafted synthesis
We observed that most of the human swipe trajectories obtained

from our drag and drop task are linear. The handcrafted approach
generates swipe trajectories according to a straight-line shape and a
realistic velocity profile. For this, we first estimate the probability dis-
tribution of length and angle of human swipe gestures in HuMIdb. Note
that the size and coordinates of each human swipe varies depending on
the device features so we have normalized each one by the total size of
the screen.

The synthetic trajectories are defined by the initial point (𝑥0, 𝑦0),
uration (𝑡 − 𝑡 ), angle (𝛼), and the velocity profile {𝐯, 𝐭}. We have
𝑁−1 0

5

synthesized the fake trajectories according to distributions of these
parameters fitted from human data (except for the velocity profile).
With the aim to emulate human behaviors, we spaced the points of
the linear trajectory on a log scale (emulating a velocity profile with
the initial acceleration observed in human samples).

The accelerometer signals are synthesized as random sequences gen-
erated from a Gaussian distribution with mean and standard deviation
estimated from real accelerometer signals from HuMIdb.

4.2.2. Method 2: GAN synthesis
For this approach, we employ a GAN (Generative Adversarial Net-

work) architecture firstly proposed by Goodfellow et al. (2014), in
which two neuronal networks, commonly named Generator and Dis-
criminator, are trained in adversarial mode. The Generator tries to fool
the Discriminator by generating fake samples (touch trajectories and
accelerometer signals in this work) very similar to the real ones, while
the Discriminator has to discriminate between the real samples and the
fake ones created (see Fig. 3 for the details). Once the Generator is
trained, then we can use it to synthesize swipe trajectories very similar
to the real ones.

The topology employed in both Generator and Discriminator consist
of two LSTM (Long Short-Term Memory) layers followed by a dense
layer, very similar to a recurrent auto-encoder. The LSTM layers learn
the time relationships of human swipe sequences, while the dense
layer is used as a classification layer to distinguish between fake and
real swipe trajectories in the Discriminator or to build synthetic swipe
trajectories in the Generator. To synthesize accelerometer signals, we
follow the same GAN architecture described before, but extending
the input of the generator from {𝐱, 𝐲} swipe coordinates to {𝐱, 𝐲, 𝐳}
accelerometer axes.

4.3. Experimental protocol

Both GAN networks were trained using more than 10K human
samples extracted from the HuMIdb. Training details: learning rate
𝛼 = 2 ⋅ 10−4, Adam optimizer with 𝛽1 = 0.5, 𝛽2 = 0.999, and 𝜀 =
0−8. The system was trained for 50 epochs with a batch size of 128
amples for both Generator and Discriminator. The loss function was
binary crossentropy ’ for the Discriminator and ‘mean square error ’ for
he Generator. The model was trained and tested in Keras-Tensorflow.

We generated 12K synthetic samples according to the two methods
roposed (up to 18K samples between all groups: 6K human samples,
K GAN synthetic samples, and 6K handcrafted synthetic samples).
nce we have extracted the global features from human and synthetic

wipe trajectories and accelerometer data we classify them employing
hree classification algorithms: an SVM (Support Vector Machine) with
n RBF (Radial Basis Function), KNN (K-Nearest Neighbors) with 𝐾 =
0, and RF (Random Forest). The experiments are divided into two
ifferent scenarios depending on the synthetic data (i.e. handcrafted
r GAN) employed in training: multiclass or agnostic. In multiclass
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Table 4
Bot detection performance metrics in % (AUC = Area Under the Curve, Acc = Accuracy, Re = Recall, Pre = Precision, and F1) for the different scenarios: Multiclass (M), Agnostic
(A).

Bot detection

HandCrafted GAN HandCrafted + GAN

Classifiers AUC Acc Re Pre F1 AUC Acc Re Pre F1 AUC Acc Re Pre F1

Touch

SVM (M) 99.2 94.2 89.4 98.8 93.9 98.6 95.5 95.0 95.6 95.5 93.6 85.8 82.9 88.1 85.4
KNN (M) 88.3 80.6 74.7 84.8 79.4 98.6 94.6 92.0 97.0 94.5 90.0 80.1 78.0 82.3 80.0
RF (M) 100.0 99.9 99.9 100.0 99.9 99.3 97.3 94.7 98.2 96.4 99.7 96.5 96.8 97.7 97.3

SVM (A) 61.3 51.7 96.6 49.1 65.2 70.4 56.6 88.5 43.0 61.4 – – – – –
KNN (A) 57.5 53.8 91.9 48.3 63.3 76.7 63.6 74.5 57.0 54.6 – – – – –
RF (A) 56.6 52.2 93.9 48.8 64.3 50.8 50.1 99.9 50.1 66.6 – – – – –

Touch + Acce

SVM (M) 99.9 99.2 99.2 99.3 99.2 99.1 99.8 99.4 99.2 99.5 99.2 99.2 99.6 98.8 99.2
KNN (M) 99.8 99.0 98.9 99.2 99.0 98.7 99.7 99.1 99.3 99.4 99.1 98.9 99.2 98.5 98.9
RF (M) 100.0 99.9 99.8 99.9 99.9 99.7 99.6 99.9 99.8 99.8 99.9 99.8 99.7 100 99.8

SVM (A) 93.6 82.4 99.9 74.0 85.0 88.6 68.8 98.8 62.0 76.2 – – – – –
KNN (A) 87.7 86.0 99.9 78.2 87.7 81.2 60.1 98.6 60.0 64.7 – – – – –
RF (A) 92.4 85.8 99.9 78.0 87.6 99.2 54.4 99.8 53.2 66.9 – – – – –
(
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classification, we train and test the classifiers with the same kind of
synthetic samples in order to analyze whether the classifier can find
discriminative features between both human and bots samples. In the
agnostic classification, we train the classifiers using samples of one
bot generation method and test with the other one, in order to study
whether the classifiers are able to detect bot samples from unknown
bot generation methods not seen during the training phase.

In both classification setups, there is no overlap between the data
used for training and evaluation. We use 70% of all samples (randomly
chosen) as the training set, which is further divided into development
(90%) and validation set (10%) in order to choose the best hyper-
parameters of the classifiers. The remaining 30% of the samples is used
for the evaluation of the system. Both development and evaluation sets
are balanced with same number of human and bot samples in each
set. All experiments were repeated 5 times (with random selection of
the data sets) and the results were computed as the average of the 5
iterations with a standard deviation of 𝜎 ∼ 0.1%.

. Results and discussion

.1. Performance of bot detection: Multiclass vs agnostic training

Table 4 shows the bot detection performance metrics (%) for dif-
erent synthetic trajectories (columns) generated when comparing with
he human ones. For this experiment the number of training samples
for both human and synthetic samples) is set to 𝑀 = 1000. The results
re presented in terms of AUC (Area Under the Curve), Accuracy,
recision, Recall, and F1.

First, we observe that the results achieved for the agnostic classifi-
ation are always significantly worse (lower performance) than those
chieved in multiclass classification as expected. The synthetic samples
enerated by the two methods present their own specific features and
he inclusion of both types of samples in training clearly improves the
etection accuracy.

Secondly, when comparing among classifiers we can observe that
he RF classifier performs better in multiclass classification meanwhile
n agnostic classification, RF is outperformed by KNN.

Finally, we can observe that classifiers trained with both accelerom-
ter and touch samples perform better than those systems trained only
ith the touch data, especially in agnostic classification, where the mul-

imodal systems doubled their performance. These results suggest the
otential of multimodal approaches, even in this challenging scenario
here the synthetic training samples are not generated with the same
ethod employed for the evaluation, in which the systems can maintain

ot detection rates over 90%.
To better understand the results, Fig. 4 shows the probability func-

ions of the six features proposed for the three types of touch signals
6

i.e. humans and both synthetic generation methods). Synthetic distri-
utions do not completely fit the human distributions, but they present
behavior like the human samples. First, we can observe that the Move
fficiency of the handcrafted trajectories is equal to 1, this happens
ecause in swipe trajectories with straight line shape the distance
nd displacement are equal. This is the reason why the multiclass
lassifiers detect these synthetic trajectories so easily. Note that the
uration (length) of both handcrafted and GAN synthetic swipes were
omputed as a Gaussian distribution with the same mean and standard
eviation as the human ones so both probability distributions are
qual. Regarding Distance and Displacement, the GAN trajectories fit
orse than the handcrafted ones. We suggest that the main reason

or this is that the GAN network generates smoother swipe trajectories
han the human ones without abrupt direction changes, causing longer
isplacements in less distance (like a parabolic function). Finally, the
elocity Profile of both synthetic swipe trajectories are very similar to

he human ones, the initial acceleration applied to the function-based
rajectories reproduces human behaviors with great similarity while the
AN network learns very realistic Velocity Profiles of human swipe

rajectories as well.

.2. Ablation study: Number of training samples

In Fig. 5 we first explore to what extent the number of training sam-
les affects the classification performance. For this, we plot accuracy
urves for the best classifier (i.e. RF for multiclass and KNN for agnostic
lassification) against the number of samples employed to train them
𝑀). Remember that both training and evaluation sets are balanced so
he number of human (𝑀ℎ) and synthetic (𝑀𝑠) train samples are equal,

i.e.: 𝑀𝑠 = 𝑀ℎ = 𝑀∕2.
We can observe in Fig. 5 (left) that the accuracy improves when

scaling up the number of train samples as we expected. The accuracy
improves significantly up to 𝑀 = 1000. On the other hand, it is sur-
prising that the opposite tendency is observed in agnostic classification
(Fig. 5 right), where the accuracy rates decay when scaling up the
number of train samples. We suggest that the problem in agnostic
classification is that classifiers are better trained to detect a specific
synthetic generation method, making more difficult for them to detect
synthetic samples generated with other methods as we increase the
number of training samples with a specific method (i.e. some kind of
overfitting to the specific bot generation method used for training).

5.3. Performance of bot detection: One-class classification

The previous results encourage us to explore one-class classification
scenario, where we train the classifier using only the human samples
and test with both human and synthetic samples, in order to study
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Fig. 4. Probability functions of the six global features for Human, Handcrafted, and GAN touch trajectories.
Fig. 5. Accuracy curves (%) against the number of train samples (70 ≤ 𝑀 ≤ 1400) to train the different classifiers in multiclass (left) and agnostic (right) classification scenarios.
Table 5
Accuracy rates (%) in bot detection for the one-class SVM classifiers, where the SVM is trained with only
human samples and tested with both synthetic generation methods.

Bot detection

SVM classifiers Handcrafted GAN HandCrafted + GAN

One-class (Touch) 62.3 54.6 57.1
One-class (Touch + Acce) 89.2 79.4 80.5
whether the classifier is able to detect bots as abnormal human behav-
ior. For this, we employ a SVM classifier that usually works well in
one-class classification and set 𝑀 = 1000. Table 5 shows the accuracy
rates (%) for one-class SVM bot detection where rows represent the
modality of the human samples (i.e. touch or touch plus accelerometer)
employed to train the classifiers and in columns the bot generation
method employed in the test. We can observe that synthetic samples
7

generated with GAN can fool the classifier more times than the hand-
crafted samples as we expected, showing the potential of GAN networks
to reproduce human trajectories with a great similarity, making almost
impossible for the classifier to discriminate between synthetic GAN
trajectories and human ones. The fusion of touch trajectories with
accelerometer data improves the accuracy rates by more than 30%.
GAN networks are not able to reproduce human accelerometer signals
as well as touch trajectories, due to the complexity of the accelerometer
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Table 6
Performance metrics in % (AUC = Area Under the Curve, Acc, Pre, Re, and F1) for the different setups of GAN Discriminator in bot detection.
In brackets the number of neurons for the first/second LSTM layer respectively used in the Discriminator.

Bot detection

HandCrafted GAN

GAN discriminator AUC Acc Pre Re F1 AUC Acc Pre Re F1

Touch

LSTM (32/16) 92.2 86.8 85.7 89.2 87.4 78.3 77.8 79.2 76.7 78.3
LSTM (16/8) 70.0 65.2 64.3 67.3 66.3 54.4 52.2 54.3 55.1 54.7
LSTM (32) 89.1 86.7 87.7 84.7 86.1 66.2 64.3 64.1 64.5 64.4
LSTM (16) 89.9 87.4 89.9 86.6 87.2 52.5 52.2 53.3 51.9 52.6

Touch + Acce

LSTM (32/16) 85.8 77.7 74.2 80.5 77.3 63.8 59.2 60.0 62.1 61.1
LSTM (16/8) 85.5 84.4 82.1 85.7 84.1 76.2 70.4 71.3 73.4 72.2
LSTM (32) 61.1 65.3 68.4 64.4 66.3 61.7 57.7 58.8 55.6 56.7
LSTM (16) 93.4 88.8 89.9 91.2 90.8 81.1 74.4 77.3 75.5 76.4
signals, suggesting again the potential of multimodal approaches to
deal with bot attacks.

5.4. Performance of bot detection: GAN discriminator

Besides the comparison among different classifier algorithms, we
conduct another experiment in which we employ the GAN Discrimina-
tor as the classifier. In this experiment the previous feature extraction
plus statistical classifier is replaced by a LSTM network (the Discrim-
inator of the GAN). The fact that the Discriminator was trained with
synthetic samples generated by the Generator during GAN training
could perform better in the classification task than a neural network
trained from scratch. Remember that the GAN Discriminator consists
of two LSTM (Long Short-Term Memory) layers followed by a dense
layer with a sigmoid activation function to discriminate between bots
and humans, so in this experiment we tune the number of neurons of
these two layers and train a new GAN network for each Discriminator
setup.

Table 6 shows the bot detection performance metrics (%) for the
different synthetic trajectories (columns) generated when comparing
with the human ones. In rows, the different GAN Discriminator setups
chosen for this experiment: two LSTM layers with 32 and 16 neurons
respectively, two layers with 16 and 8 neurons respectively, one layer
with 32 neurons, and one layer with 16 neurons.

First, it is surprising to observe that the GAN Discriminator performs
better detecting synthetic handcrafted samples, even when the GAN
Discriminator was trained only to discriminate between GAN synthetic
and human samples. According to these results the GAN Discriminator
can perform better than statistical classification algorithms as abnormal
human behavior detector (e.g. agnostic and one-class classification
scenarios).

Regarding GAN Discriminator setups, configurations with larger
number of neurons (i.e. 32 neurons in the first layer and 16 in the
second one) seem to perform better for touch trajectories, and the
opposite for the fusion with the accelerometer signals. We suggest that
smooth and complex signals such us touch gestures need larger GAN
Discriminator setups to be detected meanwhile more simple and noisy
signals such us the accelerometer ones can be detected with smaller
GAN Discriminator setups.

6. Comparison and complementarity with other CAPTCHAs

Table 7 shows some of the main features of different existing
CAPTCHA methods. Audio, image, and text-based CAPTCHAs have
been defeated by machine learning algorithms. As an example, in
Bock et al. (2017) the authors designed an AI-based system called
UnCAPTCHA to break Google’s most challenging audio reCAPTCHAs.
The text-based CAPCTHA was defeated by Bursztein et al. (2011)
with 98% accuracy using a ML-based system to segment and rec-
ognize the t ext. Finally, the last version of the Google CAPTCHA,
named reCAPTCHAv3, is transparent for the user and measures mouse

dynamics and web browsing interactions between the user and the

8

web site to decide whether the user is a bot or not. This version
was recently hacked in Akrout et al. (2019) by synthetizing mouse
trajectories using reinforcement learning techniques. The main problem
of these CAPTCHA methods is that they only measure cognitive human
skills (e.g. character recognition from distorted images, class-objects
identification in a set of images or speech translation from distorted
audios). Trying to ensure a very accurate bot detection makes these
CAPTCHAs difficult to perform even for humans.

The main goal of new generation bot detection algorithms like
reCAPTCHA v3 is to focus more in human behavioral skills rather than
cognitive ones, as behavioral skills reveal inner human features useful
for bot detection just with simple gestures like swipes. In that line of
work exploiting simple natural behaviors instead of complex cognitive
challenges, two works closely related to our proposed Be CAPTCHA
are Jiang and Dogan (2015) and Hupperich et al. (2016).

In Jiang and Dogan (2015), the authors developed a gesture-based
CAPTCHA for mobile devices in which the participants are asked
to move objects over the screen to solve the CAPTCHA. In the pa-
per the authors do not evaluate the performance of the proposed
CAPTCHA system to discriminate between human and bots. Their
algorithm demonstrated to be more user friendly than other existing
methods like Google reCAPTCHA. Their success rate (measured as
the percentage of CAPTCHA tests that users completed successfully)
is 100% versus 91% achieved by the Google reCAPTCHA method.
Hupperich et al. (2016) proposed a mobile CAPTCHA system based on
performing simple gestures (e.g. fishing, hammering, drinking) while
holding the mobile device to solve the CAPTCHA. For this, they used
the data extracted from the accelerometer and gyroscope and applied
machine learning classifiers (Bagging Tress, Random Forest and KNN).
Their results achieved over 90% of performance for gesture recognition,
demonstrating the suitability of sensor-based CAPTCHA to improve
traditional CAPTCHAs in a mobile scenario. These methods were not
evaluated when synthetic samples are used to attack the system and
their performance analysis were focused on the success rate of humans
solving the CAPTCHA challenges.

It is important to highlight that our proposed BeCAPTCHA is com-
patible with previous CAPTCHA technologies and it could be added
as a new cue to improve existing bot detection schemes in a multiple
classifier combination (Fierrez et al., 2018a). In fact, BeCAPTCHA can
be easily extended to consider other inputs beyond the swipe signals
considered in our experiments, e.g.: web browsing, texting, solving
other CAPTCHAs, etc.

6.1. User perception survey

At the end of the acquisition, the participants in the HuMIdb
database completed a questionnaire about CAPTCHA technologies and
ethics issues. The survey includes responses from 600 participants
from 14 different countries (see Section 3 for details). The survey
included three questions related to the understanding and perception
of CAPTCHA technologies by the users:
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Table 7
Characteristics of several CAPTCHA methods. We rate each factor as low (*), medium (**) and high (***).

Method Cognitive Behavioral Usability Attack protection

Audio CAPTCHA *** * * *
Image CAPTCHA *** * * *
Text CAPTCHA *** * * *
reCAPTCHA v3 * ** *** *

Touch CAPTCHA (Jiang and Dogan, 2015) ** *** *** Unknown
Gesture CAPTCHA (Hupperich et al., 2016) ** *** ** ***

BeCAPTCHA (Ours) ** *** *** ***
o
t
M
R
D

D
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• Question 1: ‘Do you know what is a CAPTCHA system?’ 33% of the
participants did not know, which shows the lack of information
about one of the most common malicious malware in mobile
devices nowadays.

• Question 2: ‘Do you think mobile apps that use biometric user in-
formation are privacy invasive?’ most of them (76%) answered
affirmative.

• Question 3: ‘If this information were useful to improve your security
and your confidence in web navigation, would you be willing to
share it anonymously?’ 82% of the participant’s answers were also
affirmative.

According to these results, we can conclude that most mobile users
are reluctant to share their biometric information in mobile apps, but
they are willing to share it in case they are given a clear benefit in
terms of security and confidence.

7. Conclusions and future work

We introduce a new bot detection system for smartphones based
on the analysis of behavioral information from inbuilt sensors: Be-
CAPTCHA. Results are provided by combining touchscreen and ac-
celerometer data, but the methods are presented in a general way and
therefore BeCAPTCHA directly allows incorporating information from
additional sensors.

As we discussed in the introduction, the behavioral information
acquired through mobile sensors describe inner human features, such
as neuromotor abilities, cognitive skills, human routines, and habits.
All these patterns can help to develop new bot detection algorithms for
mobile scenarios. Our goal in this paper has been to go a step forward
on the bot detection field focused on mobile scenarios by implementing
CAPTCHA methods that exploit mobile sensor signals during human–
mobile interactions. For this, we present a novel multimodal mobile
database HuMIdb that comprises 14 mobile sensors captured from
600 users in an unsupervised scenario. Although in this paper we
focus on the HuMIdb for bot detection, this new dataset offers many
other research opportunities related to modeling and exploiting the
human–machine interaction in smartphones.

We have evaluated our proposed BeCAPTCHA approach combin-
ing swipe touchscreen trajectories and accelerometer signals extracted
from HuMIdb (human samples) vs very realistic synthetic trajectories
(bot samples) generated with two methods: GAN deep learning and
handcrafted. We provide results in various experimental configura-
tions and classifiers, considering or not synthetic bot data for training
BeCAPTCHA (multi-class, agnostic, and one-class). Bot detection re-
sults for agnostic classification (i.e. training with one synthetic bot
method and testing with the other method) and one-class classification
(i.e. training only with the human samples) just using touch gestures
are poor with accuracies of around 60%, but the combination with
accelerometer data improves the results to the range 80%–90% of
accuracy. In addition, the case of multi-class training (i.e. training with
both bot data generation methods) achieves very good performance,
with results against very realistic synthetic attacks of over 90% of
accuracy for bot detection. Regarding classifiers, Random Forest (RF)
seems to perform the best in multi-class scenario while K-Nearest
9

Neighbors (KNN) performs better in the agnostic scenario. In addi-
tion, the number of samples (human and bot) employed to train the
classifiers affect considerably the performance, meanwhile in multi-
class scenario, classifiers perform better as we increase the amount of
samples to train them. The opposite tendency is observed in agnostic
scenario, where the classifiers reduce their capacity to detect bot sam-
ples from other methods as we increase the amount of training data
to detect a specific kind of synthetic bot samples. Finally, employing
the GAN Discriminator as a classifier reveals the potential of this LSTM
network to detect bot samples generated using the handcrafted method,
with a performance like using RF in multi-class scenario. Considering
that the GAN Discriminator is only trained with human and GAN
Generator samples, the potential of the GAN Discriminator for agnostic
and one-class classification scenario is patent.

We strongly believe that the combination of these behavioral signals
with traditional CAPTCHA methods can harden significantly existing al-
gorithms for bot detection. The expected improvements are even larger
when considering additional mobile sensors in extended BeCAPTCHA
implementations beyond touchscreen and accelerometer data.

For future works, we will explore the addition of new sensors on
top of touchscreen and accelerometer data (as available in our HuMIdb
dataset,2 see Section 3), new approaches that exploit the complemen-
tarity between tasks and sensors, and smart fusion to exploit multiple
sensors and the heterogeneity of the data (Fierrez et al., 2018a).
Moreover, we will explore new methods to generate bot samples, the
handcrafted method could be combined with more realistic velocity
profiles based on human kinematic profiles (Ferrer et al., 2020), and
different shapes that better mimic human behaviors.
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Fig. 6. The mobile interfaces designed for the 8 mobile HuMI tasks: (a) keystroking, (b) swipe up, (c) tap and double tap, (d) swipe down, (e) circle hand gesture, (f ) cross hand
gesture, (g) voice, and (h) finger handwriting.
Appendix. Android app and task description

Fig. 6 shows all tasks included in the HuMI database. The task a is
designed to acquire keystroking from fixed and free text. In tasks b and
d, the users have to perform both swipe up and swipe down gestures to
complete both tasks, meanwhile the task c is focused on tap gestures.
Tasks e and f are designed to draw in the air with the smartphone a
circle and a cross respectively. Task g records the user saying ‘I am not
a robot ’, and finally, in task h the user has to draw with the finger the
digits 0 to 9 over the touchscreen. Note that the 14 sensors available
(see Section 3) are acquired during the execution of all tasks, although
some sensors present a key role in some of them.

For example, the accelerometer signal is captured during the entire
session even though it could be more relevant in tasks e and f. This het-
erogeneous information can be used to improve the patterns obtained
from the main sensor for each task. Additionally, all tasks have a right
swipe button that is acquired in addition to the swipe patterns.
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