## **11TH INTERNATIONAL CONFERENCE ON** PATTERN RECOGNITION SYSTEMS

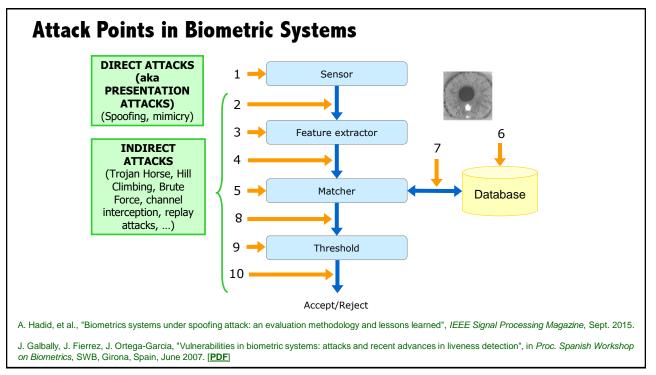
17-19 March 2021, Universidad de Talca, Curicó - Chile (Virtually via Whova and Zoom)

**Keynote Lecture** 

# **Securing our Identity: from Biometric Anti-Spoofing to DeepFakes Detection**



Prof. Julian FIERREZ


UAM Universidad Autónoma de Madrid

With contributions from: Javier GALBALLY, Ruben TOLOSANA, Sergio ROMERO-TAPIADOR, and Ruben VERA-RODRIGUEZ

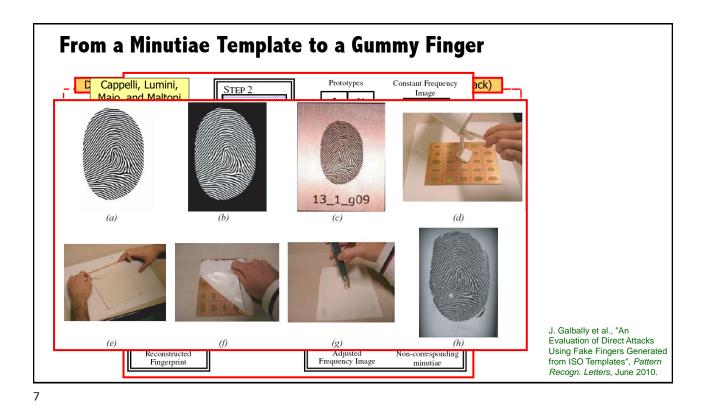
# **Attacks to Biometric Systems:** Introduction

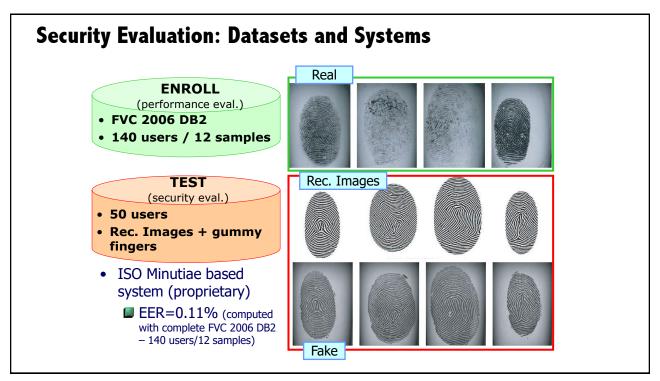
A. Hadid, et al., "Biometrics systems under spoofing attack: an evaluation methodology and lessons learned", IEEE Signal Processing Magazine, Sept. 2015.

J. Galbally, J. Fierrez, J. Ortega-Garcia, "Vulnerabilities in biometric systems: attacks and recent advances in liveness detection", in Proc. Spanish Workshop on Biometrics, SWB, Girona, Spain, June 2007. [PDF]



### **Security Evaluation in Biometric Systems**


- Steps for security evaluation of biometric systems:
  - 1) Description of the attack
  - 2) Description of the biometric systems being evaluated
  - 3) Description of the information required to be known by the attacker
  - 4) Description of the database
  - 5) Description of the tests that will be performed
  - 6) Compute the performance (FAR and FRR curves) of the systems being evaluated → determine the operating points where they will be tested
  - Execution of the vulnerability evaluation in the defined operating points: Success Rate (SR), and Efficiency (E<sub>ff</sub>)
- Reporting the results
  - SR: percentage of accounts broken out of the total attacked
  - E<sub>ff</sub>: average number of attempts needed to break an account

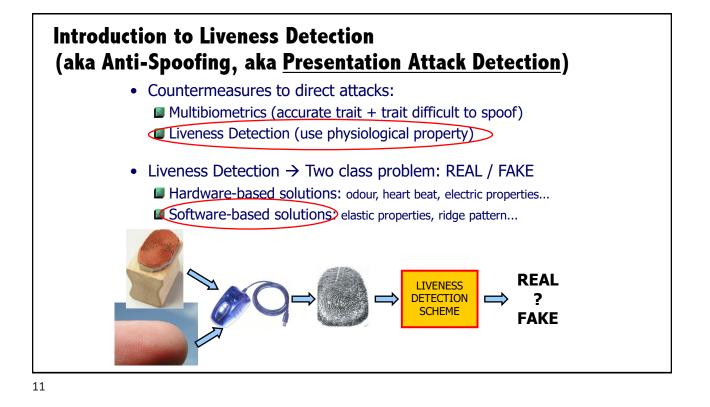

A. Hadid, et al., "Biometrics systems under spoofing attack: an evaluation methodology and lessons learned", IEEE Signal Processing Magazine, Sept. 2015.

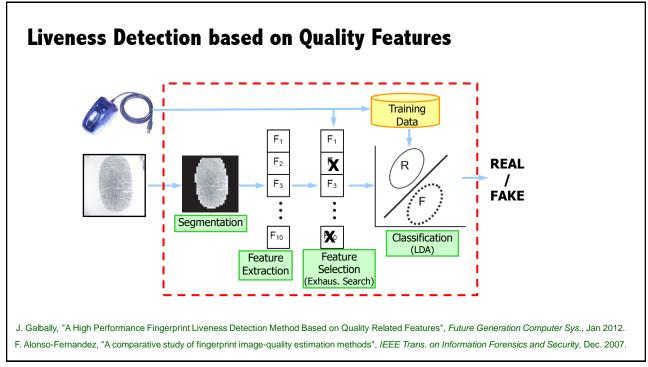
J. Galbally, J. Fierrez, J. Ortega-Garcia, "Vulnerabilities in biometric systems: attacks and recent advances in liveness detection", in *Proc. Spanish Workshop on Biometrics*, SWB, Girona, Spain, June 2007. [PDF]

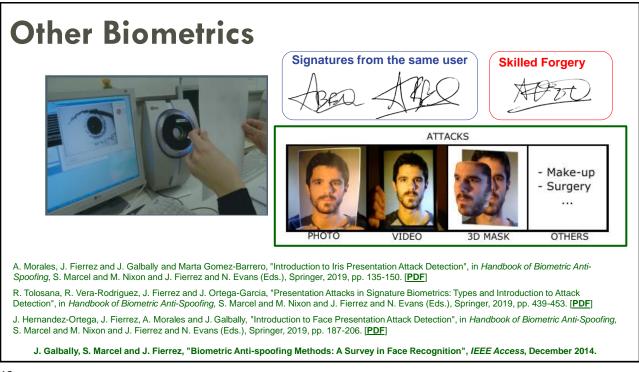
|                                                                                                                                                                     | Biometrics Security : New CC                                                                                             | ro x D CCD8-5008-09-002.pdf x +                             |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|
| able of Contents                                                                                                                                                    | 2  https://www.commor                                                                                                    | criteriaportal.org/files/supdocs/CCD8-2008-09-002.pdf 🔍 🚖 🄇 |                                     |
| INTRODUCTION                                                                                                                                                        |                                                                                                                          |                                                             |                                     |
| Motivation 6                                                                                                                                                        |                                                                                                                          |                                                             |                                     |
| Attack Potential and CEM versions used6                                                                                                                             |                                                                                                                          |                                                             |                                     |
|                                                                                                                                                                     |                                                                                                                          |                                                             |                                     |
| Attack Information Template                                                                                                                                         |                                                                                                                          | Common Criteria                                             |                                     |
| Scope of this Document                                                                                                                                              | Foreword                                                                                                                 | Common Criteria                                             |                                     |
| Description of the TOE13                                                                                                                                            | it, intended to complement the Common Criteria and the                                                                   |                                                             |                                     |
| 5.1 Performance evaluation of verification systems                                                                                                                  | by for Information Technology Security Evaluation.                                                                       | 57 St.                                                      |                                     |
| 5.2 Security evaluation of verification systems 16<br>5.3 Attacks to fingerprint verification systems 18                                                            |                                                                                                                          |                                                             |                                     |
| 5.4 Match-on-Card (MoC) and Storage-on-Card (SoC) systems                                                                                                           | "Guidance Documents", that highlight specific approaches                                                                 | Supporting Document                                         |                                     |
|                                                                                                                                                                     | I to areas where no mutual recognition of its application is<br>of normative nature, or "Mandatory Technical Documents", | Guidance                                                    |                                     |
| ATTACK METHODS                                                                                                                                                      | ry for evaluations whose scope is covered by that of the                                                                 | Guidantes                                                   |                                     |
|                                                                                                                                                                     | ge of the latter class is not only mandatory, but certificates                                                           |                                                             |                                     |
| Direct Attacks                                                                                                                                                      | ation are recognized under the CCRA.                                                                                     |                                                             |                                     |
| 1.1 Description of the attack                                                                                                                                       | and the state of the state and the state of the state of the state of the state of the                                   |                                                             |                                     |
| 1.3 Impact on TOE 24                                                                                                                                                | ttologie Centre (CCN, Centro Criptológieo Nacional).                                                                     |                                                             |                                     |
| 1.1.4 Characteristics of the Attack                                                                                                                                 | cember 2009 (initial supporting document version)                                                                        | Characterizing Attacks to                                   |                                     |
| 1.5         Example: direct attack based on a residual print on the sensor         26           1.6         Example: direct attack starting from a model         27 |                                                                                                                          |                                                             |                                     |
| 21.6 Example: direct attack starting from a mould     27     Example: direct attack starting from 2D fingerprint image     31                                       | cember 2010 (revised supporting document version by CCN<br>g to the comments and feedback received from German BSI       | Fingerprint Verification Mechanisms                         |                                     |
| 1.1.8 Example: direct attack starting from a minutiae template33                                                                                                    | g to the comments and recordex received from German (55)<br>ch ANSSI)                                                    | 2011                                                        |                                     |
| Brute Force indirect attacks                                                                                                                                        |                                                                                                                          |                                                             |                                     |
| 2.2.1 Description of the attack 35<br>2.2.2 Effect of the Attack 36                                                                                                 |                                                                                                                          | Version 3.0                                                 |                                     |
| 2.2.3 Impact on TOE 36                                                                                                                                              |                                                                                                                          | version 5.0                                                 |                                     |
| 2.4 Characteristics of the Attack                                                                                                                                   | is guidance about attack methods to be considered in the                                                                 |                                                             |                                     |
| 2.5 Example: Brute Force attack to the feature extractor input                                                                                                      | print verification mechanisms. The document also helps the                                                               |                                                             |                                     |
| 2.6 Example: Brute Force attack to the matcher input                                                                                                                | rating for this type of mechanisms, and to this end, the attack<br>well as examples for the attack rating.               |                                                             |                                     |
| Hill-Climbing indirect attacks                                                                                                                                      | wen as examples for the attack rating.                                                                                   |                                                             |                                     |
| 3.1 Description of the attack 43                                                                                                                                    |                                                                                                                          | CCDB-2008-09-002                                            |                                     |
| 3.2 Effect of the Attack 44<br>3.3 Impact on TOE 44                                                                                                                 | based Devices and Mechanisms.                                                                                            | CCDD=2000=03=002                                            |                                     |
| 3.4 Characteristics of the Attack 44                                                                                                                                |                                                                                                                          |                                                             |                                     |
| 2.3.5 Example: hill-climbing attack to the matcher input                                                                                                            |                                                                                                                          |                                                             |                                     |
| 3.6 Example: hill-climbing attack to the feature extractor input                                                                                                    |                                                                                                                          |                                                             |                                     |
|                                                                                                                                                                     | collaboration of the Spanish National Cryptologic Centre                                                                 |                                                             |                                     |
|                                                                                                                                                                     | Recognition Group - ATVS of the Autonomous University of                                                                 |                                                             | A. Merle, J. Bringer, J. Fierrez ar |
| Madrid (UAM).                                                                                                                                                       |                                                                                                                          |                                                             |                                     |
|                                                                                                                                                                     |                                                                                                                          |                                                             | N. Tekampe. "BEAT:                  |
|                                                                                                                                                                     |                                                                                                                          |                                                             |                                     |
|                                                                                                                                                                     |                                                                                                                          |                                                             | Methodology for Common Criter       |
|                                                                                                                                                                     |                                                                                                                          |                                                             |                                     |
|                                                                                                                                                                     |                                                                                                                          |                                                             | Evaluations of Biometrie            |
|                                                                                                                                                                     |                                                                                                                          |                                                             |                                     |
|                                                                                                                                                                     |                                                                                                                          |                                                             | Systems", in Proc. Intl. Commo      |
|                                                                                                                                                                     |                                                                                                                          |                                                             |                                     |
|                                                                                                                                                                     |                                                                                                                          |                                                             | Criteria Conf., ICCC, London, U     |
|                                                                                                                                                                     |                                                                                                                          |                                                             |                                     |
|                                                                                                                                                                     |                                                                                                                          |                                                             | September 2015.                     |

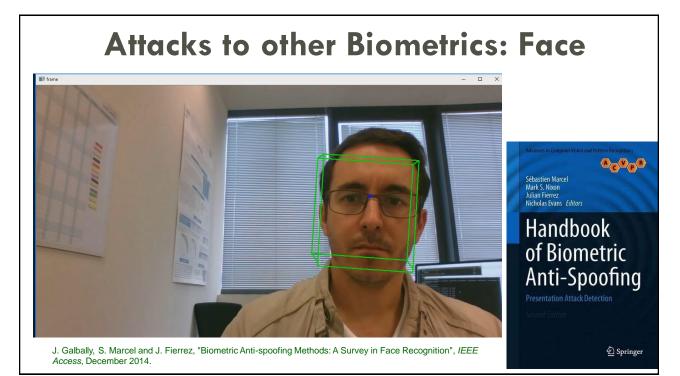


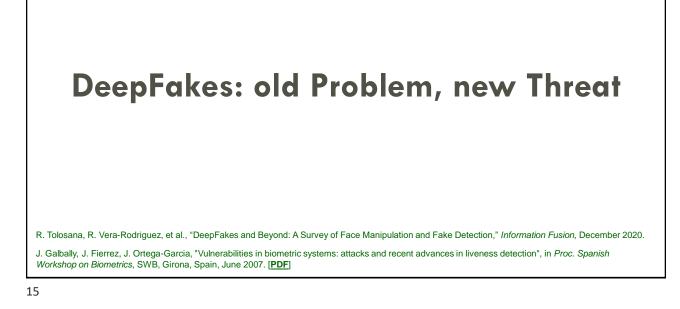






|           | <b>SR</b> $\rightarrow$ Reconstruction <b>SR</b> $\rightarrow$ Direct Attack |                                    | -                                               |                                               |                                  |                                 |                  |
|-----------|------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------|---------------------------------|------------------|
|           | Threshold                                                                    | FAR                                | FRR                                             | 1-FRR                                         | RIASR                            | DASR                            |                  |
|           | $\mu = 0.19$                                                                 | 1%                                 | 0.08%                                           | 99.92%                                        | 100%                             | 98%                             |                  |
|           | $\mu = 0.21$                                                                 | 0.1%                               | 0.12%                                           | 99.88%                                        | 100%                             | 96%                             |                  |
|           | $\mu = 0.25$                                                                 | 0%                                 | 0.17%                                           | 99.83%                                        | 100%                             | 90%                             |                  |
|           | $\mu = 0.30$                                                                 | 0%                                 | 0.41%                                           | 99.59%                                        | 98%                              | 78%                             |                  |
|           | $\mu = 0.35$                                                                 | 0%                                 | 1.03%                                           | 98.97%                                        | 92%                              | 68%                             |                  |
|           | $\mu = 0.40$                                                                 | 0%                                 | 2.06%                                           | 97.94%                                        | 82%                              | 50%                             |                  |
| The syste | ,                                                                            | 0%<br>ween ti<br>vulner<br>realist | 2.06%<br>he indirec<br>able to th<br>ic op. poi | 97.94%<br>t and direct<br>and direct at<br>nt | 82%<br>ct attack →<br>tack: SR=! | 50%<br>→ related t<br>50% for v | ery high securit |


# Countermeasuring Direct Attacks to Biometric Systems

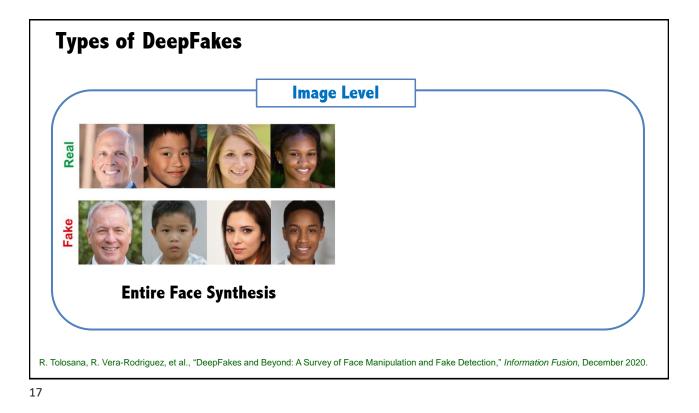

J. Galbally, J. Fierrez and R. Cappelli, "An Introduction to Fingerprint Presentation Attack Detection", in *Handbook of Biometric Anti-Spoofing*, S. Marcel and M. Nixon and J. Fierrez and N. Evans (Eds.), Springer, 2019, pp. 3-31.

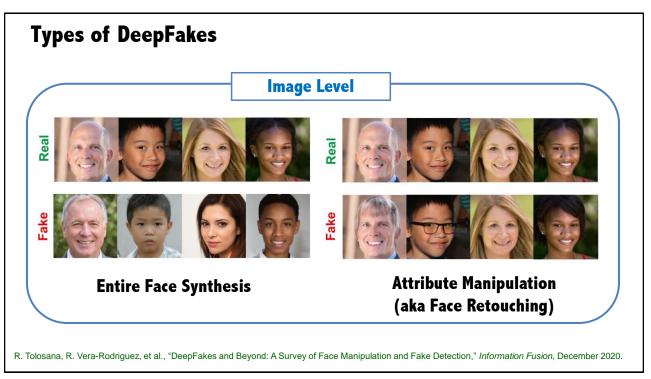

J. Galbally, S. Marcel and J. Fierrez, "Image Quality Assessment for Fake Biometric Detection: Application to Iris, Fingerprint and Face Recognition", IEEE Trans. on Image Processing, February 2014.

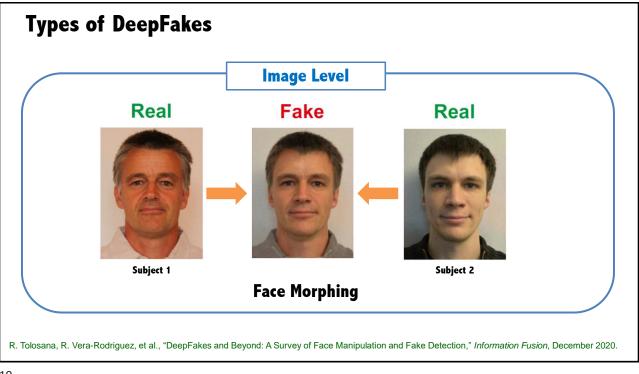




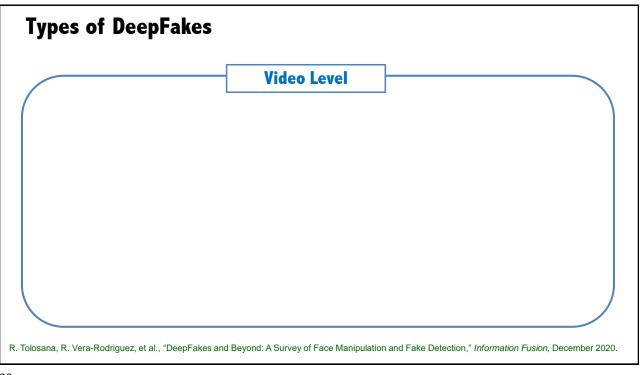


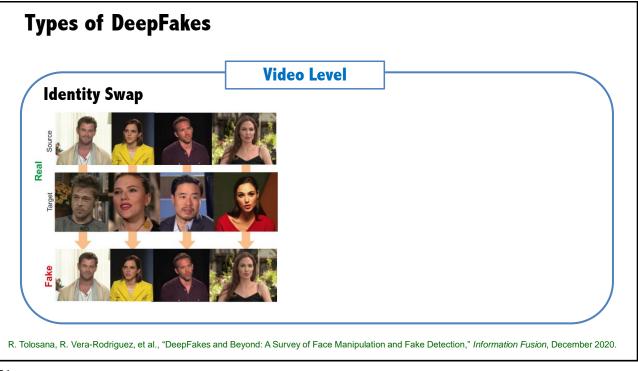


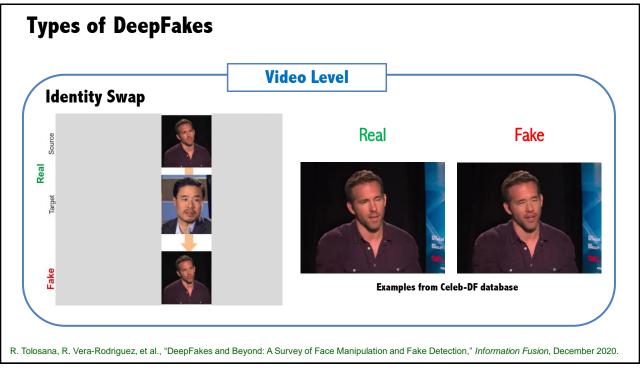


### What are DeepFakes?

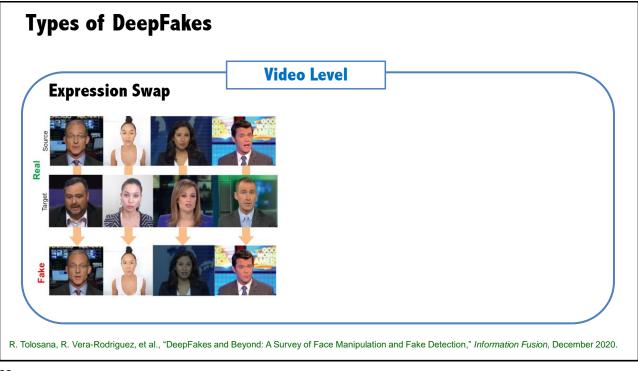
In general, the popular term DeepFakes is referred to all digital fake content created by means of deep learning techniques.

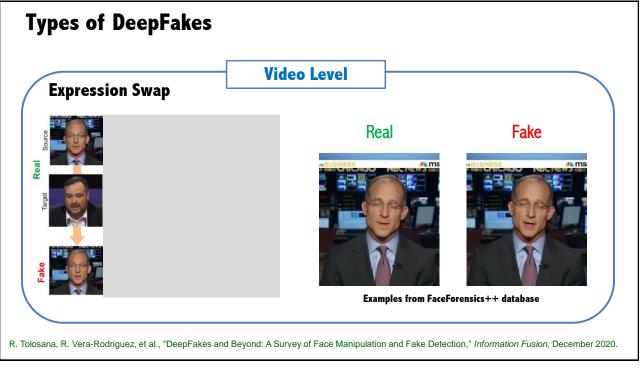


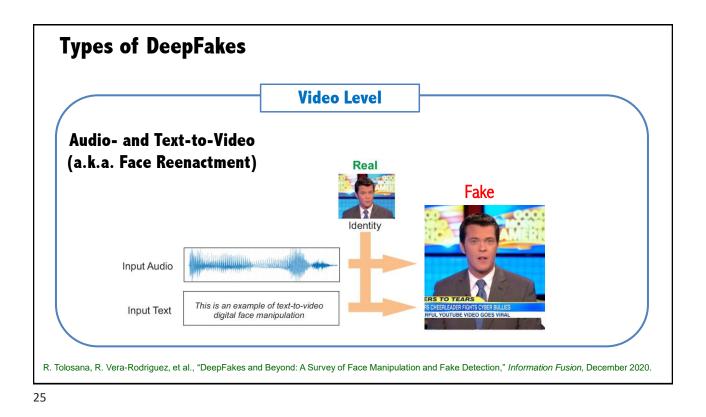





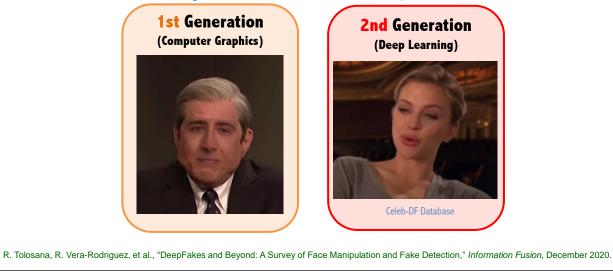



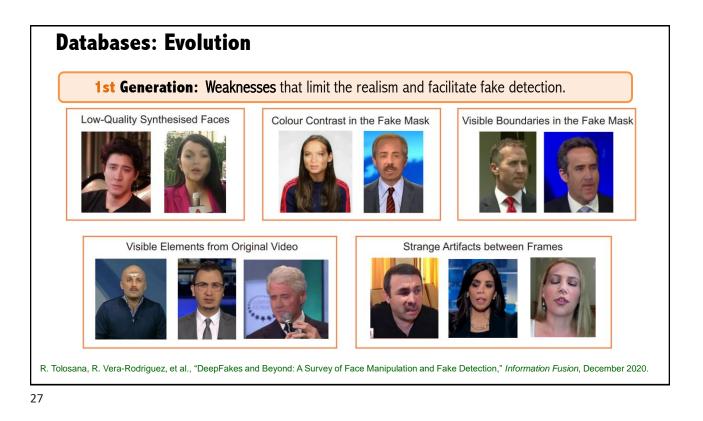



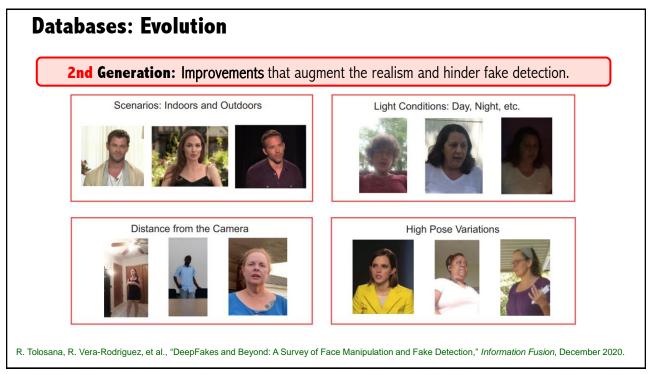



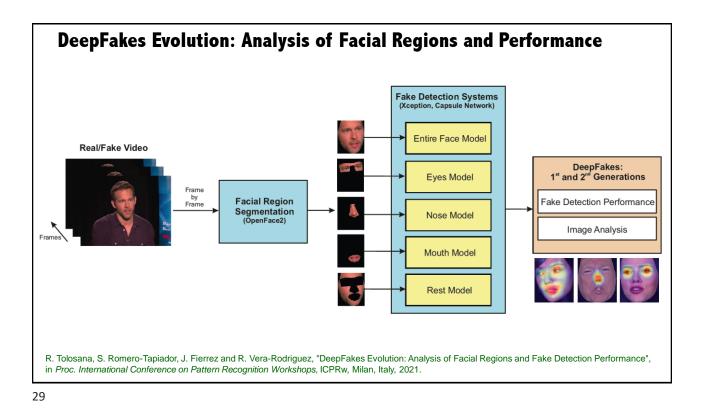




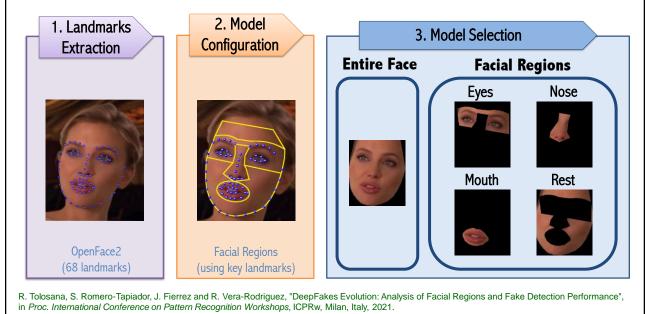



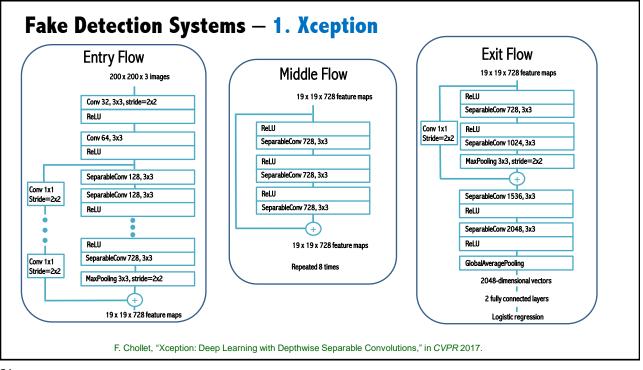





### **Databases: Evolution**

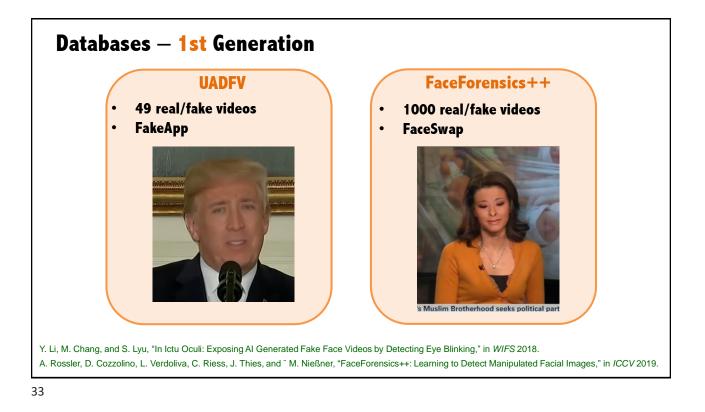
Since the initial DeepFake databases such as UADFV, many visual improvements have been carried out. As a result, two different generations are considered nowadays.

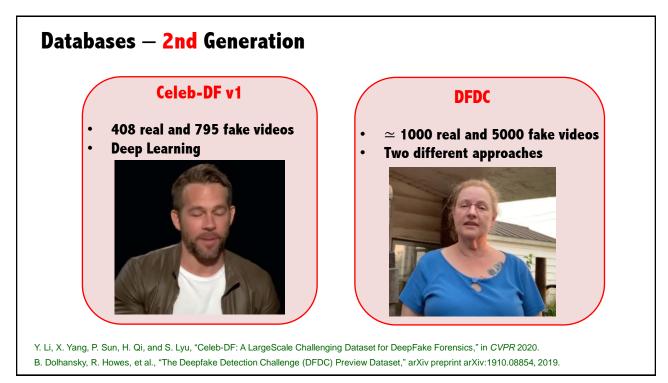










### **Facial Region Segmentation**

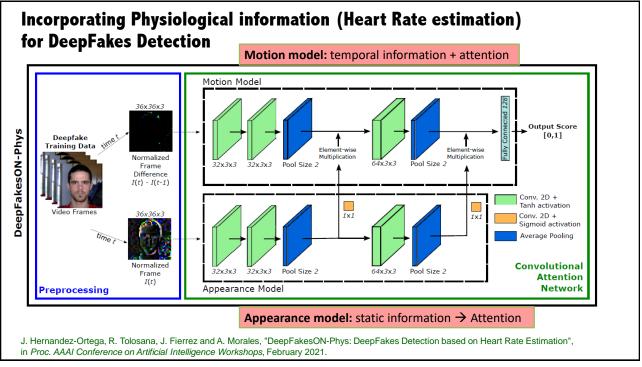











### Comparison with the State of the Art

| Study                | Method                       | Classifiers —                | AUC Results (%) |      |          |      |
|----------------------|------------------------------|------------------------------|-----------------|------|----------|------|
|                      |                              |                              | UADFV           | FF++ | Celeb-DF | DFDC |
| Yang <i>et al.</i>   | Head Pose<br>Features        | SVM                          | 89.0            | 47.3 | 54.6     | 55.9 |
| Li <i>et al.</i>     | Face Warping<br>Features     | CNN                          | 97.7            | 93.0 | 64.6     | 75.5 |
| Afchar <i>et al.</i> | Mesoscopic<br>Features       | CNN                          | 84.3            | 84.7 | 54.8     | 75.3 |
| Sabir <i>et al.</i>  | Image +<br>Temporal Features | CNN + RNN                    | -               | 96.3 | -        | -    |
| Dang <i>et al.</i>   | Deep Learning<br>Features    | CNN + Attention<br>Mechanism | 98.4            | -    | 71.2     | -    |
| Ours                 | Deep Learning                | Xception                     | 100             | 99.4 | 83.6     | 91.1 |
|                      | Features                     | Capsule Network              | 100             | 99.5 | 82.4     | 87.4 |

Results in Orange indicate that the evaluated database was not used for training.

J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proenca and J. Fierrez, "GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection", *IEEE Journal of Selected Topics in Signal Processing*, August 2020.

35



#### **Comparison with the State of the Art** Celeb-DF v2 Method Classifier AUC (%) Study Yang, Li, and Lyu 2019 Head Pose SVM 54.6 Li et al. 2020 **Face Warping** CNN 64.6 Afchar et al. 2018 Mesoscopic CNN 54.8 Dang et al. 2020 CNN + Attention 71.2 Deep Learning Tolosana *et al*. 2020a Deep Learning CNN 83.6 Qi et al. 2020 Physiological CNN + Attention Ciftci, Demir, and Yin 2020 **Physiological** SVM/CNN Acc. = 91.5 99.9 DeepFakesON-Phys **Physiological** CNN + Attention Acc. = 98.7

Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, "Celeb-DF: A LargeScale Challenging Dataset for DeepFake Forensics," in CVPR, 2020.

J. Hernandez-Ortega, R. Tolosana, J. Fierrez and A. Morales, "DeepFakesON-Phys: DeepFakes Detection based on Heart Rate Estimation", in *Proc. AAAI Conference on Artificial Intelligence Workshops*, February 2021.

37

#### Attacks to Biometric Systems:

J. Galbally, et al., "An Evaluation of Direct Attacks Using Fake Fingers Generated from ISO Templates", Pattern Recognition Letters, June 2010.

A. Hadid, et al., "Biometrics Systems under Spoofing Attack: An Evaluation Methodology and Lessons Learned", IEEE Signal Process. Mag., Sept. 2015.

Countermeasuring Attacks to Biometric Systems (Presentation Attack Detection):

J. Galbally, S. Marcel and J. Fierrez, "Image Quality Assessment for Fake Biometric Detection: Application to Iris, Fingerprint and Face Recognition", *IEEE Trans. on Image Processing*, February 2014.

J. Galbally, S. Marcel and J. Fierrez, "Biometric Anti-spoofing Methods: A Survey in Face Recognition", IEEE Access, December 2014.

S. Marcel, M. Nixon, J. Fierrez, N. Evans, Handbook of Biometric Anti-Spoofing, 2nd Ed., Springer, 2019.

#### DeepFakes and Face Manipulation Detection:

R. Tolosana, R. Vera-Rodriguez, et al., "DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection," Information Fusion, Dec. 2020.

J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proenca and J. Fierrez, "GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection", IEEE Journal of Selected Topics in Signal Processing, August 2020.

R. Tolosana, et al., "DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance", in Proc. ICPRw, Jan. 2021.

J. Hernandez-Ortega, R. Tolosana, J. Fierrez and A. Morales, "DeepFakesON-Phys: DeepFakes Detection based on Heart Rate Estimation", in *Proc.* AAAI Conference on Artificial Intelligence Workshops, February 2021.

Funding: BIBECA (RTI2018-101248-B-I00 MINECO/FEDER), REAVIPERO (RED2018-102511-T), TRESPASS-ETN (H2020-MSCA-ITN-2019-860813), and PRIMA (H2020-MSCA-ITN-2019-860315).



#### http://biometrics.eps.uam.es