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Abstract—Deep learning has become a breathtaking technology
in the last years, overcoming traditional handcrafted approaches
and even humans for many different tasks. However, in some
tasks, such as the verification of handwritten signatures, the
amount of publicly available data is scarce, what makes diffi-
cult to test the real limits of deep learning. In addition to the
lack of public data, it is not easy to evaluate the improvements of
novel proposed approaches as different databases and experimen-
tal protocols are usually considered. The main contributions of
this study are: i) we provide an in-depth analysis of state-of-the-
art deep learning approaches for on-line signature verification,
ii) we present and describe the new DeepSignDB on-line hand-
written signature biometric public database,1 iii) we propose a
standard experimental protocol and benchmark to be used for
the research community in order to perform a fair comparison
of novel approaches with the state of the art, and iv) we adapt
and evaluate our recent deep learning approach named Time-
Aligned Recurrent Neural Networks (TA-RNNs)2 for the task of
on-line handwritten signature verification. This approach com-
bines the potential of Dynamic Time Warping and Recurrent
Neural Networks to train more robust systems against forgeries.
Our proposed TA-RNN system outperforms the state of the art,
achieving results even below 2.0% EER when considering skilled
forgery impostors and just one training signature per user.

Index Terms—Biometrics, handwritten signature, DeepSignDB,
deep learning, TA-RNN, RNN, DTW.

I. INTRODUCTION

HANDWRITTEN signature verification is still an active
research field nowadays [1]. Depending on the acquisi-

tion considered [2], it can be categorised as: i) off-line, the
signature is acquired in a traditional way by signing with
an ink pen over paper and then digitizing the image; and
ii) on-line, the signature is acquired using electronic devices,
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having therefore not only the image of the signature, but also
the signing information of the entire capturing process (time
sequences).

On-line handwritten signature verification has widely
evolved in the last 40 years [2], [3]. From the original Wacom
devices specifically designed to acquire handwriting and sig-
nature in office-like scenarios to the current mobile acquisition
scenarios in which signatures can be captured using our
own personal smartphone anywhere. However, and despite the
improvements achieved in the acquisition technology, the core
of most of the state-of-the-art signature verification systems
is still based on traditional approaches such as Dynamic
Time Warping (DTW), Hidden Markov Models (HMM), and
Support Vector Machines (SVM). This aspect seems to be a
bit unusual if we compare with other biometric traits such
as face and fingerprint in which deep learning has defeated
by far traditional approaches [4]–[6], and even in tasks more
related to signature verification such as handwriting recogni-
tion, writer verification, and handwritten passwords [7]–[9].
So, why deep learning approaches are not widely used in
on-line signature verification yet? One major handicap could
be probably the complex procedure of acquiring a large-scale
database for training the models as signatures are not publicly
available on Internet as it happens with other biometric traits
such as the face [10].

In addition to the scarcity of data for training deep learn-
ing approaches, another important observation motivates this
work: the lack of a standard experimental protocol to be
used for the research community in order to perform a fair
comparison of novel approaches to the state of the art, as
different experimental protocols and conditions are usually
considered for different signature databases [11], [12]. With
all these concerns in mind, in this study we present the
new DeepSignDB handwritten signature biometric database,
the largest on-line signature database to date. Fig. 1 graphi-
cally summarises the design, acquisition devices, and writing
tools considered in the DeepSignDB database. Its applica-
tion extends from the improvement of signature verification
systems via deep learning to many other potential research
lines, e.g., studying: i) user-dependent effects, and devel-
opment of user-dependent methods in signature biometrics,
and handwriting recognition at large [13], ii) the neuro-
motor processes involved in signature biometrics [14], and
handwriting in general [15], iii) sensing factors in obtaining
representative and clean handwriting and touch interaction sig-
nals [16], [17], iv) human-device interaction factors involving
handwriting and touchscreen signals [9], and development of
improved interaction methods [18], and v) population statistics
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Fig. 1. Description of the design, acquisition devices, and writing tools considered in the new DeepSignDB database. A total of 1526 users and 8 different
captured devices are used (5 Wacom and 3 Samsung general-purpose devices). For the Samsung devices, signatures are also collected using the finger. Gen.
Sig. = Genuine Signatures, and Sk. Forg. = Skilled Forgeries.

Fig. 2. Architecture of our proposed on-line signature verification system based on Time-Aligned Recurrent Neural Networks. S denotes one signature
sample, and TF and TF the original and pre-aligned 23 time functions, respectively. The Recurrent Neural Networks block is enlarged in Fig. 3 for a better
understanding.

around handwriting and touch interaction signals, and devel-
opment of new methods aimed at recognising or serving
particular population groups [19], [20].

The main contributions of this study are:
• An in-depth analysis of state-of-the-art deep learning

approaches for on-line signature verification, remarking
the different experimental protocol conditions considered
among them.

• The new DeepSignDB on-line handwritten signature
database. This database is obtained through the combi-
nation of some of the most well-known databases, and
a novel dataset not presented yet. It comprises more
than 70K signatures acquired using both stylus and finger

inputs from a total 1526 users. Two acquisition scenarios
are considered, office and mobile, with a total of 8 dif-
ferent devices. Additionally, different types of impostors
and number of acquisition sessions are considered.

• A standard experimental protocol publicly available to the
research community in order to perform a fair comparison
of novel approaches with the state of the art. Thus, we
also release the files with all the signature comparisons
carried out using the final evaluation dataset. This way
we provide an easily reproducible framework.

• An adaptation and evaluation of our recent deep learn-
ing approach named Time-Aligned Recurrent Neural
Networks (TA-RNNs) for on-line handwritten signature
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verification. This approach was originally presented
in [21] for touchscreen password biometrics. Fig. 2 repre-
sents the general architecture of our proposed approach.
It combines the potential of Dynamic Time Warping and
Recurrent Neural Networks (RNNs) to train more robust
systems against forgeries.

• A benchmark evaluation of DeepSignDB considering
well-known systems based on DTW, RNNs, and our
newly proposed TA-RNNs.

A preliminary version of this article was published in [22].
This article significantly improves [22] in the following
aspects: i) we provide an in-depth analysis of state-of-the-
art deep learning approaches for on-line signature verification,
ii) we adapt and evaluate our recent TA-RNN deep learn-
ing approach, iii) we provide a more extensive evaluation
of DeepSignDB, analysing the system performance for each
scenario and dataset of DeepSignDB and also for DTW,
RNNs, and our proposed TA-RNNs, and iv) our proposed TA-
RNN approach further outperforms previous signature verifi-
cation approaches, remarking the importance of time-functions
alignment.

The remainder of the article is organised as follows.
Section II summarises previous studies carried out in on-line
signature verification via deep learning. Section III explains
all details of our proposed TA-RNN approach. Section IV
describes the details of the DeepSignDB signature database.
Section V describes the proposed experimental protocol, and
the benchmark evaluation carried out. Finally, Section VI
draws the final conclusions and points out some lines for future
work.

II. ON-LINE SIGNATURE VERIFICATION VIA DEEP

LEARNING

Despite the lack of publicly available data, some authors
have preliminary evaluated the potential of different deep
learning architectures for on-line signature verification. Table I
shows a comparison of different deep learning approaches
with the corresponding database, experimental protocol, and
performance results achieved. First, we would like to high-
light the impossibility of performing a fair comparison among
approaches as different databases and experimental protocol
conditions have been considered in each study. Aspects such as
the inter-session variability, the number of training signatures
available per user or the complexity of the signatures have a
very significant impact in the system performance [33], [34].
This problem is not only related to deep learning approaches,
but to the whole handwritten signature verification field.

One of the first studies that analysed the potential of cur-
rent deep learning approaches for on-line signature verification
was [23]. In that work, Otte et al. performed an exhaus-
tive analysis of Long Short-Term Memory (LSTM) RNNs
using a total of 20 users and 12 genuine signatures per user
for training. Three different scenarios were studied: i) train-
ing a general network to distinguish forgeries from genuine
signatures, ii) training a different network for each writer,
and iii) training the network using only genuine signatures.
However, all experiments failed obtaining a final 23.8% EER

for the best network configuration, far away from the state
of the art, concluding that LSTM RNN systems trained with
standard mechanisms were not appropriate for the task of sig-
nature verification as the amount of available data for this task
is scarce compared with others, e.g., handwriting recognition.

More recently, some researchers have preliminary shown
the potential of deep learning for the task of on-line sig-
nature verification through the design of new architectures.
In [24], the authors proposed an end-to-end writer-independent
RNN signature verification system based on a Siamese archi-
tecture [35]. Both LSTM and Gated Recurrent Unit (GRU)
schemes were studied, using both normal and bidirectional
configurations (i.e., BLSTM and BGRU) in order to have
access both to past and future context. The proposed system
was able to outperform a state-of-the-art signature verifica-
tion system based on DTW and feature selection techniques
for the case of skilled forgeries. However, it was not able to
outperform DTW for the case of random forgeries.

Lai and Jin proposed in [25] the use of Gated Auto
Regressive Units (GARU) in combination with a novel
descriptor named Length-Normalized Path Signature (LNPS)
in order to extract robust features. DTW was considered for
the final classification. Experiments were carried out using dif-
ferent databases and experimental protocols, achieving good
results especially against random forgeries. It is important
to remark the results obtained using the Mobisig database
with the finger as writing tool [36]. Their proposed approach
achieved a final 10.9% EER for skilled forgeries, much worse
than the result achieved for MCYT database [37]. This result
highlights the challenging finger input scenario for signature
verification [3].

In this research line, in [26] the authors proposed a system
based on an LSTM autoencoder for modelling each signa-
ture into a fixed-length feature latent space and a Siamese
network for the final classification. The authors evaluated their
approach over the SigWiComp2013 dataset [38] achieving
around 8.7% EER for skilled forgeries.

Simpler approaches based on Multilayer Perceptron (MLP)
were considered in [27]. Hefny and Moustafa considered
Legendre polynomials coefficients as features to model
the signatures. Their proposed approach was tested using
SigComp2011 (Dutch dataset) [39], achieving an EER
of 0.5%.

More recently, different authors have proposed novel
approaches in ICDAR 2019.3 Approaches based on the com-
bination of Convolutional Neural Networks (CNNs) and DTW
were presented in [28]. Their proposed approach was tested
only against skilled forgeries over the MCYT database [37],
showing how the system performance is highly affected by the
amount of training data.

Also, Li et al. proposed in [29] a stroke-based LSTM
system. Their proposed approach seemed to outperform the
results achieved in [24] for the BiosecurID database [40].
However, the results achieved in other databases were much
worse, above 10% EER, showing the poor generalisation
capacity of the network.

3https://icdar2019.org/
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TABLE I
COMPARISON OF DIFFERENT DEEP LEARNING APPROACHES FOR ON-LINE SIGNATURE VERIFICATION

Similar to the approach presented in [24], Tolosana et al.
presented in ICDAR 2019 a Siamese CNN architecture. Their
proposed approach was evaluated over the MCYT and SVC
databases [37], [41], achieving very different accuracies for
each database.

An interesting analysis using a lightweight one-dimensional
CNN signature verification system was recently proposed
in [31], using fixed-length representations from signatures of
variable length. In addition, they studied the potential of syn-
thesis techniques to eliminate the need of skilled forgeries
during training. Their proposed approach was evaluated using
MCYT and SVC databases [37], [41], achieving good results
against skilled forgeries.

Nathwani proposed in [32] an on-line signature verification
based on BLSTM/BGRU. No much information regarding the
system, architecture, and training procedure is provided in the
article. The best result achieved on SVC was an Average Error
(AE) of 8.8%.

Finally, we include in Table I the results achieved using
our proposed TA-RNN system over the new DeepSignDB
database. Due to all the limitations highlighted, in this study
we propose and release to the research community a standard

experimental protocol for on-line signature verification with
the aim to make possible future comparative analysis of new
proposed architectures.

III. TA-RNN SIGNATURE VERIFICATION SYSTEM

This section describes our proposed Time-Aligned
Recurrent Neural Networks for on-line signature verification.
A graphical representation is included in Fig. 2.

A. Time-Functions Extraction

Our proposed on-line signature verification system is based
on time functions. For each signature acquired (i.e., Senrolled

and Stest in Fig. 2), signals related to X and Y spatial coor-
dinates and pressure are used to extract a set of 23 time
functions (i.e., TFenrolled and TFtest in Fig. 2), following the
same approach described in [42]. Table II provides a descrip-
tion of the 23 time functions considered in this study. Finally,
time functions are normalised to keep them in the same range
of values using the mean and standard deviation [16].
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TABLE II
SET OF TIME FUNCTIONS CONSIDERED IN THIS STUDY

B. Time-Functions Alignment

One crucial point when comparing the similarity among
time sequences is the proper alignment of them prior to cal-
culating the similarity score through distance measurement
functions (e.g., the Euclidean distance). DTW is one of the
most popular algorithms in the literature, in particular for sig-
nature biometrics [11], [43]–[45]. The goal of DTW is to find
the optimal warping path of a pair of time sequences A and B
that minimises a given distance measure d(A, B).

In our proposed approach, DTW is applied in a first stage in
order to convert the 23 original time functions (i.e., TFenrolled

and TFtest in Fig. 2) into 23 pre-aligned time functions (i.e.,
TFenrolled and TFtest in Fig. 2) before introducing them to the
RNNs. This way our proposed RNN system is able to extract
more meaningful features as all time sequences have been
previously normalised jointly through the optimal warping
path.

C. Recurrent Neural Networks

New trends based on the use of RNNs, which is a spe-
cific neural network architecture, are becoming more and more
important nowadays for modelling sequential data with arbi-
trary length [46]. Fig. 3 depicts our proposed TA-RNN system
based on a Siamese architecture. The main goal is to learn a
dissimilarity metric from data by minimising a discriminative
cost function that drives the dissimilarity metric to be small for
pairs of genuine signatures from the same subject (labelled as
0), and higher for pairs of genuine-forgery signatures (labelled
as 1 for both random and skilled forgeries). This architecture
is very similar compared with the initial one proposed in [24]
with the exception of the first stage based on time sequences
alignment through DTW. Several configurations of the deep
learning model were tested, changing the number of hidden
layers and memory blocks as we did in [24], describing here
the one that achieved the best results.

For the input of the network, we consider as much
information as possible, i.e., all 23 time functions per signature
previously aligned through DTW. Preliminary experiments
suggested that it is better to feed the system with all time

Fig. 3. Proposed TA-RNN architecture.

functions, letting the network to automatically select the more
discriminative features on each epoch [24]. The first layer
is composed of two BGRU hidden layers with 46 memory
blocks each, sharing the weights between them. The outputs
of the first two parallel BGRU hidden layers are concatenated
and serve as input to the second layer, which corresponds to
a BGRU hidden layer with 23 memory blocks. The output
of this second BGRU hidden layer is the vector resulting of
the last timestep. Finally, a feed-forward neural network layer
with a sigmoid activation is considered, providing an output
score for each pair of signatures. It is important to highlight
that our approach is trained to distinguish between genuine
and impostor patterns from the signatures. Thus, we just train
one writer-independent system for all databases through the
development dataset.

IV. DEEPSIGNDB DATABASE DESCRIPTION

The DeepSignDB database comprises a total of 1526
users from four different popular databases (i.e., MCYT,
BiosecurID, Biosecure DS2, and e-BioSign DS1) and a novel
signature database not presented yet, named e-BioSign DS2.
Fig. 1 graphically summarises the design, acquisition devices,
and writing tools considered in the DeepSignDB database. A
short description of each database regarding the device, writing
input, number of acquisition sessions and time gap between
them, and type of impostors is included for completeness
below. Regarding the type of skilled forgeries, two different
approaches can be considered [47]: i) static, where the forger
has access only to the image of the signatures to forge, and
ii) dynamic, where the forger has access to both the image and
also the whole realization process (i.e., dynamics) of the sig-
nature to forge. The dynamics can be obtained in the presence
of the original writer or through the use of a video-recording
(the case considered in DeepSignDB). We also summarise in
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TABLE III
SPECIFICATIONS OF THE ACQUISITION DEVICES CONSIDERED IN EACH DATASET OF DEEPSIGNDB

Table III the main specifications of the acquisition devices
considered in each dataset of DeepSignDB. It is important
to highlight that for general-purpose devices (the Samsung
devices in this case), information about the sensor resolution
and sampling rate is not available. In our experience, the sam-
pling rate of general-purpose devices is below 100 Hz and not
uniform [3].

A. MCYT

The MCYT database [37] comprises a total of 25 genuine
signatures and 25 skilled forgeries per user, acquired in a sin-
gle session in blocks of 5 signatures. There are a total of 330
users and signatures were acquired considering a controlled
and supervised office-like scenario. Users were asked to sign
on a piece of paper, inside a grid that marked the valid sign-
ing space, using an inking pen. The paper was placed on a
Wacom Intuos A6 USB pen tablet that captured the following
time signals: X and Y spatial coordinates, pressure, pen angular
orientations (i.e., azimuth and altitude angles) and timestamps.
In addition, pen-up trajectories are available. Regarding the
type of impostors, only static forgeries were considered.

B. BiosecurID

The BiosecurID database [40] comprises a total of 16 gen-
uine signatures and 12 skilled forgeries per user, captured in
4 separate acquisition sessions leaving a two-month interval
between them. There are a total of 400 users and signatures
were acquired considering a controlled and supervised office-
like scenario. Users were asked to sign on a piece of paper,
inside a grid that marked the valid signing space, using an ink-
ing pen. The paper was placed on a Wacom Intuos 3 pen tablet
that captured the following time signals: X and Y spatial coor-
dinates, pressure, pen angular orientations (i.e., azimuth and
altitude angles) and timestamps. Pen-up trajectories are also
available.

Regarding the type of impostors, both static (the first two
sessions) and dynamic (the last two sessions) forgeries were
considered.

C. Biosecure DS2

The Biosecure DS2 database [48] comprises a total of 30
genuine signatures and 20 skilled forgeries per user, captured
in 2 separate acquisition sessions leaving a three-month time

interval between them. There are a total of 650 users and
signatures were acquired considering a controlled and super-
vised office-like scenario. Users were asked to sign on a paper
sheet placed on top of a Wacom Intuos 3 device while sit-
ting. The same acquisition conditions were considered as per
BiosecurID database.

Regarding the type of impostors, only dynamic forgeries
were considered.

D. e-BioSign DS1

The e-BioSign DS1 database [3] is composed of five dif-
ferent devices. Three of them are specifically designed for
capturing handwritten data (i.e., Wacom STU-500, STU-530,
and DTU-1031), while the other two are general-purpose
tablets not designed for that specific task (Samsung ATIV 7
and Galaxy Note 10.1). It is worth noting that all five devices
were used with their own pen stylus. Additionally, the two
Samsung devices were used with the finger as input, allowing
the analysis of the writing input on the system performance.
The same capturing protocol was used for all five devices:
devices were placed on a desktop and subjects were able
to rotate them in order to feel comfortable with the writing
position. The software for capturing handwriting and signa-
tures was developed in the same way for all devices in order
to minimise the variability of the user during the acquisition
process.

Signatures were collected in two sessions for 65 subjects
with a time gap between sessions of at least 3 weeks. For each
user and writing input, there are a total of 8 genuine signatures
and 6 skilled forgeries. For the case of using the stylus as input,
information related to X and Y spatial coordinates, pressure
and timestamp is recorded for all devices. In addition, pen-up
trajectories are also available. However, pressure information
and pen-up trajectories are not recorded when the finger is
used as input.

Regarding the type of impostors, both dynamic and static
forgeries were considered in the first and second acquisition
sessions, respectively.

E. e-BioSign DS2

DeepSignDB database also includes a new on-line signature
dataset not presented yet, named e-BioSign DS2. This dataset
follows the same capturing protocol as e-BioSign DS1. Three
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TABLE IV
EXPERIMENTAL PROTOCOL DETAILS OF THE DEEPSIGNDB EVALUATION DATASET (442 USERS). NUMBERS ARE PER USER AND DEVICE

different devices were considered: a Wacom STU-530 specif-
ically designed for capturing handwritten data, a Samsung
Galaxy Note 10.1 general-purpose tablet, and a Samsung
Galaxy S3 smartphone. For the first device, signatures where
captured using the stylus in an office-like scenario, i.e., the
device was placed on a desktop and subjects were able to
rotate it in order to feel comfortable with the writing posi-
tion. For the Samsung Galaxy Note 10.1 tablet and Galaxy
S3 smartphone, the finger was used as input. The acquisition
conditions emulated a mobile scenario where users had to sign
while sitting.

Signatures were collected in two sessions for 81 users with
a time gap between sessions of at least 3 weeks. For each
user, device, and writing input, there are a total of 8 genuine
signatures and 6 skilled forgeries. For the case of using the
stylus as input, information related to X and Y spatial coor-
dinates, pressure and timestamp is recorded for all devices.
In addition, pen-up trajectories are also available. However,
pressure information and pen-ups trajectories are not recorded
when the finger is used as input.

Regarding the type of impostors, only dynamic forgeries
were considered.

V. DEEPSIGNDB BENCHMARK

This section reports the benchmark evaluation carried out
for the DeepSignDB on-line handwritten signature database.
Section V-A describes all the details of our proposed standard
experimental protocol to be used for the research com-
munity in order to facilitate the fair comparison of novel
approaches with the state of the art. Finally, Section V-B
analyses the results achieved using our proposed TA-RNN
system and compares it with the preliminary benchmark results
achieved in [22], based on a robust DTW and RNN two-stage
approach [24].

A. Experimental Protocol

The DeepSignDB database has been divided into two dif-
ferent datasets, one for the development and training of the
systems and the other one for the final evaluation. The devel-
opment dataset comprises around 70% of the users of each
database whereas the remaining 30% are included in the

evaluation dataset. It is important to note that each dataset
comprises different users in order to avoid biased results.

For the training of the systems, the development dataset
comprises a total of 1084 users. In our experiments, we have
divided this dataset into two different subsets, training (80%)
and validation (20%). However, as this dataset is used only for
development, and not for the final evaluation of the systems,
we prefer not to set any restriction and let researchers use it
as they like.

For the final testing of the systems, the remaining 442
users of the DeepSignDB database are included in the eval-
uation dataset in order to perform a complete analysis of
the signature verification systems, and see their generalisa-
tion capacity to different scenarios. The following aspects
have been considered in the final experimental protocol
design:

• Inter-Session Variability: Genuine signatures from dif-
ferent sessions are considered for training and testing
(different acquisition blocks for the MCYT database).

• Number of Training Signatures: Two different cases are
considered, the case of having just one genuine signature
from the first session (1vs1) and the case of using the
first 4 genuine signatures from the first session (4vs1). In
this study the final score of the 4vs1 case is obtained as
the average score of the 4 one-to-one comparisons.

• Impostor Scenario: Skilled and random forgeries are
considered in the experimental protocol. For the skilled
forgery case, all available skilled forgery samples are
included in the analysis whereas for the random forgery
case, one genuine sample of each of the remaining users
of the same database is considered. This way verification
systems are tested with different types of presentation
attacks [47].

• Writing Input: Stylus and finger scenarios are also con-
sidered in the experimental protocol due to the high
acceptance of the society to use mobile devices on a daily
basis [49].

• Acquisition Device: Eight different devices are considered
in the experimental protocol. This will allow to measure
the generalisation capacity of the proposed system to dif-
ferent acquisition devices that can be found in different
applications.
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TABLE V
SYSTEM PERFORMANCE RESULTS (EER) OVER THE DEEPSIGNDB EVALUATION DATASET. STYLUS SCENARIO

Table IV describes all the experimental protocol details of
the DeepSignDB evaluation dataset for both stylus (top) and
finger (bottom) writing inputs.

B. Experimental Results

Two different scenarios are evaluated in our proposed
standard experimental protocol. First, an office-like scenario
where users perform their signatures using the stylus as input
(Table IV, top), and then a mobile scenario where users
perform their signatures using the finger on mobile general-
purpose devices (Table IV, bottom). It is important to remark
that the DeepSignDB results are obtained after performing
all the signature comparisons of the corresponding databases
together, and not through the average EERs of the correspond-
ing databases. This way we consider a single system threshold,
simulating real scenarios.

1) Stylus Writing Input Scenario: For the development of
the systems, only signatures acquired using the stylus are
considered, ending up with around 309K genuine and impos-
tor comparisons (247K and 62K for training and validation,
respectively). It is important to remark that: i) the same num-
ber of genuine and impostor comparisons are used in order
to avoid bias, and ii) both skilled and random forgeries are
used as impostors during the development process in order to
provide robust systems against both types of attacks.

Table V depicts the evaluation performance results of our
proposed TA-RNN approach for the whole DeepSignDB eval-
uation dataset and for each of the datasets included in it
when using the stylus as input. In addition, we compare the
proposed TA-RNNs with the preliminary benchmark results
presented in [22] for completeness. In that study, RNNs out-
performed DTW for skilled forgeries. However, for random
forgeries, DTW further outperformed RNNs with very low
EERs. Therefore, random forgery results for RNNs are not
shown in Table V in order to avoid meaningless results.

Both RNN and TA-RNN systems have been implemented
under Keras framework using Tensorflow as back-end, with
a NVIDIA GeForce RTX 2080 Ti GPU. The weights of the
BGRU and feed-forward layers are initialised by random val-
ues drawn from the zero-mean Gaussian distribution with
standard deviation 0.05. Adam optimiser is considered with
default parameters (learning rate of 0.001) and a loss func-
tion based on binary cross-entropy. It is worth mentioning

that in average a single one-to-one signature comparison took
0.72 seconds, making it feasible for real time applications. On
the other hand, the training of the deep learning models took
around 48 hours. Note these times can be significantly reduced
with higher performance computing.

Analysing skilled forgeries, our proposed TA-RNN
approach outperforms in large margins previous approaches.
For the scenario of considering just 1 training signature
per user, TA-RNNs achieves an absolute improvement of
7.0% and 4.3% EERs compared with the DTW and RNN
systems, respectively. It is important to remark that we are just
training one model for the whole DeepSignDB development
dataset, and not one specific model per dataset. Our proposed
writer-independent TA-RNN approach shows a high ability to
generalise well along different scenarios, users, and devices,
achieving EERs even below 2.0% in challenging scenarios
where dynamic skilled forgery impostors and just one training
signature per user are considered. Similar results are obtained
for the scenario of increasing the number of training signatures
to 4. TA-RNNs achieves an absolute improvement of 6.0%
and 4.6% EERs compared with the DTW and RNN systems,
respectively.

We now analyse the random forgery results of Table V.
In general, similar results are observed among the DTW and
TA-RNNs. For the case of using just 1 training signature, our
proposed TA-RNNs is able to outperform the robust DTW
in 5 out of 9 different datasets, achieving a final 1.5% EER
for the whole DeepSignDB evaluation dataset, an absolute
improvement of 0.3% EER compared with the DTW system.
This result improves further when we increase the number of
training signatures to 4, with EERs very low.

Finally, Fig. 4(a) depicts the DET curve of the TA-RNN
performance results obtained using the whole DeepSignDB
evaluation dataset for the stylus scenario, for complete-
ness. The results achieved put in evidence the suc-
cess of our proposed TA-RNN approach, obtaining very
good results against both skilled and random forgeries,
and overcoming the original training problems described
in [24].

2) Finger Writing Input Scenario: We consider the same
on-line signature verification systems trained in the previous
section for the case of using the stylus as input. This way we
can: i) evaluate the generalisation capacity of the network to
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TABLE VI
SYSTEM PERFORMANCE RESULTS (EER) OVER THE DEEPSIGNDB EVALUATION DATASET. FINGER SCENARIO

Fig. 4. System performance results of our proposed TA-RNN system over the DeepSignDB evaluation dataset.

unseen writing inputs, i.e., the finger, and ii) encourage all
the research community to use DeepSignDB and explore new
methods such as transfer learning in this challenging scenario
where the number of public databases is very scarce [50], [51].
As pressure information (and its derivative) is not available on
the finger scenario, these time functions are set to zero when
using the stylus system.

Table VI depicts the evaluation performance results of our
proposed TA-RNN approach for both the whole DeepSignDB
dataset and for each of the databases included in it when using
the finger as input. Analysing skilled forgeries, our proposed
TA-RNNs outperforms DTW and RNNs. For the scenario
of considering just 1 training signature per user, TA-RNNs
achieves an absolute improvement of 2.8% and 4.8% EERs
compared with the DTW and RNN systems, respectively.
Similar trends are observed when increasing the number of
training signatures to 4. Analysing random forgeries, the DTW
system slightly outperforms the proposed TA-RNN system,
achieving both very low EERs for the case of using 1 or 4
training signatures per user.

Finally, Fig. 4(b) depicts the DET curve of the TA-RNN
performance results obtained using the whole DeepSignDB
evaluation dataset for the finger scenario. Analysing skilled
forgeries, we can observe a high degradation of the system
performance compared with the stylus scenario. Concretely,
absolute worsening of 9.6% and 8.0% EERs for the scenarios
of using 1 and 4 training signatures, respectively. These results

agree with preliminary studies in the field [3], [25]. Therefore,
we encourage the research community to put their efforts in
this challenging but important scenario.

VI. CONCLUSION

This article has presented the DeepSignDB on-line hand-
written signature database, the largest on-line signature
database to date. This database comprises more than 70K
signatures acquired using both stylus and finger inputs from
a total of 1526 users. Two acquisition scenarios are con-
sidered (i.e., office and mobile), with a total of 8 different
devices. Additionally, different types of impostors and number
of acquisition sessions are considered along the database.

In addition, we have proposed a standard experimental pro-
tocol and benchmark to be used for the research community in
order to perform a fair comparison of novel approaches with
the state of the art. Finally, we have adapted and evaluated our
recent deep learning approach named Time-Aligned Recurrent
Neural Networks (TA-RNNs) for on-line handwritten signature
verification, which combines the potential of Dynamic Time
Warping and Recurrent Neural Networks to train more robust
systems against forgeries.

Our proposed TA-RNN system has further outperformed
all previous state-of-the-art approaches, achieving results even
below 2.0% EER for some datasets of DeepSignDB when
considering skilled forgery impostors and just one training
signature per user. The results achieved put in evidence the
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high ability of our proposed approach to generalise well along
different scenarios, users, and acquisition devices.

For future work, we encourage the research community to
use DeepSignDB database for several purposes: i) perform
a fair comparison of novel approaches with the state of the
art (we refer the reader to download the DeepSignDB4 and
follow the ICDAR 2021 Competition on On-Line Signature
Verification, SVC 20215) ii) evaluate the limits of novel DL
architectures, and iii) carry out a more exhaustive analysis of
the challenging finger input scenario. In addition, DeepSignDB
can be also very useful to study neuromotor aspects related to
handwriting and touchscreen interaction [14] across population
groups and age [19] for diverse applications like e-learning
and e-health [1]. Finally, we plan to evaluate the usability and
performance improvement of our proposed TA-RNN approach
for other signature verification approaches based on the use
of synthetic samples [52], [53], and for other behavioral
biometric traits such as keystroke biometrics [54].
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