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Abstract—We study the performance of Long Short-Term
Memory networks for keystroke biometric authentication at large
scale in free-text scenarios. For this we explore the performance
of Long Short-Term Memory (LSTMs) networks trained with
a moderate number of keystrokes per identity and evaluated
under different scenarios including: i) three learning approaches
depending on the loss function (softmax, contrastive, and triplet
loss); ii) different number of training samples and lengths of
keystroke sequences; iii) four databases based on two device
types (physical vs touchscreen keyboard); and iv) comparison
with existing approaches based on both traditional statistical
methods and deep learning architectures. Our approach called
TypeNet achieves state-of-the-art keystroke biometric authenti-
cation performance with an Equal Error Rate of 2.2% and 9.2%
for physical and touchscreen keyboards, respectively, significantly
outperforming previous approaches. Our experiments demon-
strate a moderate increase in error with up to 100,000 subjects,
demonstrating the potential of TypeNet to operate at an Internet
scale. To the best of our knowledge, the databases used in this
work are the largest existing free-text keystroke databases avail-
able for research with more than 136 million keystrokes from
168,000 subjects in physical keyboards, and 60,000 subjects with
more than 63 million keystrokes acquired on mobile touchscreens.

Index Terms—Biometrics, keystroke dynamics, large scale,
deep learning, TypeNet, keystroke authentication.

I. INTRODUCTION

KEYSTROKE dynamics is a behavioral biometric trait
aimed at recognizing individuals based on their typ-

ing habits. The velocity of pressing and releasing different
keys [1], the hand postures during typing [2], and the pres-
sure exerted when pressing a key [3] are some of the features
taken into account by keystroke biometric algorithms aimed
to discriminate among subjects. Although keystroke biometrics
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suffer high intra-class variability for person recognition, espe-
cially in free-text scenarios (i.e., the input text typed is not
fixed between enrollment and testing), the ubiquity of key-
boards as a method of text entry makes keystroke dynamics a
near universal modality to authenticate subjects on the Internet.

Text entry is prevalent in day-to-day applications: unlock-
ing a smartphone, accessing a bank account, chatting with
acquaintances, email composition, posting content on a social
network, and e-learning [4]. As a means of subject authenti-
cation, keystroke dynamics is economical because it can be
deployed on commodity hardware and remains transparent to
the user. These properties have prompted several companies to
capture and analyze keystrokes. The global keystroke biomet-
rics market is projected to grow from $129.8 million dollars
(2017 estimate) to $754.9 million by 2025, a rate of up to 25%
per year.1 As an example, Google has recently committed $7
million dollars to fund TypingDNA,2 a startup company which
authenticates people based on their typing behavior.

At the same time, the security challenges that keystroke
biometrics promises to solve are constantly evolving and get-
ting more sophisticated every year: identity fraud, account
takeover, sending unauthorized emails, and credit card fraud
are some examples.3 These challenges are magnified when
dealing with applications that have hundreds of thousands to
millions of users. In this context, keystroke biometric algo-
rithms capable of authenticating individuals while interacting
with online applications are more necessary than ever. As an
example of this, Wikipedia struggles to solve the problem of
‘edit wars’ that happens when different groups of editors rep-
resenting opposite opinions undo their changes reciprocally in
an attempt to impose their version. According to [5], up to
12% of the discussions in Wikipedia are devoted to revert
changes and vandalism, suggesting that the Wikipedia cri-
teria to identify and resolve controversial articles is highly
contentious. Keystroke biometrics algorithms could be used
to identify these malicious editors among the thousands of
editors who write articles in Wikipedia every day. Other
applications of keystroke biometric technologies are found
in e-learning platforms; student identity fraud and cheating
are some challenges that virtual education technologies need
to addresss to become a viable alternative to face-to-face
education [4].

The literature on keystroke biometrics is extensive, but to
the best of our knowledge, previous systems have only been
evaluated with up to several hundred subjects and cannot deal

1https://www.prnewswire.com/news-releases/keystroke
2https://siliconcanals.com/news/
3https://150sec.com/fraudulent-fingertips
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with the recent challenges that massive usage applications are
facing. The aim of this paper is to explore the feasibility and
limits of deep learning architectures for scaling up free-text
keystroke biometrics to hundreds of thousands of users. The
main contributions of this work are threefold.

1) We explore novel free-text keystroke biometrics
approaches based on Deep Recurrent Neural Networks,
suitable for authentication and identification at large
scale. We conduct an exhaustive experimentation and
evaluate how performance is affected by the following
factors: the length of the keystroke sequences, the num-
ber of gallery samples, and the device (touchscreen vs
physical keyboard). We present TypeNet, a Recurrent
Neural Network trained with keystroke sequences from
more than 100,000 subjects. We analyze the performance
of three different learning strategies based on traditional
classification frameworks (softmax) and Distance-metric
approaches (contrastive and triplet loss).

2) The results reported by TypeNet represent the state of
the art in keystroke authentication based on free-text
reducing the error obtained by previous works in more
than 50%. Processed data has been made available so
the results can be reproduced.4 We evaluate TypeNet in
terms of Equal Error Rate (EER) as the number of test
subjects is scaled from 100 up to 100,000 (independent
from the training data) for the desktop scenario (physi-
cal keyboards) and up to 30,000 for the mobile scenario
(touchscreen keyboard). TypeNet learns a feature rep-
resentation of a keystroke sequence without the need
for retraining if new subjects are added to the database,
as commonly happens in many biometric systems [6].
Therefore, TypeNet is easily scalable.

3) We carry out a comparison with previous state-of-the-art
approaches for free-text keystroke biometric authen-
tication. Our experiments include four state-of-the-art
approaches and four public databases. The performance
achieved by the proposed method outperforms previous
approaches in the scenarios evaluated in this work. The
results suggest that authentication error rates achieved
by TypeNet remain low as thousands of new users are
enrolled.

A preliminary version of this article was presented in [7].
This article significantly improves [7] in the following aspects:

1) We add a new version of TypeNet trained and tested
with keystroke sequences acquired in mobile devices
and results in the mobile scenario. Additionally, we pro-
vide cross-sensor interoperability results [8], [9] between
desktop and mobile datasets.

2) We include two new learning strategies based on softmax
and triplet loss, that serve to improve the performances
in all scenarios. Our experiments demonstrate that triplet
loss can be used to multiply by two the accuracy of
free-text keystroke authentication approaches.

3) We evaluate TypeNet in terms of Rank-n identifica-
tion rates using a background set of 1,000 subjects
(independent from the training data).

4Data available at: https://github.com/BiDAlab/TypeNet.

4) We also test our TypeNet models with two additional
state-of-the-art free-text keystroke datasets, demonstrat-
ing the potential of our method to generalize well with
other databases.

5) We add experiments about the dependencies between
input text and TypeNet performance, a common issue in
free-text keystroke biometrics.

In summary, we present the first evidence in the literature
of competitive performance of free-text keystroke biometric
authentication at large scale (up to 100,000 test subjects). The
results reported in this work demonstrate the potential of this
behavioral biometric for widespread deployment.

The paper is organized as follows: Section II summarizes
related works in free-text keystroke dynamics. Section III
describes the datasets used for training and testing TypeNet
models. Section IV describes the processing steps and learn-
ing methods in TypeNet. Section V details the experimental
protocol. Section VI reports the experiments and discusses the
results obtained. Section VII summarizes the conclusions and
future work.

II. BACKGROUND AND RELATED WORK

The measurement of keystroke dynamics depends on the
acquisition of key press and release events. This can occur on
almost any commodity device that supports text entry, includ-
ing desktop and laptop computers, mobile and touchscreen
devices that implement soft (virtual) keyboards, and PIN entry
devices such as those used to process credit card transactions.
Generally, each keystroke (the action of pressing and releasing
a single key) results in a keydown event followed by keyup
event, and the sequence of these timings is used to character-
ize an individual’s keystroke dynamics. Within a Web browser,
the acquisition of keydown and keyup event timings requires
no special permissions, enabling the deployment of keystroke
biometric systems across the Internet in a transparent manner.

Keystroke biometric systems are commonly placed into two
categories: fixed-text, where the keystroke sequence typed by
the subject is prefixed, such as a username or password, and
free-text, where the keystroke sequence is arbitrary, such as
writing an email or transcribing a sentence with typing errors.
Notably, free-text input results in different keystroke sequences
between the gallery and test samples as opposed to fixed-text
input. Biometric authentication algorithms based on keystroke
dynamics for desktop and laptop keyboards have been predom-
inantly studied in fixed-text scenarios where accuracies higher
than 95% are common [19]. Approaches based on sample
alignment (e.g., Dynamic Time Warping) [19], Manhattan dis-
tances [20], digraphs [21], and statistical models (e.g., Hidden
Markov Models) [22] have shown to achieve the best results
in fixed-text.

Nevertheless, the performances of free-text algorithms are
generally far from those reached in the fixed-text scenario,
where the complexity and variability of the text entry con-
tribute to intra-subject variations in behavior, challenging
the ability to recognize subjects [23]. Murphy et al. [15]
collected a very large free-text keystroke dataset (∼12.9M
keystrokes) called Clarkson II and applied the Gunetti and
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Picardi algorithm [11] achieving 10.36% classification error
using sequences of 1,000 keystrokes and 10 genuine sequences
to authenticate subjects. The effect of the data size on the
performance of free-text keystroke algorithms has been stud-
ied by Huang et al. [24]. Their results suggested that a sample
size of 10,000 keystrokes for the reference profile and 1,000
keystrokes for the test sample are needed to achieve good
authentication performance for those algorithms based on n-
graph features. The main drawback when using large keystroke
sequences was that the subject needed on average six min-
utes of typing to generate a valid sample. Finally, in [25]
the authors implemented a new metric based on Random
Forest classifier to select the best features for keystroke recog-
nition when using digraph algorithms. Their results on the
Clarkson II [15] dataset achieved a 7.8% EER with 200
digraphs, demonstrating the potential of such algorithms with
an appropriate selection of the keystroke features.

More recently than the pioneering works of Monrose and
Gunetti, some algorithms based on statistical models have
shown to work very well with free-text, like the POHMM
(Partially Observable Hidden Markov Model) [16]. This algo-
rithm is an extension of the traditional Hidden Markov Model
(HMM), but with the difference that each hidden state is
conditioned on an independent Markov chain. This algo-
rithm is motivated by the idea that keystroke timings depend
both on past events and the particular key that was pressed.
Performance achieved using this approach in free-text is close
to fixed-text, but it again requires several hundred keystrokes
and has only been evaluated with a database containing less
than 100 subjects.

Because mobile devices are not stationary, mobile keystroke
biometrics depend more heavily on environmental conditions,
such as the user’s location or posture, than physical key-
boards which typically remain stationary [26]. This challenge
of mobile keystroke biometrics was examined by Crawford
and Ahmadzadeh [27]. They found that authenticating a
user in different positions (sitting, standing, or walking) per-
formed only slightly better than guessing, but detecting the
user’s position before authentication can significantly improve
performance.

Like desktop keystroke biometrics, many mobile keystroke
biometric studies have focused on fixed-text sequences [28].
Some recent works have considered free-text sequences on
mobile devices. Gascon et al. [13] collected freely typed
samples from over 300 participants and developed a system
that achieved a True Acceptance Rate (TAR) of 92% at 1%
False Acceptance Rate (FAR) (an EER of about 10%). Their
system utilized accelerometer, gyroscope, time, and orienta-
tion features. Each user typed an English pangram (sentence
containing every letter of the alphabet) approximately 160
characters in length, and classification was performed by
SVM. In other work, Kim and Kang [12] utilized microbe-
havioral features to obtain an EER below 0.05% for 50
subjects with a single reference sample of approximately 200
keystrokes for both English and Korean input. The microbe-
havioral features consist of angular velocities along three axes
when each key is pressed and released, as well as timing
features and the coordinate of the touch event within each

key. See [28] for a survey of keystroke biometrics on mobile
devices.

Nowadays, with the proliferation of machine learning algo-
rithms capable of analysing and learning human behaviors
from large scale datasets, the performance of keystroke dynam-
ics in the free-text scenario has been boosted. As an exam-
ple, [14] proposes a combination of the existing digraphs
method for feature extraction plus an SVM classifier to authen-
ticate subjects. This approach achieves almost 0% error rate
using samples containing 500 keystrokes. These results are
very promising, even though it was evaluated using a small
dataset with only 34 subjects. In [18] the authors employ an
RNN within a Siamese architecture to authenticate subjects
based on 8 biometric modalities on smartphone devices. They
achieved results in a free-text scenario of 81.61% TAR at 0.1%
FAR using just 3 second test windows with a dataset of 37
subjects.

In [29], the authors employed CNN (Convolutional Neural
Network) with Gaussian data augmentation technique for
fixed-text keystroke authentication over a population of 267
subjects. Their results of 2.02% EER in the best scenario
suggest the combined benefit of CNN architectures and data
augmentation for keystroke biometric systems. Finally, in [17]
the authors combined a CNN with a RNN architecture. They
argued that adding a 1D convolutional layer at the top of the
RNN architecture makes the model able to extract higher-
level keystroke features that are processed by the following
RNN layers. Their results tested with the SUNY Buffalo [30]
dataset showed a relative error reduction of 35% (from 5.03%
to 2.67% EER) when employing the 1D convolutional layer
with a population of 75 users and keystrokes sequences of 30
keys.

Previous works in free-text keystroke dynamics have
achieved promising results with up to several hundred sub-
jects (see Table I), but they have yet to scale beyond this limit
and leverage emerging machine learning techniques that ben-
efit from vast amounts of data. Here we take a step forward in
this direction of machine learning-based free-text keystroke
biometrics by using the largest datasets published to date
with 199 million keystrokes from 228,000 subjects (consid-
ering both mobile and desktop datasets). We analyze to what
extent deep learning models are able to scale in keystroke
biometrics to recognize subjects at a large scale while attempt-
ing to minimize the amount of data per subject required for
enrollment.

III. KEYSTROKE DATASETS

The approaches proposed in this work were trained and
evaluated using four public keystroke databases: 1) the
Dhakal et al. dataset [31]; 2) the Palin et al. dataset [26]; 3) the
Clarkson II dataset [15]; and iv) the Buffalo dataset [30].

The two Aalto University Datasets [31], [26] were used for
both training and evaluation. The Dhakal et al. dataset [31]
comprises more than 5GB of keystroke data collected on desk-
top keyboards from 168,000 participants;. The Palin et al.
dataset [26], which comprises almost 4GB of keystroke data
collected on mobile devices from 260,000 participants. The

Authorized licensed use limited to: Universidad Autonoma de Madrid. Downloaded on February 28,2022 at 09:58:42 UTC from IEEE Xplore.  Restrictions apply. 



60 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 4, NO. 1, JANUARY 2022

TABLE I
COMPARISON AMONG DIFFERENT FREE-TEXT KEYSTROKE DATASETS EMPLOYED IN RELEVANT RELATED WORKS. N/A = NOT AVAILABLE.

ACC = ACCURACY, EER = EQUAL ERROR RATE, TAR = TRUE ACCEPTANCE RATE, FAR = FALSE ACCEPTANCE RATE

same data collection based on controlled free-text [32] fol-
lowed for both datasets. The acquisition task required subjects
to memorize English sentences and then type them as quickly
and accurate as they could. The English sentences were
selected randomly from a set of 1,525 examples taken from
the Enron mobile email and Gigaword Newswire corpus. The
example sentences contained a minimum of 3 words and a
maximum of 70 characters. Note that the sentences typed
by the participants could contain more than 70 characters
because each participant could forget or add new characters
when typing. All participants in the Dhakal database com-
pleted 15 sessions (i.e., one sentence for each session) on
either a desktop or a laptop physical keyboard. However, in the
Palin dataset the participants who finished at least 15 sessions
are only 23% (60,000 participants) out of 260,000 participants
that started the typing test. In this paper we will employ these
60,000 subjects with their first 15 sessions in order to allow
fair comparisons between both datasets.

For the data acquisition, the authors launched an online
application that records the keystroke data from participants
who visit their webpage and agree to complete the acquisition
task (i.e., the data was collected in an uncontrolled environ-
ment). Press (keydown) and release (keyup) event timings were
recorded in the browser with millisecond resolution using the
JavaScript function Date.now. The authors also reported
demographic statistics for both datasets: 72% of the partic-
ipants from the Dhakal database took a typing course, 218
countries were involved, and 85% of the them have English as
native language, meanwhile only 31% of the participants from
the Palin database took a typing course, 163 countries were
involved, and 68% of the them were English native speakers.

The Clarkson II dataset [15] and Buffalo dataset [30] were
used to evaluate the generalization capacity of the trained mod-
els. The Clarkson II is composed by 103 subjects typing in
a desktop keyboard over a time span of 2.5 years in a com-
plete uncontrolled scenario (fully free-text). The data is not
divided into sessions, so for each subject we split the entire
raw keystroke data into keystroke sequences of length 150.
We only employ for testing the users that yield at least 15
keystroke sequences according to this method. The Buffalo
database is composed of 148 subjects with 3 sessions of
keystroke data collected in desktop keyboards during 28 days
of time span. In each session, the subject completed two tasks:
one task consisted of transcribing a prefixed text and the other
task was based on answering free-text questions.

Fig. 1. Example of the 4 temporal features extracted between two consecutive
keys: Hold Latency (HL), Inter-key Latency (IL), Press Latency (PL), and
Release Latency (RL).

IV. SYSTEM DESCRIPTION

A. Pre-Processing and Feature Extraction

The raw data captured in each session includes a time series
with three dimensions: the keycodes, press times, and release
times of the keystroke sequence. Timestamps are in UTC for-
mat with millisecond resolution, and the keycodes are integers
between 0 and 255 according to the ASCII code.

We extract 4 temporal features for each sequence (see Fig. 1
for details): (i) Hold Latency (HL), the elapsed time between
key press and release events; (ii) Inter-key Latency (IL), the
elapsed time between releasing a key and pressing the next
key; (iii) Press Latency (PL), the elapsed time between two
consecutive press events; and (iv) Release Latency (RL), the
elapsed time between two consecutive release events. These
4 features are commonly used in both fixed-text and free-text
keystroke systems [33]. Finally, we include the keycodes as
an additional feature.

The 5 features are calculated for each keystroke in the
sequence. Let N be the length of the keystroke sequence, such
that each sequence provided as input to the model is a time
series with shape N × 5 (N keystrokes by 5 features). All fea-
ture values are normalized before being provided as input to
the model. Normalization is important so that the activation
values of neurons in the input layer of the network do not
saturate (i.e., all close to 1). The keycodes are normalized to
between 0 and 1 by dividing each keycode by 255, and the
4 timing features are converted to seconds. This scales most
timing features to between 0 and 1 as the average typing rate
over the entire dataset is 5.1 ± 2.1 keys per second. Only
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Fig. 2. Verification scheme based on the proposed architecture (TypeNet)
for free-text keystroke sequences from two users i and j. The input x is a time
series with shape M ×5 (keystrokes × keystroke features) and the output f(x)

is an embedding vector with shape 1 × 128. τ is a decision threshold.

latency features that occur either during very slow typing or
long pauses exceed a value of 1.

B. TypeNet Architecture

In keystroke dynamics, it is thought that idiosyncratic
behaviors that enable authentication are characterized by the
relationship between consecutive key press and release events
(e.g., temporal patterns, typing rhythms, pauses, typing errors).
In a free-text scenario, keystroke sequences between enroll-
ment and testing may differ in both length and content. This
reason motivates us to choose a Recurrent Neural Network as
our keystroke authentication algorithm. RNNs have demon-
strated to be one of the best algorithms to deal with temporal
data (e.g., [34], [35]) and are well suited for free-text keystroke
sequences (e.g., [17], [18]).

Our RNN architecture is depicted in Fig. 2. It is composed
of two Long Short-Term Memory (LSTM) layers of 128 units
(tanh activation function). Between the LSTM layers, we per-
form batch normalization and dropout at a rate of 0.5 to avoid
overfitting. Additionally, each LSTM layer has a recurrent
dropout rate of 0.2. This RNN model is composed by 200,458
trainable parameters. The proposed architecture is the result
of several tests including different number of layers (from 1
to 4 layers) and units (from 8 to 512 units in powers of 2).
Our experiments showed that performance improvements were

marginal for more than 2 layers and more than 128 units. We
chosen this architecture to reduce the number of parameters
and avoid a potential overfitting.

One constraint when training a RNN using standard back-
propagation through time applied to a batch of sequences is
that the number of elements in the time dimension (i.e., num-
ber of keystrokes) must be the same for all sequences. We
set the size of the time dimension to M. In order to train the
model with sequences of different lengths N within a single
batch, we truncate the end of the input sequence when N > M
and zero pad at the end when N < M, in both cases to the
fixed size M. Error gradients are not computed for those zeros
and do not contribute to the loss function at the output layer
as a result of the masking layer shown in Fig. 2.

Finally, the output of the model f(x) is an array of size
1 × 128 that we will employ later as an embedding feature
vector to recognize subjects.

C. LSTM Training: Loss Functions

Our goal is to build a keystroke biometric system capable
of generalizing to new subjects not seen during model train-
ing, and therefore, having a competitive performance when
it deploys to applications with thousands of users. Our RNN
is trained only once on an independent set of subjects. This
model then acts as a feature extractor that provides input
to a distance-based recognition scheme. After training the
RNN once, we will evaluate in the experimental section the
recognition performance for a varying number of subjects and
enrollment samples per subject.

We train our deep model with three different loss functions:
Softmax loss, which is widely used in classification tasks;
Contrastive loss, a loss for distance metric learning based on
two samples [36]; and Triplet loss, a loss for metric learning
based on three samples [37]. These are defined as follows.

1) Softmax Loss: Let xi be a keystroke sequence of individ-
ual Ii, and let us introduce a dense layer after the embeddings
described in the previous section aimed at classifying the indi-
viduals used for learning (see Fig. 3.a). The Softmax loss is
applied as

LS = − log

⎛
⎜⎜⎜⎝

ef C
Ii

(xi)

C∑
c=1

ef C
c (xi)

⎞
⎟⎟⎟⎠ (1)

where C is the number of classes used for learning (i.e., iden-
tities), fC = [f C

1 , . . . , f C
c ], and after learning all elements of

fC will tend to 0 except f C
Ii

(xi) that will tend to 1. Note
that C is a super-index to differentiate between f and fC,
see Fig. 3(a). Softmax is widely used in classification tasks
because it provides good performance on closed-set problems.
Nonetheless, Softmax does not optimize the margin between
classes. Thus, the performance of this loss function usually
decays for problems with high intra-class variance. In order to
train the architecture proposed in Fig. 2, we have added an out-
put classification layer with C units (see Fig. 3.a). During the
training phase, the model will learn discriminative information
from the keystroke sequences and transform this information
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Fig. 3. Learning architecture for the different loss functions a) Softmax loss, b) Contrastive loss, and c) Triplet loss. The goal is to find the most discriminant
embedding space f(x).

into an embedding space where the embedding vectors f(x)

(the outputs of the model) will be close in case both keystroke
inputs belong to the same subject (genuine pairs), and far in
the opposite case (impostor pairs).

2) Contrastive Loss: Let xi and xj each be a keystroke
sequence that together form a pair which is provided as input
to the model. The Contrastive loss calculates the Euclidean
distance between the model outputs,

d(xi, xj) = ∥∥f(xi) − f(xj)
∥∥ (2)

where f(xi) and f(xj) are the model outputs (embedding vec-
tors) for the inputs xi and xj, respectively. The model will
learn to make this distance small (close to 0) when the input
pair is genuine and large (close to α) for impostor pairs by
computing the loss function LCL defined as follows:

LCL = (1 − Lij)
d2(xi, xj)

2
+ Lij

max2
{
0, α − d(xi, xj)

}
2

(3)

where Lij is the label associated with each pair that is set
to 0 for genuine pairs and 1 for impostor ones, and α ≥ 0
is the margin (the maximum margin between genuine and
impostor distances). The Contrastive loss is trained using a
Siamese architecture (see Fig. 3.b) that minimizes the distance
between embeddings vectors from the same class (d(xi, xj)

with Lij = 0), and maximizes it for embeddings from different
class (d(xi, xj) with Lij = 1).

3) Triplet Loss: The Triplet loss function enables learning
from positive and negative comparisons at the same time (note
that the label Lij eliminates one of the distances for each pair in
the Contrastive loss). A triplet is composed by three different
samples from two different classes: Anchor (A) and Positive
(P) are different keystroke sequences from the same subject,
and Negative (N) is a keystroke sequence from a different
subject. The Triplet loss function is defined as follows:

LTL = max
{

0, d2(xi
A, xi

P) − d2(xi
A, xj

N) + α
}

(4)

where α is a margin between positive and negative pairs and d
is the Euclidean distance calculated with Eq. (1). In compar-
ison with Contrastive loss, Triplet loss is capable of learning
intra- and inter-class structures in a unique operation (remov-
ing the label Lij). The Triplet loss is trained using an extension
of a Siamese architecture (see Fig. 3.c) for three samples. This
learning process minimizes the distance between embedding
vectors from the same class (d(xA, xP)), and maximizes it for
embeddings from different classes (d(xA, xN)).

D. LSTM Training: Implementation Details

We train three RNN versions (i.e., one for each loss func-
tion) for each input device: desktop and mobile, using the
Dhakal and Palin databases, respectively. For the desktop
scenario, we train the models using only the first 68,000
subjects from the Dhakal dataset. The remaining 100,000 sub-
jects were employed only for model evaluation, so there is
no data overlap between the two groups of subjects. This
reflects an open-set authentication paradigm. For the Softmax
function we train a model with C = 10,000 subjects due
to GPU memory constraints, as the Softmax loss requires a
very wide final layer with many classes. In this case, we
used 15 × 10,000 = 150,000 keystroke sequences for train-
ing and the remaining 58,000 subjects were discarded. For the
Contrastive loss we generate genuine and impostor pairs using
all the 15 keystroke sequences available for each subject. This
provides us with 15 × 67,999 × 15 = 15.3 million impostor
pair combinations and 15 × 14/2 = 105 genuine pair com-
binations for each subject. The pairs were chosen randomly
in each training batch ensuring that the number of genuine
and impostor pairs remains balanced (512 pairs in total in
each batch including impostor and genuine pairs). Similarly,
we randomly chose triplets for the Triplet loss training.

The same protocol was employed for the mobile scenario
but adjusting the amount of subjects employed to train and test.
In order to have balanced subsets close to the desktop scenario,
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we divided by half the Palin database such that 30,000 subjects
were used to train the models, generating 15 × 29,999 × 15 =
6.75 million impostor pair combinations and 15×14/2 = 105
genuine pair combinations for each subject. The other 30,000
subjects were used to test the mobile TypeNet models. Once
again 10,000 subjects were used to train the mobile TypeNet
model with Softmax loss.

Regarding the hyper-parameters employed during training,
the best results for both models were achieved with a learn-
ing rate of 0.05, Adam optimizer with β1 = 0.9, β2 = 0.999
and ε = 10−8, and the margin set to α = 1.5. The mod-
els were trained for 200 epochs with 150 batches per epoch
and 512 sequences in each batch. The models were built in
Keras-Tensorflow.

V. EXPERIMENTAL PROTOCOL

A. Authentication Protocol

We authenticate subjects by comparing gallery samples xi,g

belonging to the subject i in the test set to a query sample
xj,q from either the same subject (genuine match i = j) or
another subject (impostor match i �= j). The test score is
computed by averaging the Euclidean distances between each
gallery embedding vector f(xi,g) and the query embedding
vector f(xj,q) as follows:

sq
i,j = 1

G

G∑
g=1

||f(xi,g) − f(xj,q)|| (5)

where G is the number of sequences in the gallery (i.e., the
number of enrollment samples) and q is the query sample of
subject j. Taking into account that each subject has a total of
15 sequences, we retain 5 sequences per subject as the test set
(i.e., each subject has 5 genuine test scores) and let G vary
between 1 ≤ G ≤ 10 in order to evaluate the performance as
a function of the number of enrollment sequences.

To generate impostor scores, for each enrolled subject we
choose one test sample from each remaining subject. We define
k as the number of enrolled subjects. In our experiments, we
vary k in the range 100 ≤ k ≤ K, where K = 100,000
for the desktop TypeNet models and K = 30,000 for the
mobile TypeNet. Therefore each subject has 5 genuine scores
and k − 1 impostor scores. Note that we have more impos-
tor scores than genuine ones, a common scenario in keystroke
dynamics authentication. The results reported in the next sec-
tion are computed in terms of Equal Error Rate (EER), which
is the value where False Acceptance Rate (FAR, proportion
of impostors classified as genuine) and False Rejection Rate
(FRR, proportion of genuine subjects classified as impostors)
are equal. The error rates are calculated for each subject and
then averaged over all k subjects [38].

B. Identification Protocol

Identification scenarios are common in forensics applica-
tions, where the final decision is based on a bag of evidences
and the biometric recognition technology can be used to pro-
vide a list of candidates, referred to as background set B in this
work. The Rank-1 identification rate reveals the performance

to unequivocally identifying the target subject among all the
subjects in the background set. Rank-n represents the accu-
racy if we consider a ranked list of n profiles from which the
result is then manually or automatically determined based on
additional evidence [39].

The 15 sequences from the k test subjects in the database
were divided into two groups: Gallery (10 sequences) and
Query (5 sequences). We evaluate the identification rate by
comparing the Query set of samples xQ

j,q, with q = 1, . . . , 5
belonging to the test subject j against the Background Gallery
set xG

i,g, with g = 1, . . . , 10 belonging to all background sub-
jects. The distance was computed by averaging the Euclidean
distances || · || between each gallery embedding vector f(xG

i,g)

and each query embedding vector f(xQ
j,q) as follows:

sQ
i,j = 1

10 × 5

10∑
g=1

5∑
q=1

||f(xG
i,g) − f(xQ

j,q)|| (6)

We then identify a query set (i.e., subject j = J is the same
gallery person i = I) as follows:

I = arg min
i

sQ
i,J (7)

The results reported in the next section are computed in
terms of Rank-n accuracy. A Rank-1 means that di,J < dI,J

for any i �= I, while a Rank-n means that instead of selecting a
single gallery profile, we select n profiles starting with i = I by
increasing distance di,J . In forensic scenarios, it is traditional
to use Rank-20, Rank-50, or Rank-100 in order to generate a
short list of potential candidates that are finally identified by
considering other evidence.

VI. EXPERIMENTS AND RESULTS

A. Authentication Results

As commented in the related works section, one key fac-
tor when analyzing the performance of a free-text keystroke
authentication algorithm is the amount of keystroke data per
subject employed for enrollment [24]. In this work, we study
this factor with two variables: the keystroke sequence length
M and the number of gallery sequences used for enrollment
G.

Our first experiment reveals to what extent M and G affect
the authentication performance of our TypeNet models. Note
that the input to our models has a fixed size of M after the
masking process shown in Fig. 2. For this experiment, we
set k = 1,000 (where k is the number of enrolled subjects).
Tables II and III summarize the error rates in both desktop and
mobile scenarios respectively, achieved by the TypeNet models
for the different values of sequence length M and enrollment
sequences per subject G.

In the desktop scenario (Table II) we observe that for
sequences longer than M = 70 there is no significant improve-
ment in performance. Adding three times more key events
(from M = 50 to M = 150) lowers the EER by only 0.7% in
average for all values of G. However, adding more sequences
to the gallery shows greater improvements with about 50%
relative error reduction when going from 1 to 10 sequences
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TABLE II
EQUAL ERROR RATES (%) ACHIEVED IN DESKTOP SCENARIO USING SOFTMAX/CONTRASTIVE/TRIPLET LOSS FOR DIFFERENT VALUES

OF THE PARAMETERS M (SEQUENCE LENGTH) AND G (NUMBER OF ENROLLMENT SEQUENCES PER SUBJECT)

TABLE III
EQUAL ERROR RATES (%) ACHIEVED IN MOBILE SCENARIO USING SOFTMAX/CONTRASTIVE/TRIPLET LOSS FOR DIFFERENT VALUES

OF THE PARAMETERS M (SEQUENCE LENGTH) AND G (NUMBER OF ENROLLMENT SEQUENCES PER SUBJECT)

independent of M. Comparing among the different loss func-
tions, the best results are always achieved by the model trained
with Triplet loss for M = 70 and G = 10 with an error rate
of 1.2% (with a standard deviation of σ ≤ 4.1%), followed
by the Contrastive loss function with an error rate of 3.9%;
the worst results are achieved with the Softmax loss function
(6.0%). For one-shot authentication (G = 1), our approach has
an error rate of 4.5% using sequences of 70 keystrokes.

Similar trends are observed in the mobile scenario
(Table III) compared to the desktop scenario (Table II). First,
increasing sequence length beyond M = 70 keystrokes does
not significantly improve performance, but there is a signifi-
cant improvement when increasing the number of sequences
per subject. The best results are achieved for M = 100 and
G = 10 with an error rate of 6.3% by the model trained with
triplet loss (with a standard deviation of σ ≤ 9.2%), followed
again by the contrastive loss (10.0%), and softmax (12.3%).
For one-shot authentication (G = 1), the performance of the
triplet model decays up to 10.7% EER using sequences of
M = 100 keystrokes.

Comparing the performance achieved by the three TypeNet
models between mobile and desktop scenarios, we observe
that in all cases the results achieved in the desktop scenario
are significantly better to those achieved in the mobile sce-
nario. These results are consistent with prior work that has
obtained lower performance on mobile devices when only
timing features are utilized [2], [28], [40].

Next, we compare TypeNet with our implementation of
three state-of-the-art algorithms for free-text keystroke authen-
tication: a statistical sequence model, the POHMM (Partially
Observable Hidden Markov Model) from [16], an algorithm
based on digraphs and SVM from [14], and a deep model based
on the combination of CNN and RNN architectures introduced
in [17]. To allow fair comparisons, all approaches are trained and
tested with the same data and experimental protocol: G = 5
enrollment sequences per subject, M = 50 keystrokes per
sequence, k = 1,000 test subjects. The CNN+RNN architec-
ture proposed in [17] was trained following the same protocol
employed with the TypeNet model.

In Fig. 4 we plot the error rates of the four approaches
(i.e., Digraphs, POHMM, CNN+RNN, and TypeNet) trained
and tested on both desktop (left) and mobile (right) datasets.
The TypeNet models outperform previous state-of-the-art free-
text algorithms in both mobile and desktop scenarios with this
experimental protocol, where the amount of enrollment data
is reduced (5 × M = 250 training keystrokes in comparison
to more than 10,000 in related works, see Section II). This
can largely be attributed to the rich embedding feature vector
produced by TypeNet, which minimizes the amount of data
needed for enrollment. The SVM generally requires a large
number of training sequences per subject (∼100), whereas
in this experiment we have only 5 training sequences per
subject. We hypothesize that the lack of training samples con-
tributes to the poor performance (near chance accuracy) of the
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Fig. 4. ROC comparisons in free-text biometric authentication for desktop (left) and mobile (right) scenarios between the three proposed TypeNet models and
three state-of-the-art approaches: POHMM (Partially Observable Hidden Markov Model) from [16], digraphs/SVM from [14], and CNN+RNN (Convolutional
Neuronal Network + Recurrent Neuronal Network) model from [17]. M = 50 keystrokes per sequence, G = 5 enrollment sequences per subject, and k = 1,000
test subjects.

Digraphs system based on SVMs. Finally, the results achieved
by the model based on CNN+RNN are the closest to those
achieved by the TypeNet models. The deep learning archi-
tectures clearly outperform traditional approaches. However,
the performance of TypeNet is significantly better than the
performance achieved by the architecture proposed in [17],
especially for the desktop scenario.

B. Authentication: Varying Number of Subjects

In this experiment, we evaluate to what extent our best
TypeNet models (those trained with triplet loss) are able
to generalize without performance decay. For this, we scale
the number of enrolled subjects k from 100 to K (with
K = 100,000 for desktop and K = 30,000 for mobile). For
each subject we have 5 genuine test scores and k − 1 impos-
tor scores, one against each other test subject. The models
used for this experiment are the same trained in previous the
section (68,000 independent subjects included in the training
phase for desktop and 30,000 for mobile).

Fig. 5 shows the authentication results for one-shot enroll-
ment (G = 1 enrollment sequences, M = 50 keystrokes
per sequence) and the case (G = 5, M = 50) for different
values of k. For the desktop devices, we can observe that
in both cases there is a slight performance decay when we
scale from 1,000 to 10,000 test subjects, which is more pro-
nounced in the one-shot case. However, for a large number
of subjects (k ≥ 10,000), the error rates do not appear to
demonstrate continued growth. For the mobile scenario, the
results when scaling from 100 to 1,000 test subjects show
a similar tendency compared to the desktop scenario with a
slightly greater performance decay. However, we can observe
an error rate reduction when we continue scaling the num-
ber of test subjects up to 30,000. In all cases the variation
of the performance across the number of test subjects is less
than 2.5% EER. These results demonstrate the potential of
the RNN architecture in TypeNet to authenticate subjects at
large scale in free-text keystroke dynamics. We note that in the

Fig. 5. EER (%) of our proposed TypeNet models when scaling up the
number of test subjects k in one-shot (G = 1 enrollment sequences per subject)
and 5-shot (G = 5) authentication cases. M = 50 keystrokes per sequence.

mobile scenario, we have utilized only timing features; prior
work has found that greater performance may be achieved by
incorporating additional sensor features [12].

C. Authentication: Cross-Database Interoperability

In this experiment we measure the cross-device interop-
erability between the best TypeNet models trained with the
triplet loss. We also study the capacity of both desktop and
mobile TypeNet models to generalize to other input devices
and state-of-the-art databases. For this, we test both models
with a different keystroke dataset than the one employed in
their training. Additionally, for this experiment we train a third
TypeNet model called Mixture-TypeNet with triplet loss using
keystroke sequences from both datasets (half of the training
batch for each dataset) but keeping the same train/test subject
division as the other TypeNet models to allow fair compar-
isons. To be consistent with the other experiments we keep
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TABLE IV
EQUAL ERROR RATES (%) ACHIEVED IN THE CROSS-DATABASE

SCENARIO FOR THE THREE TYPENET MODELS (DESKTOP, MOBILE, AND

MIXTURE) WHEN TESTING ON AALTO DESKTOP [31], AALTO

MOBILE [26], CLARKSON II [25], AND BUFFALO [30] DATASET.
BUFFALO (FREE) = FREE TEXT, BUFFALO (TRANSC) = TRANSCRIPTED

TEXT. *EXPERIMENT USING ALL THE DATA AVAILABLE PER SUBJECT

the same experimental protocol: G = 5 enrollment sequences
per subject, M = 50 keystrokes per sequence, k = 1,000 test
subjects.

The first two rows of Table IV show the error rates
achieved for the three TypeNet models when we test with
desktop (Dhakal) and mobile (Palin) datasets (named in this
section Aalto Desktop and Aalto Mobile respectively for a
better comparison with other databases). First of all, we can
observe that error rates increase significantly in the cross-
device scenario for both desktop and mobile TypeNet models.
This performance decay is alleviated by the Mixture-TypeNet
model, which still performs much worse than the other two
models trained and tested in the same-sensor scenario. These
results suggest that multiple device-specific models may be
superior to a single model when dealing with input from dif-
ferent device types. This would require device type detection
in order to pass the enrollment and test samples to the correct
model [8].

Secondly, we test the generalization capacity of the three
TypeNet models with two public free-text keystroke databases:
the Clarkson II dataset collected in [15] and the Buffalo dataset
collected in [30]. Table IV presents the performance of the
proposed approaches over the Clarkson II database and Buffalo
database in transcribed (Transc) and free-text (Free) scenarios.
Note that the models were trained and evaluated with different
databases. This experiment is aimed to explore the generaliza-
tion capacity between various data collection environments.
Due to the number of subjects in both Clarkson II and Buffalo
databases, which is much fewer than those present in the Aalto
datasets, we modified the experimental protocol. For Clarkson
II we employed k = 91 (the number of subjects for which we
could extract at least 15 samples of 150 keys), G = 5 enroll-
ment sequences per subject, M = 50 keystrokes per sequence.
For the Buffalo database we employed k = 147, G = 2 enroll-
ment sequences per subject (as we only have three sessions
per subject, we employ two for gallery and one for query),
and M = 50 keystrokes per sequence.

The last four rows of Table IV show the results achieved
when testing with both Clarkson II and Buffalo databases.
The performance of the Desktop version of TypeNet remained
competitive for the Bufallo dataset even when we only
employed G = 2 gallery samples per subject. Nonetheless,
there is a large increase of the error rates for Clarkson II
database. This drop of performance might be caused by the
uncontrolled acquisition of the Clarkson II database over a
long time period (i.e., two years) and the fully free-text typ-
ing behavior. However, when we employ all keystroke data
available in the database per subject for testing (i.e., G = 10
and M = 150) the error rate drops up to 17.2%. Note that the
benchmark published in [15] achieved EERs around 10% train-
ing and testing with the same database. The results obtained
by the owner of the database demonstrate the uncontrolled
conditions of this database. We want to highlight that the
TypeNet models were not retrained with any kind of keystroke
data from Clarkson II or Buffalo databases, these databases
were employed only for testing. These results suggest that
re-training is necessary to improve the performance of the
proposed models, especially for the Clarkson II database. On
the other hand, the performance achieved by the Mobile and
Mixed versions of TypeNet was very poor with EERs greater
than 20%. Both databases were acquired with desktop key-
boards and these results indicates the importance of the device
in the generalization capacity of the models.

D. Identification Based on Keystroke Dynamics

Table V presents the identification accuracy for a back-
ground of B = 1,000 subjects, k = 10,000 test subjects,
G = 10 gallery sequences per subject, and M = 50
keystrokes per sequence. The accuracy obtained for an iden-
tification scenario is much lower than the accuracy reported
for authentication. In general, the results suggest that keystroke
identification enables a 90% size reduction of the candidate list
while maintaining almost 100% accuracy (i.e., 100% rank-100
accuracy with 1,000 subjects). However, the results show the
superior performance of the triplet loss function and signif-
icantly better performance compared to traditional keystroke
approaches [14], [16], [17]. While traditional approaches are
not suitable for large-scale free text keystroke applications,
the results obtained by TypeNet demonstrate its usefulness in
many applications.

The number of background profiles can be further reduced
if auxiliary data is available to realize a pre-screening of the
initial list of gallery profiles (e.g., country, language). The
Aalto University Dataset contains auxiliary data including age,
country, gender, keyboard type (desktop vs laptop), among
others. Table VI shows also subject identification accuracy
over the 1,000 subjects with a pre-screening by country (i.e.,
contents generated in a country different to the country of
the target subject are removed from the background set). The
results show that pre-screening based on a unique attribute
is enough to largely improve the identification rate: Rank-
1 identification with pre-screening ranges between 5.5% to
84.0%, while the Rank-100 ranges between 42.2% to 100%.
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TABLE V
IDENTIFICATION ACCURACY (RANK-n IN %) FOR A BACKGROUND SIZE

B = 1,000. SCENARIO: D = DESKTOP, M = MOBILE

TABLE VI
IDENTIFICATION ACCURACY (RANK-n IN %) FOR A BACKGROUND

SIZE B = 1,000 AND PRE-SCREENING BASED ON THE LOCATION

OF THE TYPIST. SCENARIO: D = DESKTOP. THERE IS NOT

METADATA RELATED TO THE MOBILE SCENARIO

These results demonstrate the potential of keystroke dynam-
ics for large-scale identification when auxiliary information is
available.

E. Input Text Dependency in TypeNet Models

For the last experiment, we examine the effect of the
text typed (i.e., the keycodes employed as input feature in
the TypeNet models) on the distances between embedding
vectors and how this may affect the model performance.
The main drawback when using the keycode as an input
feature to free-text keystroke algorithms is that the model
could potentially learn text-based features (e.g., orthography,
linguistic expressions, typing styles) rather than keystroke
dynamics (e.g., typing speed and style) features. To analyze
this phenomenon, we first introduce the Levenshtein distance
(commonly referred as Edit distance) proposed in [41]. The
Levenshtein distance dL measures the distance between two
words as the minimum number of single-character edits (inser-
tions, deletions or substitutions) required to change one word
into another. As an example, the Levenshtein distance between
“kitten” and “sitting” is dL = 3, because we need to substitute

“s” for “k”, substitute “i” for “e”, and insert “g” at the end
(three editions in total). With the Levenshtein distance metric
we can measure the similarity of two keystroke sequences in
terms of keys pressed and analyze whether TypeNet models
could be learning linguistic expressions to recognize sub-
jects. This would be revealed by a high correlation between
Levenshtein distance dL and the Euclidean distance of test
scores dE.

In Fig. 6 we plot the test scores (Euclidean distances)
employed in one-shot scenario (G = 1 enrollment sequence
per subject, M = 50 keystrokes per sequence, k = 1,000
test subjects) versus the Levenshtein distance between the
gallery and the query sample that produced the test score
(i.e., dE(f(xg), f(xq)) vs. dL(xg, xq)). To provide a quantita-
tive comparison, we also calculate the Pearson coefficient p
and the Linear Regression response as a measure of cor-
relation between both distances (smaller slope indicates a
weaker relationship). In mobile scenarios (Fig. 6 down) we
can observe a significant correlation (i.e., higher slope in the
Linear Regression response and high p value) between the
Levenshtein distances and the test scores: genuine distance
scores show lower Levenshtein distances (i.e., more similar
typed text) than the impostor ones, and therefore, this met-
ric provides us some clues about the possibility that TypeNet
models in the mobile scenario could be using the similarity
of linguistic expressions or keys pressed between the gallery
and the query samples to recognize subjects. These results sug-
gest us that the TypeNet models trained in the mobile scenario
may be performing worse than in the desktop scenario, among
other factors, because mobile TypeNet embeddings show a sig-
nificant dependency to the entry text. On the other hand, in
desktop scenarios (Fig. 6 up) this correlation is not present
(i.e., the small slope in the Linear Regression response and
p ∼ 0) between test scores and Levenshtein distances, suggest-
ing that the embedding vector produced by TypeNet models
trained with the desktop dataset are largely independent of the
input text.

VII. CONCLUSION AND FUTURE WORK

We have presented new free-text keystroke biometrics
systems based on an RNN architecture trained with differ-
ent learning strategies and evaluated over 4 public databases.
We present a comprehensive performance analysis including
authentication and identification results obtained at very large
scale. These experiments comprise more than 136 million
keystrokes from 168,000 subjects captured on desktop key-
boards and 60,000 subjects captured on mobile devices with
more than 63 million keystrokes. Deep neural networks have
shown to be effective in face recognition tasks when scaling up
to hundreds of thousands of identities [42]. The same capac-
ity has been shown by TypeNet models in free-text keystroke
biometrics.

In all authentication scenarios evaluated in this work,
the models trained with triplet loss have shown a superior
performance, especially when there are many subjects but
few enrollment samples per subject. The results achieved in
this work outperform previous state-of-the-art algorithms. Our
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Fig. 6. Levenshtein distances vs. test scores in desktop (up) and mobile (down) scenarios for the three TypeNet models. For qualitative comparison we plot
the linear regression results (red line), and the Pearson correlation coefficient p. Note: we only plot one genuine and one impostor score (randomly chosen)
for each of the 1,000 subjects to improve the visualization of the results.

results range from 17.2% to 1.2% EER in desktop and from
17.7% to 6.3% EER in mobile scenarios depending on the
amount of subject data enrolled. A good balance between
performance and the amount of enrollment data per subject is
achieved with 5 enrollment sequences and 50 keystrokes per
sequence, which yields an EER of 2.2/9.2% (desktop/mobile)
for 1,000 test subjects. These results suggest that our approach
achieves error rates close to those achieved by the state-of-the-
art fixed-text algorithms [19], within ∼5% of error rate even
when the enrollment data is scarce.

Scaling up the number of test subjects does not signifi-
cantly affect the performance: the EER in the desktop scenario
increases only 5% in relative terms with respect to the previous
2.2% when scaling up from 1,000 to 100,000 test subjects,
while in the mobile scenario decays up to 15% the EER in
relative terms. Evidence of the EER stabilizing around 10,000
subjects demonstrates the potential of this architecture to per-
form well at large scale. However, the error rates of both
models increase in the cross-device interoperability scenario.
Evaluating the TypeNet model trained in the desktop sce-
nario with the mobile dataset the EER increases from 2.2% to
13.7%, and from 9.2% to 21.4% for the TypeNet model trained
with the mobile dataset when testing with the desktop dataset.
A solution based on a mixture model trained with samples
from both datasets outperforms the previous TypeNet models
in the cross-device scenario but with significantly worse results
compared to single-device development and testing. When
testing the generalization capacity of the proposed models with
the Buffalo and Clarkson II keystroke datasets, TypeNet is
able to maintain a competitive performance (between 7.6%

and 17.2% of EER for the best scenario) without any kind of
transfer learning or retraining, demonstrating the potential of
TypeNet models to generalize well in other databases acquired
under similar conditions. However, the performance decreased
quickly when testing with databases acquired with different
conditions or devices (e.g., touchscreen sensors).

In addition to authentication results, identification exper-
iments have been also conducted. In this case, TypeNet
models trained with triplet loss have shown again a superior
performance in all ranks evaluated. For Rank-1, TypeNet mod-
els trained with triplet loss have an accuracy of 67.4/25.5%
(desktop/mobile) with a background size of B = 1,000 iden-
tities, meanwhile previous related works barely achieve 6.5%
accuracy. For Rank-50, the TypeNet model trained with triplet
loss achieves almost 100% accuracy in the desktop scenario
and up to 87.5% in the mobile one. The results are improved
when using auxiliary-data to realize a pre-screening of the ini-
tial list of gallery profiles (e.g., country, language), showing
the potential of TypeNet models to perform great not only
in authentication, but also in identification tasks. Finally we
have demonstrated that the text-entry dependencies in TypeNet
models are irrelevant in desktop scenarios, although in mobile
scenarios the TypeNet models have some correlation between
the input text typed and the performance achieved.

For future work, we will improve the way training
pairs/triplets are chosen in Siamese/Triplet training. Currently,
the pairs are chosen randomly; however, recent work has
shown that choosing hard pairs during the training phase can
improve the quality of the embedding feature vectors [43].
We will also explore improved learning architectures based
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on a combination of short- and long-term modeling, which
has demonstrated to be very useful for modeling behavioral
biometrics [44].

In addition, we plan to investigate alternate ways to
combine the multiple sources of information [39] origi-
nated in the proposed framework, e.g., the multiple distances
in Equation (5). Integration of keystroke data with other
information captured at the same time in desktop [4] and
mobile acquisition [45] will also be explored.

Finally, the proposed TypeNet models will be valuable
beyond user authentication and identification, for applications
related to human behavior analysis like profiling [46], bot
detection [47], and e-health [48].
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