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ABSTRACT Enhancing the privacy of machine learning (ML) algorithms has become crucial with the
presence of different types of attacks on AI applications. Continual learning (CL) is a branch of ML with
the aim of learning a set of knowledge sequentially and continuously from a data stream. On the other hand,
differential privacy (DP) has been extensively used to enhance the privacy of deep learning (DL) models.
However, the task of adding DP to CL would be challenging, because on one hand the DP intrinsically
adds some noise that reduce the utility, on the other hand the endless learning procedure of CL is a serious
obstacle, resulting in the catastrophic forgetting (CF) of previous samples of ongoing stream. To be able to
add DP to CL, we have proposed a methodology by which we cannot only strike a tradeoff between privacy
and utility, but also mitigate the CF. The proposed solution presents a set of key features: (1) it guarantees
theoretical privacy bounds via enforcing the DP principle; (2) we further incorporate a robust procedure into
the proposed DP-CL scheme to hinder the CF; and (3) most importantly, it achieves practical continuous
training for a CL process without running out of the available privacy budget. Through extensive empirical
evaluation on benchmark datasets and analyses, we validate the efficacy of the proposed solution.

INDEX TERMS Differential privacy, continual learning, deep learning, privacy.

I. INTRODUCTION
Recently, deep learning (DL) models have shown significant
improvement as compared to the human decision making
on different tasks [1]–[5]. Despite the striking results, since
DL models are built upon the static models, they cannot be
applied simply over data streams. More explicitly, a time
frame of data stream may vanish soon due to storage
constraints or privacy issues, which requires a dynamic
training process to begin upon receiving the new data.
This gap motivates the researchers to develop DL models,
able to adapt frequently and resume learning over time.
A typical example of such a system is human cognition
by which one tends to learn concepts sequentially. One
prominent feature of such a system is that old concepts
might be revisited though it is not necessary to keep them
in mind [6]. By contrast, conventional DL models cannot
learn in this way and thus they suffer from catastrophic
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forgetting (CF) of old concepts upon learning new ones [7].
Hence, conventional DL (CDL) models often concentrate
on static tasks whose data are shuffled to guarantee the
independent and identically distributed (i.i.d.) requirement.
Despite performance improvement, CDL models cannot be
applied over data streams as the training data is revisited
over several computations. To circumvent this issue while
preventing the CF, described above, Continual Learning (CL)
comes into play, aimed at gradually extending attained
information to be exploited for future learning.

In real world, DL algorithms are extensively vulnerable
to security attacks e.g., adversarial example where an
adversary fool the DL via perturbation samples [8], [9].
Based on the knowledge of adversaries from the target model,
the adversarial attacks belong to one of the main group
of: white-box, gray-box, and black-box attacks. In black-
box attack model, the attacker is not able to access to
the model weights; whilst in the white-box attack, the
attacker has completely access to the architecture and
weights of the model, comprised of countermeasure methods.
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Gray-box attacks also presume that the attacker knows
everything about the network and defense, except the
parameters.

To confront with such attacks, three well known methods
have been broadly used in several literature: fully homomor-
phic encryption (HE) [10], [11], [37], k-anonymity [12], and
differential privacy (DP). Although the HE offers strong data
privacy preservation, it is ineffective in DL models owing
to the computational burden imposed due to the dimension
of training datasets. On the other hand, k-anonymity also
performs weakly when facing large datasets [13], [14]. Thus,
both HE and k-anonymity are inefficient in case of data
stream in which a large amount of data is coming in over a
long period of time and it is not practically possible to keep
the entire data set in memory at once.

Recently, DP has attracted a great deal of attention in
DL-based solutions due to providing the capability of
analyzing a dataset without disclosure of an individual’s
information for DL models [17]. The main goal of such a
system is to control the cost of losing privacy, called privacy
budget (PB), so that it should not exceed the predefined
global privacy budget (GPB). Notably, without adding
computational burden, it tries to preserve the privacy of data
by perturbing the weights, objective function, or outputs of
DL models systematically [15], [38]. The noise added to
the dataset will affect the privacy-utility trade-off. Explicitly,
upon increasing the amount of noise the dataset would be
useless, while reducing the noise up to the little values
will degrade the privacy. Concerning using DP in DL
models, a differentially private version of the SGD algorithm,
is proposed in [16], where the amount of random noise and
the privacy budget (PB) constantly increase upon growing
the number of training epochs which is in contrast to the
limited PB in practice. Dwork and Roth [15] proposed
a method for incorporating DP into distributed DL. They
designed a practical framework that allows multiple clients
to collaboratively train a DL model without sharing their
training data.

To the best of our knowledge, despite the applicability of
DP in DL models (DP-DL) [16], [17] and stream data [18]
separately, there is no study on adding DP into CL models
such that all characteristics of a CL process meet, so far.
However, this task would be challenging, because on the one
hand the DP intrinsically adds some noise that reduce the
utility, and on the other hand the endless learning procedure
of CL is a serious impediment. Thus, to compromise between
privacy and utility in the proposed DP-CL, we need to rethink
and redesign the existing DP-DLmodels to be adapted for the
CL process. To elaborate further, on the one hand difficulties
arise from two significant characteristics of the CL process
as follows:

C1) The learner used in the CL process should be able to
learn the new received data continuously and endlessly.

C2) To mitigate the CF, a small portion of data or
model’s parameters needs to be stored for future learner’s
computations.

On the other hand, a DP-enabled algorithm has two
significant limitations as follows:

L1) Each computation of the DL algorithm not only
increases the bound over data leakage, but also consumes
a portion of predefined privacy budget (PB). Although it is
desired that the leakage bound does not exceed the available
PB, it has been shown in [16], [17] that a DL process run out
of the PB after a few computations.

L2) DP tends to perturb the data or the algorithm’s
parameters by adding noise, leading to diminishing the utility.

In our proposed approach where we aim to add DP into CL,
we encounter the following issues:

I1) the L1 is in contrast to the C1, as the available PB is
limited, preventing the CL process to be continued endlessly.

I2) Moreover, lowering the utility mentioned in L2
exacerbates the detrimental impact of CF described in C2,
which motivates us to look for a robust design.

In this paper, we proposed a novel robust DP-CL approach
by which we tackle these issues effectively. To the best of our
knowledge, this is the first paper which studies the integration
of DP into CL by addressing I1 and I2, concurrently. Against
this background, our contributions and novelties can be
summarized as follows:
• To address I1, (or more explicitly to be able to continue
the training process endlessly without running out of
the PB), at each iteration of the training process, the
spent PB is measured for each training sample and
learner. Once the resultant PB is being exceeded to the
predefined GPB, the previous samples in the temporary
memory are replaced by new zero-PB ones, coming from
the data stream. Similarly, we will do the same approach
to substitute the previous learner with a new zero-PB
one.

• To overcome I2 (or more explicitly to combat the CF),
we further incorporate a robust procedure into the pro-
posed DP-CL scheme, including three steps 1) adding a
new noisy layer to the DL architecture, 2) refining the
CL algorithm’s objective function (OF), and 3) filling
the episodic memory (EM) more effectively. We will
detail throughout the paper that how each of these steps
can help to increase the robustness of our proposed
algorithm. We will experimentally show that each of
these steps can assist to make the DP-CL process more
robust against white-box attacks.

• To evaluate the effectiveness of the proposed robust
DP-enabled CL process, different adversarial attacks
have been used to fool the trained models. Particularly
four types of white box attacks have been used
including: 1) Fast Gradient Sign Method (FGSM) 29],
2) Iterative-FGSM (I-FGSM) [30], 3) Momentum Itera-
tive Method (MIM) [28], and 4) the attack proposed by
Madry et al. [29]. Our simulation results confirm that the
proposed method yields the stable and steady outputs,
even when facing of such strong attacks.

The rest of the paper is organized as follows. Recent works
in the context of using DP in machine learning algorithms
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are reviewed in Section II. A brief description of CL models,
DP, and adversarial attacks are presented in Section III
as a preliminary. A detailed description of the proposed
methodology is provided in Section IV. The experimental
results and discussions are reported in Sections V and VI.
Finally, Section VII presents the conclusion

II. RELATED WORKS
So far, several papers have attempted to add DP to DL
algorithms [16], [19]–[21]. This task would be challenging
in terms of limited PB and the privacy-utility tradeoff
requirement. Upon DL models progresses, for example when
we aim to apply DP on those DL models using dynamic
dataset, some other demands will ensue which exacerbate
the abovementioned issues. Some of the most prominent
demands, which are close in spirit to the requirements of CL,
as we need here, are listed as follows:

R1: Endless execution
R2: Multiple usage of data subsets
R3: Capability of changing DP parameters during the

execution
Satisfying all the R1-R3 together is hard, therefore related

papers address only one or two of these requirements.
Along this line, two recent DL-based papers of [22], [23]
have enabled DP to work on growing databases (dynamic
datasets). More explicitly, to address R1 Cummings et al.
have considered a scheduler to re-execute the DL algorithms
whenever the new received data is sufficient [23]. To achieve
the desired privacy loss, the privacy parameter (ε) is reduced
upon increasing the size of dataset.

In order to jointly addressR1 andR3, one can partition the
data stream into blocks. After applying the DP on data blocks,
each of which is fed into an individual learner, the learners’
outputs are aggregated [24]. Accordingly, the conventional
composition theorem can be exploited to calculate the privacy
loss at the block level. Now, deploying the conventional
composition theorem, the data blocks incur no privacy loss
from the previous learners and thus the requirements of R1
and R3 are supported. However, it is against R2 as each
learner cannot access other learners’ blocks.

In another scenario, aimed at addressing R2 and R3,
Lecuyer et al. have proposed a DP-DL platform including
several pipelines, each of which comprised a DL algorithm,
training endlessly from the growing database. Note that,
since each block of data might be used by different DL
algorithms corresponding to the pipelines, calculating the PB
spent by the whole pipelines would be challenging. To reach
this goal, the authors of [22], have proposed the so-called
block composition theorem by which the DL algorithms are
executed till the PB consumption of each block 1 does not
exceed the predefined GPB. To achieve the desired accuracy,
with the aim of re-training the pipelines, either the relevant
PB of each pipeline or the number of available samples

1We can interchangeably use the word of ‘‘block’’ and ‘‘sample’’
throughout the paper.

is doubled. Therefore, each pipeline can continue till the
consumed PB is smaller than GPB, violating R1.

III. PRELIMINARIES
A. CONTINUAL LEARNING
A typical CL process, e.g., A-GEM [25], has generally two
important features. First, the used learner in the CL process
should be able to learn the new received data continuously and
endlessly (growing database). In other words, the commonly
used CL model can be fed by consecutive parts of a data
stream, each of these parts includes multiple number of
samples and corresponds to a particular task. Second, a small
part of data will be stored model’s parameters or training
data for future learner’s calculations to prevent catastrophic
forgetting. Thus, CL refers to the ability of a system to learn
over time from a continuous stream of data without having to
revisit previously encountered training samples.

First, the ith sample of the training set D includes a triplet
(xi, ti, yi), where xi ∈ Xt is a feature vector, ti ∈ T is a
task descriptor, and yi ∈ Y is a target vector. In general,
CL algorithms aim to learn a predictor fθ : X × T →
Y in which θ denotes the relevant tunable parameters of
predictor f .
To get more insight, in the following we succinctly explain

A-GEM [25]. Using the A-GEM algorithm, the detrimental
impact of catastrophic forgetting can be alleviated by
allocating an episodic memory (EM), which is denoted by
M and equally divided between total T tasks, to store some
training samples randomly for each task k . These stored
samples assist the DL model to maintain its performance
for previous tasks. For a total number of T tasks, if we
let Dk represents the relevant data with respect to previous
tasks, i.e., k ≤ T , the abovementioned explanations can
be mathematically formulated as the following constrained
optimization problem

min
θ

LAG (fθ ,Dt) , s.t.LAG (fθ ,Mk)≤LAG
(
f t−1θ ,Mk

)
∀k< t

(1)

where the objective function LAG (fθ ,Dt) stands for the loss
of the A-GEM model on the current task t . Using the stored
data of previous tasks in EM(Mk ), the constraint attempts
to reduce the loss of the model with respect to the loss of
previous tasks.

B. DIFFERENTIAL PRIVACY
The DP technique prevents the disclosure of information
corresponding to individual records of database D against
any adversarial processing. Using DP, the records are
contaminated with noise through a randomized algorithm
A : B → R. The DP is often characterized by the
parameters (ε, δ) where the privacy budget (PB) ε > 0 and
the broken probability δ ∈ [0, 1] are control parameters to
tune the strength of the privacy preservation. Thus, given the
randomized algorithm A, the following inequality must hold
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true to satisfy the (ε, δ)-DP:

P [A (D) ∈ O] ≤ eεP
[
A
(
D′
)
∈ O

]
+ δ (2)

where
{
D,D

′
}
∈ B are two neighboring inputs and O ⊆ R

represents any subsets of outputs. Besides, P [·] denotes the
probability function with the space over the coin flips of the
algorithm A. The Eq. (2) implies that if we change a tuple
in the database slightly, the output distribution does not vary
significantly.

Now, in the following we invoke the definitions of some
basic concepts used in DP, which lay the grounds for a better
understanding.

1) Privacy loss [15]: Privacy loss is a random variable
dependent on the random noise added to the algorithm.
For neighboring databases D,D

′

, auxiliary input aux,
and an outcome O ⊆ R, define the privacy loss at O is
defined as:

c
(
O;A, aux,D,D′

)
=

P[A(aux,D) = O]
P[A(aux,D′) = O]

(3)

2) Gaussian mechanism [15]: This mechanism will be
used in this paper. Using this kind of mechanism the
white Gaussian noise N

(
0, σ 2

)
is added to the output

entries. Given ε ∈ (0, 1], the Gaussian mechanism

with σ ≥

√
2ln

(
1.25
δ

)
.1A
ε

is (ε, δ) –DP and the l2
sensitivity parameter 1A therein is defined as 1A =

maxD,D′‖A(D)− A(D′)‖2.
3) Composition theorem: If we consider several DP

subroutines, each of which applied into separate algo-
rithms to reach a specified privacy level, incorporation
of these DP subroutines relying on the composition
property significantly degrades the privacy such that
it is less than that of achieved by a single subroutine.
In particular, based on one kind of composition
theorem, namely ‘‘basic composition theorem’’ [26],
considering ` subroutines each of which is (ε, 0)-
differentially private, the privacy of an algorithm
including a combination of these subroutines is
degraded up to the bound of (ε`, 0) as compared to the
single subroutine.

C. ADVERSERIAL EXAMPLES
Adversarial examples are a kind of attack againstMLmodels,
where the attacker add a small perturbation α , {ai}Ii=1 ∈
RI to the given input x , {xi}Ii=1 ∈ RI of the DL
model, resulting in a considerable change at the output y ,
{yi}ci=1 ∈ Rc. The perturbation is usually specified by a lp-
norm ball of radius µ, i.e., 2µ ,

{
α : ‖α‖p ≤ µ

}
where

p ∈ {1, 2,∞} [27]. To evaluate the robustness of the proposed
method, particularly four well-known white box2 attack
algorithms are utilized to generate the adversarial samples: i)
Fast Gradient Sign Method (FGSM) [27], ii) Iterative-FGSM
(I-FGSM) [30], iii) Momentum IterativeMethod (MIM) [28],
and iv) the attack proposed by Madry et al., [29], are utilized
to generate the adversarial samples.

IV. PROPOSED ROBUST DP-ENABLED
CONTINUAL LEARNING
In this section we present the notion of adding DP to A-GEM
algorithm and then make the proposed DP-CL model robust.
Thus, by considering the characteristics of CL processes (i.e.,
C1 and C2) and created limitations by DP (i.e., L1 and L2),
we address the A-GEM requirements and finally propose a
scheme for a DP-enabled CL process the during the next
subsections (i.e., 4.1 and 4.2). Then, to overcome catastrophic
forgetting and reduce the impact of attacks, in subsection
4.3 we add robustness methods to DP-CL: 1) modifying the
DL architecture, 2) refining the objective function (OF) of the
A-GEM algorithm, and 3) filling the EM more effectively.

A. ADDING DP TO CL PROCESS
Given the properties of DP, as discussed above, the problem
of adding DP to CL would be challenging. First, adding
perturbations to the learner(s) will effect on the training
accuracy and consequently worsen CF. Moreover, the com-
position theorem, imposes some predefined bounds for DP
algorithms, including the number of subroutines (iterations
(k)) and privacy parameters (ε, δ). As per requirements of
a CL process these variables need to be updated and thus a
CL-based composition theorymust satisfy the three following
requirements:
R1: Endless execution
R2: Handling the concern of overlapping data stored in EM
R3: Capability of updating DP parameters during the

execution
Hence, it is required to think about how to satisfy each of

R1-R3 which are responded to, in the sequel.
1. How to add DP while CL is executed endlessly

(Addressing R1.)?
The everlasting approach of CL is a serious impediment

to deploy either of the proposed solutions in [22] or [23].
In particular, if one intends to add DP to CL, the limited
GPB hinders the process to be continued. To deal with
these problems, we here propose a novel learning procedure,
comprised of several learners in L , {l1, l2, . . .}, each of
which is trained sequentially on a specific part of the data
stream. Before exceeding the PB consumed by each learner
from the GPB, we add a zero-PB (ZPB) learner to the process.
This newly added learner starts from the point where the
previous one has been halted and would be continued using
the untouched data coming from the dynamic database S =
{b1, b2, . . .} (and/or the stored data in EM M =

{
bi, bj, . . .

}
,

where bi shows the ith block of database).
Based on the discussion above, selecting an appropriate

composition theorem is of vital importance to calculate PB
for each training step through which, we can determine the
halting time of the current learner (lc), learning the current
task (tc). We here use the moments accountant algorithm
(MAA) [16], appropriate for computing the PB for each
data access in the DL models. When lc runs out of the PB,
computed by MAA, this learner is left out and added to
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the set of trained learners L, i.e., L , {l1, l2, . . . , lc−1, lc}
and the learning process will be continued via the next ZPB
learner lc+1. There are some technical concerns which must
be considered in our design, listed as follows:
• The significance of GPB parameter values (εg, δg) :

More explicitly, a large selection of the GPB leads
to higher privacy leakage, despite yielding higher
accuracy due to injecting less noise into the cur-
rent learner lc as well as using fewer number of
learners for the whole process. In contrast, although
upon reducing the GPB the leakage is decreased,
the accuracy is degraded, as well. The performance
degradation originates from the fact that, using small
GPB values not only more noise is fed into the current
learner lc, but also more number of learners must be
deployed.

• Keeping the performance while deploying multiple
learners: In the case the PB of lc reaches to the GPB
in the middle of learning tc, leading to degrading the
performance of upcoming learner lc+1, we proposed
early starting ES) strategy that assists to predict the
termination of lc. More clearly, the random initial
values of learning parameters θc+1 which are going to
be used by lc+1 have not been optimized for the current
task tc. To prevent this issue, we propose the ES strategy
where the remaining PB, i.e., (PBr , GPB − PBlc ) of
the lc is comparedwith the required PB of tc+1 (PBc+1),
and the lc continues if and only if PBr > PBc+1.
To estimate PBc+1, since the noise magnitude and the
sampling probability (Gaussian probability) is equal
during the training process of each learner, it is trivial
to calculate the consumed PB of next iterations or the
required PB for the next task (i.e., PBc = PBc+1).
Doing this, lc will not be halted in themiddle of training
a task, and each learner starts its training procedure
from the beginning of a task.

2. How to add DPwhile subsets of data are used repeatedly
(Addressing R2.)?
A serious impediment to deploy either of the proposed

solutions in [22] or [23] in a CL process, is the data coming
from the stream as well as samples stored in the EM to avoid
catastrophic forgetting (CF). Note that, although the learners
observe most of the data coming from the stream just once,
a small portion stored in the EM is observed several times.
For each observation the corresponding learner consumes
the PBs associated with a portion of the sample stored in
EM. Thus, if the spent PB of each stored sample in EM
(PBbi ) exceeds the GPB, the privacy is compromised. In the
following, we elaborate this further.

The samples in EM that have been observed repeatedly,
might be observed in different iterations of the learners’ train-
ing process. Depending on the privacy loss of the lc used at
each iteration, a portion of the sample’s PB will be consumed
and can be stored in PBbi = {PBmi,lk , . . . ,PBmj,lh}, where
PBmi,lk stands for the consumed PB of ith iteration of the
learner lk . By doing so, we can calculate the total consumed

PB for the sample via feeding PBbi to the Block Composition
Theorem (BCT) [22]. Tracking the behavior of PBbi , if it
exceeds the GPB, we no longer use that sample in our CL
procedure.

Remarkably, to avoid the CF, EM should include some
samples for each task. Thus, ZPB samples will be randomly
replaced from the stream with ones that are removed at
each iteration. We also proposed other different strategies for
replacing new samples described in subsection 4.3 (c) tomake
the DP-CL process more robust. By following this strategy,
we can use a subset of data (those stored in EM and their
consumed PB is less than GPB) multiple times. Therefore,
since there is a limitless of data in real world CL scenarios,
the halting of lc will not occur because of limitation in
data PB.
3. Adaptivity in the choice of DP parameters during the CL

process. (Addressing R3.)
To address the privacy-utility tradeoff, the proposed DP-

CL process benefits from an adaptive training procedure
such that controls the utility of DP-CL models by using new
data and/or changing DP parameters. The block composition
theorem allows us to train the used CL algorithms with
different PB. For those tasks that have high number of
samples in their training set, we will be able to adjust small
PB leading to decrease privacy leakage and vice versa. If a
model does not reach the pre-defined quality criteria (e.g.,
an accuracy target) until specific iteration andPB < GPB, the
model can decrease the added noise (σ ) to its weights, results
in expediting increasing accuracy, although PB reaches GPB
earlier. On the other hand, if a model reaches the pre-defined
quality criteria in a specific iteration and PB < GPB, then the
model can increase the added noise to its weights to increase
the privacy of the model.

B. DP-CL ARCHITECTURE
The proposed (εg, δg)-DP-CL Architecture includes three
main modules called Learners’ Managing Unit ( LMU),
Privacy Meter Unit (PMU), andDataManaging unit (DMU).
The detailed procedure of our proposed DP-CL method is
shown in Algorithm 1, and is conceptually described in the
following.

The LMU is composed of two sub-modules, called
Training Controller ( TC) and Data Controller (DC). The
TC is responsible for adding new learners to the process,
adjusting the lc parameters, saving the lc’s parameters, and
collecting the information about the tasks corresponding to
each learner. Moreover, TC also receives the information
related to halting time of a learner from the PMU. Besides,
theDC also receives the training data from theDMU and feed
them to the lc. Additionally, the DC specifies which samples
should be saved in the EM and send them to the DMU.

The PMU is responsible for measuring the spent PB
of learners and training samples respectively by two sub-
modules of Trainer PB Meter Unit (TPBMU) and Data PB
Meter Unit (DPBMU). For each training iteration of lc, the
spent PB will be calculated by TPBMU so that if it exceeds
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FIGURE 1. The proposed DP-CL architecture.

the GPB, the TC will be notified to halt the lc. The DPBMU
calculates the spent PB for those samples, used in the current
iteration of lc and send this information to theDMU. It should
be noted that, the PB for all samples will be stored in a sub-
module of DMU namely EM Data Controller (EDC), since
we may need to remove some samples from EM and replace
them by samples whose spent PB is less than GPB.

The DMU is responsible for managing the data and is
composed of three sub-modules of Data Controller (DC),
EDC, and Stream Data Controller (SDC). The DC fetches
the data from the stream or EM by sending a request to EDC
or SDC. It also collects the spent PB of the training samples
stored at EM or coming from the stream. SDC also stores
the received data from the stream into a temporary database.
Upon receiving a request from DC or EDC, the SDC will
deliver the requested data to those modules. The EDC is
responsible for adding/removing the samples having spent PB
more than GPB. When the privacy loss for a sample reaches
to GPB, the sample will be removed.

C. ADDING ROBUSTNESS TO DP-CL
To combat the CF and mitigate the effect of attacks,
we incorporate a robust procedure into the proposed DP-
CL scheme, including three steps 1) modifying the DL
architecture, 2) refining the OF of the A-GEM algorithm,
and 3) filling the EM more effectively. In what follows we
elaborate each of these steps separately. The first method has
the aim of reducing the attacks success rate by making the
CL parameters noisy, and the other two methods assist to
prevent CF. However, our experiments show that the last two
proposed methods can also decrease the attacks success rates
to some extent

1) MODIFYING THE DP-CL ARCHITECTURE
To provide a robust DP-CL architecture, we change each
learner’s architecture by adding a DP noise layer, that provide
(ε, δ)-DP guarantees, after the first layer of each learner.
Adding the DP noisy layer can be considered as a certified
defense against p-norm bounded adversarial example attacks
proved by [31]. More explicitly, in accordance with the
sensitivity (1) and size of the first layer (|h1|), a noise with

Algorithm 1 Proposed DP-CL.
Procedure DP-CL:
// Learners’ Managing Unit (LMU):

1 While bi,ti ← ask data from DMU
2 If lc = ∅ then
3 Initialize lc
4 train lc with bi,ti
5 SPBlc ← PMU (lc, bi,ti )
6 DMU (bi,ti , SPBlc )// save part of bi,ti in EM
7 IfSPBlc ≥ GPB then
8 C ← [lc, (tj, . . . , t i)]
9 lc← Initialize a new learner

// Privacy Meter Unit (PMU):
10 If lc, bi,ti ← receive request from LMU then
11 LMU←Calculate the spent PB of lc usingMAA
12 DMU←Calculate the spent PB of each training

sample in bi,ti using BCT
//Data Managing Unit (DMU):

13 If receive data from Stream then
14 Save the data temporary
15 If receive request from LMU then
16 Fetch a batch of data from EM/Stream and

send to LMU
17 If receive data from LMU then
18 Store data in EM
19 Store spent PB for each bi
20 Update EM by replacing those samples which

run out their PB with ZPB samples (Procedure
UpdateEpsMem, Alg.2)

end procedure

zero mean and standard deviation σ =
√
2ln( 1.25

δ
)1p,2L/ε is

produced by Gaussian mechanism (noise(1,L, ε, δ), line 6,
Algorithm 2).

2) REFINING THE OBJECTIVE FUNCTION OF THE A-GEM
ALGORITHM
Furthermore, to prevent CF, we incorporate a robustness
condition into the training stage (called robust-A-GEM
hereafter). In this regard, it should be noted that, the expected
output of the randomization mechanism A for class j during
the training of current task t should be greater or equal to
that of the previous task, i.e., Et

(
Aj (x)

)
− Et−1

(
Aj (x)

)
≥

0 whereEt
(
Aj (x)

)
=

1
n

∑
n aj,n(x) and n denotes the number

of invocation of A(x) and aj,n(x) demonstrates the nth draw
from the distribution of the randomized function A on the jth

label. Tomeet this condition, the computed angle between the
gradient of lc for tc with respect to label j (g̃j) and the gradient
of lc for the previous tasks (∀k < t) for label j (gj,k ) should
be greater than zero (〈g̃j, gj,k 〉 ≥ 0).
Moreover, instead of n times invoking A(x) for a specific

sample x, to calculateEt
(
Aj (x)

)
, we use n samples belonging

to the jth class within the current batch, and for calculating
Et−1

(
Aj (x)

)
, n samples having label j are chosen from the
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EM. This notion assists to incorporate this condition to the
training process by changing the constraint A-GEM objective
function. Therefore, we modify the optimization function as
below:

min
g̃

1
2
‖ g− g̃j ‖22 s.t.

〈
g̃j, gj,k

〉
≥ 0∀ k < t (4)

where gj,k will be the average gradient from the previous tasks
with respect to jth class. By doing that, the new updated rule
will be obtained as follows:

g̃← g−
g>gj,ref
g>j,ref gj,ref

gj,ref (5)

The proof of this update rule is given in Appendix A.

3) FILLING THE EM EFFICIENTLY
The easy-to-forget samples (which worsen CF) which
classify correctly with small robust boundary during the
training process have a chance to enter EM. Therefore, having
such samples which are not a good representative of their
corresponding classes in EM leads to CF during the learning
of next tasks. Particularly this issue happens if the computed
angle between the gradient vector of the samples extracted for
class j from EM (g̃j) and the proposed gradient (g) at current
iteration is larger than zero. Here, we propose a robustness
condition by which that if a sample meets this condition, then
it will be added to the EM (called efficient-EM). For sample
xz located in a batch including n samples, the robustness
condition calculated as follow:

Elbt
(
fj (xz)

)
− max i:i6=jEubt

(
fj (xz)

)
≥

1

1+ e
∑n
s=1 E

lb(fj(xs))−maxi:i6=jEub(fj(xs))
n

(6)

Elbt
(
fj (xz)

)
and Eubt

(
fj (xz)

)
are the η-confidence lower and

upper bound, respectively. We estimate these bounds using
Hoeffding’s inequality with probability η, Elb (f (x)) ,

E (f (x)) −
√

1
2n ln

(
2y
1−η

)
≤ E (f (x)) ≤ E (f (x)) +√

1
2n ln

(
2y
1−η

)
, Eub (f (x)) for yth label (Lines 26, 33,

Algorithm 2).

D. THE PROPOSED ROBUST DP-CL ALGORITHM
The proposed robust DP-CL algorithm (shown in Algo-
rithm 2) includes three procedures called Train, Upda-
teEpsMem, and Evaluation. The Train procedure takes the
train and test data, as well as the lc’s parameters. Considering
the size of first hidden layer, a generated random Gaussian
noise (line 3), is added to the first hidden layer (line 6).
By wisely sampling from the EM (considering the notion
presented at section 4.3b; line 7), the gradient for the current
batch (line 9) and the sampled batch (line 8) have been
calculated. Then, g and gref are clipped so that its l2-norm
is bounded by a predefined gradient clipping bound C and
subsequently, a random Gaussian noise N

(
0,σ 2C2I

)
with

Algorithm 2 Robust DP-CL.

Procedure Train( fθ ,Dtrain,Dtest )
1 Input: Datasets Dtrain and Dtest , batch size m,
learning rate for each task ζt , gradient norm band C ,
privacy budget ε, broken probability δ, robustness
parameters:σr , εr , δr , 1r , size of first hidden
layer |h1|, f includes z hidden layers {h1, . . . , hz},
EM depicted byM .
2 Initialize θ randomly
3 γ ← N (0, σ 2 |h1|)
4 for t = {1, . . . ,T } do
5 for (x, y) ∈ Dtraint do
6 h1← W T

1 x + γ
7 (xref , yref ) ∼ M (y)
8 gref ← ∇θ l(fθ

(
xref , t

)
, yref )

9 g← ∇θ l(fθ (x, t) , y)
10 Clipping gradient and adding noise
11 g′ref ←

1
m (

gref

max
(
1,
‖gref ‖
C

) + N (0, σ 2C2I
)
)

12 g′← 1
m (

gref

max
(
1, ‖g‖C

) + N (0, σ 2C2I
)
)

13 Ifg
′

g′ref ≥ 0 then
14 g̃← g′

15 else
16 g̃← g′ −

g′>g′j,ref
g′>j,ref g

′
j,ref

gj,ref
17 end if
18 θ ← θ − ζt g̃
19 end for
20 UpdateEpsMem (M ,Dtraint ,T )
21 end for
end procedure
Procedure UpdateEpsMem (M ,Dtraint ,T ,GPB)
22 // remove stored samples in |M | with high PB
23 fori = {1, . . . , |M |} do
24 ifspent_PBi > GPB do
25 remove (x, yi, ti)← Mi
26 (x)← Dtrainyi,ti which meet robustness condition
27 Mi← (x)
28 end for
29 // Add a few samples from current task
30 s← |M |

T
31 fori = {1, . . . , s} do
32 (x, y)← Dtraint
33 If (x, y) meet the robustness condition then
34 M ← (x, y)
35 end for
36 returnM
end procedure
Procedure Evaluation (fθ ,Dtest )
37 a← 0 ∈ RT
38 fort = {1, . . . ,T do
39 at ← 0
40 for (x, y) ∈ Dtestt do
41 at ← at + ACCURACY (fθ (x, t) , y)
42 end for
43 at ←

at
len(Dtestt )

44 end for
45 returna
end procedure
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FIGURE 2. a) Fully connected network with two hidden layers used for PMNIST dataset. b) Reduced ResNet18 for SCIFAR dataset.

a predefined noise scale σ is added (Line 11 and 12).
Depending on the computed angle between g

′

and g
′

ref , the
new gradient will be applied (lines 13-18). After feeding
each batch and updating the lc, the EM will be updated
by executing the UpdateEpsMem procedure. During this
procedure, we first replace the samples that run out their PB
with ZPB ones from Dtrainyi,ti . Then some samples from the
current task which meet the proposed robustness condition
(presented at section 4.3c) will be added to the EM. Finally,
the Evaluation procedure measures the effectiveness of the
training procedure by calculating the accuracy

V. EVALUATION
We have carried out extensive experiments on two benchmark
datasets (permutedMNIST and split CIFAR) and evaluate our
proposed robust DP-CL process by answering the following
questions:
Q1: How does the added DP mechanism affect the

accuracy of the A-GEM algorithm?
Q2: What is the impact of using several learners on the

accuracy of the DP-CL process?
Q3: How can the ES deal with the performance degrada-

tion in the training process?
Q4:How the proposed robust DP-CL acts against attacks?
Q5: How much data the DP-CL process will need?
Before answering these questions, we will briefly describe

the used datasets description, the used DL architectures, the
evaluation metrics, and observe the behavior analysis of DP’s
parameters in the following subsections.

A. DATASET DESCRIPTION
Two datasets have been considered to train and test the
proposed robust DP-enabled CL process. First, Permuted
MNIST (PMNIST) [32] is a variant of MNIST dataset
including handwritten digits. It consists of 20 tasks each
of which is composed of 10 classes, 60,000 training and
10,000 test samples. Each task describes a certain random
permutation of the input pixels, applied to the entire images
of that task. Split CIFAR (SCIFAR) [33] devides of dividing
the original CIFAR-100 dataset [34] into 20 disjoint subsets,
each of which is generated through random sampling of
5 classes without replacement from the total number of
100 classes. The whole number of training samples for
each task is 2500 whose 20% are allocated for testing.
In general, there are two streams of tasks, described by the

sequences of datasets DCV = {D1, . . . ,DTcv} and D
EV
=

{DTcv+1, . . . ,DT } where Dk = {(x
k
i , t

k
i , y

k
i )
nk
i=1} is the dataset

of kth task. Notably, we have Tcv < T and set Tcv = 3 while
T = 20 in all our experiments. DCV represents the stream of
datasets allocated for cross-validation; this stream allows the
learner to replay all samples several times aimed at model
hyper-parameters selection as well as system adjustment.
By contrast, DEV stands for the actual dataset used for final
training and evaluation on the test set. Actually, this means
that the model sees the training examples from DEV just one
time.

B. NETWORK ARCHITECTURE
Shallow and a deep DL architectures including a fully-
connected network with two hidden layers of 256 units
each (Figure 2. a) for PMNIST dataset, a reduced ResNet18
(Figure 2 (b)) for SCIFAR dataset like in [35], will be used in
our experiments. While the models are randomly initialized,
the stochastic gradient descent (SGD) with mini-batch size
10 is used to optimize the network parameters. Similar to the
approach in [25], in order to tune the hyper-parameters, the
data of the first three tasks is fed into the first learner several
times.

C. EVALUATION METRICS
We have used three metrics called Average Accuracy [36],
Average Forgetting [36], and Certified Accuracy [31] to
evaluate our proposed robust DP-CL model. In the following
we briefly define these metrics. The training dataset of
each task, Dt , consists of a total Bt mini-batches. After
each observation of Bt , the performance of the learner is
examined over the whole tasks on the associated test sets. Let
at,i,j ∈ [0, 1] expresses the accuracy obtained using the test
set of task j, after the model has been trained with ith mini-
batch of task t .
Average Accuracy [36], varying between [0, 1], can

be calculated after completing the continually learning
procedure of the A-GEM model with all the mini-
batches corresponding to the t th task and is defined as:
AAt = 1

k

∑t
j=1 ak,Bk ,j.

Average Forgetting [36], varying between [−1, 1],
is computed after the model has been trained for the tasks
1, 2, . . . , t − 1. This metric is defined as Fk = 1

k

∑t−1
j=1 f

t
j

where f tj is the forgetting measure on task j after the
model is trained for the tasks 1, 2, . . . , t − 1, obtained as:
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FIGURE 3. Behavior of δ vs. different tasks for ε = 2, as well as different level of noise σ ∈ {2,4,8}. (a) PMNIST dataset, (b) SCIFAR dataset.

FIGURE 4. Behavior of ε vs. different tasks for δ = 1
10000 , as well as different level of noise σ ∈ {2,4,8}. (a) PMNIST dataset, (b) SCIFAR dataset

f tj = max l∈{1,...,k−1}al,Bl ,j − ak,Bt ,j. AF is crucial to be
measured after learning the entire tasks for a two-fold reason.
On one hand, AF quantifies the accuracy degradation on the
earlier tasks, while on the other hand it specifies how fast a
model learns a new task.

Certified Accuracy [31],varying between [0, 1] is defined

as CF ,
∑|test|

i=1 is Correct(xi)&is Robust(xi)
|test| where |test| is the size

of testing set and isCorrect (xi) denotes a function returning
1 if the prediction on test sample xi returns the correct label,
and 0 otherwise, and isRobust(xi) returns 1 if the robustness
size is larger than a given attack bound µa and 0 otherwise.

D. BEHAVIOR ANALYSIS OF DP’s PARAMETERS
In this section, we aim for observing the behavior of DP
parameters (ε, δ) for two abovementioned DL architectures.
To generate the figures, we have exploited the MAA for two
various dataset MNIST(a) and CIFAR(b). Figure 3 shows
six plots where δ is calculated for a given ε = 2, while
σ ∈ {2, 4, 8}, and t ∈ {1 . . . 17}. As it can be seen from
Figure 3 (a), for the cases σ = 2 as well as σ = 4 the value
of δ smoothly increases during the first tasks, while sharply
grows for the 4 last tasks. While, in case of σ = 8 δ values are
smoothly rising for the entire tasks. As it would be expected,
the more noise we add to the classifier, the smaller values of
δ would be resulted.

Figure 4 depicts six other plots where ε is calculated for a
given δ = 1

10000 , while σ , and t are opted same as what we
used to generate Figure 3. As it would be expected, the more
noise we add to the classifier, the smaller values of ε would
be resulted.

E. PERFORMANCE EVALUATION
Now in the following we respond to Q1-Q5 separately.
Q1: How does the added DP mechanism affect the

accuracy of the A-GEM algorithm?
To answer this question, we compare the accuracy of A-

GEM with or without adding DP. To do so, we execute

the DP-A-GEM with different level of noise σ ∈ {2, 4, 8}.
We further consider the high GPB assumption where ε =2
for PMNIST while for SCIFAR we have ε =4. By doing
so, the spent PB will no longer reach to the GPB, and thus
no additional learner is needed to be added (i.e., L = 1).
Figure 5 shows the average accuracy after 5 executions for
each configuration on PMNIST (Figure 5 (a)) and SCIFAR
(Figure 5 (b)) datasets. As it can be observed, upon increasing
the level of noise, the accuracy is reduced so that in case of
σ = 8, a CF phenomenon has been happened, i.e., this can be
interpreted from the negative slope of this curve. As another
important observation, the results of DP-A-GEM method
have less fluctuations and more stable accuracy as compared
to the A-GEM method in which DP has been eliminated.
Q2: What is the impact of having several learners on the

accuracy of the DP-CL process?
To observe the accuracy of our proposed DP-A-GEM

method we need to include several learners in the process.
In this regard, aimed at involving two learners, three various
small GPB values (ε = {0.41, 0.19, 0.12} for PMNIST
dataset and ε = {2.2, 1.22, 0.5} for SCIFAR dataset) are
considered for different levels of noise σ = {2, 4, 8}.
As observed in Figure 4, the value of σ affects the spent PB
for each iteration of each learner. To perceive how these two
learners are subsequently involved, we get into one of our
experiments shown in Figure 6(a). To do so, using PMNIST
dataset, three different configurations of (ε, δ) including
(0.41, 0.0005), (0.19, 0.0005), and (0.12, 0.0005) have been
utilized. As it is witnessed, once the PB of first learner reaches
to GPB at the end of task 9, the second learner comes into play
to proceed the training process.

From Figure 6, a sudden drop in accuracy can be observed
when a new learner starts its learning process. For example,
in Figure 6(a), the accuracy of three abovementioned
configurations is decreased about 40 percent. However,
by insisting the training process via the second learner, the
accuracy gradually returns to the previous value. There are
two main reasons for this issue. First, the noise generated
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FIGURE 5. The accuracy of A-GEM method and the proposed DP-A-GEM method for PMNIST (a) and SCIFAR (b) datasets. Various levels of
noise σ ∈ {2,4,8} have been adjusted.

FIGURE 6. The results of DP-CL algorithm for PMNIST and SCIFAR datasets, when two learners are used during the process, show in a and c
respectively. For having two learners (a), GPB adjusted such that the first learner will finish its PB at the end of task 9. Since three levels of
noise σ = {2,4,8} have been considered during our experiments, three values of (ε, δ) including (0.41, 0.00001), (0.19, 0. 00001), and (0.12, 0.
00001) used for PMNIST dataset, and (2.2, 0. 00001), (1.22, 0. 00001), and (0.5, 0. 00001) used for SCIFAR dataset. Moreover, for having three
learners, the GPB values (ε, δ) adjusted such that the PB of first learner reaches to GPB after training task 6, and PB of second learner reaches
to GPB after training task 12 ((0.35, 0. 00001), (0.16, 0. 00001), and (0.115, 0. 00001) for PMNIST (b), and (1.8, 0. 00001), (0.81, 0. 00001), and
(0.4, 0. 00001) for SCIFAR (d)).

by Gaussian mechanism starts to be added to the weights
from the first iteration of second learner. Whilst for the
first learner this noise is added after the fine-tuning step,
mitigating the impact of noise on accuracy. Second, the
second learner does not exploit DCV for hyper-parameters’
fine-tuning. To circumvent this performance degradation,
besides of using the DCV for fine-tuning, we start earlier the
training process for new learners, i.e., ES.
Q3: How the ES can deal with the performance degrada-

tion in the training process?
ES here means that the training process of the new learner

commences one task earlier than the task where the spent
PB reaches to the GPB. For instance, in case of having
two learners, the second learner initiates its training at the
beginning of task 9, whilst the first learner runs out its PB
at the end of this task. During this time, both learners are
involved in learning task 9, concurrently. Notably, this will be
performed only during the training process where we aimed
to fine-tuning the learners. Thus, during the inference time,
the entire samples belonging to task 9 are fed to l1.
Now, we re-execute all our experiments for two various

cases. In the first one, namely FT, only DCV is used for fine-
tuning. For the second case, called FT-ES, ES is involved,

as well. The curves with transparent colors illustrated in
Figure 7, correspond to the accuracies corresponding to
the FT, dark colors are associated with the accuracies
corresponding to the FT-ES. If we have only FT, the accuracy
respectively increases 37%, 18% for PMNIST and SCIFAR
datasets, as compared to their counterparts when even FT
is not performed. Moreover, in case of FT-ES the accuracy
respectively improves to 4%, 6% for PMNIST and SCIFAR
datasets, as compared to their counterparts when only FT is
performed. In addition to the accuracy, the forgetting score is
evaluated for different levels of noise, when one/two learners
are utilized in the process (See Figure 8).

F. THE IMPACT OF ATTACKS ON THE ROBUST DP-CL
PROCESS
Q4: How the proposed robust DP-CL acts against attacks?
In this regard, we first apply the four white-box attacks

mentioned in Section 3.3 on 5 different scenarios, comprised
of: 1) A-GEM algorithm, 2) DP-A-GEM, 3) PixelDP-A-
GEM, 4) RAGEM-PixelDP-A-GEM, and 5) EEM- RAGEM-
PixelDP-A-GEM. Before that, we applied the attacks on
A-GEM and DP-A-GEM algorithms. Figure 9 shows the
impact of attack on A-GEM algorithm, after learning of
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FIGURE 7. Using FT and ES, the accuracy of DP-CL algorithm increases when two or three learners have been used. For each experiment,
we investigate the effect of ES and start the training process for lc+1 one task earlier. At each plot, the light color shows the result without using ES
(e.g., DP − A− GEMσ = 2), FT .) and the dark color shows when ES uses along with FT (e.g., DP − A− GEM(σ = 2), FT + ES). The DP parameters
((ε, δ)) have been adjusted the same as previous step.

FIGURE 8. The forgetting average has been calculated for two PMNIST
(a), and SCIFAR (b) datasets. For each one, when there are one or two
learners in the process and σ = {2,4,8}, the forgetting measure has been
calculated. When two learners have been used, the forgetting score has
been measured for each of which (i.e., l1, l2).

each task, the four attack algorithms have been applied on
test set and the accuracy has been measured (Figure 9,
light colors). Compared to A-GEM algorithm, the DP-A-
GEM algorithms obtained better accuracy by 9.3 percent and
4.6 percent for PMNIST and SCIFAR datasets respectively.
Finally, by measuring forgetting average and certified
accuracy metrics, we evaluated the effect of the proposed
robust solutions (PixelDP, robust-A-GEM (RAGEM), and
efficient-EM(EEM)) by applying the white-box attacks on
two PMNIST (Figure 11 (a)) and SCIFAR (Figure 11 (b))
datasets.

G. DATA CONSUMPTION
Q5: How much data the DP-CL process will need?
The number of replaced samples in EM has been observed

during the training process for both datasets, which helps

to have a good estimation of number of necessary training
data in DP-CL training process. Figure 11 shows the number
of replaced samples for different levels of noise σ =

{2, 4, 8} for the two PMNIST (Figure 11(a, b)) and SCIFAR
(Figure 11(c, d)) datasets when one or two learners have been
used in the process. As it can be observed from Figure 11,
when there is one learner, and σ = 2, the training process
needs more training samples. Therefore, the more we add
noise, the less data the DP-CL process will need.

VI. DISCUSSION
There are two DL networks in our experiments, a shallow
with 2 hidden layers including ∼= 269, 000 trainable
parameters and another one with a deeper architecture
including 18 hidden layers including 11 million trainable
parameters. By measuring the DP parameters, it can be
observed that, the deeper the network, the more noise will be
added to the network, and consequently the DP parameters
increase more quickly. For instance, at the end of training
Resnet18, the value of δ is more than 20 times higher than
the shallow network for all levels of noise. A similar effect
is observed for ε such that for different levels of noise
σ ∈ {2, 4, 8}, its value is 5.45, 5.38, and 5 times larger than
shallow network respectively. Notably, although the deeper
network has 40 times more parameters than the shallow
network, the DP parameters do not increase linearly with
respect to number of networks’ parameters.

To increase the privacy of both networks, we raised
the noise level from 2 to 8 (σ ∈ {2, 4, 8}). Although,
the accuracy of both networks constantly increases for
σ ∈ {2, 4}, it decreases by about 6% and 20 % for FC2 and
Resnet18 networks respectively, when σ = 8. Interestingly,
the results of DP-A-GEM method have less fluctuations and
more stable accuracy compared to simple A-GEM method
specially for σ ∈ {2, 4}. In the next step, we decreased
the GPB to evaluate the performance of DP-A-GEM when
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FIGURE 9. The (certified) accuracy of A-GEM algorithm (light colors) and DP-A-GEM algorithm (dark colors) after applying attacks on PMNIST
(a) and SCIFAR (b) datasets has been measured (i.e., l∞

(
µ = 0.1

)
, σ = 4).

FIGURE 10. By adding the three robustness methods to the DP-CL process, the certified accuracy and forgetting average have been measured after
applying four attacks (i.e., fgsm, ifgsm, mim, and madry) on both datasets, (a) PMNIST dataset, (b) SCIFAR dataset (i.e., l∞

(
µ = 0.1

)
, σ = 4).

there are several learners. Depending on the noise level,
the accuracy of second and third learner has a sudden drop
between 35-45% for PMNIST dataset, and between 20-30%
for SCIFAR dataset. But by using the fine-tuning and ES
strategies, the performance increases about 43% and 23%
for FC2 and Resnet18 networks respectively. To accurately
measure the degradation, when there are several learners,
we calculate the forgetting accuracy. Notably, when there are
two learners, the forgetting accuracy of each learner is less
than when there is one learner in the process. For instance, the
forgetting accuracy for first and second learner are 0.071 and
0.103 respectively (Figure 8 (a), σ = 4) and less than
0.124 which is the forgetting score of when there is just one
learner. In other words, the long training process with just one
learner leads to high forgetting score and the CF will finally
happen.

Furthermore, the proposed three methods to robustize the
DP-CL process are effective against the applied four white-
box attacks. First, we applied the attacks on simple A-GEM
algorithm and DP-A-GEM algorithm to investigate the effect
of adding DP against attacks. As shown in Figure 9, almost
in all cases the DP-enabled version of A-GEM increases

FIGURE 11. The number of replaced training samples have been
monitored for the two PMNIST (a and b) and SCIFAR (c and d) datasets
when one (a,c) or two (b,d) learners have been used in the training
process.

the accuracy compared to simple A-GEM which is about
7 percent for PMNIST, and 4 percent for SCIFAR on average.
Then, by adding the robust methods one-after-another, the
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attacks have been applied. As shown in Figure 10, each of
the proposed methods has positive effect on the accuracy
of the DP-A-GEM algorithm under attacks. On average,
PixelDP improved the accuracy by 3.3 percent for PMNIST
and 3.8 percent for SCIFAR dataset. Robust-A-GEM, which
is applied after adding PixelDP method, improved the
accuracy by 1.65 for PMNIST, and 4.1 percent for SCIFAR
dataset. Finally, the efficient-EM increased the accuracy
by 3.6 and 2.3 percent for PMNIST and SCIFAR datasets
respectively. Therefore, the robustness methods increased the
accuracy of DP-A-GEM algorithms by 8.55 and 10.2 percent
for PMNIST and SCIFAR datasets respectively. Moreover,
by adding the robustness methods, the forgetting average
decreased from 0.124 to 0.075 for PMNIST and from 0.155 to
0.123 for SCIFAR dataset.

VII. CONCLUSION
The major contribution of this paper is adding differential
privacy (DP) into continual learning (CL) procedures, aimed
at protecting against adversarial examples. In CL processes,
the model learns sequentially and endlessly from time-
varying data streams which makes the task of adding DP
to CL challenging. More explicitly, the added noise due to
DP together with the endless learning feature of CL leads
to CF which is a serious obstacle. To address this concern,
we have proposed an innovative approach by which we
cannot only strike a tradeoff between privacy and utility, but
alsomitigate the CF.We continually control the instantaneous
spent PB to not exceed the available GPB. Besides, a three-
step robust procedure is also included in our approach to
mitigate the negative impact of CF, as much as possible.
We also assessed the proposed approach against four well-
recognized adversarial attacks comprised of: 1) FGSM, 2) I-
FGSM, 3) MIM, and 4) the attack by Madry et al. [29]. Our
simulation results validated the effectiveness of the proposed
method in facing such strong attacks so that we could improve
the criteria of both the certified accuracy and the forgetting
measure, simultaneously.

APPENDIX A: MODIFYING A-GEM UPDATE RULE (EQ. (5))
Here we provide the proof DP–A-GEM’ update rule, stated
in Section IV (C2), Eq. 5. To proof, we first invoke the DP–
A-GEM problem in Eq. 4 as follows:

min
g̃j

1
2
‖ g− g̃j ‖22

s.t. 〈g̃j, gj,k 〉 ≥ 0 ∀k < t (A.1)

Replacing g̃j with z and rewriting Eq. A.1 yields:

min
z

1
2
z>z− g>z s.t.− z>gj,ref ≤ 0 (A.2)

Note that we removed the term g> > g from the OF
and change the direction of the inequality constraint. The
Lagrangian function can be acquired as:

L (z, α) =
1
2
z>z− g>z− αz>gj,ref (A.3)

Now, we pose the dual of Eq. A.3 as:

θD (α) = min
z
L (z, α) (A.4)

Lets find the value z∗ that minimizes the L (z, α) by setting
the derivatives of L (z, α) w.r.t. to z to zero:

∇zL (z, α) = 0

z∗ = g+ αgj,ref (A.5)

The simplified dual after putting the value of z∗ in Eq. A.4
can be written as:

θD (α) =
1
2

(
g>g+ 2αg>gj,ref + α2g>j,ref gj,ref

)
− g>g− 2αg>gj,ref − α2g>j,ref gj,ref

= −
1
2
g>g− αg>gj,ref −

1
2
α2g>j,ref gj,ref (A.6)

This solution α∗ = maxα;α>0θD (α) to dual is given by:

∇αθD (α) = 0

α∗ = −
g>gref
g>ref gref

(A.7)

By putting α∗ in Eq. A.5, we recover the A - GEM update
rule:

z∗ = g−
g>gj,ref
g>j,ref gj,ref

gj,ref = g̃ (A.8)
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