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A B S T R A C T

Convolutional Neural Networks have dominated the field of computer vision for the last ten years, exhibiting
extremely powerful feature extraction capabilities and outstanding classification performance. The main
strategy to prolong this trend in the state-of-the-art literature relies on further upscaling networks in size.
However, costs increase rapidly while performance improvements may be marginal. Our main hypothesis is
that adding additional sources of information can help to increase performance and that this approach is
more cost-effective than building bigger networks, which involve higher training time, larger parametrisation
space and higher computational resources requirements. In this paper, an ensemble method for accurate image
classification is proposed, fusing automatically detected features through a Convolutional Neural Network and
a set of manually defined statistical indicators. Through a combination of the predictions of a CNN and a
secondary classifier trained on statistical features, a better classification performance can be achieved cheaply.
We test five different CNN architectures and multiple learning algorithms in a diverse number of datasets
to validate our proposal. According to the results, the inclusion of additional indicators and an ensemble
classification approach help to increase the performance in all datasets. Both code and datasets are publicly
available via GitHub at: https://github.com/jahuerta92/cnn-prob-ensemble.
. Introduction

Convolutional Neural Networks [1] have been positioned as an
mportant referent in varied and well-known tasks. Taking the animal
irtual cortex as a source of inspiration, these deep architectures extract
atterns from data with great ease, greatly improving upon previous
achine learning based approaches. These architectures have been
idely used in academic and commercial contexts, exhibiting great

uccess in multiple domains such as speech recognition or computer
ision, being very powerful in many of then [2]. Given their power
nd wide range of applications, there is a growing trend towards
eveloping stronger architectures, which frequently consist in making
ider, deeper or denser networks. This tendency is repeatedly shown in

he most recent approaches. Despite not being a convolutional network,
concerning example of this trend is GPT-3 [3], a deep language model

o large (175 billion parameters) that it requires access to a large
upercomputer to be trained.

Some of the most used convolutional architectures such as VGG-16
nd VGG-19 [4] employ around 140 million parameters and 25 layers
f depth which, depending on the domain, require weeks of processing.
ther models adopt deeper architectures with a lower number of
arameters. This is the case of Inception V3 [5], which employs 25
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million parameters and 150 layers. AmoebaNet [6] is another recent
example of growing parameter space size, a model that requires a large
increase in network size (from 90 million to 470 million parameters) to
achieve a significant improvement of 1.1% accuracy in the ImageNet
problem.

Although building deeper and heavier architectures allows to con-
stantly overcome previous state-of-the-art scores, we are wasting the
opportunity of leveraging additional well-known mechanisms to im-
prove current results efficiently, and of increasing explanatory power.
While CNNs are powerful methods with excellent feature extraction ca-
pabilities, their capabilities for explanation are limited when compared
to, for example, decision trees, k-Nearest Neighbours, and so on. On
the other hand, these explainable techniques are far less powerful than
CNNs in terms of recognition. Decision trees, SVMs, among others, rely
on manually extracted features which offer rich information but usually
incomplete and which lack an spatial understanding of the image
itself. These models are very limited in complex domains where shape,
locality, and other characteristics are key to inference. Therefore, a
balance must be found between performance and explainability.

The key to understanding this trade-off is that CNNs and fea-
ture methods employ different types of reasoning during the inference
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process. CNNs seek high performance by automatising the feature ex-
traction process, while methods focused on manually extracted features
are explainable. While different, these methods can be complementary,
building a fruitful combination that can help to increase performance
while maintaining a high degree of explainability by using feature-
based methods. In this research, we present a curated list of statisti-
cal indicators that, once combined with the output of a CNN model
through an ensemble approach, provide useful additional features that
serve towards improving image classification performance. The main
contributions of this research can be summarised as follows:

– A curated list of statistical indicators that allow to extract useful
differentiating features from images.

– An analysis of five well-known CNN architectures and their per-
formance in 10 different datasets.

– An ensemble approach to combine CNN architectures with clas-
sifiers trained on statistical indicators to improve performance in
image classification tasks.

– A thorough experimentation, making use of 10 different image
classification datasets to validate the ensemble.

– An ablation study to assess the performance of each individual
statistical indicator in all combinations of datasets and CNN
architectures tested.

Finally, this manuscript is organised as follows: Section 2 presents
a summary of the state-of-the-art literature, with special emphasis
on statistical features for image classification; Section 3 defines our
proposal for combining statistical features and CNN architectures; Sec-
tion 4 presents the different datasets used in the experiments, the
image preprocessing steps applied, the CNN architectures tested, the
hyperparameters used to train these architectures and the ML methods,
details related to the execution environment, and a link to access the
repository with all the code. Section 5 shows the experimental results
and Section 6 outlines the main conclusions and potential lines of future
work rising from this work.

2. Related work

Upscaling architectures is one of the most frequently used ap-
proaches to increase the performance of neural networks. However,
as parameters increase, so does the computational and time cost of
the training process. This fact highlights the importance of considering
alternative methods for improving the throughput of these methods.
Some authors have recently started raising concerns about this trend,
from the environmental problems of the high performance computing
required to train larger architectures [7] to the accessibility of Deep
Learning research [8]. Although lightweight architectures are train-
able by making use of standard hardware, most of the state-of-the-art
models require multiple expensive GPUs resources to be trained [9].
Due to this, there is a growing interest in efficiently improving CNN
architectures with minimal additions.

A potential course of action to be explored is network compres-
sion [10], which aims to reduce the size of deep neural networks
while trying to maintain their effectiveness intact. Several techniques
have been proposed in this direction [11,12]. For instance, Knowledge
Distillation [13], which trains a student model with the predictions of
an already existing larger (teacher) model. Another typical approach
consists in pruning redundant or low-information weights [14–16]
that are able to compress state-of-the-art CNNs to achieve at least
2x speedup with minimal losses (around 1% accuracy). Compacted
filters [17] have also been proposed in order to optimise the size of
the network by factorising filters. For example, 3 × 3 convolution can
be replaced by 1 × 1 convolution with SqueezeNet [18], achieving 50x
fewer parameters than AlexNet. Other approaches focus on searching
for the most appropriate architecture [19].

Computational efficiency is also an important research line in
this scenario. Different architectures have been recently developed
175
in this line optimising convolutional architectures. For example, Effi-
cientNet [20] focuses on speeding up the neural network instead of
scaling the network with more parameters, offering speedups ranging
from 5 to 10 compared to competitive state-of-the-art models such
as AmoebaNet, NASNet [21] or GPipe [22], and maintaining similar
effectiveness while reducing the number of parameters by a factor of
4 to 7. Other methods focus on making lightweight powerful networks
for mobile devices, assuming that larger networks cannot be handled
as in other platforms. Two examples of this trend are ShuffleNet [23]
and MobileNet [24], which focus on developing novel operators and
architecture optimisation to create lighter models.

Information fusion [25,26] also represents an important avenue for
the improvement of CNNs, which is commonly built in two distinct
ways: ensemble of neural networks or appending an information fu-
sion algorithm after the CNN representation features are extracted.
An example of this would be a recent approach [27] which fuses
the representation features of AlexNet [28] and VGG16 to increase
performance over benchmark datasets. Alternatively, it is possible to
split the image into several patches and process them separately with
convolutions to later merge the representation features [29]. Another
interesting application [30] has been proposed in a domain where
various shallow networks coexist with a PCA analysis of inputs to build
a combined feature vector for biomedical information. As mentioned
before, ensembles can also be built by appending an information fu-
sion stage after the features are extracted as proposed by [31]. This
notion is again used by [32] in their research, where another SVM is
appended after the convolutional features to make decisions. In [33]
an ensemble of a set of deep learning models is designed to classify
chest X-rays using small datasets for training, which is later combined
with an explainable artificial intelligence (XAI) technique, based on
combining the individual heatmaps obtained from each model in the
ensemble. This approach, based on fusion and XAI methods, is used
to improve both the overall performance classification of CNN and
the interpretability of the CNNs, highlighting those areas of the image
which are more relevant to generate the classification. Nevertheless, the
use of fusion methods to improve performance has been demonstrated
in plenty of domains [34].

Taking a step back, before CNNs were used, features were usually
extracted by experts manually. During this process, the expert takes
some input data (image pixels in computer vision) and transforms
them into a manageable set of features [35,36]. Once the features
are extracted, they can be processed through other machine learning
algorithms. There are many challenges in this area [37] but, when
they are properly addressed, it is possible to achieve high perfor-
mance on high dimensional data. There is plenty of literature published
around this issue. Originally, textural features were coined by Haralick
et al. [38], who proposed a grey level co-occurrence matrix (GLCM)
that contains the relative frequency of pixel pairs in an image. Further
textural analysis has also been proposed, such as Local Binary Patterns
(LBPs) [39], computing comparisons on neighbouring pixels across a
circle and extracting the frequency histogram of these comparisons.

These techniques are paired with machine learning algorithms. Sup-
port Vector Machines (SVM) [40] are used in several relevant works,
for example, in texture classification [41], on face biometrics [42], on-
road car detection [43] or handwriting recognition [44], among others.
K-Nearest Neighbours is also used to classify features, for example, in
medical abnormality detection [45], plant leaf recognition [46] or MRI
image classification [47]. Another frequent classification algorithm for
image features are Random Forests (RF) [48], with relevant works at
a variety of tasks such as radar image classification [49], leukaemia
detection [50] or brain scan classification [51].

Other authors concentrate on the information that can be extracted
with different levels of granularity. Ding et al. propose the use of a
two-level classification [52]. In this case, making use of the attention
mechanism and a pyramidal strategy to refine the classification with

fine-grained information. In contrast, our target is to extract general
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patterns using two different strategies to extract complementary in-
formation. Chang et al. [53] also concentrate on fine-grained image
classification using a mutual channel loss function that includes dis-
criminality and diversity components. Our approach also leverages the
information contained across channels, but using different statistical in-
dicators such as average or deviation that can help to extract important
patterns with maximum efficiency. Another fusion approach for image
classification proposed in the literature consists in making use of the
mid-level and high-level features extracted using a Bilinear CNN [54].

In this work, a technique for the efficient improvement of image
classification tasks is proposed by fusing manual feature extraction and
CNNs. In the next sections, we show that the predictions offered by
models that rely on manually extracted features and those provided
by CNNs entail complementary descriptive features, and therefore, that
their combination will successfully improve both techniques. As manual
features require lightweight machine learning algorithms to predict,
the end performance of the ensemble will improve with a negligible
increase in cost compared to the CNN computational requirements.
To further improve CNNs performance, an ensemble is proposed con-
sisting on the combination of manual feature extraction and CNNs by
combining their respective end classification labels into a single label
prediction [55].

3. Improving CNN classification with statistical indicators

With the rise of research focused on convolutional architectures,
previous approaches using manually extracted features have been
mostly abandoned. However, although less powerful, statistical indi-
cators from images proved to be useful in combination with classical
machine learning classifiers, reaching reasonable classification perfor-
mance rates in certain domains. Besides, in contrast to the features
extracted after different filters are applied in a convolutional archi-
tecture, these statistical indicators provide understandable information
with minimal computational resources.

In this research, we leverage these statistical indicators to improve
the performance of Convolutional Neural architectures. The core idea
behind this method is to build an ensemble approach, combining a
CNN model with a classical machine learning algorithm trained on
the statistical information of the images, aiming to achieve improved
CNN performance by adding light-weight models. In short, the method
proposed combines the output probabilities of a CNN with softmax
activation with the output probabilities of a classic machine learning
algorithm trained on a series of statistical indicators representing dif-
ferent characteristics of the input images. This is meant to blend expert
knowledge, providing a set of general-purpose statistical indicators and
automatic feature detection obtained with a powerful CNN architec-
ture. The end goal is to significantly improve the performance of CNN
architectures with minimal additional investment.

3.1. Architecture overview

An overview of the solution is presented in Fig. 1. Four modules
are found in this system: the CNN, the statistical features extraction
process, the statistical features-based classifier, and the fusion algo-
rithm. The latter consists of a classical machine learning algorithm
used to achieve the best combination between the output probabilities
delivered by the CNN and the statistical features-based classifier.

In detail, to train the architecture proposed, the following steps are
executed in accordance to Fig. 1:

1. From the images, a pool of general-purpose features are ex-
tracted, transforming each image into a vector of representative
features.

2. The image features extracted in step 1 are used to train the
features-based model. Using a robust method is encouraged as
some of the general-purpose features could be irrelevant for
some datasets, however, most methods are able to improve
classification performance.
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3. In parallel to steps 1 and 2 and using the same images as
before, a CNN is trained. Hyper-parameters and the optimal
topology have to be adjusted as usual, in order to achieve high
performance on a validation dataset.

4. The output probabilities obtained from step 2 and step 3 are con-
catenated for each processed image. All images from the training
set are transformed into concatenated vectors of probabilities.
If a machine learning algorithm does not support probabilities,
the one-hot representation of the class is enough to represent the
prediction.

5. The concatenated probabilities are used to train a fusion learning
algorithm. It is worth noting that if optimal results are to be
achieved, several models have to be tested in steps 3 and 5, but
improving results upon the original CNN does not require such
experimentation. Additionally, we also test a simple average
between both vectors.

6. A vector is obtained with the final classification.

The following sections describe the methods tested to fulfil the
CNN, Feature and Fusion algorithm modules of the architecture. Our
motivation is to show that, in most cases, a CNN complemented with
any of the proposed features and the fusion algorithm achieve better
performance on classification tasks than the CNN alone.

3.2. Image classification with CNNs

As shown in Fig. 1, one of the classification methods that composes
the architecture proposed is a CNN, which takes the raw image and
automatically extracts features through different convolutional layers
and infers knowledge in the last layers of the network. The fusion
method proposed is independent of the CNN architecture, so it can be
used with any convolutional network. Once the CNN is trained on a
training set, the output probabilities of the model are combined with
the output of a classifier trained on the statistical information through
a machine learning classifier (or the average between probability vec-
tors). As we will describe in Section 4, we tested the approach in five
different state-of-the-art CNN architectures, including DenseNet-201,
Inception-ResNet-V2, Inception-V3, VGG19 and Xception V1.

3.3. Extraction of statistical indicators

Manual extraction of features from images to perform computer
vision tasks has remained a common approach in the state-of-the-art
literature, although not as prolific as CNNs automatic feature extrac-
tion. On applied domains of application, simple statistical features
are still relevant [56–59]. In this research, we propose a general-
purpose statistical-based feature set for domain-independent computer
vision tasks. Due to the specificity level of each of these features, their
importance can vary across domains, which means that some of them
may entail irrelevant knowledge in certain domains. Thus, a robust
learning algorithm is used to process these statistical features. This
process allows to take advantage from the information offered by these
features while removing superfluous information that could hinder the
learning capabilities of the approach. A set of commonly used machine
learning algorithms was tested, including Random Forest (RF) [48],
Support Vector Machines (SVM) [40], Linear Discriminant Analysis
(LDA), among others.

Our features can be divided into two categories found in the litera-
ture about statistical features for computer vision tasks: spectral features
and textural features [38,60–62]. Spectral features represent colour as
an statistic, for example, via average, deviation or differentials. On the
other hand, textural features [38] represent an image in terms of edges
and other abstract traits. This is achieved via a Grey Level Covariance
Matrix (GLCM), a technique that detects the frequency of contiguous
appearances of pixel values. Image textures are computed from the
GLCM.
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Fig. 1. Visual representation of the fusion approach proposed. The images are used to train a CNN architecture. Simultaneously, different statistical indicators are extracted from
every image, and a classification model is trained on these features. Finally, an ensemble is built, training a new classification algorithm that combines the outputs of the CNN
and the features-based classifier.
Both types of features are extracted from the raw image, includ-
ing colour-based information using statistical summarisation of each
channel (average, deviation and so on) and from Grey Level Covari-
ance Matrix (GLCM) for each colour. The GLCM detects the frequency
of contiguous appearances of pixel values, allowing the detection of
textures within the image which can reveal important patterns.

More specifically, the set of features extracted includes the av-
erage, standard deviation, skewness, average colour difference, his-
togram (with 5 bins), average colour ratio, textural average, variance,
homogeneity, contrast, dissimilarity, entropy, second movement, and
correlation. Each of these features is calculated for each colour channel,
summing up to 60 features. These are all described in Table 1, where
the 𝑛th image on a particular channel 𝑐 is named 𝐼𝑐𝑛 with pixels 𝐼𝑐 (𝑖, 𝑗)
on position 𝑖 and 𝑗 with size NxM. The corresponding probability found
in the GLCM for two contiguous grey values 𝑎 and 𝑏 is 𝑝𝑐 (𝑎, 𝑏) for Z grey
levels measured. We define 𝑝𝑐𝑥(𝑎) as the 𝑎th value of the sum of rows
of the 𝑝𝑐 matrix.

Once extracted, five different well-known classical machine learning
classifiers are trained. The aim is to infer knowledge from these statis-
tical indicators that can help to improve the performance of a CNN
model. The ML algorithms, trained with the Scikit-learn [63], are the
following:

– K-Neighbours Classifier: This method, in contrast to the previ-
ous ones, stores certain training instances which are later used to
predict the output of a new instance. For that purpose, the label
is calculated according to the neighbours of the new instance.

– Linear Discriminant Analysis: LDA is also a linear classifica-
tion method which generates decision boundaries using class
conditional densities and Bayes’ rule.

– Logistic Regression: A linear classification model where the
outputs are calculated according to a logistic curve and using the
Broyden–Fletcher–Goldfarb–Shanno algorithm [64] as optimiser.

– Random Forest: A combination of decision tree classifiers trained
on sub-samples of the data that averages the output of each tree
to improve the accuracy.

– Support Vector Machine: This algorithm finds the hyperplane
which better separates each class region from the other and
maximising the separation of every data point. We have trained
SVMs with two different kernels: sigmoidal and with a radial-basis
function.

3.4. Fusion of CNN and statistical-based classification output probabilities

The result of training a CNN architecture in a given domain is
a model where the last fully connected layer, for a certain input
instance, delivers a vector defining a set of probabilities for each class.
Normally, the maximum argument in this vector indicates the final
label. However, classes could also reach similar probabilities, causing
177
a decision without enough certainty. We argue that the inclusion of
the statistical indicators previously described can help to achieve more
accurate decisions in these cases, leading to an improvement of the final
classification performance.

The final classification in our proposal is the result of the combi-
nation of two probability vectors: (a) the classification probabilities
according to the CNN model, and (b) the output probabilities of a ML
algorithm trained with the statistical indicators extracted. If the ML
algorithm finally selected only provides a label instead of class prob-
abilities, a one hot-encoding representation is used. After the modules
for image and feature classification have been selected, a final module
is required to combine the outputs of both sources. For that purpose, the
probabilities of an image are calculated for both classifiers, the output
vectors are concatenated and, finally, act as training examples for a
fusion algorithm. For this final method, the same set of classifiers taking
part of the statistical features-based classifier (described in Section 3.3)
is used. The fusion algorithm outputs the end label from the original
image.

4. Experimental setup

This section describes in detail the data, CNN architectures tested,
the image preprocessing procedure and parameters used during the
experimentation.

4.1. Datasets

The concern of this research is to present a powerful method for
improving CNNs independent of the applied domain. Therefore, a wide
set of 10 heterogeneous datasets has been selected to validate our
method. These are summarised as follows:

(a) Caltech birds2011 [65]: This dataset contains images from mostly
North American bird species in different poses and perspectives,
usually at the centre of the image. This set contains 11.788
instances distributed in 200 classes.

(b) Cars 196 [66]: This dataset contains car images without context,
where the vehicle is the focus with varying perspectives. There
are 16.185 instances evenly distributed on 196 car types.

(c) Cassava [67]: A collection of 9430 images of the cassava plant,
including healthy and four types of disease, with high unbalance
between classes.

(d) Cats vs dogs [68]: This dataset is a binary classification problem
of cat and dog images with context, in some instances sharing
space with a human out of focus or with obstructions. This
dataset contains 23.262 evenly distributed images among both
classes.

(e) Citrus leaves [69]: This dataset has a low number of images from
healthy and unhealthy citrus fruit leaves. This dataset has 759
instances distributed in 4 classes.
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Table 1
List of features and formulas used for the proposed hand-crafted feature extraction.

Average 𝜇𝑐 = 1
𝑁𝑀

∑𝑁
𝑖=1

∑𝑀
𝑗=1 𝐼

𝑐 (𝑖, 𝑗)

Standard Deviation 𝜎𝑐 =
√

1
𝑁𝑀

∑𝑁
𝑖=1

∑𝑀
𝑗=1(𝐼 𝑐 (𝑖, 𝑗) − 𝜇𝑐 )2

Skewness 𝛾𝑐 =
1

𝑁𝑀

∑𝑁
𝑖=1

∑𝑀
𝑗=1 (𝐼

𝑐 (𝑖,𝑗)−𝜇𝑐 )3

(𝜎𝑐 )3

Difference 𝑑𝑐1 ,𝑐2 = 𝜇𝑐1 − 𝜇𝑐2

Histogram ℎ𝑐 (𝐵) =
∑

𝑖,𝑗 1 for 𝑖, 𝑗 subject to 𝑏𝑚𝑖𝑛 < 𝐼 𝑐 (𝑖, 𝑗) < 𝑏𝑚𝑎𝑥, where 𝐵 = {𝑏𝑚𝑖𝑛 , 𝑏𝑚𝑎𝑥} is a given histogram bin,
and 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥 are the minimum and maximum pixel values for a bin. (Only values within that bin
are counted in the sum.)

Ratio 𝑟𝑐1 ,𝑐2 = 𝜇𝑐1

𝜇𝑐2

Textural Average 𝑓 𝑐
1 =

∑2𝑍
𝑘=2 𝑘{

∑𝑍
𝑎=1

∑𝑍
𝑏=1 𝑝

𝑐 (𝑎, 𝑏)}; 𝑎 + 𝑏 = 𝑘

Variance 𝑓 𝑐
2 =

∑𝑍
𝑎=1

∑𝑍
𝑏=1(𝑎 − 𝑝𝑐𝜇)𝑝

𝑐 (𝑎, 𝑏) where 𝑝𝑐𝜇 is the average of 𝑝𝑐

Homogeneity 𝑓 𝑐
3 =

∑𝑍
𝑎=1

∑𝑍
𝑏=1

1
1+(𝑎−𝑏)2

𝑝𝑐 (𝑎, 𝑏)

Contrast 𝑓 𝑐
4 =

∑𝑍
𝑎=1

∑𝑍
𝑏=1 𝑝

𝑐 (𝑎, 𝑏)(𝑎 − 𝑏)2

Dissimilarity 𝑓 𝑐
5 =

∑𝑍
𝑎=1

∑𝑍
𝑏=1 𝑝

𝑐 (𝑎, 𝑏)|𝑎 − 𝑏|

Entropy 𝑓 𝑐
6 = −

∑𝑍
𝑎=1

∑𝑍
𝑏=1 𝑝

𝑐 (𝑎, 𝑏) log(𝑝𝑐 (𝑎, 𝑏))

Second Moment 𝑓 𝑐
7 =

∑𝑍
𝑎=1

∑𝑍
𝑏=1 𝑝

𝑐 (𝑎, 𝑏)2

Correlation 𝑓 𝑐
8 =

∑𝑍
𝑎=1

∑𝑍
𝑏=1 (𝑖𝑗)𝑝

𝑐 (𝑎,𝑏)−𝑝𝑐𝑥,𝜇𝑝
𝑐
𝑦,𝜇

𝑝𝑐𝑥,𝜎 𝑝𝑐𝑦,𝜎
where 𝑝𝑐𝑥,𝜇 , 𝑝

𝑐
𝑦,𝜇 , 𝑝

𝑐
𝑥,𝜎 , 𝑝

𝑐
𝑦,𝜎 are the averages and standard deviations of 𝑝𝑐𝑥 , 𝑝

𝑐
𝑦.
Table 2
Datasets used in the experimentation, showing the version number, number of labels and the data splits size. See Fig. 2 for example images.

Version No. labels Train size Valid. size Test size Ref.

Caltech birds 2011 0.1.1 200 5,395 599 5,794 [65]
Cars 196 2.0.0 196 7,330 814 8,041 [66]
Cassava 0.1.0 5 5,656 1,889 1,885 [67]
Cats vs dogs 4.0.0 2 16,283 2,327 4,652 [68]
Citrus leaves 0.1.2 4 416 59 119 [69]
Deep weeds 3.0.0 9 12,256 1,751 3,502 [70]
Malaria 1.0.0 2 19,291 2,755 5,512 [71]
Oxford flowers 102 2.1.1 102 1,020 1,020 6,149 [72]
Plant leaves 0.1.0 22 3,151 451 900 [73]
Plant village 1.0.2 38 38,012 5,430 10,861 [74]
(f) Deep weeds [70]: This dataset contains weed images from the
grasslands of Queensland, Australia, with the aim of telling
apart weeds from grass and identifying the type of weed. It
contains 17,509 instances evenly distributed across 9 classes. In
the original article, Inception v3 and ResNet-50 are used with
outstanding results.

(g) Malaria [71]: This dataset is a repository of 27.558 segmented
cell images, with an equal number of instances of parasitised
cells and uninfected cells, with the aim of improving the diag-
nostic accuracy of malaria cases. The original article achieves
strong results with a ResNet-50.

(h) Oxford flowers102 [72]: This dataset has flower images of dif-
ferent species, focused on the flower with limited context. It
contains 8.189 instances distributed across 102 classes, with 40
to 258 images per label.

(i) Plant leaves [73]: This dataset contains plant images without
the context of different leaf species and health conditions. This
requires detection of both: plant type and plant health. There are
4.502 images of 22 classes total, evenly distributed.

(j) Plant village [74]: This dataset contains a large number of leaf im-
ages, focused and without context. This dataset contains 54.303
instances of leaves, distributed evenly in 38 classes.

Table 2 shows a summary of all these datasets, including version,
umber of labels, and size of every split. The default partitions were
ept. In those cases where only one (training) or two (training and
est) splits were defined, a new partitioning was made to allocate 70%
nstances for training, 10% for validation and 20% for testing. Fig. 2
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hows example images for all datasets.
4.2. Image preprocessing

In order to modify every image as little as possible, only two
preprocessing steps were followed before passing through the CNN
architecture. First, since the datasets provide pictures with different
sizes, every image was resized to a 224 × 224 format. Then, every pixel
value was normalised from [0,255] to [0, 1].

4.3. CNN architectures

Five different architectures were tested in this research:

– VGG19 [4]: The VGG16 and VGG19 architectures are composed
by a feed-forward set of units, containing 2 to 4 convolutional
layers, an activation and a pooling layer. Out of all architectures
here, it is the most straightforward, with no additional forward
connections or auxiliary outputs. This network has a very large
number of parameters to adjust.

– DenseNet [75]: DenseNet, instead of relying on adding more units
to its design, it strengthens the number of connections between
layers. The main idea behind this design is to forward connect
every unit. Each unit has again several convolutional layers, a
batch normalisation layer (for regularisation), activation, and
pooling.

– InceptionV3 [5]: The following architectures stem from the same
family of architectures. This architecture factorises convolutions
into simpler operations, for example, a 5 × 5 convolution into
two 3 × 3 convolutions. These factorisations are separated in
different pipelines inside a unit and several units are concatenated

to achieve the end result.



Information Fusion 79 (2022) 174–187J. Huertas-Tato et al.
Fig. 2. Samples images of the nine datasets used in the experiments.

– Xception [5]: Xception proposes a depth-wise separable convo-
lution which is an extension of the factorisation proposed in
InceptionV3. This convolutional operation involves two steps:
first, an spatial convolution, transforming the channel, followed
by a pointwise convolution, a 1 × 1 filter over the channels.
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Table 3
Summary of hyper-parameters relevant to CNN networks transfer learning, optimisation,
classification and training.

First layers frozen (%)

VGG19 0%
InceptionResNetV2 25%
InceptionV3 10%
DenseNet201 25%
XceptionV1 25%

Adam optimiser

𝛼 Learning Rate 1e−4
𝛽1 Momentum 1 0.9
𝛽2 Momentum 2 0.999
𝜖 Stability constant 1e−7
Gradient normalisation 1

Feed-forward classifier

Global average pooling
Neurons 2048
Dropout 50%
Activation ReLU

Training methodology

Maximum epochs 1000
Early stopping patience 25
𝜃 Early stopping threshold 1e−4
Batch size 64
Image size (NxN) N=224

Xception also incorporates feedforward residual connections, sim-
ilar to a ResNet [76], connecting the last layer to the next one via
a single convolution and addition operation.

– InceptionResNetV2 [77]: This architecture combines the ideas
from InceptionV3 and ResNet. By stacking several Inception units
and connecting them with residual feedforward addition opera-
tions, the capabilities of the network are enhanced.

All these architectures were initialised with transferred weights
from the ImageNet domain, a percent of which are frozen and con-
nected to a dense layer with 50% dropout. The optimisation algorithm
chosen is Adam, while any other remaining hyper-parameter has been
tuned empirically. The end result of the network is an output vector of
probabilities from the last dense layer (with softmax activation). These
probabilities have values between 0 and 1, summing 1 between them,
and the argmax is selected as the true label for classification purposes.

4.4. CNN models execution

Every CNN model listed in Section 4.3 was executed five times with
the Keras library for Python [78] with the TensorFlow [79] backend for
each dataset, starting from pretrained Keras models. All CNN relevant
hyperparameters are summarised in Table 3. Then, all CNNs were fitted
using the categorical cross-entropy as loss function, the Adam optimiser
with gradient norm scaling if the vector exceeds 1.0, a learning rate
of 0.0001, and fixing a maximum of 1,000 epochs. An early stopping
criteria was also set to stop the training when the validation accuracy
did not improve in the last 25 epochs more than a threshold 𝜃 = 0.0001.
Additionally, the training of every model was performed using a batch
size of 64 examples. All datasets were streamlined by the TensorFlow
dataset tools.

4.5. ML models hyperparameters

For the execution of the classification algorithms listed in Sec-
tion 3.3, the Scikit-learn [63] was used, using default parameters for
all of them. In the case of Random Forest, 500 internal trees were
employed. Due to the randomness of the Random Forest classifier when
assigning samples to estimators and the selection of features during the
definition of new branches in the trees, it was calculated the average
of 10 different executions.
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4.6. Execution environment & Github repository

All executions have been run on a machine with a 48GB Nvidia
Quadro RTX 8000, an Intel(R) Xeon(R) Bronze 3206R CPU @ 1.90 GHz
and 256GB RAM.

The code developed for this article is publicly available and can be
found at: https://github.com/jahuerta92/cnn-prob-ensemble.

5. Experimentation

This section describes all experiments performed and the results
obtained. First, the performance of the base five CNN architectures
is evaluated, showing how each of them performs in each dataset.
Then, the use of statistical features is assessed in all datasets using
different machine learning classifiers to later evaluate the performance
of the proposed fusion approach in comparison with the performance
of the CNN architectures. Then, an ablation study helps to analyse the
individual contribution of each statistical feature considered. Finally, a
brief analysis of the time performance of the approach is provided.

In order to better describe how all the experiments were conducted,
Fig. 3 shows an overview of the different steps followed. The fusion
approach was evaluated independently in 10 different datasets for 5
different CNN architectures. In case of the classification model based on
statistical information, different machine learning methods with default
hyperparameters were tested, selecting the one which performed better.
Finally, for each dataset and architecture, different classifiers were
again tested, with the goal of building the best possible combination
between the probability vector obtained from the CNN and the vector
obtained from the best classifier trained on the statistical information.

5.1. CNN models performance

The first step is to train and evaluate several times each CNN
architecture defined in Section 4.3. This serves as a baseline for the per-
formance of these models to later quantify the improvement achieved
by the addition of statistical manually extracted features. The results, in
terms of macro average weighted precision, are shown in Table 4. For
each dataset and each CNN architecture, the table shows the average
and standard deviation of macro average weighted precision in the test
set for each execution and the best result according to the validation
set. DenseNet presents the best results among the different datasets
used, reaching the best position in 9 of 10 datasets. One of the main
characteristics of this model lies in that it has an important number
of parameters (20,242,984) and a topological depth of 201 elements
(for the DenseNet 201 version considered in this research). Despite
not being the most complex architecture, DenseNet shows an excellent
performance among datasets. Inception ResNet V2, although it is a
more complex architecture, with 55,873,736 parameters a topology
composed of 572 elements shows slightly worse results.

Although VGG-19 also produces the best result in one domain
(Citrus leaves) and excellent results in other four domains (Cats vs
dogs, Deep weeds, Plant leaves, and Plant Village), encountered severe
difficulties in training an accurate model in 3 domains: Cars 196,
Caltech birds2011, and Oxford flowers102. This effect coincides with
the fact that these datasets have a large number of labels, more than
100 in the three cases, leading to conclude that VGG19 does not allow
to retrieve enough discriminating information to distinguish between
such a large number of labels. It is worth mentioning that VGG tends
to erroneously classify all samples to the same label during the training
phase. Additionally, this low precision could also be caused due to the
weights of the pre-trained model or the necessity of modifying certain
hyperparameters. To avoid any type of biased decision, we run all
models with default parameters.

In almost all datasets there is room for improvement. However,
in the case of Plant village and Cats vs dogs, the results surpassed
99% precision, so it is not expected to increase this value with the
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inclusion of statistical information. However, we decided to include
these datasets in order to verify that the use of additional features
and a second classification step does not lead to a counterproductive
approach.

5.2. Image classification based on statistical indicators

The second step of the experimentation followed involves evaluat-
ing the capacity of the statistical features manually extracted to reveal
important patterns that can help to differentiate between labels. This
new representation, a vector of 54 values extracted from the image
(as shown in Table 1), was tested using different machine learning
classifiers, obtaining the results shown in Table 5. As in the case of the
evaluation of the base CNN architecture, and given the large imbalance
between classes, the macro average weighted precision was used.

As shown in the table, LDA (Linear Discriminant Analysis) and
Random Forests are the stronger models to classify images according
to statistical features. It is remarkable how the statistical features
extracted retain a different degree of discriminating information de-
pending on the domain. While on datasets such as Citrus leaves or
Malaria, the result is very close to the one obtained with a CNN
network, in case of Cars196 and Caltech birds2011, the classifiers reach
low precision rates.

In Citrus leaves and Malaria, the solely use of these statistical
indicators allows to reach close or more than 89% precision. This
is a very remarkable result. The CNN architectures trained in these
domains improved this figure only by 2% or 3%, but making use of
extraordinary bigger computation and time resources. Moreover, the
use of statistical indicators provide a useful instrument in specific
domains, as we can know exactly what each feature means, instead
of the complex and convoluted features extracted within the CNN
architecture. The use of statistical features manually extracted together
with a rule-base classifier, for instance, Random Forests, provides an
explainable classification path [80], rather than a black box [81], as it
is the case of a Convolutional Neural Network. In the next subsection,
we evaluate if the combination of classification probabilities obtained
from a CNN architecture and the help of a classification model based
on statistical indicators leads to a stronger classification approach.

5.3. Fusion of CNN and statistical indicators-based classification

As the description of the results obtained with the base CNNs in
Section 5.1 demonstrates, there are important differences in the perfor-
mance for all architectures and domains tested, evidencing that there
is room for improvement. The goal of this section is to demonstrate
that the performance of CNNs for image classification can be enhanced
by fusing its output with a classification model trained with statistical
indicators manually extracted.

For this purpose, we evaluate each CNN model together with the
classification algorithm which showed the best performance in each
domain as shown in previous Section 5.2. The output vectors of these
two sources are combined using a new supervised classifier. The results
are displayed in Table 6. In this case, since both vectors represent the
same type of information (the probability of each input image to be
classified as one of the possible labels), we also consider the average
between both probability vectors.

In all cases, a combination of CNN probabilities and statistical
information exceeds the performance of the base CNN. A simple av-
erage between the output vector of the CNN and a classifier trained
on statistical features is, despite its apparent simplicity, a competitive
method that even shows the best results for most of the CNN archi-
tectures in three domains: Cassava, Citrus leaves and Malaria. This
probability score fusion has been providing excellent results in many
classifier combination problems [25] for long. In the rest of datasets,
the combination between both vectors has to be conducted using a
supervised classifier. Although each domain produces varied results and

https://github.com/jahuerta92/cnn-prob-ensemble
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Fig. 3. This flowchart shows how the experiments are conducted. For each dataset considered, 5 different CNN architectures are trained and the set of statistical features is
extracted. With this last set, different classical machine learning classifiers are trained, selecting the one which performed better. Then, for each CNN model trained, it is evaluated
how it can be combined with statistical features based classification algorithm, using again different machine learning classification algorithms. Finally, the results show how, for
each dataset and each specific CNN architecture, an ensemble can be built in order to improve the results of the CNN base architecture in isolation.
Table 4
Averaged results of the five CNN architectures evaluated in 10 different datasets. All values indicate the macro average weighted precision. The maximum row refers to the best
execution according to the precision obtained in the validation set.

CNN model Measure Dataset

Caltech birds 2011 Cars196 Cassava Cats vs dogs Citrus leaves Deep weeds Malaria Oxford flowers 102 Plant leaves Plant village

VGG19
Max. 0.0% 0.01% 78.8% 98.24% 96.15% 92.15% 96.59% 32.47% 94.49% 99.24%
Mean 0.0% 0.01% 76.55% 97.93% 92.81% 90.73% 82.0% 16.03% 93.44% 99.18%
Std. 0.0% 0.0% 1.96% 0.35% 2.96% 1.15% 31.99% 15.03% 1.03% 0.12%

DenseNet 201
Max. 73.08% 82.92% 82.52% 99.34% 94.28% 93.97% 97.33% 85.33% 96.83% 99.66%
Mean 72.55% 82.28% 81.71% 99.17% 91.96% 93.7% 97.16% 85.04% 96.14% 99.58%
Std. 0.55% 0.46% 0.92% 0.17% 1.67% 0.28% 0.15% 0.19% 0.49% 0.08%

Inception V3
Max. 61.78% 72.54% 76.68% 99.0% 89.05% 91.26% 97.23% 69.67% 95.24% 99.44%
Mean 61.49% 68.39% 75.05% 98.78% 86.7% 90.06% 96.95% 68.6% 94.55% 99.32%
Std. 0.36% 4.38% 1.24% 0.16% 2.6% 1.15% 0.2% 0.73% 0.58% 0.07%

Xception V1
Max. 62.78% 71.32% 76.3% 98.97% 91.65% 87.43% 97.08% 78.49% 95.17% 99.55%
Mean 62.08% 67.97% 75.95% 98.82% 89.25% 87.13% 96.87% 77.82% 94.63% 99.41%
Std. 0.59% 2.31% 0.43% 0.14% 1.78% 0.43% 0.22% 0.54% 0.38% 0.08%

Inception ResNet V2
Max. 68.27% 77.21% 78.4% 99.2% 92.49% 91.61% 97.28% 79.21% 96.37% 99.58%
Mean 67.2% 75.26% 77.43% 99.04% 89.74% 90.6% 97.11% 77.94% 95.81% 99.44%
Std. 0.79% 1.42% 0.7% 0.1% 1.76% 0.72% 0.22% 0.94% 0.42% 0.13%
Table 5
Results of different classifiers trained with the statistical features extracted from every image. All values indicate the macro average weighted precision.

Classifier Dataset

Caltech birds 2011 Cars196 Cassava Cats vs dogs Citrus leaves Deep weeds Malaria Oxford flowers 102 Plant leaves Plant village

Logistic Regression 2.38% 1.89% 56.16% 62.34% 88.74% 54.05% 84.95% 22.09% 66.05% 63.0%
LD Analysis 3.44% 3.6% 64.32% 63.51% 89.41% 61.86% 90.17% 33.19% 81.98% 76.27%
K-Neighbours 2.58% 2.56% 55.94% 58.87% 86.7% 65.35% 78.42% 24.71% 72.5% 77.79%
SVM-rbf 2.74% 1.63% 66.51% 62.98% 87.57% 64.44% 89.1% 22.41% 70.27% 74.57%
SVM-sigmoid 0.07% 0.01% 35.79% 58.81% 42.32% 29.61% 49.62% 13.99% 6.83% 20.09%
Random Forest 3.1% 3.59% 60.86% 63.43% 85.62% 68.72% 95.84% 23.09% 76.62% 79.86%
there is not a clear winner approach, values obtained with Random
Forest are stable across datasets and CNN architectures.

The fusion approach produces, however, considerable differences
between domains and CNN architectures. For instance, in the case
of Citrus leaves, only the average helps to improve the results of
the base CNN, while all the classifiers tested fail at improving the
CNN performance, showing lower results. The same effect occurs in
the Cars 196 dataset, but in this case Random Forest is the only
approach capable of improving the performance for all CNNs except
VGG19 (which does not infer knowledge in this dataset). In contrast,
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in domains such as Deep weeds or Cats vs dogs, several classifiers allow
to exceed the base performance. All this indicates that, to achieve the
best possible ensemble, it is required to evaluate different methods. But,
if the maximum efficiency is pursued, the average or Random Forest
classifier will provide high precision rates.

On a more general level, although Random Forest shows high per-
formance in a high number of combinations, Support Vector Machine
leads to higher values in Deep weeds, Malaria and Plant village. This
coincides with the three datasets with a larger number of samples.
Thus, due to the high computational demand required to train SVMs,
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Table 6
Results obtained from the combination of the probabilities of each CNN model and the probabilities of the best classification algorithm trained with statistical features. Both
vectors are combined using again classical supervised classification algorithms and the average between probability vectors. The classification approach with the best result for
each convolutional architecture and dataset is highlighted in bold. All values indicate the macro average weighted precision in the test partition.

Dataset CNN architecture Base CNN
(avg. weighted
precision)

Ensemble (avg. weighted precision)

Avg. KNN LDA LR RF SVM rbf SVG sig

Caltech birds 2011 VGG19 0.0 ± 0.0% 3.45% 3.17% 4.15% 3.09% 3.69 ± 0.14% 3.38% 3.65%
DenseNet 201 72.55 ± 0.55% 70.09% 72.65% 74.31% 72.85% 78.49 ± 0.33% 72.58% 72.89%
Inception V3 61.49 ± 0.36% 59.66% 61.49% 64.57% 61.72% 68.42 ± 0.62% 61.94% 61.69%
Xception V1 62.08 ± 0.59% 60.78% 62.44% 63.99% 62.5% 64.83 ± 0.63% 62.61% 62.47%
Inc. ResNet V2 67.2 ± 0.79% 65.95% 66.87% 67.21% 67.05% 69.72 ± 0.42% 66.94% 66.93%

Cars 196

VGG19 0.01 ± 0.0% 3.6% 3.39% 3.73% 2.9% 4.35 ± 0.19% 4.52% 4.54%
DenseNet 201 82.28 ± 0.46% 81.02% 81.94% 81.72% 81.81% 84.66 ± 0.15% 82.2% 81.96%
Inception V3 68.39 ± 4.38% 71.7% 72.65% 72.97% 72.53% 75.94 ± 0.24% 73.0% 72.78%
Xception V1 67.97 ± 2.31% 70.49% 71.44% 71.35% 71.3% 73.48 ± 0.24% 71.52% 71.34%
Inc. ResNet V2 75.26 ± 1.42% 74.46% 75.39% 73.9% 75.18% 77.52 ± 0.23% 76.44% 75.3%

Cassava

VGG19 76.55 ± 1.96% 83.93% 84.12% 83.96% 84.09% 84.0 ± 0.09% 83.96% 84.03%
DenseNet 201 81.71 ± 0.92% 86.62% 86.85% 86.92% 86.99% 86.97 ± 0.09% 86.76% 87.06%
Inception V3 75.05 ± 1.24% 81.58% 81.28% 81.38% 81.29% 81.41 ± 0.08% 81.33% 81.56%
Xception V1 75.95 ± 0.43% 81.18% 80.66% 80.63% 80.61% 80.3 ± 0.12% 80.43% 80.42%
Inc. ResNet V2 77.43 ± 0.7% 82.83% 82.44% 82.63% 82.56% 82.42 ± 0.13% 82.46% 82.49%

Cats vs dogs

VGG19 97.93 ± 0.35% 98.26% 98.28% 98.24% 98.24% 98.14 ± 0.03% 98.3% 98.26%
DenseNet 201 99.17 ± 0.17% 99.29% 99.33% 99.33% 99.33% 99.36 ± 0.0% 99.36% 99.33%
Inception V3 98.78 ± 0.16% 98.84% 98.8% 98.8% 98.8% 98.82 ± 0.0% 98.82% 98.8%
Xception V1 98.82 ± 0.14% 98.88% 98.97% 98.97% 98.97% 98.97 ± 0.0% 98.97% 98.97%
Inc. ResNet V2 99.04 ± 0.1% 98.97% 99.08% 98.97% 98.97% 99.09 ± 0.01% 98.99% 98.95%

Citrus leaves

VGG19 92.81 ± 2.96% 95.34% 92.61% 91.68% 92.61% 92.54 ± 0.45% 91.68% 93.38%
DenseNet 201 91.96 ± 1.67% 94.42% 91.0% 91.0% 91.82% 91.0 ± 0.0% 91.0% 91.0%
Inception V3 86.7 ± 2.6% 92.73% 88.66% 86.69% 89.33% 87.35 ± 1.08% 88.18% 87.67%
Xception V1 89.25 ± 1.78% 94.23% 89.12% 87.09% 90.1% 87.98 ± 0.5% 87.98% 88.35%
Inc. ResNet V2 89.74 ± 1.76% 92.47% 89.48% 89.48% 90.18% 89.48 ± 0.59% 89.42% 90.17%

Deep weeds

VGG19 90.73 ± 1.15% 91.41% 91.43% 91.13% 91.39% 84.21 ± 1.31% 91.18% 91.07%
DenseNet 201 93.7 ± 0.28% 94.54% 94.67% 94.64% 94.59% 88.88 ± 2.72% 94.61% 94.66%
Inception V3 90.06 ± 1.15% 90.96% 90.92% 91.05% 91.02% 85.38 ± 1.19% 90.95% 90.9%
Xception V1 87.13 ± 0.43% 88.78% 88.73% 88.17% 88.83% 83.8 ± 0.72% 88.9% 88.73%
Inc. ResNet V2 90.6 ± 0.72% 92.81% 91.55% 92.89% 92.57% 84.02 ± 0.66% 91.14% 90.84%

Malaria

VGG19 82.0 ± 31.99% 96.65% 96.14% 96.63% 96.52% 95.86 ± 0.01% 96.25% 96.55%
DenseNet 201 97.16 ± 0.15% 97.39% 97.33% 97.33% 97.41% 97.32 ± 0.0% 97.35% 97.39%
Inception V3 96.95 ± 0.2% 97.1% 96.11% 97.01% 96.79% 95.89 ± 0.02% 96.28% 96.43%
Xception V1 96.87 ± 0.22% 97.04% 96.39% 96.96% 96.77% 95.86 ± 0.02% 96.48% 96.32%
Inc. ResNet V2 97.11 ± 0.22% 97.32% 97.21% 97.23% 97.29% 96.22 ± 0.43% 97.31% 97.21%

Oxford flowers 102

VGG19 16.03 ± 15.03% 43.44% 42.97% 38.48% 40.95% 39.94 ± 0.39% 40.78% 39.64%
DenseNet 201 85.04 ± 0.19% 67.51% 79.88% 90.59% 83.29% 92.37 ± 2.48% 84.87% 86.41%
Inception V3 68.6 ± 0.73% 62.21% 71.2% 83.91% 73.21% 86.14 ± 1.83% 74.68% 74.62%
Xception V1 77.82 ± 0.54% 68.18% 77.66% 88.87% 80.17% 91.88 ± 0.48% 81.3% 81.67%
Inc. ResNet V2 77.94 ± 0.94% 74.54% 80.76% 86.71% 81.91% 88.83 ± 0.26% 83.21% 82.9%

Plant leaves

VGG19 93.44 ± 1.03% 94.01% 95.15% 94.82% 94.93% 94.67 ± 0.09% 94.89% 94.73%
DenseNet 201 96.14 ± 0.49% 95.28% 96.39% 96.16% 96.59% 96.59 ± 0.05% 96.26% 96.18%
Inception V3 94.55 ± 0.58% 94.56% 95.19% 94.58% 95.22% 94.61 ± 0.06% 94.95% 94.92%
Xception V1 94.63 ± 0.38% 94.76% 95.49% 94.77% 95.46% 94.9 ± 0.09% 95.37% 95.47%
Inc. ResNet V2 95.81 ± 0.42% 95.24% 95.85% 95.39% 96.02% 95.6 ± 0.14% 95.71% 95.6%

Plant village

VGG19 99.18 ± 0.12% 99.46% 99.43% 99.44% 99.43% 97.05±0.32% 99.43% 99.43%
DenseNet 201 99.58 ± 0.08% 99.79% 99.76% 99.75% 99.77% 97.28 ± 0.2% 99.76% 99.76%
Inception V3 99.32 ± 0.07% 99.42% 99.39% 99.35% 99.43% 96.89 ± 0.15% 99.42% 99.4%
Xception V1 99.41 ± 0.08% 99.64% 99.62% 99.6% 99.63% 97.12 ± 0.29% 99.62% 99.62%
Inc. ResNet V2 99.44 ± 0.13% 99.57% 99.59% 99.4% 99.56% 97.1 ± 0.23% 99.58% 99.56%
we suggest to use these models only in cases where a high number
of examples exists, while Random Forest will perform better and will
require less computational resources in other situations.

In case of the CNN architecture, all except VGG are improved
similarly in all datasets. In the case of VGG, as it is shown in Section 5.1,
it is not able to distinguish between labels in Caltech birds 2011 and
Cars 196. In these cases, the increment of precision in the ensemble
approach is due to the knowledge provided by the statistical features
based classifier.

In comparison to the base CNN performance, in those datasets
where the CNNs shows lower results, such as Caltech birds 2011, Cars
196, Cassava or Oxford flowers 102, the proposed approach clearly
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provides an improvement. For instance, in Caltech birds 2011, results
improve by 6% when using DenseNet and 7% with Inception V3, while
in Inception ResNet V2 and Xception V1 results increase by 2%, in
all cases using the Random Forest classifier. In Oxford flowers, the
difference is even bigger. The results obtained in this dataset with
Inception ResNet V2 increase 11% and, in the case of Inception V3,
the improvement reaches 18%.

All these results have shown that the inclusion of statistical features
can help image classification approaches based on deep architectures.
By extracting different estimators directly calculated from the pixels of
every image, it is possible to extract useful additional information that
leads to varied improvements depending on the domain. It should be
mentioned that the large improvement observed in certain experiments,

as it is the case of Oxford flowers102, where the precision is increased
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up to 18%, can be affected by the treatment of the output probabilities
of the CNN architecture with a standard classifier, arising patterns that
can improve the precision in specific domains. The computation of
the statistical data and the training of classical classifiers provide a
useful approach with a minimal computation load in comparison to the
training of a CNN.

5.4. Ablation study

In the previous section, it has been demonstrated that the addition
of statistical information leads to an improvement in the classification
performance in all datasets and architectures. We now assess the indi-
vidual performance of each statistical indicator considered, in order to
quantify its contribution in the final classification and to check that all
of them contribute in the same direction with no deterioration of the
performance. For that purpose, this section describes the results after
an ablation study addressed for each architecture and dataset.

Figs. 5, 8, 6, 4 and 7 show the results of the ablation study for each
CNN architecture. The goal of these figures is to describe the effect of
building the fusion approach without including one statistical feature at
a time. Each cell shows the difference between the ensemble approach
where one specific statistical feature is left out and the ensemble with
all statistical features. All results were calculated after 10 different
executions for both experiments. Negative values indicate a reduction
of the macro average weighted precision as compared to the ensemble
with all features.

In all cases, the algorithm for the ensemble approach is selected
according to the results shown in Table 6. For the sake of clarity,
statistical features have been grouped by type of feature for all chan-
nels, meaning that each statistical indicator shown in the figure refers
to an ensemble approach without that feature for the three channels
(i.e. dissimilarity relates to three features depending on the green, red
and blue channels).

The results show high similarities across CNN architectures in the
five figures. For instance, in the results for DenseNet 201 (Fig. 5) for the
first two datasets, Caltech birds 2011 and Cars 196, it can be seen small
variations between features. While the elimination of specific features
slightly increase the performance, in other cases it decreases. However,
the differences in these cells (values lower than 0.4%) can be attributed
to the use of the Random Forest classifier, the model which showed
better results for all architectures except VGG19 in these two domains.

The differences shown in the ablation study fall under the standard
deviation, which are of 0.33%, 0.42%, 0.62% and 0.63% for DenseNet
201, Inception ResNet V2, Inception V3 and Xception V1 respectively
(see Table 6). In the case of the VGG19 in these two datasets, there
are no differences with the result obtained including all features,
a fact that can be appreciated for all datasets when using VGG19.
This evidences that the different statistical features extracted present
strong complementarities. Nevertheless, due to the low computational
resources required to extract each of them, we do not encourage to
use a subset of them as they can improve the performance in each
specific scenario. For instance, in Oxford flowers 102 with Inception
V3 (see Fig. 6), the elimination of hist-high causes a 2% decrease in
the performance, while contrast and correlation leads to a 1% decrease,
evidencing the importance of these two features.

5.5. Time performance analysis

An analysis based on the time performance of the proposed ap-
proach is discussed in this section. Table 7, provided in Appendix,
shows all training times in minutes for the different parts of the method
proposed, for all datasets, CNN architectures, and ensemble algorithms.

As expected, the CNN is the most time-consuming element of the
approach, and it is highly dependent on the number of training ex-
amples but also on the general complexity of the domain. The feature
extraction process, in contrast, is very efficient and, in most cases, it
183
lasts less than one minute. In one specific case, for the Plant leaves
dataset, due to the characteristics of this dataset, it takes 15 min.
However, it is still a quarter of the training time of the CNN. For
the statistical features-based classification, the time required is also
minimal in comparison to the CNN. This is caused by the low size
of the feature space, consisting of 54 different characteristics. In this
case, the number of training examples will increase the training time
accordingly.

The final ensemble approach is also very efficient. However, in this
case, the use of Support Vector Machines causes large training times in
several datasets (Caltech birds 2011, Cars 196 or Plant village). This
is caused due to the number of labels but also due to the number of
training examples. If maximum efficiency is pursued, we recommend
to avoid this type of classifier, as those based on decision trees or
Linear Discriminant Analysis will provide high precision rates more
efficiently. In any case, the minimum training time is obtained using the
average between both probability vectors, which, as previously showed,
achieves high values in several datasets and architectures.

6. Conclusions and future works

In this article, a novel approach to improve CNNs has been pro-
posed. This approach consists in combining traditional manually ex-
tracted features with the automatic feature extraction of Convolutional
Neural Networks. This ensemble model contains a CNN module that
labels examples with a probability vector, a statistical features based
classifier that labels examples with either a probability vector or a
one-hot encoded vector, and, finally, both vectors are combined and
reclassified through a fusion approach to get the final labelling of the
image. This method has been tested with several CNN algorithms on
heterogeneous datasets to demonstrate the general capabilities of the
method.

The experimentation shows promising results, as the proposed ad-
ditions are never detrimental independently of the domain or CNN
network applied. Although the improvement is subject to the per-
formance of the CNN, which implies that in those domains where
the CNN reaches high accuracy rates there will be little space for
improvement, in all domains tested, the approach is able to improve
the results. Besides, training the feature classifier and fusion classifier
modules is much cheaper than training upscaled versions of the studied
networks. As we show in the Appendix, the time required to train both
classifiers is minimal in comparison to the training of the CNN. It is also
worth noting that some feature classifiers (and fusion classifiers) have
better explainability than the CNN [80,81], although these explainable
models are not always the best option.

This proposal could be improved in several ways in future work.
For example, manually extracted features could be further improved
by using new approaches to feature extraction, including more ad-
vanced texture detection techniques, or hand-crafted feature extraction
techniques specifically developed for the domain at hand.

Other venues for future research may include using boosting tech-
niques in the fusion classifier such as extreme gradient boosting, among
others. The fusion classifier can also be improved by first designing it
using large-scale development data representing general probability be-
haviours in wide domains, and then fine-tuning it to specific problems
or application areas in a kind of adapted fusion scheme [26,82].

An interesting research line could appear from the study and com-
parison of machine learning extracted features and manually extracted
features as indicated by previous research [83]. Our results show
that the predictions of CNNs and other algorithms are fundamentally
different, and that their combination is greatly beneficial to perfor-
mance. These differences could be the key to understand and explain
why CNNs fail to classify some examples into specific domains. This
example-based behaviour that makes CNNs fail while other simpler
classifiers can work much better can be exploited with context-based
fusion classifiers [84], e.g., switching between them depending on
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Table 7
Duration in minutes of the different parts of the approach proposed for the different datasets, CNN architectures, classifiers used for building the statistical features based classifier and algorithms used for the final ensemble.
A Time performance of the proposed fusion approach

Dataset CNN Base CNN training
time (m)

Feature extraction
time (m)

Statistical features based classifier training time (m) Ensemble training time (m)

KNN LDA LR RF SVM rbf SVM sig Avg. KNN LDA LR RF SVM rbf SVM sig

Caltech birds 2011 DenseNet201 66,00

0,77 2,45 2,51 2,49 2,47 2,48 2,46 2,02E−04 5,40 0,96 3,25 18,00 106,68 148,98
Inc. ResNet V2 52,60
Inc. V3 43,20
VGG19 20,25
Xception V1 35,40

Cars 196

DenseNet201 116,40

1,73 4,65 4,60 4,62 4,60 4,62 4,67 3,66E−04 9,67 1,09 4,36 6,56 151,83 114,61
Inc. ResNet V2 93,00
Inc. V3 68,60
VGG19 21,25
Xception V1 77,40

Cassava

DenseNet201 81,20

0,81 0,86 0,86 0,87 0,87 0,86 0,88 8,02E−06 1,89 0,09 0,14 0,60 0,40 0,54
Inc. ResNet V2 55,00
Inc. V3 45,00
VGG19 45,00
Xception V1 35,80

Cats vs dogs

DenseNet201 72,40

1,43 5,67 5,66 5,64 5,57 5,66 5,63 1,89E−05 1,51 0,06 0,07 0,66 0,26 0,49
Inc. ResNet V2 68,80
Inc. V3 71,40
VGG19 92,00
Xception V1 67,40

Citrus leaves

DenseNet201 40,20

0,06 0,02 0,02 0,02 0,02 0,02 0,02 1,47E−06 0,11 0,02 0,03 0,59 0,02 0,03
Inc. ResNet V2 17,00
Inc. V3 19,60
VGG19 7,50
Xception V1 15,20

Deep weeds

DenseNet201 118,80

0,97 3,26 3,27 3,26 3,27 3,27 3,24 2,54E−05 12,49 0,17 0,31 0,63 1,04 1,17
Inc. ResNet V2 127,40
Inc. V3 83,60
VGG19 93,75
Xception V1 54,40

Malaria

DenseNet201 95,20

1,27 6,22 6,11 6,25 6,26 6,20 6,11 1,93E−05 1,80 0,10 0,07 0,70 0,28 0,65
Inc. ResNet V2 104,80
Inc. V3 89,40
VGG19 68,50
Xception V1 74,60

Oxford flowers 102

DenseNet201 45,40

0,72 0,17 0,17 0,17 0,17 0,17 0,17 6,54E−05 1,21 0,29 0,53 1,20 9,69 10,08
Inc. ResNet V2 24,40
Inc. V3 25,00
VGG19 18,50
Xception V1 23,60

Plant leaves

DenseNet201 133,20

15,09 0,32 0,32 0,32 0,32 0,32 0,32 1,63E−05 1,22 0,10 0,17 0,61 1,12 1,28
Inc. ResNet V2 68,20
Inc. V3 75,60
VGG19 65,00
Xception V1 58,60

Plant village

DenseNet201 232,80

2,75 37,84 37,86 38,92 38,17 37,72 37,94 2,04E−04 130,35 0,77 3,12 3,02 36,56 44,47
Inc. ResNet V2 293,20
Inc. V3 212,80
VGG19 301,25
Xception V1 228,40
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Fig. 4. Results of the ablation study for the VGG19 architecture.
Fig. 5. Results of the ablation study for the DenseNet 201 architecture.
Fig. 6. Results of the ablation study for the InceptionV3 architecture.
Fig. 7. Results of the ablation study for the Xception V1 architecture.
Fig. 8. Results of the ablation study for the Inception ResNet V2 architecture.
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the input images and context [85], or combining them with example-
dependent adaptive fusion schemes [26]. Finally, we also plan to adapt
the proposed ensemble approach to reduce undesired biases [86,87] in
pre-trained networks.
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