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A B S T R A C T

The massive availability of cameras and personal devices results in a wide variability between imaging condi-
tions, producing large intra-class variations and a significant performance drop if images from heterogeneous
environments are compared for person recognition purposes. However, as biometric solutions are extensively
deployed, it will be common to replace acquisition hardware as it is damaged or newer designs appear or
to exchange information between agencies or applications operating in different environments. Furthermore,
variations in imaging spectral bands can also occur. For example, face images are typically acquired in the
visible (VIS) spectrum, while iris images are usually captured in the near-infrared (NIR) spectrum. However,
cross-spectrum comparison may be needed if, for example, a face image obtained from a surveillance camera
needs to be compared against a legacy database of iris imagery. Here, we propose a multialgorithmic approach
to cope with periocular images captured with different sensors. With face masks in the front line to fight
against the COVID-19 pandemic, periocular recognition is regaining popularity since it is the only region
of the face that remains visible. As a solution to the mentioned cross-sensor issues, we integrate different
biometric comparators using a score fusion scheme based on linear logistic regression This approach is trained
to improve the discriminating ability and, at the same time, to encourage that fused scores are represented
by log-likelihood ratios. This allows easy interpretation of output scores and the use of Bayes thresholds
for optimal decision-making since scores from different comparators are in the same probabilistic range. We
evaluate our approach in the context of the 1st Cross-Spectral Iris/Periocular Competition, whose aim was to
compare person recognition approaches when periocular data from visible and near-infrared images is matched.
The proposed fusion approach achieves reductions in the error rates of up to 30%–40% in cross-spectral NIR–
VIS comparisons with respect to the best individual system, leading to an EER of 0.2% and a FRR of just 0.47%
at FAR = 0.01%. It also represents the best overall approach of the mentioned competition. Experiments are
also reported with a database of VIS images from two different smartphones as well, achieving even bigger
relative improvements and similar performance numbers. We also discuss the proposed approach from the point
of view of template size and computation times, with the most computationally heavy comparator playing
an important role in the results. Lastly, the proposed method is shown to outperform other popular fusion
approaches in multibiometrics, such as the average of scores, Support Vector Machines, or Random Forest.
. Introduction

Periocular biometrics has gained attention during the last years as
n independent modality for person recognition [1,2] after concerns of
he performance of face or iris modality under non-ideal or uncoop-
rative conditions [3,4]. The mandatory use of face masks due to the
OVID-19 pandemic has produced that, even in cooperative settings,
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face recognition systems are presented with occluded faces where the
periocular region is often the only visible area. This face occlusion
comes with a reduction in facial information that may be significant
for recognition [5,6]. To what extent this information reduction is
detrimental for face recognition is yet something largely unexplored. In
practice, recent studies have shown that commercial face recognition
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Fig. 1. Eye image labelled with some parts of the ocular region.

engines, even in cooperative settings, struggle with persons wearing
face masks [7], driving vendors to include capabilities for recognition
of masked faces in their products [8]. In parallel, hygiene concerns
are triggering fears against the use of contact-based biometric solutions
such as fingerprints [9].

According to the Merriam-Webster dictionary, the medical defini-
tion of ‘‘periocular’’ is ‘‘surrounding the eyeball but within the orbit’’.
From a forensic/biometric application perspective, our goal is to im-
prove the recognition performance by using information extracted from
the face region in the immediate vicinity of the eye, including the
sclera, eyelids, eyelashes, eyebrows and the surrounding skin (Fig. 1).
This information may include textural descriptors, but also the shape
of the eyebrows or eyelids, or colour information [1]. With a surprising
high discrimination ability, the resulting modality is the ocular one
requiring the least constrained acquisition. It is sufficiently visible over
a wide range of distances, even under partial face occlusion (close
distance) or low-resolution iris (long distance), facilitating increased
performance in unconstrained or uncooperative scenarios. It also avoids
the need for iris segmentation, an issue in difficult images [10]. The
COVID-19 outbreak has imposed the necessity of dealing with partially
occluded faces even in cooperative applications in security, healthcare,
border control or education. Another advantage in the context of the
current global pandemic is that the periocular region appears in iris
and face images, so it can be easily obtained with existing setups for
face and iris.

The ocular region consists of several organs such as the cornea,
pupil, iris, sclera, lens, retina, optical nerve, and periocular region.
Some of them are shown in Fig. 1. Among these, iris, sclera, retina
and periocular have been studied as biometric modalities [2]. The
significant progress of ocular biometrics in the last decade has been
primarily due to efforts in iris recognition since the late 80 s, resulting
in large-scale deployments [11]. Iris provides very high accuracy with
near-infrared (NIR) illumination and controlled, close-up acquisition.
However, deployment to non-controlled environments is not yet mature
due to the impact of low resolution, variable illumination, or off-angle
views, which makes very difficult to locate and segment the iris [10].
Even if the latter can be achieved, the quality of the resulting iris image
might not be sufficient for accurate recognition either [12]. The feasi-
bility of vasculature of the sclera as a biometric modality (sometimes
simply referred to as sclera) has also been established by several studies
[13], although its acquisition in non-controlled environments poses the
same problems as the iris modality. The vasculature of the retina is
also very discriminative, and the retina is regarded as the most secure
biometric modality due to being extremely difficult to spoof. However,
its acquisition is very invasive, requiring high user cooperation and
specialized optical devices.

In this context, periocular has rapidly evolved as a very popular
modality for unconstrained biometrics [1,2,13], and recently due to the
111
Fig. 2. Sensor interoperability in periocular biometrics.

use of face masks even in constrained settings [7]. The term periocular
is used loosely in the literature to refer to the externally visible region
of the face that surrounds the eye socket. Therefore, images of the
whole eye, such as the one in Fig. 1, are employed as input [13].
While the iris, sclera and other elements are present in such images,
they are not explicitly used in isolation. It may be that the iris texture
or the vasculature of the sclera cannot be reliably obtained either
to be used as stand-alone modalities [12]. Some works even suggest
that with visible light data, recognition performance is improved if
components inside the ocular globe (iris and sclera) are discarded [14].
The fast-growing uptake of face technologies in social networks and
smartphones, as well as the widespread use of surveillance cameras or
face masks, has arguably increased the interest in periocular biomet-
rics, especially in the visible (VIS) range. In such scenarios, samples
captured with different sensors are to be compared if, for example,
users are allowed to use their own acquisition devices, leading to a
cross-sensor comparison in the same spectrum (VIS–VIS in this case).
Unfortunately, this massive availability of cameras results in hetero-
geneous quality between images [15], which is known to decrease
recognition performance significantly [11]. These sensor interoperability
issues also arise when a biometric sensor is replaced with a newer one
without reacquiring the corresponding template, thus forcing biometric
samples from different sensors to co-exist. Sensors may also operate in
a range other than VIS, such as NIR, leading to cross-sensor NIR–NIR
comparisons, e.g. [16]. In addition, iris images are largely acquired
beyond the visible spectrum [17], mainly using NIR illumination, but
there are several scenarios in which it may be necessary to compare
them with periocular images in the VIS range, leading in this case to a
cross-sensor comparison in different spectra (NIR–VIS in this case), also
known as cross-spectral comparison. This happens, for example, in law
enforcement scenarios where the only available image of a suspect is
obtained with a surveillance camera in the VIS range, but the reference
database contains images in the NIR range [18,19]. These interoper-
ability problems, if not properly addressed, can affect the recognition
performance dramatically. Unfortunately, widespread deployment of
biometric technologies will inevitably cause the replacement of hard-
ware parts as they are damaged, or newer designs appear. Another
application case is the exchange of information among agencies or
applications which employ different technological solutions or whose
data is captured in heterogeneous environments. The different types of
image comparisons mentioned, based on the spectrum in which they
have been acquired, are summarized in Fig. 2.

Accordingly, to counteract the reduction in recognition performance
that is usually observed when comparing data from different sensors,
we propose to combine the output of different periocular comparators
at the score level, referred to as multialgorithm fusion (in contrast to
multimodal fusion, which combines information from different modal-
ities) [20,21]. The consolidation of identity evidence from heteroge-
neous comparators (also called experts, feature extraction techniques,
or systems in the present paper) is known to increase recognition
performance, because the different sources can compensate for the
limitations of the others [20,22]. Integration at the score level is the
most common approach because it only needs the output scores of
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Fig. 3. Example images from Cross-Eyed (top row) and VSSIRIS (bottom row)
databases. First column: input image. Second: after applying CLAHE (see Section 5.1).
Third and fourth: ROI of the different biometric comparators (see Section 3).

Fig. 4. Architecture of the proposed fusion strategy.

the different comparators, greatly facilitating the integration. With this
motivation, we employ a multialgorithm fusion approach to cope with
periocular images from different sensors which integrates scores from
different comparators. It follows a probabilistic fusion approach based
on linear logistic regression [23], in which the output scores of multiple
systems are combined to produce a log-likelihood ratio according to
a probabilistic Bayesian framework. This allows easy interpretation of
output scores and the use of Bayes thresholds for optimal decision-
making. This fusion scheme is compared with a set of simple and
trained fusion rules widely employed in multibiometrics based on the
arithmetic average of normalized scores [24], Support Vector Machines
[25], and Random Forest [26].

The fusion approach based on linear logistic regression served as an
inspiration to our submission to the 1st Cross-Spectral Iris/Periocular
Competition (Cross-Eyed 2016) [27], with an outstanding recognition
accuracy: Equal Error Rate (EER) of 0.29%, and False Rejection Rate
(FRR) of 0% at a False Acceptance Rate (FAR) of 0.01%, resulting in
the best overall competing submission. This competition was aimed
at evaluating the capability of periocular recognition algorithms to
compare visible and near-infrared images (NIR–VIS). In the present
paper, we also carry out cross-sensor experiments with periocular
images in the visible range only (VIS–VIS), but with two different
sensors. For this purpose, we employ a database captured with two
smartphones [28], demonstrating the benefits of the proposed approach
to smartphone-based biometrics as well.

The rest of the paper is organized as follows. This introduction is
completed with a description of the paper contributions. A summary of
related works in periocular biometrics is given in Section 2. Section 3
then describes the periocular comparators employed. The score fusion
methods evaluated are described in Section 4. Recognition experiments
using images in different spectra (cross-spectral NIR–VIS) and in the
visible spectrum (cross-sensor VIS–VIS) are described in Sections 5 and
6, respectively, including the databases, protocol used, results of the
individual comparators, and fusion experiments. Finally, conclusions
are given in Section 7.
112
1.1. Contributions

The contribution of this paper to the state of the art is thus as
follows. First, we summarize related works in periocular biometrics
using images from different sensors. Second, we evaluate nine pe-
riocular recognition comparators under the frameworks of different
spectra (NIR–VIS) and same spectrum (VIS–VIS) recognition. The Read-
ing Cross-Spectral Iris/Periocular Dataset (Cross-Eyed) [27] and the
Visible Spectrum Smartphone Iris (VSSIRIS) [28] databases are respec-
tively used for this purpose. We employ the three most widely used
comparators in periocular research, which are used as a baseline in
many studies [1]: Histogram of Oriented Gradients (HOG) [29], Local
Binary Patterns (LBP) [30], and Scale-Invariant Feature Transform
(SIFT) key-points [31]. Three other periocular comparators, proposed
and published previously by the authors, are based on Symmetry
Descriptors [32], Gabor features [33], and Steerable Pyramidal Phase
Features [34]. The last three comparators use feature vectors extracted
by three Convolutional Neural Networks: VGG-Face [35], which has
been trained for classifying faces, so the periocular region appears in
the training data, and the very-deep Resnet101 [36] and Densenet201
[37] networks. Two example images from the two databases employed
are shown in Fig. 3 (first column). The second column shows the two
images after applying Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [38], whereas the last two columns show the regions of
interest (ROI) used by the different comparators. The comparators are
evaluated both in terms of performance, template size and computation
times. In a previous study [39], we presented preliminary results with
the VSSIRIS database using a subset of the mentioned comparators [12,
32,33], which are extended in the present paper with additional exper-
iments using new comparators [34–37] and the mentioned Cross-Eyed
database. Third, we describe our multialgorithm fusion architecture for
periocular recognition using images from different sensors (Fig. 4). The
input to a biometric comparator is usually a pair of biometric samples,
and the output is, in general, a similarity score 𝑠. A larger score favours
the hypothesis that the two samples come from the same subject (target
or client hypothesis), whereas a smaller score supports the opposite
(non-target or impostor hypothesis). However, if we consider a single
isolated score from a biometric comparator (say a similarity score of
𝑠 = 1), it is in general not possible to determine which is the hypoth-
esis the score supports the most, unless we know the distributions of
target or non-target scores. Moreover, since the scores output by the
various comparators are heterogeneous, score normalization is needed
to transform these scores into a common domain prior to the fusion
process [20]. We solve these problems by linear logistic regression
fusion [40,41], a trained classification approach in which scores of the
individual comparators are combined to obtain a log-likelihood ratio.
This is the logarithm of the ratio between the likelihood that input sig-
nals were originated by the same subject and the likelihood that input
signals were not originated by the same subject. This form of output
is comparator-independent in the sense that this log-likelihood-ratio
output can theoretically be used to make optimal (Bayes) decisions. To
convert scores from different comparators into a log-likelihood ratio,
we evaluate two possibilities (Fig. 5). In the first one (top part), the
mapping function uses as input the scores of all comparators, producing
a single log-likelihood ratio as output. In the second one (bottom),
several mapping functions are trained (one per comparator), so one
log-likelihood ratio per comparator is obtained. Under independence
assumptions (as in the case of comparators based on different feature
extraction methods), the sum of log-likelihood ratios results in another
log-likelihood ratio [42]. Therefore, in the second case, the outputs of
the different mapping functions are just summed. The latter provides a
simple fusion framework that allows obtaining a single log-likelihood
ratio by simply summing the (mapped) score given by each available
comparator. This would allow coping with missing modalities [43]
since the output still would be a log-likelihood ratio regardless of the
number of systems combined. This fusion approach has been previously
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Table 1
Overview of existing works in periocular biometrics using images from different sensors. The works of each sub-section are in chronological order. The acronyms of this table are
fully defined in the text.

Best accuracy

Ref. Features Database People/ Comparison # Eyes EER GAR @ GAR @ GAR @ Rank-1
Images 1%FAR 0.1%FAR 0.01%FAR

Cross-sensor comparisons in the visible range (VIS–VIS)

[45] LBP, HOG, SIFT,
ULBP, GIST

CSIP 50/2004 VIS–VIS Single 15.5% – – – –

[46] LD+STFT MICHE I 50/n-a VIS–VIS Single 6.38–8.33% – – – –

[47] GMM-UBM, SV-SDA,
CNN

CSIP 50/2004 VIS–VIS Single – – – – 83.6–93.3%

This work: 9 comparators VSSIRIS 56/560 VIS–VIS Single 0.3% – – 99.7% –

Cross-sensor comparisons in the near-infrared range (NIR–NIR)

[16] OM Own 300/9000 NIR–NIR Single 20–28% – – – –

Cross-sensor comparisons across different spectra (cross-spectrum)

[18] LBP, NGC, JDSR Own 704/1358 VIS–NIR Single 23% – – – –

[48] PHOG IIITD-IMP 62/1240 VIS–NIR Single/both – 38.36/47.08% – – –
VIS-night Single/both – 63.81/71.93% – – –
NIR-night Single/both – 40.36/48.21% – – –

[49] Gabor+ Pre-Tinders 48/576 VIS-SWIR 1.5/50/106 m Single 7.32/24.87/31.18% – – – 68.75/33.33/31.94%
WLD/LBP/HOG Tinders 48/1255 VIS–NIR 1.5/50/106 m Single 4.42/25.71/39.01% – – – 70.31/38.54/10.76%

PCSO 1000/3000 VIS-MWIR 1.5 m Single 30.46% – – – 5.58%
Q-FIRE 82/431 VIS-LWIR 2 m Single 39.06% – – – 8.09%

[50] MRF+ IIITD IMP 62/1240 VIS–NIR Single – – 15.93–18.35% – –
TPLBP/FPLB PolyU 209/12540 VIS–NIR Single 19.8–32.5% – 45.4–73.2% – –

[51] DOG+LBP/HOG IIITD-IMP 62/1240 VIS–NIR Single/both 43.85/45.29% – 24.97/25.03% – –
PolyU 209/12540 VIS–NIR Single/both 18.79/13.87% – 73.12/83.12% – –
Cross-Eyed 120/3840 VIS–NIR Single/both 15.11/10.36% – 80.03/89.27% – –

[52] HOG, GIST, LG,
BSIF

Own 52/4160 8 bands both – – – – 8.46–91.92%

[53] CNN IIITD-IMP 62/1240 VIS–NIR Single 5.19% 88.13% – – –
VIS-night Single 5.13% 88.19% – – –
NIR-night Single 10.19% 81.55% – – –

This work: 9 comparators Cross-Eyed 120/3840 VIS–NIR Single 0.2% – – 99.53% –
Fig. 5. Strategies to convert scores from multiple subsystems to a log-likelihood ratio
(LLR). Top: one single mapping function is trained to convert multiple scores into a
single LLR. Bottom: several mapping functions are trained to convert the score of each
subsystem into a LLR. The sum of LLRs from different subsystems also results in a LLR.
See the text for details.

applied successfully to cross-sensor comparison in the face and finger-
print modalities [23], achieving excellent results in other competition
benchmarks as well [43]. Fourth, we compare this fusion approach with
a set of simple and trained score fusion rules based on the arithmetic
average of normalized scores [24], Support Vector Machines [25], and
Random Forest [26]. These fusion approaches are very popular in
the literature, having demonstrated to give good results in biometric
authentication [20,44]. Fifth, in our experiments, conducted according
to the 1st Cross-Spectral Iris/Periocular Competition (Cross-Eyed 2016)
protocol [27], reductions of up to 29/47% in EER/FRR error rates (with
respect to the best individual system) are obtained by fusion under
NIR–VIS comparison, resulting in a cross-spectral EER of 0.2%, and
a FRR @ FAR = 0.01% of just 0.47%. Regarding cross-sensor VIS–
VIS smartphone recognition, the reductions in error rates achieved
are 85/93% in EER/FRR, respectively, with corresponding cross-sensor
error values of 0.3% (EER) and 0.3% (FRR).
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2. Related works in periocular biometrics using images from dif-
ferent sensors

Interoperability between different sensors is an area of high research
interest due to new scenarios arising from the widespread use of bio-
metric technologies, coupled with the availability of multiple sensors
and vendor solutions. A summary of existing works in the literature is
given in Table 1. Most of them employ the Genuine Acceptance Rate
(GAR) as metric, which is computed as 100-FRR(%). For this reason,
in this subsection, we report GAR values. However, in the rest of the
paper, we will follow the Cross-Eyed protocol and will report FRR
values.

Cross-sensor comparison of images in the visible range (VIS–VIS)
from smartphone sensors is carried out, for example, in [45–47], while
the challenge of comparing images from different sensors in the near-
infrared spectrum (NIR–NIR) has been addressed in [16]. In the work
[46], the authors apply Laplacian decomposition (LD) of the image
coupled with dynamic scale selection, followed by frequency decom-
position via Short-Term Fourier Transform (STFT). In the experiments,
they employ a subset of 50 periocular instances from the MICHE I
dataset (Mobile Iris Challenge Evaluation I dataset) [54], captured
with the front and rear cameras of two smartphones in indoor and
outdoor illuminations. The cross-sensor EER obtained ranges from 6.38
to 8.33% for the different combinations of reference and probe cameras.
The authors in [45] use a sensor-specific colour correction technique,
which is estimated by using a colour chart in a dark acquisition scene
that is further illuminated by a standard illuminant. The authors also
carry out a score-level fusion of six iris and five periocular comparators,
which is done by Neural Networks. The five periocular features include
Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG),
Scale-Invariant Feature Transform (SIFT) key-points, Uniform Local
Binary Patterns (ULBP) [55], and the perceptual GIST descriptors [56].
They also presented a new database (CSIP: Cross-Sensor Iris and Peri-
ocular), with 2004 periocular images from 50 subjects captured with
four different smartphones in ten different setups (based on several
combinations involving the use of frontal/rear cameras and flash/no
flash). The best reported periocular performance by fusion of the five
available comparators is EER = 15.5%. The same database is also
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employed in [47], where the authors apply three different methods
to solve the cross-sensor task: Gaussian Mixture Models coupled with
Universal Background Models (GMM-UBM), GMM Supervectors cou-
pled with Stacked Denoising Autoencoders (SV-SDA), and deep transfer
learning with Convolutional Neural Networks (CNN). They achieve a
rank-1 recognition rate of 93.3% in the best possible case. The work
[16], on the other hand, addresses the issue of cross-sensor recognition
in the NIR spectrum. The authors employ a self-captured database with
9000 iris images from 600 eyes (300 people) using three different high-
resolution sensors. Sensor interoperability is dealt with by weighted
fusion of information from multiple directions of Ordinal Measures
(OM), with a reported cross-sensor periocular EER between 20 and
28%.

Regarding recognition across different spectra (cross-spectral), the
work [18] proposes to compare images of the periocular region cropped
from VIS face images against NIR iris images. This is because face
images are usually captured in the visible range, while iris images
in commercial systems are usually acquired using near-infrared illu-
mination. They employ three different comparators based on Local
Binary Patterns (LBP), Normalized Gradient Correlation (NGC), and
Joint Database Sparse Representation (JDSR). Using a self-captured
database with 1358 images of the left eye from 704 subjects, they
report a cross-spectral EER of 23% by score-level fusion of the three
comparators.

In another line of work, surveillance at night or in harsh environ-
ments has prompted interest in new imaging modalities. For exam-
ple, the authors in [48] presented the IIITD Multispectral Periocular
database (IIITD-IMP), with a total of 1240 VIS, NIR and Night Vision
images from 62 subjects (the latter captured with a video camera in
Night Vision mode). To cope with cross-spectral periocular compar-
isons, they employ Neural Networks to learn the variabilities caused by
each pair of spectra. The employed comparator is based on a Pyramid
of Histograms of Oriented Gradients (PHOG) [57]. They report results
for each eye separately and for the combination of both eyes, obtaining
a cross-spectral GAR of 38%–64% at FAR = 1% (best of the two eyes),
and a GAR of 47%–72% combining the two eyes. The use of pre-trained
Convolutional Neural Networks (CNN) as a feature extraction method
for NIR–VIS comparison was recently proposed in [53]. Here, the au-
thors identify the layer of the ResNet101 network that provides the best
performance on each spectrum. Then, they train a Neural Network that
uses as input the feature vector of the best respective layers. Using the
IIITD-IMP database, they report results considering the left and right
eyes of a person as different users (effectively duplicating the number
of classes). The obtained cross-spectral accuracy is EER = 5%–10%
and GAR = 81%–88% at FAR = 1%, which outperforms any previous
study with this database. The authors in [50] employ the IIITD-IMP
database, and a newly presented database, the Hong Kong Polytechnic
University Cross-Spectral Iris Images Database (PolyU), with 12 540
images from 209 subjects. To carry out NIR–VIS comparison, they use
Markov Random Fields (MRF) combined with two different feature
extraction methods, variants of Local Binary Patterns (LBP), namely
FPLBP (Four-Patch LBP) and TPLBP (Three-Patch LBP). They report a
cross-spectral periocular GAR at FAR = 0.1% of 16%–18% (IIITD-IMP)
nd 45%–73% (PolyU). These two databases, together with the Cross-
yed database (with 3840 images in NIR and VIS spectra from 120
ubjects) [27], are used in the work [51]. To normalize the differences
n illumination between NIR and VIS images, they apply Difference
f Gaussian (DoG) filtering. The comparators employed were based
n Local Binary Patterns (LBP) and Histogram of Oriented Gradients
HOG) features. They report results for each eye separately and for
he combination of both eyes. The IIITD-IMP database gives the worst
esults, with a cross-spectral EER of 45% and a GAR at FAR = 0.1% of
nly 25% (two eyes combined). The reported accuracy with the other
atabases is better, ranging between 10%–14% (EER) and 83%–89%
114

GAR). t
Latest advancements have resulted in devices with the ability to
ee through fog, rain, at night, and to operate at long ranges. In the
ork [49], the authors carry out experiments with several databases

ontaining images with different wavelengths, namely VIS, NIR, SWIR
ShortWave Infrared), MWIR (MiddleWave Infrared), and LWIR (Long-
ave Infrared). The images are captured at several stand-off distances

f 1.5 m, 2 m, 50 m, and 105 m. Feature extraction is done with a
ank of Gabor filters, with the magnitude and phase responses further
ncoded with three descriptors: Weber Local Descriptor (WLD) [58],
ocal Binary Patterns (LBP), and Histogram of Oriented Gradients
HOG). Extensive experiments are done in this work comparing SWIR,
IR, MWIR and LWIR periocular probes to a gallery of VIS images.
s expected, accuracy decreased as the standoff distance increases.
lso, the comparison of MWIR or LWIR images to VIS images shows
oor performance, attributable to the fact that MWIR and LWIR im-
gery measures the heat of a body, while visible imagery measures
eflected light. Recently, the work [52] presented a new multispectral
atabase captured in eight bands across the VIS and NIR spectra (530 to
000 nm). A total of 4160 images from 52 subjects were acquired using
custom-built sensor that captures periocular images simultaneously

n the eight bands. The comparators evaluated are based on Histogram
f Oriented Gradients (HOG), perceptual descriptors (GIST), Log-Gabor
ilters (LG), and Binarized Statistical Image Features (BSIF). The cross-
and accuracy varies greatly depending on the reference and probe
ands, ranging from 8.46% to 91.92% rank-1 identification rate.

. Periocular comparators

This section describes the biometric comparators used for periocular
ecognition. We employ nine different comparators, whose choice is
otivated as follows. Three comparators are based on the most widely
sed features in periocular research, which are employed as a baseline
n many studies [1]: Histogram of Oriented Gradients (HOG) [29], Lo-
al Binary Patterns (LBP) [30], and Scale-Invariant Feature Transform
SIFT) key-points [31]. Other three comparators, available in-house,
ave been self-developed by the authors and published previously
ith competitive results. These are based on Symmetry Descriptors

SAFE) [32], Gabor features (GABOR) [33], and Steerable Pyramidal
hase Features (NTNU) [34]. We also employ three comparators based
n deep Convolutional Neural Networks: the VGG-Face network [35],
hich has been trained for classifying faces (so the periocular region
ppears in the training data), and the two very-deep Resnet101 [36]
nd Densenet201 [37] architectures.

.1. Based on symmetry patterns (SAFE)

This comparator employs the Symmetry Assessment by Feature Ex-
ansion (SAFE) descriptor [32], which encodes the presence of various
ymmetric curve families around image key-points (Fig. 6, top). We use
he eye centre as the anchor point for feature extraction. The algorithm
tarts by extracting the complex orientation map of the image via
ymmetry derivatives of Gaussians [59]. We employ 𝑆 = 6 different
cales in computing the orientation map, therefore capturing features
t different scales, with standard deviation of each scale given by
𝑠 = 𝐾𝑠−1𝜎0 (with 𝑠 = 1, 2..., 𝑆; 𝐾 = 21∕3; 𝜎0 = 1.6). These parameters
ave been chosen according to [31]. For each scale, we then project
𝑓 = 3 ring-shaped areas of different radii around the eye centre

nto a space of 𝑁ℎ = 9 harmonic functions. We use the result of
calar products of complex harmonic filters (shown in Fig. 6) with
he orientation image to quantify the amount of presence of different
ymmetric pattern families within each annular band. The resulting
omplex feature vector is given by an array of 𝑆 ×𝑁ℎ ×𝑁𝑓 elements.

The comparison score 𝑀 ∈ C between a query 𝑞 and a test SAFE
array 𝑡 is computed using the triangle inequality as 𝑀 = ⟨𝑞,𝑡⟩

⟨|𝑞|,|𝑡|⟩ . The
rgument ∠𝑀 represents the angle between the two arrays (expected

o be zero when the symmetry patterns detected coincide for reference
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Fig. 6. Example of some feature extraction methods employed. SAFE comparator.
Example of symmetric curve families and complex filters used to detect the patterns.
Hue in colour images encode the direction, and saturation represents the complex
magnitude. GABOR comparator. Gabor filters with vertical orientation (top: real part,
bottom: imaginary part). Depicted filters are of size 88 × 88, with wavelengths spanning
logarithmically the range from 44 (first column) to 6 pixels (last column). LBP and
HOG comparators. Example of LBP and HOG features of the input image shown in
Fig. 3 (top row). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

and test feature vectors, and 180◦ when they are orthogonal), and the
confidence is given by |𝑀| ∈ [0, 1]. To include confidence into the
angle difference, we use 𝑀𝑆 = |𝑀| cos∠𝑀 , with the resulting score
𝑀𝑆 ∈ [−1, 1].

The annular band of the first ring is set in proportion to the distance
between eye corners (Cross-Eyed database) or to the radius of the sclera
circle (VSSIRIS database), while the band of the last ring ends at the
boundary of the image. This difference in setting the smallest ring is
due to the ground-truth information available for each database, as
explained later. However, in setting the origin of the smallest band, we
have tried to ensure that the different annular rings capture approx-
imately the same relative spatial region in both databases. The ROI
of the SAFE comparator for each database is shown in Fig. 3 (third
column). Using the eye corners or the sclera boundary as reference for
the first annular band alleviates the effect of dilation that affects the
pupil, which is more pronounced with visible illumination. Since the
eye corners or the sclera are not affected by such dilation or by partial
occlusion due to eyelids, they provide a more stable Ref. [60].

3.2. Based on Gabor features (GABOR)

This comparator is described in [33], which is based on the face
recognition comparator presented in [61]. The periocular image is
decomposed into non-overlapped square regions (Fig. 3, fourth col-
umn), and the local power spectrum is then sampled at the centre of
each block by a set of Gabor filters organized in 5 frequency and 6
orientation channels. An example of Gabor filters is shown in Fig. 6.
This sparseness of the sampling grid allows direct Gabor filtering in the
image domain without needing the Fourier transform, with significant
computational savings and feasibility in real-time. Gabor responses
from all grid points are grouped into a single complex vector, and
the comparison between two images is made using the magnitude
of complex values via the 𝜒2 distance. Prior to the comparison with
magnitude vectors, they are normalized to a probability distribution
(PDF). The 𝜒2 distance between a query 𝑞 and a test vector 𝑡 is
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computed as 𝜒2
𝑞𝑡 =

∑𝑁
𝑛=1

(𝑝𝑞 [𝑛]−𝑝𝑡[𝑛])2

𝑝𝑞 [𝑛]+𝑝𝑡[𝑛]
, where 𝑝 are entries in the PDF, 𝑛 is

the bin index, and 𝑁 is the number of bins in the PDF (dimensionality).
The 𝜒2 distance, due to the denominator, gives more weight to low
probability regions of the PDF. For this reason, it has been observed
to produce better results than other distances when using normalized
histograms [62].

3.3. Based on Steerable Pyramidal Phase Features (NTNU)

Image features from multi-scale pyramids have proven to extract
discriminative features in many earlier works concerned with texture
synthesis, texture retrieval, image fusion, and texture classification,
among others [63–70]. Inspired by this applicability, we employ steer-
able pyramidal features for periocular image classification using images
from different sensors. Further, observing the nature of textures that
are different across spectra (NIR versus VIS), we propose to employ
the quantized phase information from the multi-scale pyramid of the
image, as explained next.

A steerable pyramid is a translation and rotation invariant transform
in a multi-scale, multi-orientation and self-inverting image decomposi-
tion into a number of sub-bands [71–73]. The pyramidal decomposition
is performed using directional derivative operators of a specific order.
The key motivation in using steerable pyramids is to obtain both linear
and shift-invariant features in a single operation. Further, they not only
provide multi-scale decomposition but also provide the advantages of
orthonormal wavelet transforms that are both localized in space and
spatial-frequency with aliasing effects [71]. The basis functions of a
steerable pyramid are 𝐾-order directional derivative operators. The
steerable pyramids come in different scales and 𝐾 + 1 orientations.

For a given input image, the features of steerable pyramid coeffi-
cients can be represented using 𝑆(𝑚,𝜃), where 𝑚 represents the scale
and 𝜃 represents the orientation. In this work, we generate a steerable
pyramid with 3 scales (𝑚 ∈ {1, 2, 3}) and angular coefficients in the
range 𝜃1 = 0 to 𝜃𝐾+1 = 360, resulting in a pyramid that covers all
directions. The set of sub-band images corresponding to one scale can
be therefore represented as 𝑆𝑚 = {𝑆(𝑚,𝜃1), 𝑆(𝑚,𝜃2),… , 𝑆(𝑚,𝜃𝐾+1)}. We
further note that the textural information represented is different in the
NIR and VIS domains. In order to obtain domain invariant features, we
propose to extract the local phase features [74] from each sub-band
image 𝑆(𝑚,𝜃) in a local region 𝜔 in the neighbourhood of 𝑛 pixels given
by 𝐹(𝑚,𝜃)(𝑢, 𝑥) = 𝑆(𝑚,𝜃)(𝑥, 𝑦)𝜔𝑅(𝑦−𝑥) exp{−𝑗2𝜋𝑈𝑇 𝑦}, where 𝑥, 𝑦 represent
the pixel location. The local phase response obtained through Fourier
coefficients are computed for the frequency points 𝑢1, 𝑢2, 𝑢3 and 𝑢4,
which relate to four points [𝑎, 0]𝑇 , [0, 𝑎]𝑇 , [𝑎, 𝑎]𝑇 , [𝑎,−𝑎]𝑇 such that the
phase response 𝐻(𝑢𝑖) > 0 [74]. The phase information presented in the
form of Fourier coefficients is then separated into real and imaginary
parts of each component, as given by [𝑅𝑒{𝐹 }, 𝐼𝑚{𝐹 }], to form a vector
𝑅 with eight elements. Next, the elements 𝑅𝑖 of 𝑅 are binarized to 𝑄𝑖
by assigning a value of 1 to components with a response greater than 1,
and 0 otherwise. The phase information is finally encoded to a compact
pixel representation 𝑃 in the 0 − 255 range by using a simple binary to
decimal conversion strategy given by 𝑃(𝑚,𝜃) =

∑8
𝑗=1 𝑄𝑗 × (2(𝑗−1)).

This procedure is followed with the different scales and orientations
of the selected space. All the phase responses 𝑃(𝑚,𝜃) of the input image
are concatenated into a single vector. Comparison between feature
representations of two images is made using the 𝜒2 distance.

3.4. Based on SIFT key-points (SIFT)

This comparator is based on the SIFT operator [31]. SIFT key-points
(with dimension 128 per key-point) are extracted in the annular ROI
shown in Fig. 3, third column. The use of an annular ROI like SAFE is in-
herited from our previous contribution [39], but to compare with other
systems that employ the entire input image (Fig. 3, fourth column),
we report experiments with the latter as well. The recognition metric
between two images is the number of paired key-points, normalized
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by the minimum number of detected key-points in the two images
being compared. We use a free C++ implementation of the SIFT algo-
rithm,1 with the adaptations described in [75]. Particularly, it includes
a post-processing step to remove spurious pairings using geometric
constraints, so pairs whose orientation and length differ substantially
from the predominant orientation and length are removed.

3.5. Based on Local Binary Patterns (LBP) and Histogram of Oriented
Gradients (HOG)

Together with SIFT key-points, LBP [30] and HOG [29] have been
the most widely used descriptors in periocular research [1]. An example
of LBP and HOG features is shown in Fig. 6, bottom. The periocular
image is decomposed into non-overlapped regions, as with the Gabor
comparator (Fig. 3, fourth column). Then, HOG and LBP features are
extracted from each block. Both HOG and LBP are quantized into 8
different values to construct an 8 bins histogram per block. Histograms
from each block are then normalized to account for local illumination
and contrast variations and finally concatenated to build a single
descriptor of the whole periocular region. Image comparison with HOG
and LBP can be made by simple distance measures. Euclidean distance
is usually used for this purpose [12], but here we employ the 𝜒2

distance for the same reasons as with the Gabor comparator.

3.6. Based on deep convolutional Neural Networks (VGG-face, Resnet101,
Densenet201)

Inspired by the works [53,76,77] in iris and periocular biometrics,
we leverage the power of existing architectures pre-trained with mil-
lions of images to classify hundreds of thousands of object categories.2
They have proven to be successful in very large recognition tasks apart
from the detection and classification tasks for which they were designed
[78].

Here, we employ the VGG-Face [35] and the very deep Resnet101
[36] and Densenet201 [37] architectures. VGG-Face is based on the
VGG-Very-Deep-16 CNN sequential architecture, implemented using ∼1
million images from the Labelled Faces in the Wild [79] and YouTube
Faces [80] datasets. Since VGG-Face is trained for classifying faces, we
believe that it can provide effective recognition with the periocular
region as well, given that this region appears in the training images.
Introduced later, the ResNet networks [36] presented the concept of
residual connections to ease the training of CNNs. By reducing the
number of training parameters, they can be substantially deeper. The
key idea of residual connections is to make available the input of a
lower layer to a higher layer, bypassing intermediate ones. There are
different variants of ResNet networks, depending on its depth. In this
work, we employ ResNet101, having a depth of 347 layers (including
101 convolutional layers). In DenseNet networks [37], the residual
concept is taken even further since the feature maps of all preceding
layers of a Dense block are used as inputs of a given layer, and its
own feature maps are used as inputs into all subsequent layers. This
encourages feature reuse throughout the network. Similarly to ResNet,
there are different variants of DenseNet (defined by its depth). In this
paper, we employ Densenet201, having a depth of 709 layers (including
201 convolutional layers).

In using these networks, periocular images are fed into the fea-
ture extraction pipeline of each pre-trained CNN [76,77]. However,
instead of using the vector from the last layer, we employ as feature
descriptor the vector from the intermediate layer identified as the one
providing the best performance. These will be found in the respective
experimental sections. This approach allows the use of powerful archi-
tectures pre-trained with a large number of images in a related domain,

1 http://vision.ucla.edu/~vedaldi/code/sift/assets/sift/index.html.
2 ImageNet. http://www.image-net.org.
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eliminating the need of designing or re-training a new network for a
specific task, which may be infeasible in case of lack of large-scale
databases in the target domain (as in the case of periocular recognition
with images from different sensors). The extracted CNN vectors can
be simply compared with distance measures. In our case, we employ
the 𝜒2 distance, which has proven to provide better results than other
measures such as the cosine or Euclidean distances [77].

4. Score fusion methods

A biometric verification comparator can be defined as a pattern
recognition machine that, by comparing two (or more) samples of
input signals, is designed to recognize two different classes. The two
hypotheses or classes defined for each comparison are target hypothesis
(𝜃𝑡: the compared biometric data comes from the same individual) and
non-target hypothesis (𝜃𝑛𝑡: the compared data comes from different indi-
viduals). As a result of the comparison, the biometric system outputs a
real number 𝑠 known as score. The higher the score, the more it supports
the target hypothesis, and vice-versa. The acceptance or rejection of
an individual is based on a decision threshold 𝜏, and this threshold
depends on the priors and decision costs involved in the decision-
making process. However, if we do not know the distributions of target
or non-target scores from such comparator or any threshold, we will not
be able to classify the associated biometric samples in general.

Integration at the score level is the most common approach used
in multibiometric systems due to the ease in accessing and combining
the scores 𝐬 =

(

𝑠1,… , 𝑠𝑖,… , 𝑠𝑁
)

generated by 𝑁 different comparators
[20]. Unfortunately, each biometric comparator outputs scores that are
in a range that is specific to the comparator, so score normalization is
needed to transform these scores into a common domain prior to the
fusion [24], e.g. 𝑠𝑖 ∈ [0, 1] or 𝑠𝑖 ∈ [−1, 1], ∀𝑖 ∈ {1,… , 𝑁}. But even
if two comparators output scores in the same range, the same output
value (say 𝑠𝑖 = 𝑠𝑗 = 0.5 for 𝑖 ≠ 𝑗) might not favour the target or non-
target hypotheses with the same strength. The same can be said about
the fusion of such scores. From this viewpoint, outputs are dependent
on the comparator, and thus, the acceptance/rejection decision also
depends on the comparator.

These problems can be addressed with the concept of calibrated
scores. During calibration, the scores 𝐬 =

(

𝑠1,… , 𝑠𝑖,… , 𝑠𝑁
)

are mapped
to a log-likelihood-ratio (LLR) as 𝑠𝑐𝑎𝑙 ≈ log

(

𝑝(𝐬|𝜃𝑡)
𝑝(𝐬|𝜃𝑛𝑡)

)

, where 𝑠𝑐𝑎𝑙 rep-
resents the calibrated score. Then, a decision can be taken using the
Bayes decision rule [42]:

For a given 𝐬
{

decide 𝜃𝑡 ∶ (𝑝
(

𝐬| 𝜃𝑡
)

∕𝑝
(

𝐬| 𝜃𝑛𝑡
)

) > 𝜏𝐵
decide 𝜃𝑛𝑡 ∶ (𝑝

(

𝐬| 𝜃𝑡
)

∕𝑝
(

𝐬| 𝜃𝑛𝑡
)

) < 𝜏𝐵
(1)

The parameter 𝜏𝐵 is known as the Bayes threshold, and its value
depends on the prior probabilities of the hypotheses 𝑝

(

𝜃𝑡
)

and 𝑝
(

𝜃𝑛𝑡
)

and on the decision costs. This form of output is comparator-independent
since this log-likelihood-ratio output can theoretically be used to make
optimal (Bayes) decisions for any given target prior and any costs
associated with making erroneous decisions [42]. Therefore, the cali-
bration process gives meaning to 𝑠𝑐𝑎𝑙. In a Bayesian context, a calibrated
score 𝑠𝑐𝑎𝑙 can be interpreted as a degree of support to any of the
hypotheses. If 𝑠𝑐𝑎𝑙 > 0, then the support to 𝜃𝑡 is also higher, and vice-
versa. Also, the meaning of a log-likelihood ratio is the same across
different biometric comparators, allowing to compare them in the same
probabilistic range. This calibration transformation then solves the two
previously commented problems. First, it maps scores from biometric
comparators to a common domain. Second, it allows the interpretation
of biometric scores as a degree of support.

A number of strategies can be used to train a calibration transfor-
mation [81]. Among them, logistic regression has been successfully
used for biometric applications [23,40,41,82,83]. With this method,
the scores of multiple comparators are fused together, primarily to

improve the discriminating ability, in such a way as to encourage good

http://vision.ucla.edu/~vedaldi/code/sift/assets/sift/index.html
http://www.image-net.org
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calibration of the output scores. Given 𝑁 biometric comparators which
output the scores 𝐬𝑗 = (𝑠1𝑗 , 𝑠2𝑗 ,… , 𝑠𝑁𝑗 ) for an input trial 𝑗, a linear
fusion of these scores is:

𝑓𝑗 = 𝑎0 + 𝑎1 ⋅ 𝑠1𝑗 + 𝑎2 ⋅ 𝑠2𝑗 +⋯ + 𝑎𝑁 ⋅ 𝑠𝑁𝑗 (2)

When the weights {𝑎0,… , 𝑎𝑁} are trained via logistic regression,
the fused score 𝑓𝑗 is a well-calibrated log-likelihood-ratio [41,81]. Let
[𝑠𝑖𝑗 ] be an 𝑁 × 𝑁𝑇 matrix of training scores built from 𝑁 biometric
comparators and 𝑁𝑇 target trials, and let [𝑟𝑖𝑗 ] be an 𝑁 ×𝑁𝑁𝑇 matrix of
training scores built from the same 𝑁 biometric comparators with 𝑁𝑁𝑇
non-target trials. We use a logistic regression objective [40,41] that is
normalized with respect to the proportion of target and non-target trials
(𝑁𝑇 and 𝑁𝑁𝑇 , respectively), and weighted with respect to a given prior
probability 𝑃 = 𝑃 (target). The objective is stated in terms of a cost 𝐶,
which must be minimized:

𝐶 = 𝑃
𝑁𝑇

𝑁𝑇
∑

𝑗=1
log

(

1 + 𝑒−𝑓𝑗−logit𝑃
)

+1 − 𝑃
𝑁𝑁𝑇

𝑁𝑁𝑇
∑

𝑗=1
log

(

1 + 𝑒−𝑔𝑗−logit𝑃
)

(3)

where the fused target and non-target scores are respectively

𝑓𝑗 = 𝑎0 +
𝑁
∑

𝑖=1
𝑎𝑖𝑠𝑖𝑗

𝑔𝑗 = 𝑎0 +
𝑁
∑

𝑖=1
𝑎𝑖𝑟𝑖𝑗

(4)

and where logit𝑃 = log
(

𝑃
1−𝑃

)

.
It can be demonstrated that minimizing the objective 𝐶 with respect

o {𝑎0,… , 𝑎𝑁} results in a good calibration of the fused scores [41,81].
n practice, changing the value of 𝑃 has a small effect. The default of
.5 is a good choice for a general application and it will be used in
his work. The optimization objective 𝐶 is convex and therefore has a
nique global minimum.

Another advantage of this method is that when fusing scores from
ifferent comparators, the most reliable comparator will implicitly be
iven a dominant role in the fusion (via the trained weights {𝑎0,… ,
𝑁}). In other standard fusion methods, such as the average of scores
24], all comparators are given the same weight in the fusion, re-
ardless of its individual accuracy. It is also straightforward to show
hat if M calibrated scores {𝑠𝑐𝑎𝑙1 , 𝑠𝑐𝑎𝑙2 ,… , 𝑠𝑐𝑎𝑙𝑀 } come from statistically
ndependent sources (such as multiple biometric comparators), its sum
𝑐𝑎𝑙
1 + 𝑠𝑐𝑎𝑙2 + ⋯ + 𝑠𝑐𝑎𝑙𝑀 also yields a log-likelihood ratio [42]. The latter
llows to calibrate the scores 𝑠𝑖 of each available biometric comparator
eparately (by using 𝑁 = 1 in Eq. (2)), and simply sum the calibrated
cores 𝑠𝑐𝑎𝑙𝑖 of each comparator in order to obtain a new calibrated score,
s shown in Fig. 5. In this paper, the two possibilities are evaluated,
.e. calibrating the scores of all comparators together vs.calibrating
hem separately and then summing them up. In order to perform
ogistic regression calibration, the freely available Bosaris toolkit for
atlab has been used.3 For further details of this fusion method, the

eader is referred to [23] and the references therein.
The probabilistic fusion method described above is compared in the

resent work with three strategies. Since each biometric comparator
sually outputs scores that are in a range that is specific to the system,
he scores of each comparator are normalized prior to the fusion using
-score normalization [24]. The three strategies are:

• Average. With this simple rule, the scores of the different com-
parators are simply averaged. Motivated by their simplicity,
simple fusion rules have been used in biometric authentication
with very good results [84,85]. They have the advantage of
not needing training, sometimes surpassing other complex fusion
approaches [86].

3 https://sites.google.com/site/bosaristoolkit/.
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• SVM. Here, a Support Vector Machine (SVM) is trained to pro-
vide a binary classification given a set of scores from different
biometric comparators [87]. The SVM algorithm searches for an
optimal hyperplane that separates the data into two classes. SVM
is a popular approach employed in multibiometrics [25], which
has shown to outperform other trained approaches [20]. In this
work, we evaluate Linear, RBF, and Polynomial (order 3) kernels.
Instead of using the binary predicted class label, we use the signed
distance to the decision boundary as the output score of the
fusion. This allows the presentation of DET curves and associated
EER and FRR measures.

• Random Forest. Another method employed for the fusion of
scores from multiple biometric comparators is the Random Forest
(RF) algorithm [26]. An extension of the standard classification
tree algorithm, the RF algorithm is an ensemble method where
the results of many decision trees are combined [88]. This helps to
reduce overfitting and to improve generalization capabilities. The
trees in the ensemble are grown by using bootstrap samples of the
data. In this work, we evaluate ensembles with 25, 150, and 600
decision trees. Instead of using the binary predicted class label,
we use the weighted average of the class posterior probabilities
over the trees that support the predicted class, so we can present
DET curves and associated measures.

5. Cross-spectral (NIR-VIS) periocular recognition

5.1. Database and protocol

In the cross-spectral recognition experiments of this section, we
employ the Reading Cross-Spectral Iris/Periocular Dataset used as the
benchmark dataset for the 1st Cross-Spectral Iris/Periocular Competi-
tion (Cross-Eyed 2016) [27]. The dataset contains both visible (VIS)
and near-infrared (NIR) images captured with a custom dual spectrum
imaging sensor which acquires images in both spectra synchronously.
Periocular images are of size 800 × 900 (height × width) from 120
ubjects, with 8 images of both eyes captured in both spectra, totalling
840 images. Images are captured at a distance of 1.5 m, in an un-
ontrolled indoor environment, containing large variations in ethnicity,
ye colour, and illumination reflections. Some examples are shown in
ig. 7 (top). To avoid usage of iris information by periocular methods
uring the Cross-Eyed competition, periocular images were distributed
ith a mask on the eye region, as discussed in [12]. A new edition of

he competition was held in 2017. The 120 subjects of the Cross-Eyed
016 database were provided as the training set, and an additional set
f 55 subjects were sequestered as the test set in the 2017 edition, but
he latter was never released [89].

Prior to the competition, a training set of images from 30 subjects
as distributed. The test set consisted of images from 80 subjects,

equestered by the organizers and distributed after the competition.
mages from 10 additional subjects were also released after the com-
etition that were not present in the test set. Here, we will employ
he same 30 subjects of the training set to tune our algorithms and
he remaining 90 subjects for testing purposes. All images have an
nnotation mask of the eye region. The mass centre of the mask is
et as the reference point (centre) of the eye. Images are then rotated
.r.t. the axis that crosses the two mask corners and resized via bicubic

nterpolation to have the same corner-to-corner distance (set to 318
ixels, the average value of the training set). Then, images are aligned
y extracting a region of 613 × 701 around the eye. This size is set
mpirically to ensure that all available images have sufficient margin
o the four sides of the eye centre. Eyes in the Cross-Eyed database are
lightly displaced in the vertical direction, so the eye is not centred in
he aligned images but with a vertical offset of 56 pixels (see Fig. 3,
op). Images are further processed by Contrast Limited Adaptive His-
ogram Equalization (CLAHE) [38], which is the preprocessing choice
ith ocular images [90], and then sent to feature extraction.

https://sites.google.com/site/bosaristoolkit/
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Fig. 7. Sample periocular images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
We carry out verification experiments, with each eye considered a
different user. We compare images both from the same device (same-
sensor) and from different devices (cross-spectral). Genuine trials are
obtained by comparing each image of an eye to the remaining images
of the same eye. In same-sensor comparisons, to avoid symmetric com-
parisons, the first image of an eye is compared to the second to eight
images; the second image is compared to the third to eight images, and
so on, leading to (7 + 6 + ... + 1) genuine scores per eye. This procedure
is repeated for the two eyes of all subjects. This results in 30 subjects × 2
eyes × (7 + 6 + ... + 1) and 90 × 2 × (7 + 6 + ... + 1) genuine scores with
the training and test set, respectively. In cross-spectral comparisons, the
eight images of an eye in one spectrum are compared against the eight
images in the other spectrum, leading to 8 × 8 genuine scores per eye.
This results in 30 subjects × 2 eyes × 8 × 8 and 90 × 2 × 8 × 8
genuine scores with the training and test set, respectively. Impostor
trials are done by comparing the 1st image of an eye to the 2nd image
of the remaining eyes. In same-sensor comparisons, given a subject of
the test set, his/her 1st image of both eyes is compared against the
2nd image of both eyes from the remaining 89 subjects. This results
in 89 × 4 test impostor scores per subject and 90 × 89 × 4 impostor
scores in total. In cross-spectral comparisons, the number of impostor
scores is doubled by comparing the 1st image in VIS against the 2nd
image in NIR, and the 1st image in NIR against the 2nd image in
VIS. This results in 90 × 89 × 4 × 2 test impostor scores in total.
To increase the number of available training scores, we carry out an
additional comparison to the 3rd image of the remaining eyes only with
the training set, effectively duplicating the number of impostor scores
per subject. Since the training set contains 30 subjects, this results in
29 × 4 × 2 (same-sensor) and 29 × 4 × 2 × 2 (cross-spectral) training
impostor scores per subject. By multiplying these amounts by 30, we
obtain the total amount of impostor scores with the training set. The
experimental protocol is summarized in Table 2.

The periocular comparators employed have some parameters which
are set as follows. It should be highlighted that these parameters are
computed in proportion to the size of the image, without any other
training. If the image size changed, they would adapt dynamically
so that the comparators would always be capturing their features in
the same relative areas of the image. The only input needed is the
position of the eye corners, which were also used to normalize and
crop the image to a constant size, as described above. Regarding the
SAFE comparator, the annular band of the first circular ring starts at
a radius of 𝑅 = 79 pixels (determined empirically as 1/4 of the eye
corner-to-corner distance), and the band of the last ring ends at the
bottom boundary of the image. This results in a ROI of 501 × 501
pixels around the eye centre (as shown in Fig. 3, third column). The
grid employed with GABOR, LBP and HOG comparators has 7 × 8 =
56 non-overlapping blocks. Based on the size of the input image, each
block has 88 × 88 pixels. The 8 central blocks are not considered since
they are equal for all users due to the eye region mask, so features are
extracted only from 48 blocks. The GABOR comparator employs filter
wavelengths spanning from 44 to 6 pixels, which are set proportional to
the block size as 88/2 = 44 to 88/16≈6. The VGG-Face, Resnet101, and
Densenet201 comparators employ an input image size of 224 × 224,
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so images are resized to match these dimensions. Regarding the SIFT
comparator, our baseline configuration entails the use of the same
annular ROI than the SAFE comparator [39] for key-point extraction.
However, for comparison purposes with the other systems, we also
evaluate the use of the entire input image (except the 8 central blocks).
This is done both at the original size of the image (613 × 701) and
at the input size of the CNNs (224 × 224). Table 3 (second column)
indicates the size of the feature vector for a given periocular image with
the different comparators employed. Obviously, the SIFT descriptor is
dependent on the size of the ROI and the image. With the full ROI,
the average number of key-points per image is 2543 (of which a vector
of 128 elements is computed, resulting in 2543 × 128 = 325 504 real
values per image). The annular ROI produces a slightly smaller amount
(1900 key-points, or 243 200 values) and if the image is reduced to
224 × 224, the amount is substantially less (only 92 key-points, or
11 776 values). Experiments have been done in a Dell Latitude E7240
laptop with an i7-4600 (2.1 GHz) processor, 16 Gb DDR3 RAM, and a
built-in Intel HD Graphics 4400 card. The OS is Microsoft Windows 8.1
Professional, and the comparators are implemented in Matlab x64, with
the exception of SIFT that is implemented in C++ and invoked from
Matlab via MEX files. The VGG-Face model is from Caffee, which has
been imported to Matlab with the importCaffeNetwork function.
The Resnet101 and Densenet201 models are from the pre-trained mod-
els available in Matlab r2019a. In line with the Cross-Eyed competition,
we also provide the extraction and comparison time of each method
(Table 4, second and third columns). Here, it can be also appreciated
the variation of the SIFT versions depending on the image or ROI size.

5.2. Results: Finding the optimum layer of the convolutional Neural Net-
works

Normalized periocular images are fed into the feature extraction of
each pre-trained CNN. We investigate the representation capability of
each layer by reporting the corresponding cross-spectral accuracy using
features from each layer. The recognition accuracy of each network
(EER and FRR @ FAR = 0.01%) is given in Fig. 8. It is worth noting
that the best performance is obtained in some intermediate layer for all
CNNs, in line with previous studies using ocular modalities [76,77]. In
selecting the best layer, we prioritize the FRR @ FAR = 0.01%, since
this was the metric employed to rank submissions to the Cross-Eyed
competition, although we seek a balance with the EER as well. We
have also searched for layers that give optimum performance both with
the Cross-Eyed and the VSSIRIS databases simultaneously if possible
(results with the latter are given in Fig. 12).

A good performance with VGG-Face is obtained with layer 25,
which is a max pooling layer with 14×14×512 = 100352 elements. Layer
27 also provides good performance. This is a ReLu layer of the same size
as layer 25, but since it has many elements set to 0 due to the ReLu
operation, we prefer to choose layer 25. VGG-Face is a serial network,
with layers arranged one after the other. On the other hand, ResNet101
and Densenet201 are acyclic networks, in which layers have inputs
from multiple layers and outputs to multiple layers. This more intricate
architecture may thus explain the oscillations observed between layers.
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Table 2
Cross-Eyed database: Experimental protocol. E = Eyes, L = Left eye, R = Right eye, S = Sensors.

Cross-Eyed database

Comparison type Training Test
(30 subjects) (90 subjects)

Same- Genuine 30 × 2E × (7 + 6 +⋯+ 1) = 1680 90 × 2E × (7 + 6 +⋯+ 1) = 5040
Sensor Impostor 30 × 29 × (4L + 4R) = 6960 90 × 89 × (2L + 2R) = 32,040

Cross- Genuine 30 × 2E × 8L × 8R = 3840 90 × 2E × 8L × 8R = 11,520
Spectral Impostor 30 × 29 × (4L + 4R) × 2S = 13,920 90 × 89 × (2L + 2R) × 2S = 64,080
Table 3
Size of the feature vector per comparator and per database. AR = annular ROI. FR = Full ROI. ’Original’
refers to the original size of the input image (Cross-Eyed: 613 × 701, VSSIRIS: 871 × 871).

Comparator Cross-Eyed VSSIRIS Data

SAFE 6 × 3 × 9 = 162 6 × 3 × 9 = 162 Complex
GABOR 48 × 30 = 1440 56 × 30 = 1680 Real
SIFT (AR original) circa 243200 circa 384000 Real
SIFT (FR original) circa 325504 circa 489472 Real
SIFT (FR 224 × 224) circa 11776 circa 16512 Real
LBP, HOG 48 × 8 = 384 56 × 8 = 448 Real
NTNU 9472 9472 Integer
VGG-Face 100 352 100 352 Real
Resnet101 50 176 100 352 Real
Densenet201 6272 43 904 Real
Table 4
Feature computation times for each database. AR = annular ROI. FR = Full ROI. ‘Original’ refers to the
original size of the input image (Cross-Eyed: 613 × 701, VSSIRIS: 871 × 871).

Cross-Eyed database VSSIRIS database

Extraction Comparison Extraction Comparison
time time time time

SAFE 2.98 s 0.2 ms 11.86 s <0.1 ms
GABOR 0.49 s 0.3 ms 0.53 s 0.3 ms
SIFT (AR original) 0.94 s 0.58 s 1.5 s 1.1 s
SIFT (FR original) 0.94 s 0.94 s 1.5 s 1.7 s
SIFT (FR 224 × 224) 0.05 s 1.6 ms 0.07 s 3 ms
LBP 0.16 s <0.1 ms 0.17 s <0.1 ms
HOG 0.01 s <0.1 ms 0.13 s <0.1 ms
NTNU 0.6 s 0.7 ms 0.56 s 0.7 ms
VGG-Face 0.51 s 1.65 ms 0.52 s 1.43 ms
Resnet101 0.27 s 0.35 ms 0.48 s 0.65 ms
Densenet201 0.25 s <0.1 ms 0.39 s 0.42 ms
Fig. 8. Cross-Eyed database: Cross-spectral accuracy (VIS–NIR) of different CNN layers. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
With ResNet101, a good performance is obtained with layer 165. This
is a convolutional layer with 14 × 14 × 256 = 50176 elements, and
it will be the layer employed with Cross-Eyed. With VSSIRIS, better
performance is obtained with layer 323, which is not the case with
Cross-Eyed. This is a ReLu layer with 7×7×2018 = 100352 elements. We
119
choose this layer with VSSIRIS instead since it provides better EER than
other layers as well. Regarding DenseNet201, good performance with
Cross-Eyed (which minimizes both the EER and FRR) is obtained with
layer 223. This is a convolutional layer with only 14 × 14 × 32 = 6272
elements. Other layers (e.g. 142 or 177) also give a good FRR, but the
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Table 5
Cross-Eyed database, test set: Verification results of the individual comparators. The relative variation of cross-spectral performance with respect
to the best same-sensor performance is given in brackets (for the SIFT rows with VIS = 0%, the result is calculated w.r.t. the NIR performance
to avoid division by zero). AR = annular ROI. FR = Full ROI.

Comparator Equal Error Rate (EER) FRR @ FAR = 0.01%

Same sensor Cross-spectral Same sensor Cross-spectral

NIR VIS NIR VIS

SAFE 5.85% 5.67% 9.47% (+67%) 22.4% 24.23% 50.38% (+124.9%)
GABOR 5.48% 5.34% 7.94% (+48.7%) 26.25% 23.68% 43.3% (+82.9%)
SIFT (AR 613 × 701) 0.02% 0% 0.28% (>1300%) 0.02% 0% 0.88% (>4300%)
SIFT (FR 613 × 701) 0.02% 0% 0.27% (>1250%) 0.02% 0% 0.9% (>4400%)
SIFT (FR 224 × 224) 1.11% 0.86% 3.36% (+290%) 5.83% 2.98% 29.7% (+897%)
LBP 3.03% 3.27% 5.84% (+92.7%) 10.97% 12.86% 63.79% (+481.5%)
HOG 3.84% 4.19% 5.06% (+31.8%) 11.76% 14.93% 34.36% (+192.2%)
NTNU 2.83% 2.45% 4.22% (+72.2%) 3.93% 3.57% 13.8% (+286.6%)
VGG-Face 2.36% 2.53% 3.42% (+44.9%) 8.48% 8.68% 13.59% (+60.3%)
Resnet101 1.52% 1.6% 2.61% (+71.7%) 5.51% 5.01% 12.51% (+149.7%)
Densenet201 1.37% 1.54% 2.09% (+52.6%) 5.69% 5.18% 10.09% (+94.8%)
Fig. 9. Cross-Eyed database, test set: Verification results of the individual comparators.
Best seen in colour. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

EER is not as good as with layer 223. With VSSIRIS, better performance
is given by layer 480 instead, which is an average pooling layer with
7 × 7 × 896 = 43904 elements.

5.3. Results: Individual comparators

We now report the performance of all periocular comparators in
Table 5. Besides the EER, we also report the FRR at FAR = 0.01%. The
latter was the metric used to rank submissions to the Cross-Eyed compe-
tition. We report two types of results: (𝑖) same-sensor comparisons; and
(𝑖𝑖) cross-spectral comparisons. In Fig. 9 we also give the DET curves of
the cross-spectral experiments.

From Table 5, it can be seen that given a comparator, the NIR and
VIS performances (same-sensor) are relatively equal. For example, the
EER of SAFE is 5.85% (NIR) and 5.67% (VIS), so if the two images are
in the same spectrum, there is no significant advantage in operating in
NIR or VIS. This happens with all comparators, both in the EER and
the FRR (with just a few exceptions), which is very interesting because
they are based on different image features. In previous studies, the
periocular modality usually performed better with VIS data [91–93],
so it is generally accepted this modality is most suited to VIS imagery
[1]. On the contrary, some other works show opposite results [48].
However, in the mentioned studies, the images employed are of smaller
size, ranging from 100 × 160 to 640 × 480, while the images employed
in this paper are of 613 × 701 pixels. Also, they evaluate three different
periocular comparators at most. In the present paper, the use of bigger
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images may be the reason for a comparable performance between NIR
and VIS images.

Regarding cross-spectral experiments, we observe a significant wors-
ening in performance w.r.t. same-sensor comparisons, although not all
comparators are affected in the same way. HOG, NTNU and especially
LBP are substantially affected in high security mode (i.e. low FAR),
as can be appreciated in the right part of Table 5. The relative FRR
increase @ FAR = 0.01% for these comparators is in the range of 200%
to nearly 500%. But the comparator that is most affected is SIFT. Even
if its cross-spectral performance is the best among all comparators, it
is about one or two orders of magnitude worse than its same-sensor
performance (meaning a thousand per cent worse or more). This is
despite the use of a descriptor with a bigger size (see Table 3). SIFT
extracts features from a discrete set of local key-points, but it might
be that the position of detected key-points is not the same in each
spectrum. With the other comparators, on the other hand, the image
is divided into annular or square regions (Fig. 3), and features are
extracted from each region, ensuring a consistent extraction between
both spectra.

Concerning the individual performance of each comparator, SIFT
exhibits very low error rates at the original image size, but this com-
parator is computationally heavy both in processing times and template
size. In this paper, we use the SIFT detector with the same parametriza-
tion employed in [75] for iris images of size 640 × 480. In the work
[75], the iris region represented ∼1/8 of the image only, leading to
some hundreds of key-points per image. However, images of the Cross-
Eyed database are of 613 × 701 pixels, and the periocular ROI occupies
a considerably bigger area than the iris region, leading to an average
of ∼1900 key-points per image (annular ROI) or ∼2543 (full ROI).
To match two images, it is needed to compare each key-point of one
image against all key-points of the other image to find a pair match.
This increases the computation time exponentially when the number of
key-points per image increases, which is one of the drawbacks of key-
point based comparators [1]. The other comparators employed have
templates of fixed size, thus comparison is made very efficiently using
distance measures involving a number of fixed calculations. It can be
also seen that the use of annular (AR) or full ROI (FR) does not produce
a significant difference with SIFT. This suggests that the annular ROI is
sufficient, and the key-points of the corner areas incorporated with the
full image (Fig. 3) do not contribute to a better performance with the
Cross-Eyed database, while the comparison time is increased by 62%
(Table 4). Therefore, we carry forward the AR configuration of SIFT to
the fusion experiments of the next section. On the other hand, if the
size of the input image is reduced to match the CNNs (224 × 224), the
lower amount of detected key-points (only 92 on average) produces
that both same-sensor and cross-spectral performance degrades one of
two orders of magnitude. When this happens, SIFT becomes worse than
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Fig. 10. Cross-Eyed database, test set: Verification results for an increasing number of fused comparators. Best seen in colour. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
e.g. DenseNet201 or ResNet 101, and comparable to VGG-Face in some
DET regions (Fig. 9). This can also serve as indication of the strength
of the CNNs, which match SIFT’s performance if the image size of the
latter is reduced to be equal, and they also rank ahead of the other
comparators while using a smaller input image size.

In general, there is an inverse proportion between the error rates
and the template size. The comparators with the best performance
(SIFT, NTNU and the three CNNs) are also the ones with the biggest
feature vector (see Table 3). It is remarkable the performance of NTNU
as well, surpassing the CNNs in some cases, but with a smaller feature
vector. When it comes to cross-spectral comparisons, however, the
CNNs provide better performance. This is observed especially with
the deeper networks (ResNet101 and DenseNet201), highlighting the
capability of these powerful descriptors pre-trained with millions of
images. In the DET curves of Fig. 9, it can be better appreciated
the superiority of the three CNNs for cross-spectral comparisons w.r.t.
the other comparators (apart from SIFT). It is also remarkable the
behaviour of DenseNet201, which provides the second-best result of
all comparators, but with a feature vector much smaller than the other
CNNs. Among the three CNNs used in this paper, DenseNet201 is the
one providing the best performance on the original task for which they
were trained (ImageNet), so it could be expected that such superiority
is transferred to other tasks as well. It is also worth noting the relatively
good cross-spectral EER values of some light comparators such as LBP
or HOG. With a feature vector of only 384 real numbers and an
EER of 5%–6%, they would enable low-security applications where
computational resources are limited.

5.4. Results: Fusion of periocular comparators

We then carry out fusion experiments using all the available com-
parators, according to the fusion schemes presented in Section 4. We
have tested all the possible fusion combinations. Whenever training is
needed (i.e. to compute calibration weights, z-normalization, SVM, or
Random Forest models), the training set of the Cross-Eyed database is
used. In Fig. 10, we show the best results obtained for an increasing
number 𝑀 of combined comparators. Following the protocol of Cross-
Eyed 2016, the best combinations are chosen based on the lowest
cross-spectral FRR @ FAR = 0.01%. Then, the corresponding EER of
the chosen combinations is reported as well in Fig. 10. We use the two
mentioned calibration possibilities of the fusion method (Fig. 5): (BX-
MATH[148]) the scores from all comparators are calibrated together
(𝑁 = 𝑀 in Eq. (2)), or (𝑖𝑖) the score of each comparator is calibrated
separately (𝑁 = 1) and the resulting calibrated scores are summed.
These cases are shown in Fig. 10 as ‘LLR’ and ‘LLR (sum)’, respectively.

As it can be observed, a substantial performance improvement can
be obtained when combining several comparators. The best cross-
spectral performance is obtained with a combination of 2 to 3 com-
parators. The FRR remains approximately constant until 5 comparators
are combined, and then it deteriorates when including more. The EER,
nevertheless, deteriorates earlier. We also observe that the probabilistic
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fusion method based on calibration (LLR) outperform all the others,
demonstrating its superiority. This is more evident at low FAR, with a
relative FRR reduction of ∼47% in comparison to using one comparator
only. It is also better if all scores are calibrated together, rather than
calibrating them individually and then summing them up (‘LLR’ vs.‘LLR
(sum)’). Regarding the other fusion methods, the SVM with a linear
or polynomial kernel stands out in comparison to the others. The
polynomial kernel shows equal or better performance in some cases,
but such kernel is much slower to train. It is also worth noting that the
simple average rule (AVG) provides similar performance than trained
approaches like the SVM, although it deteriorates quickly with the
combination of more than 3 comparators. On the other hand, the
Random Forest approach performs among the worst, regardless of the
number of decision trees employed.

In Table 6, we show the comparators involved in the best fusion
cases. For the sake of space, we only provide results with a selection
of fusion approaches, according to the observations made above when
discussing Fig. 10: the LLR method (best case), SVM linear (a good
runner-up which is also faster to train than its polynomial counterpart),
and AVG or AVERAGE (a simple approach that does not need training).
To allow a more comprehensive analysis, we also provide not only the
best cases but also the second and third best combinations for a given
number of comparators. It can be seen that the best combinations for
any given number of comparators always involve the SIFT method. The
excellent accuracy of the SIFT comparator is not jeopardized by the
fusion with other comparators that have a performance one or two or-
ders of magnitude worse, but it is complemented to obtain even better
cross-spectral error rates, especially with trained approaches. A careful
look at the combinations of Table 6 shows that the CNN comparators
are also chosen first for the fusion. Together with SIFT, they are the
comparators with the best individual performance, and they appear
to be very complementary too. However, it should not be taken as a
general statement that the best fusion combination always involves the
best individual comparators. Different fusion algorithms may lead to
different results [86,94]. For example, the best FRR with the simple
average rule involves the SAFE comparator. It is also worth noting that
other comparators with worse individual performance and not based
on deep networks (such as SAFE, LBP, or NTNU) are also selected
in combinations that have a performance nearly as good as the best
cases. At the same time, this shows the power of the fusion approaches
employed, and especially of the calibration method, which are capable
of reducing error rates substantially by fusion of comparators with very
heterogeneous performance and different feature representations.

To further illustrate the benefit of using calibrated scores, we plot
in Fig. 11 the False Acceptance/False Rejection (FA/FR) curves of the
individual systems. This is done using raw scores of each system (left),
normalized scores using z-score normalization (centre), and calibrated
scores (right). One selected fusion case of Table 6 (best combination
of three systems: SIFT+LBP+ResNet101) is also plotted using average
of normalized scores (centre) and score calibration (right). It can be
seen that the raw scores of each system lies in a different range, even
if all comparators are expected to produce a score between 0 and 1
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Table 6
Cross-Eyed database, test set: Verification results for an increasing number of fused comparators. The best combinations are chosen based on the lowest FRR @ FAR = 0.01% of
cross-spectral experiments. The best result of each column is marked in bold.

Cross-Eyed database: cross-spectral performance (VIS–NIR)

LLR fusion Average fusion SVM linear fusion
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1 x 0.28 0.88 x 0.28 0.88 x 0.28 0.88
x 2.09 10.09 x 2.09 10.09 x 2.09 10.09

x 2.62 12.51 x 2.62 12.51 x 2.62 12.51

2 x x 0.23 0.47 x x 0.25 0.6 x x 0.27 0.57
x x 0.21 0.48 x x 0.25 0.62 x x 0.24 0.59

x x 0.26 0.52 x x 0.33 0.66 x x 0.23 0.61

3 x x x 0.2 0.49 x x x 0.25 0.57 x x x 0.24 0.56
x x x 0.21 0.49 x x x 0.28 0.67 x x x 0.27 0.58

x x x 0.29 0.5 x x x 0.28 0.68 x x x 0.27 0.6

4 x x x x 0.21 0.47 x x x x 0.34 0.66 x x x x 0.27 0.58
x x x x 0.2 0.5 x x x x 0.3 0.69 x x x x 0.27 0.59

x x x x 0.31 0.51 x x x x 0.28 0.72 x x x x 0.25 0.6

5 x x x x x 0.25 0.48 x x x x x 0.36 0.79 x x x x x 0.26 0.59
x x x x x 0.32 0.59 x x x x x 0.34 0.88 x x x x x 0.22 0.63

x x x x x 0.25 0.64 x x x x x 0.34 0.88 x x x x x 0.22 0.64

6 x x x x x x 0.26 0.68 x x x x x x 0.43 1.02 x x x x x x 0.28 0.65
x x x x x x 0.27 0.69 x x x x x x 0.43 1.04 x x x x x x 0.28 0.65
x x x x x x 0.25 0.7 x x x x x x 0.41 1.07 x x x x x x 0.27 0.66

7 x x x x x x x 0.26 0.8 x x x x x x x 0.51 1.11 x x x x x x x 0.28 0.65
x x x x x x x 0.29 0.81 x x x x x x x 0.55 1.26 x x x x x x x 0.24 0.67

x x x x x x x 0.22 0.83 x x x x x x x 0.68 1.32 x x x x x x x 0.27 0.67

8 x x x x x x x x 0.27 0.92 x x x x x x x x 0.74 1.49 x x x x x x x x 0.26 0.68
x x x x x x x x 0.31 0.93 x x x x x x x x 0.64 1.51 x x x x x x x x 0.26 0.81
x x x x x x x x 0.29 0.94 x x x x x x x x 0.81 1.62 x x x x x x x x 0.31 0.84

9 x x x x x x x x x 0.3 0.94 x x x x x x x x x 0.84 1.96 x x x x x x x x x 0.31 0.85
Fig. 11. Cross-Eyed database, test set: cross-spectral FA/FR curves of the individual systems (left: with raw scores, middle: after z-score normalization, right: after mapping
to log-likelihood ratios). Solid curves represent FR curves, and dashed curves represent FA curves. The ‘fusion’ curves on the centre and right plots represent the fusion of
SIFT+LBP+Resnet101 (see the main text for details). Best seen in colour and zoomed. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
([−1, 1] with SAFE). After z-score normalization, the impostor score
distributions become aligned to a certain degree, since such normal-
ization converts them to zero mean and unit variance. Also, the extent
to which the genuine distributions spread are indicative of the per-
formance of each system (in order: SIFT (grey), DenseNet201 (black),
ResNet101 (green), etc.). However, this cannot always be expected,
since the fusion (blue thick curve) is situated between the curves of the
individual systems involved due to scores being averaged. The EER of
each system occurs as a different score value too. Similar effects can
be expected with other popular normalization techniques like max–
min, tanh, etc. [24]. When scores are normalized by calibration, two
phenomena occur: (𝑖) the FA and FR curves cross at ∼0 score (the EER
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is always situated at this point), since a positive log-likelihood-ratio
output supports the genuine (mated) decision, and a negative value
the opposite; and (𝑖𝑖) the spread and order of the curves are indicative
of the performance of each system. For example, the SIFT curves
(grey) have a smaller slope and reach higher log-likelihood-ratios (both
positive and negative), due to this system being significantly better than
the others (Table 5). The FA and FR curves of the other systems are then
ordered (both in positive and negative sides): DenseNet201 (black),
ResNet101 (green), VGG-Face (blue), etc. Furthermore, after the fusion
(blue thick curves), the slope of the curves is even less, reaching even
higher score values on both extremes. Given that the performance of
the fusion is better than any of the other systems, both the genuine
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Table 7
Comparison with results of the Cross-Eyed 2016 Competition [27]. GF2 is the Generalized FRR (GFRR) at a Generalized FAR (GFAR) of 0.01%. The GFRR and GFAR are
generalizations of the FRR and FAR to include Failure to Acquire (FTA) and Failure to Enrol (FTE) rates, according to ISO/IEC standards [95]. The ranking in the evaluation of
the submitted approaches is also given. For more information, refer to [27].

Cross-Eyed database: Cross-spectral performance (VIS–NIR)

Approach safe gabor sift lbp hog Training set Test set Competition [27]

EER FRR EER FRR EER GF2 Rank

HH3 x x x 4.5 16.77 4.86 24.59 6.02 11.42 3rd
HH2 x x x x 3.02 12.63 4.51 19.75 5.24 9.14 2nd
HH1 x x x x x 0 0 0.28 0.83 0.29 0 1st
and impostor scores are pushed towards the extremes of the horizontal
axis. This reflects the probabilistic meaning of calibrated scores, in the
sense that a better performance translates to a reduced uncertainty via
higher absolute score values.

5.5. Results: Comparison with the Cross-Eyed 2016 competition

Table 7 shows the results of the submission of Halmstad Univer-
sity to the Cross-Eyed 2016 competition. We provide both the results
reported by the organizers [27], and our own computations on the
training and test sets of the database using the executables submitted
and the protocol described in Section 5.1. For the evaluation, only
the SAFE, GABOR, SIFT, LBP, and HOG comparators were available.
We contributed with three different fusion combinations, named HH1,
HH2, and HH3, with the HH1 combination obtaining the first position
in the competition. Two key differences in the results reported in Ta-
ble 7 in comparison with the present paper are that in our executables:
(𝑖) the score of each comparator was calibrated separately, and the
resulting calibrated scores were summed up; and (𝑖𝑖) the LBP and HOG
comparators employed the Euclidean distance (which is the popular
choice in the literature with these methods, instead of 𝜒2). At the time
of submission, the test set had not been released, so our decisions could
only be based on the results on the training set. We observed that the
SIFT comparator already provided cross-spectral error rates of nearly
0% on the training set (not shown in Table 7). However, it was rea-
sonable to expect a higher error with a bigger dataset, as demonstrated
later when the test set was released. Therefore, we contributed to the
competition with a fusion of the five comparators available (called
HH1) to be able to better cope with the generalization issue that is
expected when performance is measured in a bigger set of images.
Indeed, in Table 7 it can be seen that performance on the test set is
systematically worse than on the training set. Since the combination
of the five available comparators is computationally heavy in template
size (due to the SIFT comparator), we also contributed by removing
SIFT (combination HH2), and by further removing SAFE (combination
HH3), which has a feature extraction time considerably higher than
the rest of the comparators in our implementation (see Table 4). Thus,
our motivation behind HH2 and HH3 was to reduce template size and
feature extraction time. Some differences are observable between our
results with the test set and the results reported by the competition
[27]. We attribute this to two factors: (𝑖) the additional 10 subjects
included in the test set released, which were not used during the
competition, and (𝑖𝑖) the employment of a different test protocol since
it is not specified by the organizers the exact images used for impostor
trials during the competition. Therefore, the experimental framework
used in this paper is not exactly the same employed in the Cross-Eyed
competition.

6. Cross-sensor (VIS-VIS) smartphone periocular recognition

6.1. Database and protocol

In the cross-sensor experiments of this section, we use the Visible
Spectrum Smartphone Iris (VSSIRIS) database [28], which has images
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Table 8
VSSIRIS database: Experimental protocol.

VSSIRIS database

Protocol Same-sensor Cross-sensor
(28 subjects)

Genuine 56 × (4 + 3 + 2 + 1) = 560 56 × 5 × 5 = 1400
Impostor 56 × 55 = 3080 56 × 55 = 3080

from 28 subjects (56 eyes) captured using the rear camera of two
smartphones (Apple iPhone 5S, of 3264 × 2448 pixels, and Nokia
Lumia 1020, of 3072 × 1728 pixels). They have been obtained in
unconstrained conditions under mixed illumination (natural sunlight
and artificial room light). Each eye has 5 samples per smartphone, thus
5 × 56 = 280 images per device (560 in total). The acquisition is made
without flash, in a single session and with semi-cooperative subjects.
Fig. 7 (bottom) shows some examples.

All images of VSSIRIS are annotated manually, so the radius and
centre of the pupil and sclera circles are available. Images are resized
via bicubic interpolation to have the same sclera radius (set to 𝑅𝑠 =
145, the average radius of the whole database). We use the sclera
for normalization since it is not affected by dilation. Then, images
are aligned by extracting a square region of 6𝑅𝑠×6𝑅𝑠 (871 × 871)
around the sclera centre. This size is set empirically to ensure that all
available images have sufficient margin to the four sides of the sclera
centre. Here, there is sufficient availability to the four sides of the eye,
so the normalized images have the eye centred in the image, as can
be seen in Fig. 3 (bottom). Images are further processed by Contrast-
Limited Adaptive Histogram Equalization (CLAHE) [38] to compensate
for variability in local illumination.

We carry out verification experiments, with each eye considered a
different user. We compare images both from the same device (same-
sensor) and from different devices (cross-sensor). Genuine trials are
obtained by comparing each image of an eye to the remaining images
of the same eye, avoiding symmetric comparisons. Impostor trials are
done by comparing the 1st image of an eye to the 2nd image of the
remaining eyes. The experimental protocol is summarized in Table 8.
The smaller size of VSSIRIS in comparison with the Cross-Eyed database
results in the availability of fewer scores. Therefore, whenever a pa-
rameter needs training, 2-fold cross-validation [96] is used, dividing
the available number of users in two partitions. Otherwise, we report
results employing the entire VSSIRIS database.

The parameters of the periocular comparators are as follows. As
with the Cross-Eyed database, they are designed to adapt dynamically
to the size of the image, being the sclera boundary the only necessary
input. Regarding the SAFE comparator, the annular band of the first
circular ring starts at the sclera circle (𝑅 = 145 pixels), and the band
of the last ring ends at the boundary of the image, resulting in a ROI of
871 × 871 pixels around the eye centre. The availability of sufficient
margin around the four sides of the eye makes possible to have a
bigger ROI with VSSIRIS, as can be shown in Fig. 3, third column.
This availability also allows one extra row in the grid employed with
GABOR, LBP and HOG comparators, having 8 × 8 = 64 non-overlapping

blocks. Given the size of the input image, each block has 109 × 109
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Fig. 12. VSSIRIS database: Cross-sensor accuracy (VIS–VIS) of different CNN layers. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
pixels. For consistency with Cross-Eyed, the eight blocks of the image
centre are not considered, effectively resulting in 56 blocks (some more
than Cross-Eyed, which has 48 blocks of size 88 × 88 each). The GABOR
comparator employs filter wavelengths spanning from 55 to 7 pixels,
which are set proportional to the block size as 109/2≈55 to 109/16≈7.
Regarding VGG-Face, Resnet101 and Densenet201, images are resized
to 224 × 224, which are the input dimensions of these CNNs. With SIFT,
we keep as baseline the use of the annular ROI, but for comparison
purposes, we also evaluate the entire input image (both at the original
size of 871 × 871 and at 224 × 224). Table 3 (third column) indicates
the size of the feature vector for a given periocular image with the
different comparators employed. The full ROI produces an average of
3824 SIFT key-points (489 472 values), and ∼3000 with the annular
ROI (384 000 values), which are higher values than Cross-Eyed, since
the image is bigger. At 224 × 224, there are 130 key-points per image
on average (16 512 values). Experiments have been done in the same
machine and with the same algorithm implementations than Cross-Eyed
(Section 5.1). The feature extraction and comparison times are given in
Table 4 (right).

6.2. Results: Finding the optimum layer of the convolutional Neural Net-
works

We first identify the optimum layer of each CNN. The cross-sensor
accuracy of each network is given in Fig. 12 for each cross-validation
fold. When selecting the best layer, we have tried to find the one
that gives optimum performance both with the Cross-Eyed and the
VSSIRIS databases simultaneously. However, it has not always been
possible. According to the discussion in Section 5.2, the best layers with
VSSIRIS are layer 25 (VGG-Face), layer 323 (ResNet101), and layer
480 (DenseNet201). It can be seen as well that the optimum layers of
VSSIRIS are the same for the two folds. With Cross-Eyed, on the other
hand, the best layers were not so deep: 165 (ResNet101) and layer 223
(DenseNet201).

6.3. Results: Individual comparators

The performance of individual comparators is then reported in
Table 9. Similarly as Section 5, we adopt as measures of accuracy the
EER and the FRR at FAR = 0.01%. In Fig. 13, we give the DET curves
of the cross-sensor experiments.

By comparing Tables 5 and 9, it can be observed that same-sensor
experiments with the VSSIRIS database usually exhibit lower error
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Fig. 13. VSSIRIS database: Verification results of the individual comparators. Best seen
in colour. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

rates for any given comparator. Possible explanations might be that
the ROI of VSSIRIS images is bigger (871 × 871 vs.613 × 701), or
that the VSSIRIS database has fewer users (28 vs.90 subjects). On the
opposite side, cross-sensor error rates with VSSIRIS are significantly
worse for some comparators (e.g. SIFT, HOG, NTNU, or VGG-Face).
Lighter comparators such as LBP or HOG are not capable of providing
good cross-sensor performance in low-security applications either (EER
of 11% or higher). The difference is especially relevant with the SIFT
comparator, where cross-sensor error rates on Cross-Eyed (Table 5)
were 0.28% (EER) and 0.88% (FRR), but here they increase one order
of magnitude, up to 1.6% (EER) and 12.7% (FRR) (annular ROI).
This is despite the higher number of SIFT key-points per image with
VSSIRIS due to higher image size (∼3000 vs.∼1900 on average). It is
thus interesting that the comparators employed in this paper are more
robust to the variability between images in different spectra (NIR and
VIS) than the variability between images in the same (VIS) spectrum
captured with two different smartphones. Such effect can also be seen
in that the SIFT comparator is more sensitive to changes in the ROI
with VSSIRIS. With the full ROI (FR), cross-sensor errors are divided by
two, so a bigger ROI can be seen as a way to counteract cross-sensor
variability in this case. Another difference here is that if the image size
is reduced to 224 × 224, SIFT does not degrade as much, being in some
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Table 9
VSSIRIS database: Verification results of the individual comparators. The relative variation of cross-sensor performance with respect to the best
same-sensor performance is given in brackets (for the SIFT comparator, the result is calculated w.r.t. the Nokia performance, since the iPhone
performance is 0%, which would result in Inf due to division by zero; if both Nokia and iPhone performance is 0%, no value is given). AR =
annular ROI. FR = Full ROI.

Comparator Equal Error Rate (EER) FRR @ FAR = 0.01%

Same sensor Same sensor

iPhone Nokia Cross-sensor iPhone Nokia Cross-sensor

SAFE 1.6% 2.6% 10.2% (+537.5%) 4.6% 11.1% 50.9% (+1006.5%)
GABOR 2.1% 1.5% 7.3% (+386.7%) 4.3% 8.9% 39.1% (+809.3%)
SIFT (AR 871 × 871) 0% 0.1% 1.6% (>1500%) 0% 0.7% 12.7% (>1700%)
SIFT (FR 871 × 871) 0% 0% 0.82% (–) 0% 0% 6.25% (–)
SIFT (FR 224 × 224) 0% 0% 1.79% (–) 0% 0% 10.54% (–)
LBP 4.8% 4.9% 14.1% (+193.8%) 6.8% 16.8% 71.2% (+947.1%)
HOG 3.9% 4.5% 11% (+182.1%) 5.2% 17.3% 70.7% (+1259.6%)
NTNU 0.7% 0.7% 4.1% (+480%) 0.9% 1.8% 23.1% (+2500%)
VGG-Face 0.9% 0.7% 4.4% (+528.6%) 1.6% 1.3% 20.8% (+1500%)
Resnet101 0.5% 0% 2.3% (–) 0.7% 0.4% 10.3% (+2475%)
Densenet201 0.5% 0% 2.4% (–) 0.7% 0.2% 6.2% (+3000%)
regions of the DET at the same level than the baseline annular ROI
(AR) or than some CNNs. It should be noted, though, that images in
Cross-Eyed are obtained with a dual spectrum sensor, which captures
NIR and VIS images synchronously. Thus, in practice, there is no scale,
3D rotation or time-lapse difference between corresponding NIR and
VIS samples. Only a spatial offset between the two exist in the plane
perpendicular to the optical axes of the cameras due to the sensors not
being perfectly calibrated (which can be noticed in Fig. 7), so images
are expected to be very well aligned after cropping. This synchronicity
and absence of time span could be one of the reasons of the better cross-
spectral performance obtained with the Cross-Eyed database, or the less
sensitivity of the SIFT method to changes in the ROI.

Another observation is that same-sensor performance with VSSIRIS
is sometimes very different depending on the smartphone employed,
even if they involve the same subjects and images are resized to the
same size. Contrarily, same-sensor performance with Cross-Eyed tends
to be similar regardless of the spectrum employed (Table 5), which
might be explained as well by the synchronicity in the acquisition
mentioned above. Previous works have suggested that discrepancy in
colours between VIS sensors can lead to variability in performance,
which is further amplified when images from such sensors are com-
pared among them. The sensitivity of SIFT to changes in the ROI can
also be an indicative of this. Although we apply local adaptive contrast
equalization, our results suggest that other device-dependent colour
correction might be of help [45]. Another difference observed here
is that the best individual comparator (in terms of FRR) is not SIFT.
With Cross-Eyed, SIFT was the best by a large margin, but here, other
comparators have similar or better performance (e.g. DenseNet201,
ResNet101). This is despite the higher number of SIFT key-points per
image with VSSIRIS mentioned above. Nevertheless, the correlation
between bigger template size and lower error rates remains since the
comparators with the best performance (SIFT, NTNU and the three
CNNs) are also the ones with the biggest feature vector. The superiority
of these comparators can also be observed in the DET curves of Fig. 13.

6.4. Results: Fusion of periocular comparators

We now carry out fusion experiments using all the available com-
parators. Whenever a fusion method needs training, 2-fold
cross-validation [96] was used, dividing the available number of users
in two partitions. We have also tested here all the possible fusion
combinations, with the best combinations chosen based on the lowest
cross-sensor FRR @ FAR = 0.01%. The best results obtained for an
ncreasing number 𝑀 of combined comparators is given in Fig. 14
average values of the two folds). The comparators involved in the best
usion cases are also given in Table 10 (as in Section 5.4, the table only
hows the results of a selection of fusion approaches).
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Similarly as Cross-Eyed, cross-sensor performance is also improved
significantly here by fusion. The relative EER and FRR improvement
of the best fusion case is even bigger, being 87.5% and 95.2%, re-
spectively. This is high in comparison with the reductions observed
with Cross-Eyed, which were in the order of 30%–40%. It is also
remarkable that similar or even better absolute performance values are
obtained with VSSIRIS. This is despite the worse performance observed
in the individual comparators, as discussed in the previous section.
However, it comes at the price of needing more comparators to achieve
maximum performance. Even if the biggest performance improvement
also occurs after the fusion of two or three comparators, the smallest
error is obtained with the fusion of four comparators. In contraposition,
Cross-Eyed needed only two or three (see Fig. 10).

The fusion methods evaluated also rank in the same order here (see
Fig. 14). The probabilistic fusion method based on calibration (LLR)
outperforms all the others, followed by SVM linear and polynomial.
The simple average rule also matches the performance of other trained
approaches in some points, but it deteriorates quickly as more com-
parators are combined. Lastly, the Random Forest approach performs
the worst in general. In addition, the SIFT comparator is also decisive
to achieve lower error rates, as it is always selected in any combination
(Table 10). The CNN comparators are also selected first, but to achieve
the best performance, the role of other comparators are decisive with
this database. The best FRR, for example, is given by the combination
of SAFE, SIFT, LBP and DenseNet201. The same can be said with other
fusion methods. The best FRR with the average fusion involves SIFT,
NTNU, and DenseNet201, while the best FRR with the linear SVM
engages SAFE, GABOR, SIFT, HOG and DenseNet201.

Fig. 15 provides the FA/FR curves of the systems with different
score normalizations. A selected fusion case is also plotted
(SAFE+SIFT+LBP+DenseNet201, best combination of four systems in
Table 10). The same observations than Section 5.4 can be made, in
the sense that calibration provides alignment of genuine and impostor
distribution around zero, and that the arrangement and spread of the
distributions to both sides of the horizontal axis are indicative of the
relative performance among systems.

7. Conclusion

Periocular biometrics has rapidly evolved to competing with face or
iris recognition [1,2]. The periocular region has shown to be as discrim-
inative as the full face, with the advantage that it is more tolerant to
variability in expression, blur, downsampling [97], or occlusions [12,
98]. Under difficult conditions, such as people walking by acquisition
portals, [99–101], distant acquisition, [102,103], smartphones, [45],
webcams, or digital cameras, [33,91], the periocular modality is also
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Fig. 14. VSSIRIS database, test set: Verification results for an increasing number of fused comparators. Best seen in colour. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Table 10
VSSIRIS database: Verification results for an increasing number of fused comparators. The best combinations are chosen based on the lowest FRR @ FAR = 0.01% of cross-sensor
experiments. The best result of each column is marked in bold.

VSSIRIS DATABASE: cross-sensor performance (VIS–VIS)
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1 x 2.4 6.2 x 2.4 6.2 x 2.4 6.2
x 2.3 10.3 x 2.3 10.3 x 2.3 10.3

x 1.6 12.7 x 1.6 12.7 x 1.6 12.7

2 x x 0.8 2.4 x x 0.5 0.9 x x 0.8 1.9
x x 0.9 2.4 x x 0.6 1.6 x x 0.7 1.9
x x 1 2.8 x x 0.9 2.8 x x 0.9 2.7

3 x x x 0.9 0.6 x x x 0.6 0.8 x x x 0.6 0.9
x x x 1.4 0.6 x x x 0.5 0.9 x x x 0.6 1
x x x 0.3 0.7 x x x 0.5 1.1 x x x 0.5 1

4 x x x x 0.3 0.3 x x x x 0.5 1 x x x x 0.4 0.7
x x x x 0.6 0.5 x x x x 0.7 1 x x x x 0.6 0.8
x x x x 0.5 0.5 x x x x 0.5 1.1 x x x x 0.2 0.8

5 x x x x x 0.3 0.4 x x x x x 0.5 1.2 x x x x x 0.4 0.6
x x x x x 0.5 0.4 x x x x x 0.9 2.3 x x x x x 0.3 0.7

x x x x x 1.4 0.6 x x x x x 1.1 2.4 x x x x x 0.6 0.8

6 x x x x x x 1 0.5 x x x x x x 0.9 2.6 x x x x x x 0.6 0.7
x x x x x x 0.3 0.5 x x x x x x 1 2.7 x x x x x x 0.5 0.8
x x x x x x 0.3 0.5 x x x x x x 1 3 x x x x x x 0.6 0.8

7 x x x x x x x 0.3 0.6 x x x x x x x 1.4 3.5 x x x x x x x 0.5 0.9
x x x x x x x 1 0.6 x x x x x x x 1.4 3.6 x x x x x x x 0.6 0.9
x x x x x x x 0.3 0.7 x x x x x x x 1.2 3.8 x x x x x x x 0.6 0.9

8 x x x x x x x x 0.6 0.7 x x x x x x x x 1.7 4.1 x x x x x x x x 0.5 0.9
x x x x x x x x 1.1 0.8 x x x x x x x x 1.8 4.2 x x x x x x x x 0.2 1.8
x x x x x x x x 0.9 0.9 x x x x x x x x 1.6 4.5 x x x x x x x x 0.3 2.4

9 x x x x x x x x x 1.2 1.2 x x x x x x x x x 1.9 4.9 x x x x x x x x x 0.3 3.6
shown to be clearly superior to the iris modality, mostly due to the
small size of the iris or the use of visible illumination. The COVID-19
pandemic has also imposed the necessity of developing technologies
capable of dealing with faces occluded by protective face masks, often
with just the periocular area visible [7–9].

As biometric technologies are extensively deployed, it will be com-
mon to compare data captured with different sensors or from uncon-
trolled non-homogeneous environments. Unfortunately, the comparison
of heterogeneous biometric data for recognition purposes is known
to decrease performance significantly [11]. Hence, as new practical
applications evolve, new challenges arise, as well as the need for
developing new algorithms to address them. In this context, we address
in this paper the problem of biometric sensor interoperability, with
recognition by periocular images as test-bed.
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Inspired by our submission to the 1st Cross-Spectral Iris/Periocular
Competition (Cross-Eyed) [27], we propose to mitigate such problem
via a multialgorithm fusion strategy at the score level that combines up
to nine different periocular comparators. The aim of this competition
was to evaluate periocular recognition algorithms when images from
visible and near-infrared spectra are compared. We follow a probabilis-
tic score fusion approach based on linear logistic regression [41,81].
With this method, scores from multiple comparators are fused together
not only to improve the discriminating ability but also to produce log-
likelihood ratios as output scores. This way, output scores are always
in a comparable probabilistic domain since log-likelihood ratios can be
interpreted as a degree of support to the target or non-target hypotheses.
This allows the use of Bayes thresholds for optimal decision-making,
avoiding the need to compute comparator-specific thresholds. This is
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Fig. 15. VSSIRIS database: cross-sensor FA/FR curves of the individual systems (left: with raw scores, middle: after z-score normalization, right: after mapping to log-
likelihood ratios). Solid curves represent FR curves, while dashed curves represent FA curves. The ‘fusion’ curves on the centre and right plots represent the fusion of
SAFE+SIFT+LBP+Densenet201 (see the main text for details). Best seen in colour and zoomed. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
essential in operational conditions since the threshold is critical to
determine the accuracy of the authentication process in many appli-
cations. In the experiments of this paper, this method is shown to
surpass other fusion approaches such as the simple arithmetic average
of normalized scores [24] or trained algorithms such as Support Vector
Machines [25] or Random Forest [26]. This employed fusion approach
has been applied previously to cross-sensor comparison of face or
fingerprint modalities [23] as well, also providing excellent results in
other competition benchmarks involving these modalities [43]. We em-
ploy in this paper three different comparators based on the most widely
used features in periocular research [12], as well as three in-house
comparators that we proposed recently [32–34], and three comparators
based on deep Convolutional Neural Networks [35–37]. The proposed
fusion method, with a subset of the periocular comparators employed
here, was used in our submission to the mentioned Cross-Eyed eval-
uation, obtained the first position in the ranking of participants. This
paper is complemented with cross-sensor periocular experiments using
images from the same spectrum as well. For this purpose, we use
the Visible Spectrum Smartphone Iris database (VSSIRIS) [28], which
contains images in the visible range from two different smartphones.

We first analyse the individual comparators employed not only
from the point of view of its cross-sensor performance (Figs. 9 and
13), but also taking into account its template size and computation
times (Tables 3 and 4). We observe that the comparator having the
biggest template size and computation time is usually the most accu-
rate in terms of individual performance, also contributing decisively
to the fusion. In the experiments reported in this paper, significant
improvements in performance are obtained with the proposed fusion
approach, leading to an EER of 0.2% in visible-to-near-infrared compar-
isons (Fig. 10) and 0.3% in visible-to-visible comparison of smartphone
images (Fig. 14). The FRR in high-security environments (at FAR =
0.01%) is also very good, being 0.47% and 0.3%, respectively.

Interestingly, the best performance is not obtained necessarily by
the combination of all available comparators. Instead, the best results
are obtained by fusion of just two to four comparators. A fundamental
problem in classifier combination is to determine which systems to
retain in order to attain the best results [104]. The systems retained
are not necessarily the best individual ones, especially if they are
not sufficiently complementary (for example, if they employ similar
features) [86]. When the comparators are properly chosen (in our case,
found by exhaustive search), the performance increases quickly with
the addition of a small number of them. Then, it tends to stabilize
until the addition of new ones actually decreases the performance. The
need to retain the best features only, and the mentioned performance
‘peaking’ effect, is well documented [104], and it can be attributed
to the correlation between classifiers or to the effect of a limited
sample size. Such phenomenon have been also observed in other related
studies in biometrics [86,91,105–107]. It is also worth noting that the
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comparators producing the best fusion performance (Tables 6 and 10)
have an individual performance that differs in one or two orders of
magnitude in some cases. In the probabilistic approach employed, each
comparator is implicitly weighted by its individual accuracy, so the
most reliable ones will have a dominant role [108]. It is, therefore, a
very efficient method to cope with comparators having heterogeneous
performance. On the contrary, in conventional score-level fusion ap-
proaches (like the average of scores), each comparator is given the
same weight regardless of its accuracy, a common drawback that makes
the worst comparators to produce misleading results more frequently
[24]. Another relevant observation is that cross-sensor error rates of
the individual comparators are higher with the database captured in the
same spectrum (VSSIRIS) than the database which contains images in
different spectra (Cross-Eyed). As a result, there is a need to fuse more
comparators with VSSIRIS to achieve maximum performance. This is an
interesting phenomenon since one would expect that the comparison
of images captured with visible cameras would produce better results
than the comparison of near-infrared and visible images. Some authors
point out that the discrepancy in colours between sensors in the visible
range can be very important, leading to a significant decrease in
performance when images from these sensors are compared without
applying appropriate device-dependent colour corrections [45]. Since
NIR images do not contain colour information, this effect may not
appear in NIR–VIS comparisons.

In the present work, we use the eye corners or the sclera boundary
as references to extract the periocular region of interest (ROI). While
we have employed ground-truth information, an operational system
would demand to locate these parts, so inaccuracies in their location
would affect subsequent processing steps. In order to mitigate the
effects of incorrect detection on the periocular matching performance
of the different comparators and obtain a measure of their capabilities
in ideal conditions [12], we have not implemented any detector of
the necessary references. Even if errors in the detection will influence
the overall performance of the recognition chain, feature extraction
methods are not necessarily affected in the same way. This is seen for
example in [109] with the iris modality, which will serve as inspiration
for a similar systematic study with periocular images. The amount of
periocular area around the eye necessary to provide good accuracy is
another subject of study, with studies showing differences depending
on the spectrum [110]. In VSSIRIS, the available images (captured with
smartphones) contain a bigger periocular portion than images from the
Cross-Eyed database (Fig. 7). However, it is not sufficient to provide
better cross-sensor accuracy. Therefore, an interesting source of future
research work will be to test the resilience against a variable amount
of periocular area, including occlusions [12].

Another observation is that the proposed fusion method needs to
be trained separately for each domain (NIR–VIS or VIS–VIS). This is

not exclusive of this method but an issue that is common to score-level
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fusion methods in general. Since the scores given by different systems
do not necessarily lie in the same range, they are made comparable
by mapping them to a common interval using score normalization
techniques [20]. Even the score distributions of a given algorithm do
not necessarily lie in the same range if the operational conditions
are different, such as operating in NIR–VIS or VIS–VIS domains. Just
changing a sensor by a more recent one from the same manufacturer
may have the same effect [39], and the shape of the distributions
are not necessarily equal either. One obvious effect of the difference
between score distributions in different domains is that the accuracy of
the comparators is different, not only in absolute numbers but also in
the relative differences among them (Table 5 vs. Table 9). For example,
the best comparator in Table 5 is SIFT, and it is one order of magnitude
better than the others. On the other hand, in Table 9, the EER of SIFT
is only a little ahead of Resnet101 or Densenet201, and the FRR is
even worse. Another observable effect of this phenomenon is that the
slope of the DET curves is not the same either (Fig. 9 vs. Fig. 13).
For these reasons, the normalization and the fusion algorithms will
usually need different training for each context. The calibration method
employed implicitly finds the weight to be given to each system, so
if their absolute or relative performance changes, the weights need to
change accordingly. The same can be said about the other fusion algo-
rithms evaluated. The number of systems that are needed to achieve
maximum performance will not necessarily be the same either (Fig. 10
vs. Fig. 14), nor the individual systems involved in the fusion (Table 6
vs. Table 10). These observations are also backed up by a number of
previous studies with different biometrics modalities [86,91,111,112].
As a future work in this direction, we are looking at the robustness
of the different comparators to cross-domain training, i.e. training the
calibration in one domain and testing in the other. We speculate that
some comparators may be more robust than others, so using only those
for calibration would allow transferring the training for one domain
to the other without needing to re-train in the target domain. The
use of several databases in one domain is also another way to test
the generalization of the suggested approach by cross-database training
[113]. As future work, we are also exploring to exploit deep learning
frameworks to learn the variability between images in different spectra
or captured with different sensors. One plausible approach is the use of
Generative Adversarial Networks [114] to map images as if they were
captured by the same sensor. This has the advantage that images can
be compared using standard feature extraction methods such as the
ones employed in this paper, which have been shown to work better
if images are captured using the same sensor.

In the context of smartphone recognition, where high-resolution
images may be available, fusion with the iris modality is another
possibility to increase recognition accuracy [91]. However, it demands
segmentation, which might be an issue if the image quality is not
sufficiently high [15]. This motivates pursuing the periocular modality,
as in the current study. We will also validate our methodology using
databases not only limited to two devices or spectra, e.g. [45,52],
and also including more extreme variations in camera specifications
and imaging conditions, such as low resolution, illumination or pose
variability. For such low-quality imaging conditions, super-resolution
techniques may also be helpful [115] and will be investigated as well.

Finally, recent interest in learning biases around face recognition
[116,117] motivates future research to study learning biases in the
periocular region and developing new methods to reduce undesired
biases [118] in that important facial region.
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