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We first study the suitability of behavioral biometrics to distinguish between computers and humans, 

commonly named as bot detection. We then present BeCAPTCHA-Mouse, a bot detector based on: i) a 

neuromotor model of mouse dynamics to obtain a novel feature set for the classification of human and 

bot samples; and ii) a learning framework involving real and synthetically generated mouse trajectories. 

We propose two new mouse trajectory synthesis methods for generating realistic data: a) a function- 

based method based on heuristic functions, and b) a data-driven method based on Generative Adversarial 

Networks (GANs) in which a Generator synthesizes human-like trajectories from a Gaussian noise input. 

Experiments are conducted on a new testbed also introduced here and available in GitHub: BeCAPTCHA- 

Mouse Benchmark; useful for research in bot detection and other mouse-based HCI applications. Our 

benchmark data consists of 15,0 0 0 mouse trajectories including real data from 58 users and bot data with 

various levels of realism. Our experiments show that BeCAPTCHA-Mouse is able to detect bot trajectories 

of high realism with 93% of accuracy in average using only one mouse trajectory. When our approach 

is fused with state-of-the-art mouse dynamic features, the bot detection accuracy increases relatively by 

more than 36% , proving that mouse-based bot detection is a fast, easy, and reliable tool to complement 

traditional CAPTCHA systems. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

During the last decades, the security applications have had a 

ey role in the development of machine learning technologies. 

hus, research areas such as fingerprint identification, face recog- 

ition, iris recognition, or person re-identification have attracted 

he interest of the research community promoting continuous ad- 

ances in their fields. These advances resulted in more accurate 

hysical security systems and advances in state-of-the-art. How- 

ver, security threats are moving from the physical domain to the 

igital domain. The Cybercrime is increasing in both percentage 

f citizens affected and cost in the global economy 1 . The crimi- 

als become more and more sophisticated and their crimes have a 

ross-border scope. The challenges and potential benefits of tech- 

ologies developed to serve in this fight are large and the Pattern 

ecognition community can play an important role in this scenario. 

mong these challenges, the present work is focused on the detec- 
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ion of bots and how pattern recognition techniques and machine 

earning frameworks can be used to develop new approaches. 

How to distinguish between human users and artificial intelli- 

ence during computer interactions is not a trivial task. This chal- 

enge was firstly discussed by Alan Turing in 1950. He investigated 

hether machines could show an intelligent behavior, and also 

ow humans could be aware of these artificial behaviors. For this, 

e developed the famous Turing Test, commonly named as The Imi- 

ation Game , in which a human evaluator would judge natural lan- 

uage conversations between a human and a computer designed 

o generate human-like responses. The Turing Test was both influ- 

ntial and widely criticized and became an important concept in 

he artificial intelligence field [1] . However, at the epoch of Alan 

uring research, the problem of machines acting like humans were 

ommonly associated to science-fiction topics. 

Nowadays, boosted by the last advances of machine learn- 

ng technologies and worldwide connections, that ’science-fiction 

opic’ becomes a real hazard. As an example, bots are expected to 

e responsible for more than 40% of the web traffic with more than 

3% of all login attempts to come from malicious botnets in the 

ext years 2 . Malicious bots cause billionaire losses through web 
2 https://resources.distilnetworks.com/white- paper- reports/bad- bot- report- 2019 
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craping, account takeover, account creation, credit card fraud, de- 

ial of service attacks, denial of inventory, and many others. More- 

ver, bots are used to influence and divide society (e.g. usage of 

ots to interfere during Brexit voting day [2] , or to spread anx- 

ety and sadness during the COVID-19 outbreak 3 , 4 through Twit- 

er). Bots are becoming more and more sophisticated, being able to 

imic human online behaviors. On the other hand, algorithms to 

istinguish between humans and bots are also getting very com- 

lex. We can distinguish two types of bot detection methods in 

esponse to those sophisticated bots: 

• Active Detection. Traditionally named as CAPTCHA (Completely 

Automated Public Turing test to tell Computers and Humans 

Apart), these algorithms determinate whether or not the user 

is human by performing online tasks that are difficult for soft- 

ware bots to solve while being easy for legitimate human users 

to complete. Some of the most popular CAPTCHA systems are 

based on: characters recognition from distorted images (text- 

based), class-objects identification in a set of images (image- 

based), and speech translation from distorted audios (audio- 

based). 
• Passive Detection. These detectors are transparent and analyze 

the users behavior while they interact with the device. The last 

version of Google reCAPTCHA v3 replaces traditional cognitive 

tasks by a transparent algorithm capable of detecting bots and 

humans from their web behavior 5 . Other researchers [3] , de- 

scribe browsing behavior of web users for detection of DDoS 

Attacks (Distributed Denial of Service). 

Although these algorithms are broadly used, they present lim- 

tations. First of all, ensuring a very accurate bot detection makes 

he tasks difficult to perform even for humans. Second, most of the 

APTCHA systems can be easily solved by the most modern ma- 

hine learning techniques. For example, the text-based CAPTCHA 

as defeated by Bursztein et al. [4] with 98% accuracy using a 

L-based system to segment and recognize the text. In [5] , the 

uthors designed an AI-based system called unCAPTCHA to break 

oogle’s most challenging audio reCAPTCHAs. The last version of 

he Google CAPTCHA, named reCAPTCHAv3, was systematically 

ooled in [6] by synthesizing mouse trajectories using reinforce- 

ent learning techniques. Third, these algorithms process sensi- 

ive information and there are important concerns about how they 

omply with new regulations such as the European GDPR 

6 . Fourth, 

he CAPTCHA systems become a great barrier to people with vi- 

ual or other impairments. Finally, the Turing Test was designed as 

 task in which machines had to prove they were human, mean- 

hile in current CAPTCHA systems humans have to prove they are 

ot machines (e.g. Iam not a robot from Google’s). This means that 

he responsibility to prove the user’s ’humanity’ falls over human 

sers instead of bots. At this point, there is still a large room for 

mprovement towards reliable bot detection able to stop malicious 

oftware not bothering human users during natural web browsing. 

On the other hand, Machine Learning and Pattern Recognition 

ommunities have made great advances during the last decades. 

hese advances have boosted several research fields including 

omputer Vision, Audio Processing, and Natural Language Process- 

ng. Nonetheless, the application of these advances to the bot de- 

ection field has been rather low. While previous works [4,5] focus 

heir effort s in beating the existing CAPTCHA systems and expos- 

ng their vulnerabilities with the latest advances in machine learn- 
3 www.washingtonpost.com/science/2020/03/17/analysis- millions- coronavirus- 

weets- shows- whole- world- is- sad/ 
4 https://www.sciencealert.com/bots- are- causing- anxiety- by- spreading- 

oronavirus-misinformation 
5 https://www.google.com/recaptcha/intro/v3.html 
6 https://complianz.io/google-recaptcha-and-the-gdpr-a-possible-conflict/ 

2 
ng techniques, we use them to develop better bot detectors and 

arden the existing ones. 

Biometric recognition refers to the automated recognition of 

ndividuals based on their physiological (e.g. fingerprint, face) 

nd behavioral (e.g. keystroke, gait) characteristics [7–9] . Utiliz- 

ng behavioral-based biometrics for improving the security against 

ots and other kind of attacks has been only studied very timidly 

10] . Some examples in this regard using behavioral features to 

rain cognitive models to parameterize the user behavior and de- 

ect patterns useful to improve the security of digital services can 

e found in [11–13] . 

Behavioral biometrics have been applied successfully in bot de- 

ection for mobile devices scenarios [14] . The method proposed 

n [14] combines information from the accelerometer and touch- 

creen sensors. However, in that work the software-based sam- 

ling rate of mobile devices and the simplicity of touch over 

ouchscreens limited the results. Here we apply similar ideas to 

14] considering in this case mouse dynamics instead of touch- 

creen gestures, a richer signal in terms of time resolution, nat- 

ralness, and neuromotor information [15] . 

To overcome these limitations, our contributions with this work 

o a step forward in the bot detection field for mouse dynamics, 

ncorporating behavioral modeling and improved learning methods 

ased on realistic synthetic samples (see Fig. 1 ). The two main con- 

ributions of this work are: 

• (1) We propose BeCAPTCHA-Mouse, a new bot detector based 

on neuromotor features [15] obtained from kinematics models 

of the mouse trajectories. BeCAPTCHA-Mouse is trained with 

human and synthetic data generated to mimic human-being 

characteristics. 
• (2) In order to train and evaluate BeCAPTCHA-Mouse and fu- 

ture approaches, we propose two new methods for generating 

realistic mouse trajectories: i) a Function-based method based 

on heuristic functions, and ii) a data-driven method based on 

GANs in which a Generator synthesizes human-like trajectories 

from a Gaussian noise input. We demonstrate the usefulness 

of these synthetic trajectories to train more accurate bot de- 

tectors. These Generators can be helpful in many HCI research 

areas and applications. 

These main contributions are supported by an extensive experi- 

entation developed on the basis of reproducible frameworks and 

 new publicly available dataset. The secondary contributions of 

his work can be summarized as: 

• (3) Our experiments consider a large number of state-of-the-art 

classifiers and provide a detailed study, exposing the strengths 

and weakness of the classifiers in different scenarios. The ex- 

periments include: Support Vector Machine (SVM), Random 

Forest (RF), K-Nearest Neighbors (KNN), Multi-Layer Perceptron 

(MLP), and deep learning architectures such us Long Short-Term 

Memory (LSTM) and Gated Recurrent Units (GRUs). These algo- 

rithms are evaluated for mouse trajectories with different char- 

acteristics (e.g. direction, length) and learning strategies (e.g. 

number of samples, supervised, non supervised). 
• (4) We present BeCAPTCHA-Mouse Benchmark 7 , the first pub- 

lic benchmark for mouse-based bot detection including 10,0 0 0 

human and synthetic trajectories generated according to 10 dif- 

ferent types of synthesized behaviors. The inclusion of vari- 

ous types of synthetic samples (both for training and testing 

BeCAPTCHA-Mouse) allows to train strong bot detectors. Also, 

it allows comprehensive evaluations under various conditions 

including the worst-case scenario in which bot attacks mimic 

human behavior using latest machine learning advances. This 
7 https://github.com/BiDAlab/BeCAPTCHA-Mouse 

https://www.washingtonpost.com/science/2020/03/17/analysis-millions-coronavirus-tweets-shows-whole-world-is-sad/
https://www.sciencealert.com/bots-are-causing-anxiety-by-spreading-coronavirus-misinformation
https://www.google.com/recaptcha/intro/v3.html
https://complianz.io/google-recaptcha-and-the-gdpr-a-possible-conflict/
https://github.com/BiDAlab/BeCAPTCHA-Mouse
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Fig. 1. Learning framework of BeCAPTCHA-Mouse: (1) We propose two novel methods to generate realistic synthetic mouse trajectories that allow to train and evaluate bot 

detection systems based on mouse dynamics; (2) We propose a neuromotor model to characterize Human and Synthetic Mouse Trajectories; (3) We evaluate the proposed 

features using multiple classifiers and learning scenarios; and (4) The proposed Generators can be also helpful for other HCI applications. 
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Table 1 

Biometric characteristics typically obtained in human-computer interaction. We rate 

each factor with ∗ (low), ∗∗ (medium), and ∗∗∗ (high). Uniq = Uniqueness, Univ = 

Universality, Meas = Measurability, Perf = Performance, Circ = Circumvention, Acce 

= Acceptability, Cog = Cognitive, Neu = Neuromotor. 

Uniq. Univ. Meas. Perf. Circ. Acce. Cog. Neu. 

Keystroke ∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗ ∗∗∗

Stylometry ∗ ∗ ∗ ∗ ∗ ∗ ∗∗∗ ∗

Web-log ∗∗ ∗ ∗∗∗ ∗∗ ∗ ∗ ∗∗∗ ∗

Mouse ∗ ∗∗ ∗∗∗ ∗∗∗ ∗ ∗∗∗ ∗∗ ∗∗∗
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benchmark can be helpful for other HCI applications involving 

mouse dynamics beyond bot detection. 

The main drawback of traditional CAPTCHA methods is that 

hey only measure cognitive human skills (e.g. character recogni- 

ion from distorted images, class-objects identification in a set of 

mages, or speech translation from distorted audios). Trying to en- 

ure a very accurate bot detection makes these CAPTCHAs diffi- 

ult to perform even for humans. The main goal of our proposed 

ethod is to focus more on human behavioral skills rather than 

n cognitive ones. Neuromotor skills reveal human features useful 

or bot detection just with simple mouse trajectories. To the best 

f our knowledge, there are only a very limited number of works 

sing mouse biometrics for bot detection. The most related to our 

esearch are [16] and [6] . In [6] they synthetize mouse trajecto- 

ies over a grid to hack the Google reCAPTCHA v3 algorithm, and 

n [16] they extract global features (e.g. duration, average speed, 

isplacement) from mouse and keystroke patterns to conduct a 

ase study in the detection of blog bots for online blogging sys- 

ems. While previous work in mouse dynamics ( [16,17] ) focused 

n basic cues like duration or average speed, in this work we go 

 step forward by focusing on the analysis and synthesis of entire 

ouse trajectories. We propose to use the Sigma-Lognormal model 

o extract human features that characterizes better human behav- 

ors and novel generation methods to synthesize human-like tra- 

ectories to improve the training and evaluation of these methods. 

s shown in Fig. 2 , our proposed mouse detection algorithm can 

e added in a transparent setup and enhance traditional CAPTCHAs 

ased on cognitive challenges, for example when you select the 

mages in a visual CAPTCHA, or when you navigate through a web- 

ite. 

The rest of the paper is organized as follows. In Section 2 we 

rst discuss the usage of mouse dynamics in the context of behav- 

oral biometrics. Section 3 presents our bot detector BeCAPTCHA- 

ouse. Section 3.1 introduces the mouse dynamics neuromotor 

odel and the features employed for the classification of bot and 

uman trayectories. Section 3.2 describes the proposed methods 

or generating synthetic mouse trajectories. Section 4 describes 

ur experimental framework (BeCAPTCHA-Mouse Benchmark) and 

resents the results obtained. Finally, Section 5 summarizes the 

onclusions and future works. 

. Mouse dynamics in the context of behavioral biometrics 

Human-Machine interaction generates a heterogeneous flow of 

ata from multiple channels. This interaction generates patterns 

ffected by: humans (e.g. attitude, emotional state, neuromotor, 

nd cognitive abilities), sensor characteristics (e.g. ergonomics, pre- 

ision), and task characteristics (e.g. easy of use, design, useful- 
3 
ess). Modeling the user behavior using these heterogeneous data 

treams is an ongoing challenge with applications in a variety 

f fields such as security, e-health, gaming, or education [8,9,18] . 

mong this variety of data sources, in the present paper we con- 

entrate in behavioral biometric signals [19] . 

The literature of behavioral biometrics in the context of 

uman-Computer Interaction is large and includes several char- 

cteristics, e.g.: keystroking [20,21] , handwriting [22] , touchscreen 

ignals [23,24] , stylometry [25] , and mouse dynamics [17] . Each 

haracteristic has its pros and cons, therefore, a single biometric 

haracteristic is usually not suitable for all applications. The bio- 

etric research community has identified several factors that de- 

ermine the suitability of a biometric characteristic to be used in a 

ertain application [7] . 

Table 1 rates these factors for biometrics characteristics typ- 

cally obtained from Human-Computer Interaction highlighting 

ouse Dynamics, the focus in the present paper. Note that we 

dded two factors related to the nature of the patterns obtained 

rom these characteristics (Cognitive and Neuromotor patterns) 

ith respect to the characteristics defined by [7] . 

Now focusing in mouse dynamics for biometrics, in [17] re- 

earchers explored characteristics obtained from mouse tasks for 

ser recognition. They analyzed 68 global features (e.g. duration, 

urvature, mean velocity) from mouse dynamics extracted during 

ogin sessions. Their results achieve up to 95% authentication ac- 

uracy for passwords with 15 digits. Besides, mouse dynamics can 

e combined with keystroke biometrics for continuous authenti- 

ation schemes [26] . The fusion of both biometric modalities has 

een shown to outperform significantly each individual modality 

chieving up to 98% authentication accuracy [27] . In [28] , the au- 

hors applied the Sigma-Lognormal Model based on the Kinematic 

heory [15] to compress mouse trajectories. They suggested that 

ouse movements are the result of complex human motor control 

ehaviors that can be decomposed in a sum of primal movements. 

n addition, in [29] , the authors studied the relationship between 

ye gaze position and mouse cursor position on a computer screen 
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Fig. 2. An application example of our proposed mouse bot detection algorithm in combination with a traditional image-based CAPTCHA. While the user completes the image 

CAPTCHA task (cognitive challenge, left), our algorithm analyzes the mouse dynamics performed during the task ({ x , y } coordinates and velocity profile, right). 
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uring web browsing and suggested that there are regular patterns 

f eye/mouse movements associated to the motor cortex system. 

. BeCAPTCHA-Mouse: Bot detection based on mouse dynamics 

The mouse is a very common device and its usage is ubiqui- 

ous in human-computer interfaces. Bot detection based on mouse 

ynamics can be therefore applied either in active or passive de- 

ectors. 

Our BeCAPTCHA-Mouse bot detector is based on two main pil- 

ars: 1) we use mouse dynamics to extract neuromotor features 

apable to distinguish human behavior from bots (see Fig. 1 ); 2) 

e generate synthetic mouse trajectories to improve the learning 

ramework of bot detectors 8 . 

Mouse dynamics are rich in patterns capable of describing neu- 

omotor capacities of the users. Note that we do not claim to re- 

lace other approaches (e.g. Google’s reCAPTCHA) by mouse-based 

ot detection, our purpose is to enhance them by exploiting the 

ncillary information provided by mouse dynamics (see Fig. 2 ). 

Our proposed method for bot detection consists in character- 

zing each mouse trajectory (real and synthetic) with a fixed-size 

eature vector obtained from a neuromotor decomposition of the 

elocity profile, followed by a standard classifier. Each trajectory 

haracterized in this way can be classified individually using stan- 

ard classifiers into human or bot based on supervised training 

sing a development groundtruth dataset. When multiple trajec- 

ories are available, standard information fusion techniques can 

e applied [30] . The more realistic the synthetic data used as 

roundtruth for training the classifier the stronger the classifier. 
8 Note that mouse trajectories and mouse cursor are not technically the same. 

or simplification we will use the term mouse trajectory to refer to the information 

vailable to model the mouse movements (i.e., coordinates and timestamps). 

t

m

|

4 
In our experimental work we demonstrate the effectiveness of 

he neuromotor features and the synthetic samples for different 

lassifiers. The contribution and success of our BeCAPTCHA-Mouse 

ot detector is not in the particular classifier used, but in two 

ther fronts (see Fig. 1 ): the high realism of the groundtruth data 

sed for training our classifiers (with the methods presented in 

ection 3.2 ), and our proposed trajectory modeling using neuro- 

otor features. 

.1. BeCAPTCHA-Mouse: Neuromotor analysis of mouse trajectories 

By looking at typical mouse movements (see Fig. 3 .a), we 

an observe some aspects typically performed by humans dur- 

ng mouse trajectories execution: an initial acceleration and fi- 

al deceleration performed by the antagonist (activate the move- 

ent) and agonist muscles (opposing joint torque) [15] , and a fine- 

orrection in the direction at the end of the trajectory when the 

ouse cursor gets close to the click button (characterized by a 

ow velocity that serves to improve the precision of the move- 

ent). These aspects motivated us to use neuromotor analysis to 

nd distinctive features in human mouse movements. Neuromotor- 

ne skills, that are unique of human beings are difficult to emulate 

or bots and could provide distinctive features in order to tell hu- 

ans and bots apart. 

For this, we propose to model the trajectories according to the 

igma-Lognormal model [31] from the kinematic theory of rapid 

uman movements [15] . The model states that the velocity profile 

f the human hand movements (mouse movements in this work) 

an be decomposed into primitive strokes with a Lognormal shape 

hat describes well the nature of the hand movements ruled by the 

otor cortex. The velocity profile of these strokes is modeled as: 

 

�
 v i ( t ) | = 

D i √ 

2 πσi ( t − t 0 i ) 
exp 

(
( ln ( t − t 0 i ) − μi ) 

2 

−2 σ 2 

)
(1) 
i 



A. Acien, A. Morales, J. Fierrez et al. Pattern Recognition 127 (2022) 108643 

Fig. 3. a) Example of the mouse task determined by 8 keypoints: the crosses represent the keypoint where the user must click, red circles are the ( x, y ) coordinates obtained 

from the mouse device, and the black line is the mouse trajectory. b) and c) are examples of the Lognormal decomposition of a human mouse movement and a synthetic 

linear trajectory respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Sigma-Lognormal features description. 

Parameter Description 

D i Input pulse: covered distance 

t 0 i Initialization time: displacement in the time axis 

μi Log-temporal delay 

σi Impulse response time of the neuromotor system 

θsi Starting angle of the stroke 

θei Ending angle of the stroke 
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here the parameters are described in Table 2 . The velocity profile 

f the entire hand movement is calculated as the sum of all these 

ndividual strokes: 

�
  r ( t ) = 

N ∑ 

i =1 

�
 v i ( t ) (2) 
5 
where N is the number of velocity strokes considered in the 

odel. A complex action like handwriting signature or mouse 

ovements, is a summation of these lognormals, each one char- 

cterized by the six parameters in Table 2 . An example of this 

s shown in Fig. 3 .b, where the black line is the velocity profile

 

�
 v ( t ) | of the above human mouse task ( Fig. 3 .a), which is used 

s the input of the Sigma-Lognormal model. The green dashed 

ines correspond to the individual lognormal signals | � v i ( t ) | gen- 

rated as in [31] , which describes a method to automatically es- 

imate both N and the parameters in Table 2 from an input tra- 

ectory | � v ( t ) | . Finally, the red dotted line | � v r ( t ) | is the reconstruc- 

ion of the original velocity profile by summing all these gener- 

ted individual lognormal signals. We can observe that the recon- 

tructed signal matches almost perfectly with the original velocity 

rofile of the human mouse movement, suggesting the potential of 

he Sigma-Lognormal model to describe neuromotor mouse move- 

ents. Lognormals with a high amplitude are typically observed 
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uring the first part of the movement (agonist and antagonist acti- 

ations), while smaller lognormals occur during the fine correction. 

he differences in lognormal sizes provide us information about 

he length of the trajectory (long trajectories have usually larger 

elocities). 

The neuromotor feature set proposed for bot detection is com- 

uted from the six lognormal parameters described in Table 2 . 

ach mouse trajectory generates N lognormal signals and each log- 

ormal generates those 6 parameters from Table 2 . For each pa- 

ameter, we calculate 6 features: maximum, minimum, and mean 

or both halves of the trajectory. This is done because in natural 

ouse movements the lognormal parameters are usually very dif- 

erent between both halves of a given trajectory (e.g. Fig. 3 .b). Ad- 

itionally, we added the number of lognormals N that each mouse 

rajectory generates as an additional feature. This additional fea- 

ure measures the complexity of the trajectory [32] , having many 

ognormals means that the mouse trajectory has many changes in 

he velocity profile while few of them usually indicates more basic 

rajectories. As a result, the neuromotor feature set has size 37. 

.2. BeCAPTCHA-Mouse: Trajectory synthesis 

In the present paper, a mouse movement is defined by the spa- 

ial trajectory across time between two consecutive clicks, i.e., a 

equence of points { x , y } and a velocity profile | � v ( t ) | , where x =
 x 1 , . . . , x M 

], y = [ y 1 , . . . , y M 

], and M is the number of time sam-

les. A mouse trajectory is defined by two main characteristics: 

he shape (defined by { x , y }) and the velocity profile (defined by

 

�
 v ( t ) | ). In order to generate realistic synthetic samples, both char- 

cteristics must be considered in the generation method. We pro- 

ose two methods for synthetically generating such mouse move- 

ent. 

.2.1. Method 1: Function-based trajectories 

We generate mouse trajectories according to three different tra- 

ectory shapes (linear, quadratic, and exponential) and three dif- 

erent velocity profiles (constant, logarithmic, and Gaussian). We 

an synthesize many different mouse trajectories that mimic hu- 

an movements by varying the parameters of each function. To 

enerate a synthetic trajectory { ̂ x , ˆ y } with M points, first we de- 

ne the initial point [ ̂ x 1 , ˆ y 1 ] and ending point [ ̂ x M 

, ˆ y M 

] . Second,

e select one of three velocity profiles 
∣∣� ˆ v ( t ) ∣∣: i) constant velocity, 

here the distance between adjacent points is constant; ii) loga- 

ithmic velocity, where the distances are gradually increasing (ac- 

eleration); and iii) Gaussian velocity, in which the distances first 

ncrease and then decrease when they get close to the end of the 

rajectory (acceleration and deceleration). Third, we generate a se- 

uence ˆ x between ˆ x 1 and ˆ x M 

spaced according to the selected ve- 

ocity profile. The ˆ y sequence is then generated according to the 

hape function. For example, for a shape defined by the quadratic 

unction ˆ y = a ̂ x 2 + b ̂ x + c, we fit b and c for a fixed value of a by

sing the initial and ending points. We repeat the process fixing 

ither b or c. The range of the parameters { a , b, c} explored is de-

ermined by analyzing real mouse movements fitted to quadratic 

unctions. Linear and exponential shapes are generated similarly. 

Fig. 5 (trajectories D , E, and F ) shows some examples of these 

ouse trajectories synthesized. That figure also shows the 3 differ- 

nt velocity profiles considered: the 3 trajectories in E have con- 

tant velocity, F shows acceleration (the distance between adjacent 

amples increases gradually), and D has initial acceleration and fi- 

al deceleration. We can generate infinite mouse trajectories with 

his approach by varying the parameters of each function. 

An important factor when synthetizing mouse trajectories is the 

umber of points ( M) of the trajectory. This usually varies depend- 

ng not only on the length of the trajectory, but also on the di- 

ection, because different muscles are involved when we perform 
6 
ouse trajectories in different directions. To emulate this phe- 

omenon, we calculate the mean and standard deviation of the 

umber of points for each of the 8 mouse trajectories from the hu- 

an data used in the experiments. Then, we synthetize trajectories 

ith different number of points following a Gaussian distribution 

ith the calculated mean and standard deviation. 

.2.2. Method 2: GAN-based trajectories 

For this approach we employ a GAN (Generative Adversarial 

etwork) [33] , in which two neuronal networks, commonly named 

enerator (defined by its parameters w G ) and Discriminator (de- 

ned by its parameters w D ), are trained one against the other (thus 

he ’adversarial’). The architecture of the GAN is depicted in Fig. 4 . 

he aim of the Generator is to fool the Discriminator by generat- 

ng fake trajectories { ̂ x , ˆ y } very similar to the real ones { x , y }. We

sed a fixed sampling rate of 200Hz for all the real and generated 

rajectories. The sampling rate is determined by the real trajecto- 

ies used in the learning framework (200Hz in our experiments). 

herefore, the synthesized samples are generated with the same 

ampling rate. Other frequencies can be obtained subsampling the 

enerated ones or re-training the GAN for a different sampling rate. 

he input of the Generator consist of a seed vector of R random 

umbers (in our experiments R = 100 ). The output of the Gener- 

tor are two coordinate vectors { ̂ x , ˆ y } with length equal to M ( M 

an be fixed to generate different lengths). The input of the Dis- 

riminator consists of a batch including two types of trajectories: 

) Bot : synthetic trajectories generated by the Generator; 2) Hu- 

an : real mouse trajectories chosen randomly from the Mouse DB 

escribed in next sections. The aim of the Discriminator is to pre- 

ict whether the sample comes from the human set or is a fake 

reated by the Generator. During the training phase, the GAN ar- 

hitecture will improve the ability of the Generator to fool the 

iscriminator. This architecture turns latent space points defined 

y the random seed into a classification decision: ’ Bot ’ (from the 

enerator) or ’ Human ’. This learning process is guided by the real 

ouse trajectories from the Mouse DB. During the GAN training, 

he weights of the Discriminator ( w D ) remain frozen. The iterative 

raining process will update the weights w G of the Generator in a 

ay that makes Discriminator more likely to predict ’ Human ’ when 

ooking at synthetic mouse trajectories. If the Discriminator is not 

rozen during this process, it will tend to predict ’ Human ’ for all 

amples. The Discriminator is trained (weights w D updated) after 

he update of the weights of the Generator ( w G ). This process is 

epeated iteratively (50 epochs in our experiments). Once the Gen- 

rator is trained this way, then we can use it to synthesize mouse 

rajectories very similar to the human ones. 

The topology employed in the Discriminator consist of two 

STM (Long Short-Term Memory) layers (with 128 and 64 units re- 

pectively, with ’ LeakyReLU ’ activation) followed by a dense layer 

with 1 unit and ’ Sigmoid ’ activation). The dense layer of the Dis- 

riminator is used as a classification layer to distinguish between 

ot and real mouse trajectories (’ Binary Cross-Entropy ’ loss func- 

ion). For the Generator, we employ two LSTM layers (with 128 and 

4 units respectively, with ’ ReLU ’ activation) followed by a dense 

ayer with 2 units (one unit for build each { ̂ x , ˆ y } mouse coordi- 

ates) and ’ TimeDistributed ’ activation. 

The GAN architecture used in BeCAPTCHA follows the tradi- 

ional approach proposed in [34] , with an specific topology devel- 

ped to capture the characteristics of mouse trajectories. For com- 

arison with other state-of-the-art Generative Adversarial Architec- 

ures, we also added an implementation of the Time-GAN (TGAN), 

rstly proposed in [35] . According to the authors, TGAN models are 

etter situated to work with time series data. The addition of the 

mbedding network jointly with a supervised loss function helps 

n the mapping process between the data features and latent space 

oints during the adversarial training. Thanks to this, the TGAN ar- 
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Fig. 4. The proposed architecture to train a GAN Generator of synthetic mouse trajectories. The Generator learns the human features of the mouse trajectories and generate 

human-like ones from Gaussian Noise. Note that the weights of the Discriminator w D are trained after the update of the weights of the Generator w G . 

Fig. 5. Examples of mouse trajectories and their velocity profiles employed in this work: A is a real one extracted from a task of the database; B and C are synthetic 

trajectories generated with the GAN network; D , E and F are generated with the Function-based approach. Note that for each velocity profile ( D = Gaussian, E = constant, F 

= logarithmic), we include the three Function-based trajectories (linear, quadratic, and exponential). 
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hitecture is able to learn the underlying temporal dynamics of the 

ata to generate more realistic synthetic samples. For our imple- 

entation of TGAN we keep the same typologies for both Genera- 

or and Discriminator as done in our traditional GAN to allow for 

 fair comparison. 

Both GAN and TGAN architectures were trained using 60% of the 

uman mouse trajectories in the database. Training details: learn- 

ng rate α = 2 × 10 −4 , Adam optimizer with β1 = 0 . 5 , β2 = 0 . 999 ,

= 10 −8 , 50 epochs with a batch size of 128 samples for both Gen-

rator and Discriminator. The architectures were implemented in 

ython with Keras-Tensorflow libraries. 

Figure 5 shows two examples (trajectories B and C) of synthetic 

ouse trajectories generated with the GAN network and the com- 

arison with a real one. We can observe high similarity between 

he two synthetic examples and the real one. Human mouse pat- 

erns such us the initial acceleration and the final trajectory fine 

orrection that we discussed before are automatically learned by 

he GAN network and reproduced in the synthetic trajectories gen- 

rated. 

Figure 6 shows six feature distributions obtained from human 

nd synthetic trajectories. The distributions comprise three fea- 

ures from the Sigma-Lognormal set and other three from the 

lobal feature set [16] . The feature set proposed in [16] consists of 
b

7 
 global features: duration, distance, displacement, average angle, 

verage velocity, and move efficiency (distance over displacement). 

he distributions obtained from the synthetic samples showed 

haracteristics similar to the human ones. The larger differences 

an be seen in the feature distance, where the human samples 

howed two distributions for short and long trajectories. Note that 

hese features can be modified during the generation method to 

roduce trajectories with distances similar to the target distribu- 

ions. 

. Experiments 

.1. BeCAPTCHA-Mouse benchmark: Database 

The human mouse trajectories employed in this work were ex- 

racted from Shen et al. database [36] , which is comprised of more 

han 200K mouse trajectories acquired from 58 users who com- 

leted 300 repetitions of the task. Acquisition of data from each 

ubject took between 30 days and 90 days. In each repetition, the 

ask was to click 8 buttons that appeared in the screen sequen- 

ially. This task was repeated twice in each session. Fig. 3 .a shows 

n example of the whole mouse movement task. Note that the 

uttons are placed in a particular order to generate mouse trajec- 
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Fig. 6. Probability distributions of six features from: (Up) Lognormal feature set and (Down) global feature set [16] ) for Human, function-based, GAN, and TGAN mouse 

trajectories. 

Table 3 

Bot detection accuracy ( % ) obtained from all the 8 trajectories for each of the feature sets. VP (Velocity Profile): VP1 

= constant velocity, VP2 = initial acceleration, VP3 = initial acceleration and final deceleration. 

Bot: Function-based 

Linear Quadratic Logarithmic 

Feature Set VP1 VP2 VP3 VP1 VP2 VP3 VP1 VP2 VP3 Bot:GAN Bot:TGAN 

Global [16] 99.7 99.6 99.7 95.3 96.7 96.8 97.2 96.5 97.3 99.8 99.7 

Neuromotor 99.1 98.7 99.3 96.9 96.3 94.7 96.3 95.2 94.7 98.0 95 . 6 

Ours 99.9 99.7 99.8 98.0 99.0 98.4 98.2 98.9 98.9 99.7 99 . 6 
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ories with different directions (rightwards, upwards, downwards, 

nd oblique) and different lengths. 

In the present work, we define a mouse trajectory as the mouse 

isplacement that occurs between two click buttons. Therefore, the 

ouse movement task of Fig. 3 .a is composed of 8 mouse trajec- 

ories. The raw data recorded during the acquisition process was: 

he mouse position over the screen ({ x , y } axis position in pixels),

he event (movement or click), and timestamp of the event. The 

xperiments presented in this work are performed using a subset 

f the database including 35 samples (randomly chosen) from each 

f the 58 users available (more than 5K trajectories in total). 

Figure 3 (c) shows the decomposition of a synthetic function- 

ased trajectory with linear shape. We can observe the huge dif- 

erences between both lognormal decompositions (the human tra- 

ectory and the synthetic one) by looking at the shape of the log- 

ormal signals. The synthetic trajectory has wider lognormals and 

hey are more symmetric than the human ones. Note that the 

igma-Lognormal algorithm introduces a low-pass filter to the in- 

ut signal, that is the reason why the velocity profile of the syn- 

hetic trajectory ( Fig. 3 .c) is a bit smoothed, but the difference be-

ween both synthetic and human velocity profiles is still patent. 

The BeCAPTCHA-Mouse Benchmark is composed of 5K human 

rajectories and 10K synthetic trajectories generated according to 

he two methods proposed (5K function-Based and 5K GAN trajec- 

ories). Both real and synthesized samples are characterized by a 

ariety of lengths, directions, and velocities. 

.2. Results and comparison with previous approaches 

The main contributions of this work are: 1) a novel feature set 

ased on the combination of global and neuromotor characteristics 
8 
f the mouse trajectories; 2) two methods to generate synthetic 

ouse trajectories for improving training and evaluation of bot de- 

ection methods. 

To validate the first contribution, we have extracted the pro- 

osed feature set from human and synthetic mouse trajectories. 

or this first experiment, we use a Random Forest (RF) classifier 

ecause of its best performance among all classifiers evaluated (as 

e will see in the next section). For each RF, we train the classifier 

y using 70% of all samples (up to 1,500 samples available for each 

ype of trajectory between both synthetic and real ones) randomly 

hosen as the training set. The other 30% samples are employed for 

valuation. The results are obtained by repeating each experiment 

 times and averaging, with a standard deviation of σ ∼ 0 . 1% . All 

lassifiers employed in this section were implemented in Python 
ith the scikit-learn library. 

The first experiment is aimed to demonstrate the performance 

f the proposed feature set. The Table 3 present the results when 

eatures from all 8 trajectories are combined (each RF is trained us- 

ng features from all 8 trajectories). Additionally, we compare the 

erformance achieved with existing approaches [16] . The feature 

et proposed in [16] consists of 6 global features: duration, dis- 

ance, displacement, average angle, average velocity, and move ef- 

ciency (distance over displacement). The results suggest that the 

eature set proposed in [16] outperforms the neuromotor features 

roposed here only for GAN and TGAN synthetic trajectories. The 

est performance is obtained overall with an extended set com- 

osed by both sets of features. The extended set has the best re- 

ults with an average around 99% of accuracy independently of the 

ype of synthetic trajectory. 

The second experiment is aimed to demonstrate the perfor- 

ance of classifiers when training with both human and bot sam- 
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Table 4 

Bot detection accuracy ( % ) of the different feature sets for models trained with and without synthetic samples (bots) 

and evaluated using human samples and bots samples. SVM (SVM with Radial Basis Function kernel), RF (Random 

Forest), KNN (K-Nearest Neighbors), F (bots generated with the function-based method), G (bots generated with the 

GAN method). 

Training Samples 

Only Humans [16] Humans + Bots (F) Humans + Bots (G) Humans + Bots (F,G) 

Feature Set SVM RF KNN SVM RF KNN SVM RF KNN SVM RF KNN 

Global [16] 63.5 57.1 53.4 65.7 57.3 62.1 51.6 59.1 52.0 96.6 99.5 98.2 

Neuromotor 60.0 60.3 52.4 54.1 62.8 63.5 58.4 58.3 60.2 97.2 97.3 93.0 

Ours 65.2 62.0 53.7 65.8 61.0 64.1 60.1 63.0 61.2 98.2 99.7 96.8 

Table 5 

Bot detection accuracy ( % ) obtained for each of the 8 trajectories and the Neuromotor feature set. The accuracies 

were obtained using the same RF classifiers employed for Table 3 . VP (Velocity Profile): VP1 = constant velocity, VP2 

= initial acceleration, VP3 = initial acceleration and final deceleration. 

Bot: Function-based 

Linear Quadratic Logarithmic 

Trajectories VP1 VP2 VP3 VP1 VP2 VP3 VP1 VP2 VP3 Bot: GAN Bot: TGAN 

8 → 1 98.6 96.3 99.0 91.0 91.0 92.3 89.0 88.6 89.3 96.9 97 . 4 

1 → 2 99.7 98.6 97.2 91.6 98.3 92.2 95.8 92.3 92.5 96.7 97 . 7 

2 → 3 99.4 99.1 99.7 95.3 96.4 88.0 94.4 98.9 90.5 99.9 93 . 9 

3 → 4 99.7 97.5 97.0 94.2 96.6 90.5 94.2 95.1 93.0 99.7 94 . 0 

4 → 5 99.9 98.0 99.4 95.5 94.7 92.5 93.9 95.4 93.9 97.0 95 . 4 

5 → 6 99.9 98.9 99.1 92.8 97.5 91.4 93.3 95.1 94.4 98.3 95 . 5 

6 → 7 99.1 98.3 98.6 90.2 89.7 93.6 88.8 92.3 93.6 98.1 98 . 0 

7 → 8 97.0 96.6 97.5 92.2 93.3 93.0 88.3 88.6 93.1 98.7 98 . 1 

Table 6 

Bot detection performance metrics in % (Acc = Accuracy, AUC = Area Under the Curve, Pre = Precision, Re = Recall, and F1) for the different 

scenarios: Function-based, GAN, and Combination. 

Bot Generation Method 

Function-based GAN Function-based + GAN 

Classifiers Acc AUC Pre Re F1 Acc AUC Pre Re F1 Acc AUC Pre Re F1 

SVM 98.0 99.4 98.6 96.7 97.7 98.5 99.6 99.2 97.9 98.5 98.2 99.4 97.3 99.0 97.4 

KNN 93.4 98.1 93.6 93.2 93.5 94.1 99.4 99.8 88.3 93.6 92.0 97.4 90.7 93.2 92.1 

RF 98.5 99.8 98.6 98.8 98.7 99.7 99.9 99.5 99.9 99.7 98.7 99.9 98.8 99.0 99.0 

MLP 94.6 94.1 95.0 94.2 94.6 93.4 93.5 95.4 92.3 93.9 92.2 91.5 89.8 95.4 92.5 

LSTM 98.2 99.8 97.6 98.8 98.2 99.2 98.0 99.7 98.9 99.5 97.3 99.7 96.7 97.9 97.3 

GRU 98.4 99.4 98.5 98.6 98.6 99.3 99.2 99.2 90.2 99.0 99.8 99.8 94.4 99.0 96.9 
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les generated with the proposed methods (second contribution). 

or this experiment we propose three different bot detection sce- 

arios according to the data employed to train and evaluate the 

ot detection approaches: i) training only with the real samples 

usually referred as anomaly detector), ii) employing one type of 

ynthetic samples for training and the other one for testing (ag- 

ostic classification), and iii) employing the real and both kinds of 

ynthetic samples to train and test. The aim of the experiment is to 

valuate to what extent the inclusion of synthetic samples in the 

earning framework serves to improve the accuracy of the model 

n comparison with previous methods based only on human data 

16] . For this experiment we included the three classifiers with the 

est performances reported in [16] : SVM with Radial Basis Func- 

ion (RBF) kernel, Random Forest (RF) and K-Nearest Neighbors 

KNN). Note that the bot detection method proposed in [16] was 

ased exclusively on human samples trained as an anomaly detec- 

or. In this work, we explore new learning frameworks using both 

uman and bot samples during training and evaluation. 

Table 4 shows the bot detection accuracy for the different sce- 

arios depending of the training data employed. As in the previous 

xperiment, the classifiers are trained using trajectories from all 8 

irections and synthetic samples from all 10 types of attacks. The 

esults show that the synthetic samples and the feature set pro- 
9 
osed in this work allows to reduce the error by 95 . 4% in com-

arison with the previous existing method based exclusively on 

uman samples [16] . As can be seen, the classifier trained only 

ith real samples was not capable to detect most of the attacks 

ith accuracy rates lower than 70% either for global features and 

euromotor features. In the agnostic classification, the poor results 

chieved when training with one type of synthetic samples and 

esting with the other one suggest there is a huge complementarity 

mong both generation methods. These results suggest that future 

ddition of other synthetic generation methods could improve the 

erformance of bot detectors. The importance of synthetic samples 

s twofold: i) evaluation of bot detection algorithms under chal- 

enging attacks generated according to different methods; and ii) 

raining better detectors to model both human and synthetic be- 

aviors. The results in Table 4 show the potential of the synthetic 

amples and its usefulness to train better models capable to deal 

ith all types of attacks. 

.3. BeCAPTCHA-Mouse: Ablation study 

.3.1. Influence of trajectory characteristics 

In the first experiment we analyze the impact of the different 

uman mouse trajectories in the classification performance. The 
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Fig. 7. Accuracy curves ( % ) against the number of train samples ( 100 ≤ L ≤ 7 , 000 ) to train the different classifiers in Function-based (a), GAN (b), and Combination (c) 

classification scenarios. 

Table 7 

Performance metrics in % (AUC = Area Under the Curve, Acc, Pre, Re, and F1) for the different setups of GAN Discriminator in bot detection. In 

brackets the number of neurons for the first/second LSTM layer respectively used in the Discriminator. 

Bot Generation Method 

Function-based GAN Function-based + GAN 

Discriminators Acc AUC Pre Re F1 Acc AUC Pre Re F1 Acc AUC Pre Re F1 

LSTM (128/64) 89.9 93.2 88.5 90.0 89.3 96.8 99.6 95.0 98.7 96.8 89.6 93.9 89.2 90.0 89.6 

LSTM (64/32) 74.0 72.1 67.0 95.6 78.7 99.9 99.9 99.9 99.9 99.9 73.0 76.1 65.9 96.0 78.1 

LSTM (32/16) 81.4 80.2 77.9 88.0 82.6 99.7 98.9 99.6 99.9 99.8 78.8 76.0 74.4 88.0 80.6 

LSTM (16/8) 56.8 58.6 54.2 86.8 66.7 56.2 91.3 53.3 99.9 69.5 64.0 67.0 59.5 87.2 70.7 
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xperiments are divided according to the 8 real mouse trajectories 

resent in the whole task. This means that we classify at trajectory 

evel (i.e. the mouse trajectory performed between two consecutive 

lick buttons) instead of classifying the whole task. This is because 

he task was designed to take into account trajectories with differ- 

nt directions and lengths, and therefore, different muscles config- 

rations are involved in each trajectory. In this way, we can ana- 

yze which mouse trajectories are better to discriminate between 

umans and bots. We train 11 × 8 different RFs (one for each type 

f attack and mouse trajectory, see columns in Table 5 ) using both 

uman and synthetic trajectories.‘ 

Table 5 shows the results for the different bot generation meth- 

ds and the 8 trajectories derived from the movements between 

he 8 keypoints (plotted in Fig. 3 .a). The table shows the bot clas-

ification accuracy in % (human vs bot). First, comparing among the 

ifferent trajectories, we can observe that the shorter ones ( 8 → 1 , 

 → 7 , and 7 → 8 ) show higher classification errors compared to

he larger ones. Short trajectories generate less neuromotor infor- 

ation: initial acceleration, final deceleration, and trajectory cor- 

ections are less pronounced in short trajectories. Second, loga- 

ithmic trajectory shapes achieve the worst classification perfor- 

ance, as we expected, because the shape of logarithmic functions 

t better the human trajectories shapes. Third, the most signifi- 

ant parameter when synthetizing trajectories is the velocity pro- 

le. When VP = 3 (i.e., initial acceleration and final deceleration), 

he synthetic trajectories are able to fool the classifier up to 17% of 

he times. This confirms that the velocity profile of human mouse 

rajectories plays and important role when describing human fea- 

ures in mouse dynamics. Four, the GAN and TGAN Generators (last 

wo columns in Table 5 ) result in lower classification errors com- 

ared with the function-based method. This is surprising after vi- 

ualizing the high similarity between human and GAN-generated 

rajectories (see Fig. 5 A vs B and A vs C). We interpret this result

ith care: on the one hand it demonstrates that our bot detection 

pproach is powerful against realistic and sophisticate fakes, but on 

he other hand both GAN and TGAN Generators can be improved to 

etter fool our detector. Although the synthetic samples generated 

ith them seems very realistic to the human eye, the RF classi- 

ers were capable of detecting synthetic samples with high accu- 
10 
acy. These high classification rates suggest that adversarial learn- 

ng Generators introduce patterns that allow its detection [33] . 

.3.2. Influence of the classifier 

For the following experiments, we performed an ablation study 

n different classifiers to analyze their performance in bot de- 

ection for the different bot generation methods proposed in this 

ork: Function-Based, GAN, and their combination. It is worth not- 

ng that all classifiers are trained using trajectories from all 8 di- 

ections and synthetic samples from all 10 types of attacks, as re- 

orted in Table 4 to allow fair comparisons. 

Table 6 shows the performance of classification algorithms: 

upport Vector Machine (SVM) with a Radial Basis Function (RBF), 

-Nearest Neighbors (KNN) with k = 10 , Random Forest (RF), 

ulti-Layer Perceptron (MLP), and 2 Recurrent Neuronal Networks 

RNN), (one composed by Long Short-Term Memory (LSTM) units 

nd the other with Gated Recurrent Units (GRU). The RNNs (i.e. 

STM and GRU) were trained directly with the raw data (i.e. the 

equence of points { x , y } of the mouse trajectories) instead of ex-

racting the global features (i.e. Neuromotor + Baseline [16] ) as 

one with the statistical classifiers. The RNNs have the same ar- 

hitecture as the Discriminator of the GAN: two recurrent layers of 

28 and 64 units respectively, followed by a dense layer to clas- 

ify between fake and real mouse trajectories. All classifiers were 

rained and tested following the same experimental protocol as in 

ection 4.2 , using 70% of all samples (up to 10K samples between 

oth real and synthetic samples when combining all types of tra- 

ectories) randomly chosen as the training set (named L in this sec- 

ion, with L = 7 , 0 0 0 ). The results are reported in terms of Accu-

acy, AUC (Area Under the Curve), Precision, Recall, and F1. 

First, we can observe that the best results among the statistical 

lassifiers are achieved by the RF classifier followed by the SVM. 

NN and MLP perform worst, although all classifiers have accuracy 

ates over 90% . Secondly, among the different RNNs, the configura- 

ion with LSTM units performs sightly better than the one with 

RU units, even though both recurrent network setups are out- 

erformed by the RF classifier. These results suggest that the fea- 

ure set chosen to train and test the statistical classifiers is suitable 

or the mouse bot detection task, outperforming other approaches 
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Fig. 8. Block diagram of multimodal bot detection. The response of the bot detector is a combination of responses from different experts. The bot detector proposed in this 

work can be used independently or in combination with existing bot detectors. 
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9 https://github.com/BiDAlab/BeCAPTCHA-Mouse 
ased on deep neuronal networks architectures. Nonetheless, the 

NNs demonstrate its capacity to extract useful features from the 

aw data. 

.3.3. Influence of the number of training samples 

In the next experiment we explore whether the number of 

raining samples ( L ) plays and important role in the classification 

erformance. We want to highlight that the training and the evalu- 

tion sets have the same number of human ( L h ) and synthetic ( L s )

amples, i.e.: L h = L s = L/ 2 . 

For this, in Fig. 7 we plot the accuracy curves of the previ- 

us classifiers according to the number of samples employed in 

heir training set. As expected, the accuracy improves in all scenar- 

os when we enlarge the number of train samples. However, there 

re important differences between the statistical and the RNNs ap- 

roaches. Meanwhile all statistical classifiers achieve their maxi- 

um performance with L = 500 , both LSTM and GRU are not able

o reach the same performance with only 500 train samples. In 

act, they need at least L = 2 , 0 0 0 to perform as well as the statis-

ical classifiers. This shows the superior performance of the statis- 

ical classifiers in those scenarios where the number of samples to 

rain the classifiers are scarce. 

.3.4. Using the GAN discriminator as classifier 

Finally, in the last experiment we replaced the previously intro- 

uced RNNs classifiers by the Discriminator model of the GAN ar- 

hitecture. The idea is to analyze in what extent the Discriminator 

f the GAN Network trained only with the synthetic samples gen- 

rated by the Generator (and the real ones) during the GAN train- 

ng could perform better in classification than the previous RNNs 

rained from scratch. For this, we tuned the number of neurons of 

he two LSTM layers of the Discriminator and trained a new GAN 

etwork for each Discriminator setup proposed. 

Table 7 shows the performance of 4 GAN Discriminator se- 

ups for the 3 classification scenarios proposed: the function- 

ased, GAN, and their Combination. As we expected, the perfor- 

ance using GAN classification is much better than the perfor- 

ance achieved by the LSTM and GRU networks of the previous 

xperiment, due to the Discriminators were trained specifically to 

iscriminate between the synthetic mouse trajectories generated 

y the GAN Generator and the human ones. However, the Discrim- 

nators also classify quite well in the function-based scenario, even 

hough no Function-based sample was employed to train them 

 L s = 0 ). In fact, as we increase the complexity of the Discriminator

ith more neurons in both layers, the performance improves up to 

0% of accuracy, close to the results achieved by the LSTM and GRU 

etworks trained with L s = 7 , 0 0 0 samples. These results show the

otential of the GAN architecture, not only to generate synthetic 

ouse trajectories with similar shape to the human ones with the 

enerator, but also for classification purposes, as the Discriminator 
11 
s able to classify between human and bot trajectories even against 

ynthetic trajectories not seen during the training phase. 

. Conclusions and future work 

We have explored behavioral biometrics for bot detection dur- 

ng human-computer interaction. In particular, we have analyzed 

he capacity of mouse dynamics to describe human neuromotor 

eatures. Our conclusions in comparison to state-of-the-art works 

uggest that there is unexploited potential of mouse dynamics as a 

ehavioral biometric for tasks such as bot detection. 

In particular, we have proposed BeCAPTCHA-Mouse, a bot de- 

ection algorithm based on mouse dynamics, and a related bench- 

ark 9 , the first one public for research in bot detection and other 

ouse-based research areas including HCI, security, and human 

ehavior. 

The proposed approach is able to discriminate between humans 

nd bots with up to 98 . 7% of accuracy, even with bots of high re-

lism, and only one mouse trajectory as input. This proves the po- 

ential of mouse dynamics for Turing tests. Additionally, we also 

rovided an exhaustive ablation study on different classifiers to ex- 

lore the capacity of these algorithms for the bot detection task. 

andom Forests (RF) have demonstrated to perform the best in all 

cenarios evaluated followed by an LSTM network. However, when 

he number of train samples is reduced ( L ≤ 1 , 0 0 0 ), the LSTM is

ot able to classify as well as the RF classifier. In fact, the LSTM 

an be replaced by the Discriminator of the GAN network when 

he lack of bot samples to train the system makes the deep learn- 

ng approaches unavailable, showing a superior performance even 

gainst bot samples not seen during the training phase. This re- 

ults suggest that the GAN architecture is a powerful tool not only 

o generate human-like mouse trajectories, but also to detect bot 

amples from other synthetic generation methods. 

As future work, we aim at improving the neuromotor feature 

et by calculating secondary features inferred from the main ones. 

lso, we propose to improve the GAN model in two ways: i) com- 

ine both synthesis methods by using the function-based trajecto- 

ies as the input of the GAN model instead of Gaussian noise, and 

i) experimenting with different amount of layers/units in the GAN 

enerator to increase the variety of the synthetic mouse trajecto- 

ies generated. Both techniques could generate more sophisticate 

nd human-like trajectories. Finally, in this paper we only consid- 

red mouse trajectories acquired from mouse devices. We also pro- 

ose to analyze mouse-pad trajectories normally performed when 

sing laptops as another line of research. 

The exploitation of behavioral biometrics for bot detection is an 

pen research line with large opportunities and challenges. These 

hallenges include the study of other ways of interaction beyond 

https://github.com/BiDAlab/BeCAPTCHA-Mouse
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ouse such as keystroking [20,21] or touchscreen gestures [23] for 

ot detection, and their application to mobile scenarios [14] . We 

ant to highlight that behavioral CAPTCHAs are compatible with 

revious CAPTCHA technologies and it could be added as a new 

ue to improve existing bot detection schemes in a multiple clas- 

ifier combination [30] (see Fig. 8 ). 

Recent fusion techniques incorporating contextual information 

30] will be also explored for improving BeCAPTCHA. Finally, we’ll 

ry to improve our methods taking advantage of existing large- 

cale human-computer interaction datasets [24] and existing mod- 

ls [37] by using transfer learning methods [38] . 
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