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ABSTRACT

We first study the suitability of behavioral biometrics to distinguish between computers and humans,
commonly named as bot detection. We then present BeCAPTCHA-Mouse, a bot detector based on: i) a
neuromotor model of mouse dynamics to obtain a novel feature set for the classification of human and
bot samples; and ii) a learning framework involving real and synthetically generated mouse trajectories.
We propose two new mouse trajectory synthesis methods for generating realistic data: a) a function-
based method based on heuristic functions, and b) a data-driven method based on Generative Adversarial
Networks (GANs) in which a Generator synthesizes human-like trajectories from a Gaussian noise input.
Experiments are conducted on a new testbed also introduced here and available in GitHub: BeCAPTCHA-
Mouse Benchmark; useful for research in bot detection and other mouse-based HCI applications. Our
benchmark data consists of 15,000 mouse trajectories including real data from 58 users and bot data with
various levels of realism. Our experiments show that BeCAPTCHA-Mouse is able to detect bot trajectories
of high realism with 93% of accuracy in average using only one mouse trajectory. When our approach
is fused with state-of-the-art mouse dynamic features, the bot detection accuracy increases relatively by
more than 36%, proving that mouse-based bot detection is a fast, easy, and reliable tool to complement
traditional CAPTCHA systems.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, the security applications have had a
key role in the development of machine learning technologies.
Thus, research areas such as fingerprint identification, face recog-
nition, iris recognition, or person re-identification have attracted
the interest of the research community promoting continuous ad-
vances in their fields. These advances resulted in more accurate
physical security systems and advances in state-of-the-art. How-
ever, security threats are moving from the physical domain to the
digital domain. The Cybercrime is increasing in both percentage
of citizens affected and cost in the global economy'. The crimi-
nals become more and more sophisticated and their crimes have a
cross-border scope. The challenges and potential benefits of tech-
nologies developed to serve in this fight are large and the Pattern
Recognition community can play an important role in this scenario.
Among these challenges, the present work is focused on the detec-
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tion of bots and how pattern recognition techniques and machine
learning frameworks can be used to develop new approaches.

How to distinguish between human users and artificial intelli-
gence during computer interactions is not a trivial task. This chal-
lenge was firstly discussed by Alan Turing in 1950. He investigated
whether machines could show an intelligent behavior, and also
how humans could be aware of these artificial behaviors. For this,
he developed the famous Turing Test, commonly named as The Imi-
tation Game, in which a human evaluator would judge natural lan-
guage conversations between a human and a computer designed
to generate human-like responses. The Turing Test was both influ-
ential and widely criticized and became an important concept in
the artificial intelligence field [1]. However, at the epoch of Alan
Turing research, the problem of machines acting like humans were
commonly associated to science-fiction topics.

Nowadays, boosted by the last advances of machine learn-
ing technologies and worldwide connections, that ’science-fiction
topic’ becomes a real hazard. As an example, bots are expected to
be responsible for more than 40% of the web traffic with more than
43% of all login attempts to come from malicious botnets in the
next years?. Malicious bots cause billionaire losses through web

2 https://resources.distilnetworks.com/white- paper-reports/bad-bot-report-2019
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scraping, account takeover, account creation, credit card fraud, de-
nial of service attacks, denial of inventory, and many others. More-
over, bots are used to influence and divide society (e.g. usage of
bots to interfere during Brexit voting day [2], or to spread anx-
iety and sadness during the COVID-19 outbreak®“ through Twit-
ter). Bots are becoming more and more sophisticated, being able to
mimic human online behaviors. On the other hand, algorithms to
distinguish between humans and bots are also getting very com-
plex. We can distinguish two types of bot detection methods in
response to those sophisticated bots:

o Active Detection. Traditionally named as CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans
Apart), these algorithms determinate whether or not the user
is human by performing online tasks that are difficult for soft-
ware bots to solve while being easy for legitimate human users
to complete. Some of the most popular CAPTCHA systems are
based on: characters recognition from distorted images (text-
based), class-objects identification in a set of images (image-
based), and speech translation from distorted audios (audio-
based).

Passive Detection. These detectors are transparent and analyze
the users behavior while they interact with the device. The last
version of Google reCAPTCHA v3 replaces traditional cognitive
tasks by a transparent algorithm capable of detecting bots and
humans from their web behavior®. Other researchers [3], de-
scribe browsing behavior of web users for detection of DDoS
Attacks (Distributed Denial of Service).

Although these algorithms are broadly used, they present lim-
itations. First of all, ensuring a very accurate bot detection makes
the tasks difficult to perform even for humans. Second, most of the
CAPTCHA systems can be easily solved by the most modern ma-
chine learning techniques. For example, the text-based CAPTCHA
was defeated by Bursztein et al. [4] with 98% accuracy using a
ML-based system to segment and recognize the text. In [5], the
authors designed an Al-based system called unCAPTCHA to break
Google’s most challenging audio reCAPTCHAs. The last version of
the Google CAPTCHA, named reCAPTCHAv3, was systematically
fooled in [6] by synthesizing mouse trajectories using reinforce-
ment learning techniques. Third, these algorithms process sensi-
tive information and there are important concerns about how they
comply with new regulations such as the European GDPRS. Fourth,
the CAPTCHA systems become a great barrier to people with vi-
sual or other impairments. Finally, the Turing Test was designed as
a task in which machines had to prove they were human, mean-
while in current CAPTCHA systems humans have to prove they are
not machines (e.g. Iam not a robot from Google’s). This means that
the responsibility to prove the user’s 'humanity’ falls over human
users instead of bots. At this point, there is still a large room for
improvement towards reliable bot detection able to stop malicious
software not bothering human users during natural web browsing.

On the other hand, Machine Learning and Pattern Recognition
communities have made great advances during the last decades.
These advances have boosted several research fields including
Computer Vision, Audio Processing, and Natural Language Process-
ing. Nonetheless, the application of these advances to the bot de-
tection field has been rather low. While previous works [4,5] focus
their efforts in beating the existing CAPTCHA systems and expos-
ing their vulnerabilities with the latest advances in machine learn-

3 www.washingtonpost.com/science/2020/03/17/analysis- millions-coronavirus-
tweets-shows-whole-world-is-sad/

4 https://www.sciencealert.com/bots-are-causing-anxiety-by-spreading-
coronavirus-misinformation

5 https://www.google.com/recaptcha/intro/v3.html

6 https://complianz.io/google-recaptcha-and-the-gdpr-a-possible-conflict/

Pattern Recognition 127 (2022) 108643

ing techniques, we use them to develop better bot detectors and
harden the existing ones.

Biometric recognition refers to the automated recognition of
individuals based on their physiological (e.g. fingerprint, face)
and behavioral (e.g. keystroke, gait) characteristics [7-9]. Utiliz-
ing behavioral-based biometrics for improving the security against
bots and other kind of attacks has been only studied very timidly
[10]. Some examples in this regard using behavioral features to
train cognitive models to parameterize the user behavior and de-
tect patterns useful to improve the security of digital services can
be found in [11-13].

Behavioral biometrics have been applied successfully in bot de-
tection for mobile devices scenarios [14]|. The method proposed
in [14] combines information from the accelerometer and touch-
screen sensors. However, in that work the software-based sam-
pling rate of mobile devices and the simplicity of touch over
touchscreens limited the results. Here we apply similar ideas to
[14] considering in this case mouse dynamics instead of touch-
screen gestures, a richer signal in terms of time resolution, nat-
uralness, and neuromotor information [15].

To overcome these limitations, our contributions with this work
go a step forward in the bot detection field for mouse dynamics,
incorporating behavioral modeling and improved learning methods
based on realistic synthetic samples (see Fig. 1). The two main con-
tributions of this work are:

e (1) We propose BeCAPTCHA-Mouse, a new bot detector based
on neuromotor features [15] obtained from kinematics models
of the mouse trajectories. BeCAPTCHA-Mouse is trained with
human and synthetic data generated to mimic human-being
characteristics.

(2) In order to train and evaluate BeCAPTCHA-Mouse and fu-
ture approaches, we propose two new methods for generating
realistic mouse trajectories: i) a Function-based method based
on heuristic functions, and ii) a data-driven method based on
GANs in which a Generator synthesizes human-like trajectories
from a Gaussian noise input. We demonstrate the usefulness
of these synthetic trajectories to train more accurate bot de-
tectors. These Generators can be helpful in many HCI research
areas and applications.

These main contributions are supported by an extensive experi-
mentation developed on the basis of reproducible frameworks and
a new publicly available dataset. The secondary contributions of
this work can be summarized as:

e (3) Our experiments consider a large number of state-of-the-art
classifiers and provide a detailed study, exposing the strengths
and weakness of the classifiers in different scenarios. The ex-
periments include: Support Vector Machine (SVM), Random
Forest (RF), K-Nearest Neighbors (KNN), Multi-Layer Perceptron
(MLP), and deep learning architectures such us Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRUs). These algo-
rithms are evaluated for mouse trajectories with different char-
acteristics (e.g. direction, length) and learning strategies (e.g.
number of samples, supervised, non supervised).

« (4) We present BeCAPTCHA-Mouse Benchmark’, the first pub-
lic benchmark for mouse-based bot detection including 10,000
human and synthetic trajectories generated according to 10 dif-
ferent types of synthesized behaviors. The inclusion of vari-
ous types of synthetic samples (both for training and testing
BeCAPTCHA-Mouse) allows to train strong bot detectors. Also,
it allows comprehensive evaluations under various conditions
including the worst-case scenario in which bot attacks mimic
human behavior using latest machine learning advances. This

7 https://github.com/BiDAlab/BeCAPTCHA-Mouse
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Fig. 1. Learning framework of BeCAPTCHA-Mouse: (1) We propose two novel methods to generate realistic synthetic mouse trajectories that allow to train and evaluate bot
detection systems based on mouse dynamics; (2) We propose a neuromotor model to characterize Human and Synthetic Mouse Trajectories; (3) We evaluate the proposed
features using multiple classifiers and learning scenarios; and (4) The proposed Generators can be also helpful for other HCI applications.

benchmark can be helpful for other HCI applications involving
mouse dynamics beyond bot detection.

The main drawback of traditional CAPTCHA methods is that
they only measure cognitive human skills (e.g. character recogni-
tion from distorted images, class-objects identification in a set of
images, or speech translation from distorted audios). Trying to en-
sure a very accurate bot detection makes these CAPTCHAs diffi-
cult to perform even for humans. The main goal of our proposed
method is to focus more on human behavioral skills rather than
on cognitive ones. Neuromotor skills reveal human features useful
for bot detection just with simple mouse trajectories. To the best
of our knowledge, there are only a very limited number of works
using mouse biometrics for bot detection. The most related to our
research are [16] and [6]. In [6] they synthetize mouse trajecto-
ries over a grid to hack the Google reCAPTCHA v3 algorithm, and
in [16] they extract global features (e.g. duration, average speed,
displacement) from mouse and keystroke patterns to conduct a
case study in the detection of blog bots for online blogging sys-
tems. While previous work in mouse dynamics ([16,17]) focused
on basic cues like duration or average speed, in this work we go
a step forward by focusing on the analysis and synthesis of entire
mouse trajectories. We propose to use the Sigma-Lognormal model
to extract human features that characterizes better human behav-
iors and novel generation methods to synthesize human-like tra-
jectories to improve the training and evaluation of these methods.
As shown in Fig. 2, our proposed mouse detection algorithm can
be added in a transparent setup and enhance traditional CAPTCHAs
based on cognitive challenges, for example when you select the
images in a visual CAPTCHA, or when you navigate through a web-
site.

The rest of the paper is organized as follows. In Section 2 we
first discuss the usage of mouse dynamics in the context of behav-
ioral biometrics. Section 3 presents our bot detector BeCAPTCHA-
Mouse. Section 3.1 introduces the mouse dynamics neuromotor
model and the features employed for the classification of bot and
human trayectories. Section 3.2 describes the proposed methods
for generating synthetic mouse trajectories. Section 4 describes
our experimental framework (BeCAPTCHA-Mouse Benchmark) and
presents the results obtained. Finally, Section 5 summarizes the
conclusions and future works.

2. Mouse dynamics in the context of behavioral biometrics

Human-Machine interaction generates a heterogeneous flow of
data from multiple channels. This interaction generates patterns
affected by: humans (e.g. attitude, emotional state, neuromotor,
and cognitive abilities), sensor characteristics (e.g. ergonomics, pre-
cision), and task characteristics (e.g. easy of use, design, useful-

Table 1

Biometric characteristics typically obtained in human-computer interaction. We rate
each factor with * (low), ** (medium), and *** (high). Uniq = Uniqueness, Univ =
Universality, Meas = Measurability, Perf = Performance, Circ = Circumvention, Acce
= Acceptability, Cog = Cognitive, Neu = Neuromotor.

Uniq. Univ. Meas.  Perf.  Circ.  Acce. Cog. Neu.

Keystroke *x o ok ok o o ok ok
Stylometry — * * * * * * o X
Web-log o * ok o * x ok *
Mouse * o ok Rk * *rk P o

ness). Modeling the user behavior using these heterogeneous data
streams is an ongoing challenge with applications in a variety
of fields such as security, e-health, gaming, or education [8,9,18].
Among this variety of data sources, in the present paper we con-
centrate in behavioral biometric signals [19].

The literature of behavioral biometrics in the context of
Human-Computer Interaction is large and includes several char-
acteristics, e.g.: keystroking [20,21], handwriting [22], touchscreen
signals [23,24], stylometry [25], and mouse dynamics [17]. Each
characteristic has its pros and cons, therefore, a single biometric
characteristic is usually not suitable for all applications. The bio-
metric research community has identified several factors that de-
termine the suitability of a biometric characteristic to be used in a
certain application [7].

Table 1 rates these factors for biometrics characteristics typ-
ically obtained from Human-Computer Interaction highlighting
Mouse Dynamics, the focus in the present paper. Note that we
added two factors related to the nature of the patterns obtained
from these characteristics (Cognitive and Neuromotor patterns)
with respect to the characteristics defined by [7].

Now focusing in mouse dynamics for biometrics, in [17] re-
searchers explored characteristics obtained from mouse tasks for
user recognition. They analyzed 68 global features (e.g. duration,
curvature, mean velocity) from mouse dynamics extracted during
login sessions. Their results achieve up to 95% authentication ac-
curacy for passwords with 15 digits. Besides, mouse dynamics can
be combined with keystroke biometrics for continuous authenti-
cation schemes [26]. The fusion of both biometric modalities has
been shown to outperform significantly each individual modality
achieving up to 98% authentication accuracy [27]. In [28], the au-
thors applied the Sigma-Lognormal Model based on the Kinematic
Theory [15] to compress mouse trajectories. They suggested that
mouse movements are the result of complex human motor control
behaviors that can be decomposed in a sum of primal movements.
In addition, in [29], the authors studied the relationship between
eye gaze position and mouse cursor position on a computer screen



A. Acien, A. Morales, J. Fierrez et al.

#® Mouse trajectory coordinates

" Mouse Clicks z
Select all soup below. A sample g
image is on the right. 3
x
H
e
£
°
S
3
>

N THO

Pattern Recognition 127 (2022) 108643

1650
1600
1550
1500
1450
1400
0.5 1 1.5 2 25 3 3.5

Time (s)
400
500
600
700
800
900
1000

0 0.5 1 1.5 2 25 3 3.5

Time (s)
30
@25
§20
215

8
° 10
>
5
0
0 0.5 1 15 2 25 3 3.5
Time (s)

Fig. 2. An application example of our proposed mouse bot detection algorithm in combination with a traditional image-based CAPTCHA. While the user completes the image
CAPTCHA task (cognitive challenge, left), our algorithm analyzes the mouse dynamics performed during the task ({x, y} coordinates and velocity profile, right).

during web browsing and suggested that there are regular patterns
of eye/mouse movements associated to the motor cortex system.

3. BeCAPTCHA-Mouse: Bot detection based on mouse dynamics

The mouse is a very common device and its usage is ubiqui-
tous in human-computer interfaces. Bot detection based on mouse
dynamics can be therefore applied either in active or passive de-
tectors.

Our BeCAPTCHA-Mouse bot detector is based on two main pil-
lars: 1) we use mouse dynamics to extract neuromotor features
capable to distinguish human behavior from bots (see Fig. 1); 2)
we generate synthetic mouse trajectories to improve the learning
framework of bot detectors®.

Mouse dynamics are rich in patterns capable of describing neu-
romotor capacities of the users. Note that we do not claim to re-
place other approaches (e.g. Google’s reCAPTCHA) by mouse-based
bot detection, our purpose is to enhance them by exploiting the
ancillary information provided by mouse dynamics (see Fig. 2).

Our proposed method for bot detection consists in character-
izing each mouse trajectory (real and synthetic) with a fixed-size
feature vector obtained from a neuromotor decomposition of the
velocity profile, followed by a standard classifier. Each trajectory
characterized in this way can be classified individually using stan-
dard classifiers into human or bot based on supervised training
using a development groundtruth dataset. When multiple trajec-
tories are available, standard information fusion techniques can
be applied [30]. The more realistic the synthetic data used as
groundtruth for training the classifier the stronger the classifier.

8 Note that mouse trajectories and mouse cursor are not technically the same.
For simplification we will use the term mouse trajectory to refer to the information
available to model the mouse movements (i.e., coordinates and timestamps).

In our experimental work we demonstrate the effectiveness of
the neuromotor features and the synthetic samples for different
classifiers. The contribution and success of our BeCAPTCHA-Mouse
bot detector is not in the particular classifier used, but in two
other fronts (see Fig. 1): the high realism of the groundtruth data
used for training our classifiers (with the methods presented in
Section 3.2), and our proposed trajectory modeling using neuro-
motor features.

3.1. BeCAPTCHA-Mouse: Neuromotor analysis of mouse trajectories

By looking at typical mouse movements (see Fig. 3.a), we
can observe some aspects typically performed by humans dur-
ing mouse trajectories execution: an initial acceleration and fi-
nal deceleration performed by the antagonist (activate the move-
ment) and agonist muscles (opposing joint torque) [15], and a fine-
correction in the direction at the end of the trajectory when the
mouse cursor gets close to the click button (characterized by a
low velocity that serves to improve the precision of the move-
ment). These aspects motivated us to use neuromotor analysis to
find distinctive features in human mouse movements. Neuromotor-
fine skills, that are unique of human beings are difficult to emulate
for bots and could provide distinctive features in order to tell hu-
mans and bots apart.

For this, we propose to model the trajectories according to the
Sigma-Lognormal model [31] from the kinematic theory of rapid
human movements [15]. The model states that the velocity profile
of the human hand movements (mouse movements in this work)
can be decomposed into primitive strokes with a Lognormal shape
that describes well the nature of the hand movements ruled by the
motor cortex. The velocity profile of these strokes is modeled as:

. D; (In (t — to)) — pi)?
|Ul(t)| - \/270',({ _ to,') eXp ( _20'2 ) (1)

1
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Fig. 3. a) Example of the mouse task determined by 8 keypoints: the crosses represent the keypoint where the user must click, red circles are the (x, y) coordinates obtained
from the mouse device, and the black line is the mouse trajectory. b) and c) are examples of the Lognormal decomposition of a human mouse movement and a synthetic
linear trajectory respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Sigma-Lognormal features description.

Parameter  Description

D; Input pulse: covered distance

toi Initialization time: displacement in the time axis
i Log-temporal delay

o; Impulse response time of the neuromotor system
Osi Starting angle of the stroke

Oei Ending angle of the stroke

where the parameters are described in Table 2. The velocity profile
of the entire hand movement is calculated as the sum of all these
individual strokes:

N
i(t) = ) Ui(t) (2)

i=1

where N is the number of velocity strokes considered in the
model. A complex action like handwriting signature or mouse
movements, is a summation of these lognormals, each one char-
acterized by the six parameters in Table 2. An example of this
is shown in Fig. 3.b, where the black line is the velocity profile
|U(t)| of the above human mouse task (Fig. 3.a), which is used
as the input of the Sigma-Lognormal model. The green dashed
lines correspond to the individual lognormal signals |7j(t)| gen-
erated as in [31], which describes a method to automatically es-
timate both N and the parameters in Table 2 from an input tra-
jectory |v(t)|. Finally, the red dotted line |v;(t)| is the reconstruc-
tion of the original velocity profile by summing all these gener-
ated individual lognormal signals. We can observe that the recon-
structed signal matches almost perfectly with the original velocity
profile of the human mouse movement, suggesting the potential of
the Sigma-Lognormal model to describe neuromotor mouse move-
ments. Lognormals with a high amplitude are typically observed
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during the first part of the movement (agonist and antagonist acti-
vations), while smaller lognormals occur during the fine correction.
The differences in lognormal sizes provide us information about
the length of the trajectory (long trajectories have usually larger
velocities).

The neuromotor feature set proposed for bot detection is com-
puted from the six lognormal parameters described in Table 2.
Each mouse trajectory generates N lognormal signals and each log-
normal generates those 6 parameters from Table 2. For each pa-
rameter, we calculate 6 features: maximum, minimum, and mean
for both halves of the trajectory. This is done because in natural
mouse movements the lognormal parameters are usually very dif-
ferent between both halves of a given trajectory (e.g. Fig. 3.b). Ad-
ditionally, we added the number of lognormals N that each mouse
trajectory generates as an additional feature. This additional fea-
ture measures the complexity of the trajectory [32], having many
lognormals means that the mouse trajectory has many changes in
the velocity profile while few of them usually indicates more basic
trajectories. As a result, the neuromotor feature set has size 37.

3.2. BeCAPTCHA-Mouse: Trajectory synthesis

In the present paper, a mouse movement is defined by the spa-
tial trajectory across time between two consecutive clicks, i.e., a
sequence of points {x, y} and a velocity profile |ii(t)|, where x =
[x1,....xm], Y=1[¥1.....ym], and M is the number of time sam-
ples. A mouse trajectory is defined by two main characteristics:
the shape (defined by {x, y}) and the velocity profile (defined by
|#(t)]). In order to generate realistic synthetic samples, both char-
acteristics must be considered in the generation method. We pro-
pose two methods for synthetically generating such mouse move-
ment.

3.2.1. Method 1: Function-based trajectories

We generate mouse trajectories according to three different tra-
jectory shapes (linear, quadratic, and exponential) and three dif-
ferent velocity profiles (constant, logarithmic, and Gaussian). We
can synthesize many different mouse trajectories that mimic hu-
man movements by varying the parameters of each function. To
generate a synthetic trajectory {X, §} with M points, first we de-
fine the initial point [%X;, ;] and ending point [Xy, yu]. Second,
we select one of three velocity profiles !5(t)|: i) constant velocity,
where the distance between adjacent points is constant; ii) loga-
rithmic velocity, where the distances are gradually increasing (ac-
celeration); and iii) Gaussian velocity, in which the distances first
increase and then decrease when they get close to the end of the
trajectory (acceleration and deceleration). Third, we generate a se-
quence X between X; and X); spaced according to the selected ve-
locity profile. The ¥ sequence is then generated according to the
shape function. For example, for a shape defined by the quadratic
function j = a%? + b® + ¢, we fit b and c¢ for a fixed value of a by
using the initial and ending points. We repeat the process fixing
either b or c. The range of the parameters {qa, b, c} explored is de-
termined by analyzing real mouse movements fitted to quadratic
functions. Linear and exponential shapes are generated similarly.

Fig. 5 (trajectories D, E, and F) shows some examples of these
mouse trajectories synthesized. That figure also shows the 3 differ-
ent velocity profiles considered: the 3 trajectories in E have con-
stant velocity, F shows acceleration (the distance between adjacent
samples increases gradually), and D has initial acceleration and fi-
nal deceleration. We can generate infinite mouse trajectories with
this approach by varying the parameters of each function.

An important factor when synthetizing mouse trajectories is the
number of points (M) of the trajectory. This usually varies depend-
ing not only on the length of the trajectory, but also on the di-
rection, because different muscles are involved when we perform
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mouse trajectories in different directions. To emulate this phe-
nomenon, we calculate the mean and standard deviation of the
number of points for each of the 8 mouse trajectories from the hu-
man data used in the experiments. Then, we synthetize trajectories
with different number of points following a Gaussian distribution
with the calculated mean and standard deviation.

3.2.2. Method 2: GAN-based trajectories

For this approach we employ a GAN (Generative Adversarial
Network) [33], in which two neuronal networks, commonly named
Generator (defined by its parameters w¢) and Discriminator (de-
fined by its parameters wp), are trained one against the other (thus
the 'adversarial’). The architecture of the GAN is depicted in Fig. 4.
The aim of the Generator is to fool the Discriminator by generat-
ing fake trajectories {X, ¥} very similar to the real ones {x, y}. We
used a fixed sampling rate of 200Hz for all the real and generated
trajectories. The sampling rate is determined by the real trajecto-
ries used in the learning framework (200Hz in our experiments).
Therefore, the synthesized samples are generated with the same
sampling rate. Other frequencies can be obtained subsampling the
generated ones or re-training the GAN for a different sampling rate.
The input of the Generator consist of a seed vector of R random
numbers (in our experiments R = 100). The output of the Gener-
ator are two coordinate vectors {X, §} with length equal to M (M
can be fixed to generate different lengths). The input of the Dis-
criminator consists of a batch including two types of trajectories:
1) Bot: synthetic trajectories generated by the Generator; 2) Hu-
man: real mouse trajectories chosen randomly from the Mouse DB
described in next sections. The aim of the Discriminator is to pre-
dict whether the sample comes from the human set or is a fake
created by the Generator. During the training phase, the GAN ar-
chitecture will improve the ability of the Generator to fool the
Discriminator. This architecture turns latent space points defined
by the random seed into a classification decision: 'Bot’ (from the
Generator) or 'Human’'. This learning process is guided by the real
mouse trajectories from the Mouse DB. During the GAN training,
the weights of the Discriminator (wp) remain frozen. The iterative
training process will update the weights wg of the Generator in a
way that makes Discriminator more likely to predict 'Human’ when
looking at synthetic mouse trajectories. If the Discriminator is not
frozen during this process, it will tend to predict 'Human’ for all
samples. The Discriminator is trained (weights wp updated) after
the update of the weights of the Generator (wg). This process is
repeated iteratively (50 epochs in our experiments). Once the Gen-
erator is trained this way, then we can use it to synthesize mouse
trajectories very similar to the human ones.

The topology employed in the Discriminator consist of two
LSTM (Long Short-Term Memory) layers (with 128 and 64 units re-
spectively, with 'LeakyReLU’ activation) followed by a dense layer
(with 1 unit and ’Sigmoid’ activation). The dense layer of the Dis-
criminator is used as a classification layer to distinguish between
bot and real mouse trajectories ('Binary Cross-Entropy’ loss func-
tion). For the Generator, we employ two LSTM layers (with 128 and
64 units respectively, with 'ReLU’ activation) followed by a dense
layer with 2 units (one unit for build each {X, §} mouse coordi-
nates) and 'TimeDistributed’ activation.

The GAN architecture used in BeCAPTCHA follows the tradi-
tional approach proposed in [34], with an specific topology devel-
oped to capture the characteristics of mouse trajectories. For com-
parison with other state-of-the-art Generative Adversarial Architec-
tures, we also added an implementation of the Time-GAN (TGAN),
firstly proposed in [35]. According to the authors, TGAN models are
better situated to work with time series data. The addition of the
Embedding network jointly with a supervised loss function helps
in the mapping process between the data features and latent space
points during the adversarial training. Thanks to this, the TGAN ar-
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Fig. 5. Examples of mouse trajectories and their velocity profiles employed in this work: A is a real one extracted from a task of the database; B and C are synthetic
trajectories generated with the GAN network; D, E and F are generated with the Function-based approach. Note that for each velocity profile (D = Gaussian, E = constant, F

= logarithmic), we include the three Function-based trajectories (linear, quadratic, and exponential).

chitecture is able to learn the underlying temporal dynamics of the
data to generate more realistic synthetic samples. For our imple-
mentation of TGAN we keep the same typologies for both Genera-
tor and Discriminator as done in our traditional GAN to allow for
a fair comparison.

Both GAN and TGAN architectures were trained using 60% of the
human mouse trajectories in the database. Training details: learn-
ing rate o =2 x 104, Adam optimizer with 8; = 0.5, B, = 0.999,
€ = 10-8, 50 epochs with a batch size of 128 samples for both Gen-
erator and Discriminator. The architectures were implemented in
Python with Keras-Tensorflow libraries.

Figure 5 shows two examples (trajectories B and C) of synthetic
mouse trajectories generated with the GAN network and the com-
parison with a real one. We can observe high similarity between
the two synthetic examples and the real one. Human mouse pat-
terns such us the initial acceleration and the final trajectory fine
correction that we discussed before are automatically learned by
the GAN network and reproduced in the synthetic trajectories gen-
erated.

Figure 6 shows six feature distributions obtained from human
and synthetic trajectories. The distributions comprise three fea-
tures from the Sigma-Lognormal set and other three from the
global feature set [16]. The feature set proposed in [16] consists of

6 global features: duration, distance, displacement, average angle,
average velocity, and move efficiency (distance over displacement).
The distributions obtained from the synthetic samples showed
characteristics similar to the human ones. The larger differences
can be seen in the feature distance, where the human samples
showed two distributions for short and long trajectories. Note that
these features can be modified during the generation method to
produce trajectories with distances similar to the target distribu-

tions.

4. Experiments
4.1. BeCAPTCHA-Mouse benchmark: Database

The human mouse trajectories employed in this work were ex-
tracted from Shen et al. database [36], which is comprised of more
than 200K mouse trajectories acquired from 58 users who com-
pleted 300 repetitions of the task. Acquisition of data from each
subject took between 30 days and 90 days. In each repetition, the
task was to click 8 buttons that appeared in the screen sequen-
tially. This task was repeated twice in each session. Fig. 3.a shows
an example of the whole mouse movement task. Note that the
buttons are placed in a particular order to generate mouse trajec-
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trajectories.
Table 3

Bot detection accuracy (%) obtained from all the 8 trajectories for each of the feature sets. VP (Velocity Profile): VP1
= constant velocity, VP2 = initial acceleration, VP3 = initial acceleration and final deceleration.

Bot: Function-based

Linear Quadratic Logarithmic
Feature Set VP1 VP2 VP3 VP1 VP2 VP3 VP1 VP2 VP3 Bot:GAN Bot:TGAN
Global [16] 99.7 996 997 953 967 968 972 965 973 99.8 99.7
Neuromotor  99.1 98.7 993 969 963 947 963 952 947 98.0 95.6
Ours 999 99.7 998 980 990 984 982 989 989 99.7 99.6

tories with different directions (rightwards, upwards, downwards,
and oblique) and different lengths.

In the present work, we define a mouse trajectory as the mouse
displacement that occurs between two click buttons. Therefore, the
mouse movement task of Fig. 3.a is composed of 8 mouse trajec-
tories. The raw data recorded during the acquisition process was:
the mouse position over the screen ({X, y} axis position in pixels),
the event (movement or click), and timestamp of the event. The
experiments presented in this work are performed using a subset
of the database including 35 samples (randomly chosen) from each
of the 58 users available (more than 5K trajectories in total).

Figure 3 (c) shows the decomposition of a synthetic function-
based trajectory with linear shape. We can observe the huge dif-
ferences between both lognormal decompositions (the human tra-
jectory and the synthetic one) by looking at the shape of the log-
normal signals. The synthetic trajectory has wider lognormals and
they are more symmetric than the human ones. Note that the
Sigma-Lognormal algorithm introduces a low-pass filter to the in-
put signal, that is the reason why the velocity profile of the syn-
thetic trajectory (Fig. 3.c) is a bit smoothed, but the difference be-
tween both synthetic and human velocity profiles is still patent.

The BeCAPTCHA-Mouse Benchmark is composed of 5K human
trajectories and 10K synthetic trajectories generated according to
the two methods proposed (5K function-Based and 5K GAN trajec-
tories). Both real and synthesized samples are characterized by a
variety of lengths, directions, and velocities.

4.2. Results and comparison with previous approaches

The main contributions of this work are: 1) a novel feature set
based on the combination of global and neuromotor characteristics

of the mouse trajectories; 2) two methods to generate synthetic
mouse trajectories for improving training and evaluation of bot de-
tection methods.

To validate the first contribution, we have extracted the pro-
posed feature set from human and synthetic mouse trajectories.
For this first experiment, we use a Random Forest (RF) classifier
because of its best performance among all classifiers evaluated (as
we will see in the next section). For each RF, we train the classifier
by using 70% of all samples (up to 1,500 samples available for each
type of trajectory between both synthetic and real ones) randomly
chosen as the training set. The other 30% samples are employed for
evaluation. The results are obtained by repeating each experiment
5 times and averaging, with a standard deviation of o ~ 0.1%. All
classifiers employed in this section were implemented in Python
with the scikit-learn library.

The first experiment is aimed to demonstrate the performance
of the proposed feature set. The Table 3 present the results when
features from all 8 trajectories are combined (each RF is trained us-
ing features from all 8 trajectories). Additionally, we compare the
performance achieved with existing approaches [16]. The feature
set proposed in [16] consists of 6 global features: duration, dis-
tance, displacement, average angle, average velocity, and move ef-
ficiency (distance over displacement). The results suggest that the
feature set proposed in [16] outperforms the neuromotor features
proposed here only for GAN and TGAN synthetic trajectories. The
best performance is obtained overall with an extended set com-
posed by both sets of features. The extended set has the best re-
sults with an average around 99% of accuracy independently of the
type of synthetic trajectory.

The second experiment is aimed to demonstrate the perfor-
mance of classifiers when training with both human and bot sam-
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Bot detection accuracy (%) of the different feature sets for models trained with and without synthetic samples (bots)
and evaluated using human samples and bots samples. SVM (SVM with Radial Basis Function kernel), RF (Random
Forest), KNN (K-Nearest Neighbors), F (bots generated with the function-based method), G (bots generated with the
GAN method).

Training Samples

Only Humans [16]

Humans-+Bots (F)

Humans+Bots (G)

Humans-+Bots (F,G)

Feature Set SVM RF KNN  SVM RF KNN  SVM RF KNN  SVM RF KNN

Global [16] 635 57.1 534 657 573 621 51.6  59.1 520 96.6 995 982

Neuromotor  60.0 60.3 524  54.1 62.8 635 584 583 60.2 972 973 93.0

Ours 652 620 53.7 658 61.0 64.1 60.1 63.0 61.2 982 997 96.8
Table 5

Bot detection accuracy (%) obtained for each of the 8 trajectories and the Neuromotor feature set. The accuracies
were obtained using the same RF classifiers employed for Table 3. VP (Velocity Profile): VP1 = constant velocity, VP2
= initial acceleration, VP3 = initial acceleration and final deceleration.

Bot: Function-based

Linear Quadratic Logarithmic
Trajectories ~ VP1 VP2 VP3 VP1 VP2 VP3 VP1 VP2 VP3 Bot: GAN Bot: TGAN
8—>1 986 963 990 910 91.0 923 890 836 893 969 97.4
1-2 99.7 986 972 916 983 922 958 923 925 96.7 97.7
2-3 994 991 997 953 964 880 944 989 905 999 93.9
34 99.7 975 970 942 966 905 942 951 930 997 94.0
45 999 980 994 955 947 925 939 954 939 970 95.4
5-6 999 989 991 928 975 914 933 951 944 983 955
6—7 99.1 983 986 902 897 936 888 923 936 98.1 98.0
7—8 970 966 975 922 933 930 883 836 931 987 98.1

Table 6

Bot detection performance metrics in % (Acc = Accuracy, AUC = Area Under the Curve, Pre = Precision, Re = Recall, and F1) for the different
scenarios: Function-based, GAN, and Combination.

Bot Generation Method

Function-based GAN Function-based + GAN

Classifiers  Acc AUC Pre Re F1 Acc AUC Pre Re F1 Acc AUC Pre Re F1

SVM 98.0 99.4 98.6 96.7 97.7 98.5 99.6 99.2 97.9 98.5 98.2 99.4 97.3 99.0 97.4
KNN 934 98.1 93.6 93.2 93.5 94.1 994 99.8 88.3 93.6 92.0 97.4 90.7 93.2 92.1
RF 98.5 99.8 98.6 98.8 98.7 99.7 99.9 99.5 99.9 99.7 98.7 99.9 98.8 99.0 99.0
MLP 946 94.1 950 942 946 934 935 954 923 939 922 915 898 954 925
LSTM 98.2 99.8 97.6 98.8 98.2 99.2 98.0 99.7 98.9 99.5 97.3 99.7 96.7 97.9 97.3
GRU 98.4 99.4 98.5 98.6 98.6 99.3 99.2 99.2 90.2 99.0 99.8 99.8 94.4 99.0 96.9

ples generated with the proposed methods (second contribution).
For this experiment we propose three different bot detection sce-
narios according to the data employed to train and evaluate the
bot detection approaches: i) training only with the real samples
(usually referred as anomaly detector), ii) employing one type of
synthetic samples for training and the other one for testing (ag-
nostic classification), and iii) employing the real and both kinds of
synthetic samples to train and test. The aim of the experiment is to
evaluate to what extent the inclusion of synthetic samples in the
learning framework serves to improve the accuracy of the model
in comparison with previous methods based only on human data
[16]. For this experiment we included the three classifiers with the
best performances reported in [16]: SVM with Radial Basis Func-
tion (RBF) kernel, Random Forest (RF) and K-Nearest Neighbors
(KNN). Note that the bot detection method proposed in [16] was
based exclusively on human samples trained as an anomaly detec-
tor. In this work, we explore new learning frameworks using both
human and bot samples during training and evaluation.

Table 4 shows the bot detection accuracy for the different sce-
narios depending of the training data employed. As in the previous
experiment, the classifiers are trained using trajectories from all 8
directions and synthetic samples from all 10 types of attacks. The
results show that the synthetic samples and the feature set pro-

posed in this work allows to reduce the error by 95.4% in com-
parison with the previous existing method based exclusively on
human samples [16]. As can be seen, the classifier trained only
with real samples was not capable to detect most of the attacks
with accuracy rates lower than 70% either for global features and
neuromotor features. In the agnostic classification, the poor results
achieved when training with one type of synthetic samples and
testing with the other one suggest there is a huge complementarity
among both generation methods. These results suggest that future
addition of other synthetic generation methods could improve the
performance of bot detectors. The importance of synthetic samples
is twofold: i) evaluation of bot detection algorithms under chal-
lenging attacks generated according to different methods; and ii)
training better detectors to model both human and synthetic be-
haviors. The results in Table 4 show the potential of the synthetic
samples and its usefulness to train better models capable to deal
with all types of attacks.

4.3. BeCAPTCHA-Mouse: Ablation study
4.3.1. Influence of trajectory characteristics

In the first experiment we analyze the impact of the different
human mouse trajectories in the classification performance. The
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Fig. 7. Accuracy curves (%) against the number of train samples (100 <L < 7,000) to train the different classifiers in Function-based (a), GAN (b), and Combination (c)

classification scenarios.

Table 7

Performance metrics in % (AUC = Area Under the Curve, Acc, Pre, Re, and F1) for the different setups of GAN Discriminator in bot detection. In
brackets the number of neurons for the first/second LSTM layer respectively used in the Discriminator.

Bot Generation Method

Function-based GAN Function-based + GAN
Discriminators Acc AUC Pre Re F1 Acc AUC Pre Re F1 Acc AUC Pre Re F1
LSTM (128/64) 899 932 885 90.0 893 96.8 99.6 95.0 98.7 968 89.6 939 892 900 89.6
LSTM (64/32) 74.0 721 670 956 787 999 999 999 999 999 73.0 76.1 659 96.0 78.1
LSTM (32/16) 814  80.2 77.9 88.0 82.6 99.7 98.9 99.6 999 99.8 78.8 76.0 744 88.0 80.6
LSTM (16/8) 56.8 58.6 542 86.8 66.7 56.2 913 533 999 69.5 64.0 67.0 59.5 87.2 70.7

experiments are divided according to the 8 real mouse trajectories
present in the whole task. This means that we classify at trajectory
level (i.e. the mouse trajectory performed between two consecutive
click buttons) instead of classifying the whole task. This is because
the task was designed to take into account trajectories with differ-
ent directions and lengths, and therefore, different muscles config-
urations are involved in each trajectory. In this way, we can ana-
lyze which mouse trajectories are better to discriminate between
humans and bots. We train 11 x 8 different RFs (one for each type
of attack and mouse trajectory, see columns in Table 5) using both
human and synthetic trajectories.’

Table 5 shows the results for the different bot generation meth-
ods and the 8 trajectories derived from the movements between
the 8 keypoints (plotted in Fig. 3.a). The table shows the bot clas-
sification accuracy in % (human vs bot). First, comparing among the
different trajectories, we can observe that the shorter ones (8 — 1,
6 — 7, and 7 — 8) show higher classification errors compared to
the larger ones. Short trajectories generate less neuromotor infor-
mation: initial acceleration, final deceleration, and trajectory cor-
rections are less pronounced in short trajectories. Second, loga-
rithmic trajectory shapes achieve the worst classification perfor-
mance, as we expected, because the shape of logarithmic functions
fit better the human trajectories shapes. Third, the most signifi-
cant parameter when synthetizing trajectories is the velocity pro-
file. When VP = 3 (i.e,, initial acceleration and final deceleration),
the synthetic trajectories are able to fool the classifier up to 17% of
the times. This confirms that the velocity profile of human mouse
trajectories plays and important role when describing human fea-
tures in mouse dynamics. Four, the GAN and TGAN Generators (last
two columns in Table 5) result in lower classification errors com-
pared with the function-based method. This is surprising after vi-
sualizing the high similarity between human and GAN-generated
trajectories (see Fig. 5 A vs B and A vs C). We interpret this result
with care: on the one hand it demonstrates that our bot detection
approach is powerful against realistic and sophisticate fakes, but on
the other hand both GAN and TGAN Generators can be improved to
better fool our detector. Although the synthetic samples generated
with them seems very realistic to the human eye, the RF classi-
fiers were capable of detecting synthetic samples with high accu-

10

racy. These high classification rates suggest that adversarial learn-
ing Generators introduce patterns that allow its detection [33].

4.3.2. Influence of the classifier

For the following experiments, we performed an ablation study
on different classifiers to analyze their performance in bot de-
tection for the different bot generation methods proposed in this
work: Function-Based, GAN, and their combination. It is worth not-
ing that all classifiers are trained using trajectories from all 8 di-
rections and synthetic samples from all 10 types of attacks, as re-
ported in Table 4 to allow fair comparisons.

Table 6 shows the performance of classification algorithms:
Support Vector Machine (SVM) with a Radial Basis Function (RBF),
K-Nearest Neighbors (KNN) with k=10, Random Forest (RF),
Multi-Layer Perceptron (MLP), and 2 Recurrent Neuronal Networks
(RNN), (one composed by Long Short-Term Memory (LSTM) units
and the other with Gated Recurrent Units (GRU). The RNNs (i.e.
LSTM and GRU) were trained directly with the raw data (i.e. the
sequence of points {X, y} of the mouse trajectories) instead of ex-
tracting the global features (i.e. Neuromotor + Baseline [16]) as
done with the statistical classifiers. The RNNs have the same ar-
chitecture as the Discriminator of the GAN: two recurrent layers of
128 and 64 units respectively, followed by a dense layer to clas-
sify between fake and real mouse trajectories. All classifiers were
trained and tested following the same experimental protocol as in
Section 4.2, using 70% of all samples (up to 10K samples between
both real and synthetic samples when combining all types of tra-
jectories) randomly chosen as the training set (named L in this sec-
tion, with L = 7,000). The results are reported in terms of Accu-
racy, AUC (Area Under the Curve), Precision, Recall, and F1.

First, we can observe that the best results among the statistical
classifiers are achieved by the RF classifier followed by the SVM.
KNN and MLP perform worst, although all classifiers have accuracy
rates over 90%. Secondly, among the different RNNs, the configura-
tion with LSTM units performs sightly better than the one with
GRU units, even though both recurrent network setups are out-
performed by the RF classifier. These results suggest that the fea-
ture set chosen to train and test the statistical classifiers is suitable
for the mouse bot detection task, outperforming other approaches
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Fig. 8. Block diagram of multimodal bot detection. The response of the bot detector is a combination of responses from different experts. The bot detector proposed in this

work can be used independently or in combination with existing bot detectors.

based on deep neuronal networks architectures. Nonetheless, the
RNNs demonstrate its capacity to extract useful features from the
raw data.

4.3.3. Influence of the number of training samples

In the next experiment we explore whether the number of
training samples (L) plays and important role in the classification
performance. We want to highlight that the training and the evalu-
ation sets have the same number of human (L,) and synthetic (L)
samples, i.e.: L, =Ly = L/2.

For this, in Fig. 7 we plot the accuracy curves of the previ-
ous classifiers according to the number of samples employed in
their training set. As expected, the accuracy improves in all scenar-
ios when we enlarge the number of train samples. However, there
are important differences between the statistical and the RNNs ap-
proaches. Meanwhile all statistical classifiers achieve their maxi-
mum performance with L = 500, both LSTM and GRU are not able
to reach the same performance with only 500 train samples. In
fact, they need at least L = 2,000 to perform as well as the statis-
tical classifiers. This shows the superior performance of the statis-
tical classifiers in those scenarios where the number of samples to
train the classifiers are scarce.

4.3.4. Using the GAN discriminator as classifier

Finally, in the last experiment we replaced the previously intro-
duced RNNs classifiers by the Discriminator model of the GAN ar-
chitecture. The idea is to analyze in what extent the Discriminator
of the GAN Network trained only with the synthetic samples gen-
erated by the Generator (and the real ones) during the GAN train-
ing could perform better in classification than the previous RNNs
trained from scratch. For this, we tuned the number of neurons of
the two LSTM layers of the Discriminator and trained a new GAN
network for each Discriminator setup proposed.

Table 7 shows the performance of 4 GAN Discriminator se-
tups for the 3 classification scenarios proposed: the function-
based, GAN, and their Combination. As we expected, the perfor-
mance using GAN classification is much better than the perfor-
mance achieved by the LSTM and GRU networks of the previous
experiment, due to the Discriminators were trained specifically to
discriminate between the synthetic mouse trajectories generated
by the GAN Generator and the human ones. However, the Discrim-
inators also classify quite well in the function-based scenario, even
though no Function-based sample was employed to train them
(Ls = 0). In fact, as we increase the complexity of the Discriminator
with more neurons in both layers, the performance improves up to
90% of accuracy, close to the results achieved by the LSTM and GRU
networks trained with L = 7,000 samples. These results show the
potential of the GAN architecture, not only to generate synthetic
mouse trajectories with similar shape to the human ones with the
Generator, but also for classification purposes, as the Discriminator

1

is able to classify between human and bot trajectories even against
synthetic trajectories not seen during the training phase.

5. Conclusions and future work

We have explored behavioral biometrics for bot detection dur-
ing human-computer interaction. In particular, we have analyzed
the capacity of mouse dynamics to describe human neuromotor
features. Our conclusions in comparison to state-of-the-art works
suggest that there is unexploited potential of mouse dynamics as a
behavioral biometric for tasks such as bot detection.

In particular, we have proposed BeCAPTCHA-Mouse, a bot de-
tection algorithm based on mouse dynamics, and a related bench-
mark?, the first one public for research in bot detection and other
mouse-based research areas including HCI, security, and human
behavior.

The proposed approach is able to discriminate between humans
and bots with up to 98.7% of accuracy, even with bots of high re-
alism, and only one mouse trajectory as input. This proves the po-
tential of mouse dynamics for Turing tests. Additionally, we also
provided an exhaustive ablation study on different classifiers to ex-
plore the capacity of these algorithms for the bot detection task.
Random Forests (RF) have demonstrated to perform the best in all
scenarios evaluated followed by an LSTM network. However, when
the number of train samples is reduced (L < 1,000), the LSTM is
not able to classify as well as the RF classifier. In fact, the LSTM
can be replaced by the Discriminator of the GAN network when
the lack of bot samples to train the system makes the deep learn-
ing approaches unavailable, showing a superior performance even
against bot samples not seen during the training phase. This re-
sults suggest that the GAN architecture is a powerful tool not only
to generate human-like mouse trajectories, but also to detect bot
samples from other synthetic generation methods.

As future work, we aim at improving the neuromotor feature
set by calculating secondary features inferred from the main ones.
Also, we propose to improve the GAN model in two ways: i) com-
bine both synthesis methods by using the function-based trajecto-
ries as the input of the GAN model instead of Gaussian noise, and
ii) experimenting with different amount of layers/units in the GAN
Generator to increase the variety of the synthetic mouse trajecto-
ries generated. Both techniques could generate more sophisticate
and human-like trajectories. Finally, in this paper we only consid-
ered mouse trajectories acquired from mouse devices. We also pro-
pose to analyze mouse-pad trajectories normally performed when
using laptops as another line of research.

The exploitation of behavioral biometrics for bot detection is an
open research line with large opportunities and challenges. These
challenges include the study of other ways of interaction beyond

9 https://github.com/BiDAlab/BeCAPTCHA-Mouse
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mouse such as keystroking [20,21] or touchscreen gestures [23] for
bot detection, and their application to mobile scenarios [14]. We
want to highlight that behavioral CAPTCHAs are compatible with
previous CAPTCHA technologies and it could be added as a new
cue to improve existing bot detection schemes in a multiple clas-
sifier combination [30] (see Fig. 8).

Recent fusion techniques incorporating contextual information
[30] will be also explored for improving BeCAPTCHA. Finally, we’ll
try to improve our methods taking advantage of existing large-
scale human-computer interaction datasets [24] and existing mod-
els [37] by using transfer learning methods [38].
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