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This work presents a new deep learning approach for keystroke biometrics based on a novel Distance 

Metric Learning method (DML). DML maps input data into a learned representation space that reveals a 

“semantic” structure based on distances. In this work, we propose a novel DML method specifically de- 

signed to address the challenges associated to free-text keystroke identification where the classes used 

in learning and inference are disjoint. The proposed SetMargin Loss (SM-L) extends traditional DML ap- 

proaches with a learning process guided by pairs of sets instead of pairs of samples, as done traditionally. 

The proposed learning strategy allows to enlarge inter-class distances while maintaining the intra-class 

structure of keystroke dynamics. We analyze the resulting representation space using the mathemati- 

cal problem known as Circle Packing, which provides neighbourhood structures with a theoretical max- 

imum inter-class distance. We finally prove experimentally the effectiveness of the proposed approach 

on a challenging task: keystroke biometric identification over a large set of 78,0 0 0 subjects. Our method 

achieves state-of-the-art accuracy on a comparison performed with the best existing approaches. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In a global society migrating from physical services to digital 

latforms, identity management becomes critical. However, tradi- 

ional physical user authentication cannot be directly applied in 

igital services. Keystroke biometric recognition enables the identi- 

cation of users based on their typing behavior. Keystroke biomet- 

ic systems are commonly placed into two categories: fixed-text , 

haracterized by a prefixed keystroke sequence typed by the user 

e.g. passwords), and free-text , characterized by arbitrary keystroke 

equences (e.g. emails or transcriptions). Free-text systems must 

herefore consider different text content between training and test- 

ng, including typing errors. 

Keystroke dynamics authentication literature has been predom- 

nantly focused on verification tasks in fixed-text scenarios. Ap- 

roaches based on statistical models (e.g. Hidden Markov Mod- 

ls) [1] , Manhattan distances [2] , sample alignment (e.g. Dynamic 

ime Warping) [3] , and digraphs [4] have achieved competitive re- 

ults in fixed-text verification [5] . The performance in free-text sce- 
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arios remained far from those reached in the fixed-text verifica- 

ion approaches during the last decade. Partially Observable Hid- 

en Markov Models were employed in [6] for free-text keystroke 

erification obtaining a competitive accuracy. More recently, the 

vailability of large scale databases with millions of keystroke sam- 

les has allowed training deep models with very competitive per- 

ormances in free-text scenarios [7] . The architecture proposed in 

7] , called TypeNet, was trained using a Contrastive Loss func- 

ion with performances six times better than previous approaches 

ased on traditional statistical methods [6,8] . Our purpose in the 

resent paper is to improve further the state-of-the-art results of 

eep keystroke biometrics by introducing a new loss function ex- 

ected to be also useful in other challenging recognition problems. 

There are two main research lines to define such loss functions: 

) approaches based on Distance Metric Learning (DML) such as 

ontrastive Loss [9] , Triplet Loss [10] , and their variants [11,12] ; 

nd ii) with multi-class classifiers based on Softmax Loss func- 

ions and its variants [13–15] . Both research lines present advan- 

ages and disadvantages. 

In the first line of work (DML), the core idea is to train a func-

ion that maps input data into a new feature space where simple 

istances can serve to analyze and exploit the “semantic” structure 

f the input space [9] . A DML approach serves to define a neigh-

ourhood structure in the feature space based on a relationship 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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etween intra-class (between samples from the same class) and 

nter-class distances (between samples from different classes). In 

n ideal feature space, samples from the same class will remain 

near” and samples from different classes will be pushed “far”. 

ear and far can be defined based on simple distances like Eu- 

lidean. Noteworthy, most of the DML approaches in the literature 

re based on learning processes based on pairs of samples [9,10,13] . 

In the second line of work (i.e., using multi-class classifiers), 

here are some limitations stemmed from using classifiers. A classi- 

cation algorithm is mostly associated to categorization tasks, but 

t can be used to tackle other representation learning problems. 

ne example is the use of classification algorithms as feature ex- 

ractors where models are trained for classification, and the out- 

uts (usually the last layers of a deep network) are employed as 

eatures for other tasks [15–17] . However, using classification algo- 

ithms to learn discriminatory feature spaces exhibits limitations. 

n the one hand, the feature space learned might not be suitable 

or classes not seen during learning. On the other hand, the error 

ropagated during learning is based on a scalar prediction (i.e., a 

abel), which is a simplification of the whole problem at hand de- 

ned by intra- and inter-class neighborhood structures [9] . To ad- 

ress these problems, some authors have proposed methods based 

n the joint supervision of Softmax Loss and DML to improve the 

iscrimination power of the feature learned spaces [13,15] . 

In the present work, we propose a novel DML approach (Set- 

argin Loss, SM-L) specifically designed to address the challenges 

ssociated to free-text keystroke identification where classes used 

n learning and inference are disjoint. The final aim is to identify 

he membership of the input data to a class unseen during learn- 

ng. SM-L extends traditional DML approaches with a learning pro- 

ess guided by pairs of sets, which allows to enlarge inter-class dis- 

ances while maintaining the intra-class structure. 

We will analyze the learned feature space generated with SM-L 

n comparison with other popular loss functions using the mathe- 

atical problem known as Circle Packing. The solution to the Cir- 

le Packing problem is a neighbourhood structure that guarantees 

 theoretical maximum inter-class distance. We propose using this 

ethod to gain understanding in the feature spaces obtained by 

ML approaches. Finally, we will prove experimentally the effec- 

iveness of our proposed SM-L on a challenging task: keystroke 

iometric identification [7] . The proposed approach outperforms 

ther popular loss functions in this problem. 

In summary, the contributions of this work are: 

• A new keystroke identification/verification method based on a 

novel loss function called SetMargin Loss (SM-L). 
• We introduce the Circle Packing problem as a novel way to gain 

insights into learned feature spaces. 
• We experiment with the proposed SM-L on a challenging open- 

set keystroke biometric identification/verification problem over 

78,0 0 0 subjects, achieving state-of-the-art performance supe- 

rior to related methods. 

The rest of the paper is organized as follows. Next section sum- 

arizes the most popular DML approaches and presents the Circle 

acking Problem as a way to analyze feature spaces. The third sec- 

ion describes the proposed SetMargin Loss and the fourth section 

resents the experiments and results. Finally, the work finish with 

he conclusions. 

. Distance metric learning: loss functions 

The objective of metric learning is to generate distances d be- 

ween input data pairs either from the same or different classes 

positive and negative pairs, respectively) useful for a certain task 

here a component of the distance is based on a learned model 

elated to the task at hand. These distances d can be defined, e.g., 
2 
s Euclidean distances: 

( x 

i , x 

j ) = 

∥∥f ( x 

i | w ) − f ( x 

j | w ) 
∥∥ (1) 

here w are the weights of a model (typically a neural network), 

nd f ( x i | w ) , f ( x j | w ) are the model outputs (embedding vectors) 

or the inputs x i and x j , respectively. 

There are several metric learning approaches in the literature 

9–11,13] . Among these approaches, the Contrastive Loss function 

9] is a popular example of DML technique with a history of suc- 

ess in many applications [7,18,19] . Let x i and x j each be a sample 

hat together form a pair which is provided as input to a Siamese 

eural Network [18] with shared weights w . The loss function L CL 

s defined as follows: 

 CL = (1 − L i j ) 
d 2 ( x 

i , x 

j ) 

2 

+ L i j 

max 2 
{

0 , α − d( x 

i , x 

j ) 
}

2 

(2) 

here L i j is a label associated with each pair that is set to 0 for

ositive pairs and 1 for negative ones, and α ≥ 0 is a margin. As we 

an see, the Contrastive Loss learns intra- and inter-class distances 

n separate operations defined by L i j . 

The Triplet Loss function [10,20] appeared as a function to learn 

rom positive and negative comparisons at the same time. A triplet 

s defined by three samples known as Anchor, Positive, and Neg- 

tive. Anchor ( x i 
A 

) and Positive ( x i 
P 
) are samples from the same 

lass i , while Negative ( x 
j 
N 

) is a sample from a different class j.

he Triplet loss function is defined as follows: 

 T L = max 
{

0 , d 2 ( x 

i 
A , x 

i 
P ) − d 2 ( x 

i 
A , x 

j 
N 
) + α

}
(3) 

here α is a margin between positive and negative pairs. In com- 

arison with Contrastive Loss, Triplet Loss is capable of learning 

ntra-class and inter-class structures in a unique operation (remov- 

ng the label L i j ). 

There are other metric learning methods designed to guide the 

earning process in different ways. The Center Loss was proposed to 

inimize the intra-class distances of the deep features [13] . Center 

oss combines the traditional Softmax with a loss function aimed 

o reduce the distance of feature vectors to an average feature 

ector calculated for each class (i.e., centroid). Similarly, the Mag- 

et Loss [21] introduces a learning approach inspired in clustering 

echniques where the loss function depends on cluster optimiza- 

ion instead of traditional sample classification. N-Pair Loss is an 

xtension of Triplet Loss to several negative samples [11] , where 

riplets are conformed using one positive sample and N multiple 

egative examples. More recently, researchers have proposed the 

ngular Softmax Loss [15] to improve face recognition performance. 

hese methods improve the traditional Softmax Loss function by 

ncorporating an angular learning objective. 

.1. Circle packing and learned feature spaces 

In this section we introduce the Circle Packing problem to gain 

nsights into the neighborhood structures learned in feature spaces. 

 packing of circles as defined in [22] is a collection (finite or infi-

ite) of circles P = { C 1 , . . . , C N } on a given (Riemann) surface S with

isjoint interiors (i.e., distinct circles in P may be tangent, but can- 

ot overlap). This is the general definition. In our specific case, the 

iemann surface is a closed circular region D ⊂ R 

2 with the stan- 

ard Euclidean metric, the packing P is finite, and all circles C i have 

nit-radius. Thus, our objective can be defined as finding a Circle 

acking P such that the minimum distance between circles is max- 

mized. The result is a structure that minimizes the area outside 

he unit circles, and therefore the radius R N of the outer circle D . 

he solution depends on the number of circles N and the analytical 

emonstration varies depending on N (i.e., there is not a unique 

ay to solve the problem for different N). Fig. 1 shows the solu- 

ions from N = 8 to N = 13 proved by Melissen [23] , Fodor [24] ,
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Fig. 1. Circle Packing solution from N = 8 to N = 13 and equivalent Point Packing 

problem for N = 8 . d i j and d ii represent the inter- and intra-class distances respec- 

tively. R N is the minimum radius of the circular region D that contains the unit 

circles. 
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5 ]. Note that, as also shown in Fig. 1 , the Circle Packing problem

an be transformed into a Point Packing problem by replacing cir- 

les by their centers. This mathematical problem can be seen as an 

ptimization task, and many computational approaches have been 

roposed to solve it [26,27] . To the best of our knowledge, this is

he first time that Circle Packing is used to analyze learned feature 

paces. 

The solution to the Circle Packing problem maximizes the dis- 

ances between circle centers d i j subject to fixed radii. Assuming 

hat each circle is a class in our feature space, the distance d i j 

epresents the inter-class distance (i.e., distance between samples 

rom different classes) while d ii represents the intra-class distance 

i.e., distance of samples from the same class). This formulation 

s specially useful in open-set classification problems, where we 

eek a feature space that: i) maximizes inter-class distances; and 

i) minimizes intra-class distances. To achieve the maximum inter- 

lass distance, it is necessary to distribute classes along all the 

pace. It is important to keep in mind that in an open-set sce- 

ario the classes used during training are different to those used 

or testing. 

We have conducted a toy example to visualize the feature space 

btained by different loss functions and its similarity to the Cir- 

le Packing optimal solution. To this end, we use a subset of the 

Quick, Draw!” dataset [28] . This dataset comprises 50 million 

rawings across 345 different categories. This database is inter- 

sting because of the large intra-class variability in the different 

lasses (e.g. there are hundreds of different ways to draw a plane). 

ach drawing is converted to a 28 × 28 grey scale image. In order 

o visualize the feature space learned by typical deep models, we 

rain a Convolutional Neural Network (CNN) inspired in the popu- 

ar VGG architecture [29] and composed of: two Convolutional lay- 

rs (32 and 64 units, 3 × 3 filter bank size, ReLU activation), 2D 

axpooling layer, Dense layer (128 units, ReLU activation), Dense 

ayer mapping the features into a 2D space (2 units, Linear activa- 

ion), and Output layer (13 units, Softmax activation). 

We use 100 images from the first 8 classes of the “Quick, 

raw!” dataset to train a classifier (batch size = 32, Adam opti- 

izer, learning rate = 0.01). Fig. 2 shows an example of how differ- 

nt loss functions define the feature space (for Contrastive Loss and 

riplet Loss, we have removed the final output layer of the model). 

he feature spaces are generated plotting the output of the 2 units 

ayer included in the CNN model. The feature space obtained by 

oftmax Loss has an intrinsic angular distribution as it is expected 
3 
15] . The angular distribution obtained by Softmax is far from the 

ircle Packing solution, but it is not necessarily a wrong solution. 

ecent approaches based on softmax angular margin losses have 

chieved state-of-the-art performances in Face Recognition prob- 

ems [15] . Contrastive Loss [9] maximizes the inter-class distances 

ut fails to exploit all the available space. The feature space ob- 

ained by this loss function is similar to the one obtained by other 

oss functions that maximize inter-class distances in a joint super- 

ision with Softmax [13] . Finally, Triplet Loss [10] shows a feature 

pace that perfectly matches the optimal Circle Packing solution 

see Fig. 2 ). The feature space generated by Triplet Loss approx- 

mates the theoretical maximum inter-class distance in a feature 

pace divided into 8 circular regions. 

.2. Limitations of the circle packing solution 

Besides the several similarities between the optimal solution to 

he Circle Packing problem and the feature space generated with a 

pecific learning strategy, we have to consider some limitations in 

his comparison: 

• The results obtained by DML approaches are usually charac- 

terized by a separable Euclidean space. For approaches based 

on Euclidean spaces, the Circle Packing framework can be used 

to find a theoretical maximum inter-class distance. However, 

defining each class region as a unit circle is not necessarily the 

best approach for all problems. The distance d ii can vary be- 

tween classes (i.e., intra-class variability depends on the class) 

and we are projecting into a 2-dimensional feature space as- 

suming low correlation between features. In the present paper 

we simplify the problem assuming unit circles, but Circle Pack- 

ing can be extended to circles with different area [30] or el- 

lipses with different shape [31] . 
• Most of the learned feature spaces are characterized by more 

than 2 dimensions. Extensions can be made to higher dimen- 

sions. In 3 dimensions the equivalent problem is known as 

Sphere Packing; and Hypersphere Packing in higher dimensions. 
• In the present paper, we will show how these spaces are suit- 

able for open-set classification problems. Nonetheless, a feature 

space defined by the Circle Packing solution is not necessarily 

the best solution for all machine learning problems, e.g., that 

solution does not guarantee good generalization properties to 

unseen data. 

. Proposed method: Setmargin loss (SM-L) 

The main challenges associated to free-text keystroke identifi- 

ation are: i) large intra-class variability (i.e., the typing behav- 

or of a given subject may vary occasionally); ii) low inter-class 

ariability (i.e., the typing behavior from different subjects might 

e similar); iii) large number of classes (one per subject which 

an easily scale to several thousands); iv) free-text scenario (i.e., 

dentification must be performed with independence of the text 

yped); and v) small to moderate number of samples per class 

vailable to model the problem (i.e., 15 samples per class in our 

ase). These challenges associated to keystroke biometric identi- 

cation have made to fail recent machine learning approaches in 

his task for identifying a large number of subjects [7] . 

Here we propose to overcome these challenges with an exten- 

ion of Tripet Loss. In comparison with Contrastive Loss, Triplet 

oss allows to model the relationship between positive and neg- 

tive samples in a unique operation (see Fig. 3 and Eq. (3) ). Both

ethods were developed to learn from comparisons made with 

airs of samples d( x i , x j ) . A learning process guided by pairs of 

amples may not be adequate for the possibly complex intra-class 

elationships between samples of the same class. With our pro- 
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Fig. 2. 2D feature spaces ( N = 8 ) learned by: (a) Softmax Loss, (b) Contrastive Loss, (c) Triplet Loss, and (d) Circle Packing optimal solution for N = 8 . 

Fig. 3. Sets of distances considered in popular deep learning loss functions: Contrastive Loss, Triplet Loss, N-Pair Loss, and the proposed SetMargin Loss (SM-L) for a pair of 

sets with G = 3 samples per set. Shapes represent different classes while color indicates different samples for the same class. 
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osed SetMargin Loss (SM-L) we propose to extend this learn- 

ng strategy to pairs of sets instead of pairs of samples. This 

earning strategy allows to capture better intra-class dependencies 

hile enlarging the inter-class differences in the feature space (see 

ig. 3 ). 

In practice, there are different ways to transform a sample- 

air based learning into a sample-set learning process. We pro- 

ose to evaluate two different implementations of our idea of set 

istances: SetMargin Contrastive Loss (SM-CL) and SetMargin Triplet 

oss (SM-TL) . 

Let { x i 
k 
} k =1 , ... ,G i and { x j q } q =1 , ... ,G j be a pair of sets provided as in-

ut to the model. The SetMargin Contrastive Loss (SM-CL) proposed 

n this work is an extension of Eq. (2) defined as follows: 

 SM−CL = 

G i ∑ 

k =1 

G i ∑ 

q = k +1 

d 2 ( x 

i 
k 
, x 

i 
q ) 

2 

+ β
G i ∑ 

k =1 

G j ∑ 

q =1 

max 2 
{

0 , α − d( x 

i 
k 
, x 

j 
q ) 

}
2 

(4) 

here α is a margin, d(·) is the Euclidean distance defined in 

q. (1) and β is a constant that serves to weight the intra-class and 

nter-class distances. In our experiments G 

i = G 

j = G is the number 

f samples per class and β = 2 G is proportional to the number of 

earning samples per class. 

The SetMargin Triplet Loss (SM-TL) proposed in this work is an 

xtension of traditional Triplet Loss (see Eq. (3) ) to learn from pairs 

f sets instead of pair of samples. This extension adds the context 

f the set to the learning process resulting in a large-margin rep- 

esentation capable of improving the distance between classes. The 

oss function is calculated as follows: 

 SM−T L = 

G i ∑ 

k =1 

G i ∑ 

q = k +1 

G j ∑ 

l=1 

( max 
{

0 , d 2 ( x 

i 
k , x 

i 
q ) − d 2 ( x 

i 
k , x 

j 

l 
) + α

}
+ max 

{
0 , d 2 ( x 

j 

k 
, x 

j 
q ) − d 2 ( x 

j 

k 
, x 

i 
l ) + α

}
) (5) 

Note that we assume G 

i = G 

j = G but the method can be di-

ectly extended to problems where G 

i � = G 

j . The margin α is 

qual to 1.5 in all our experiments. The literature has shown that 
4 
riplet selection can significantly improve the quality of the learned 

paces [32,33] . Our approach does not include a direct selection 

f triplets. Nonetheless, the max function included in Eq. (5) is 

sed to reduce the impact of “easy triplets” (i.e., d 2 ( x i 
k 
, x 

j 

l 
) > 

 

2 ( x i 
k 
, x i q ) + α). 

.1. Intuition of the learning process 

Without loss of generality let’s assume a template composed of 

 samples ( G = 3 ). T i is the triangle whose vertices are each of the

hree embeddings of the template of subject i and d i j is the dis- 

ance between barycenters from T i to T j . The SetMargin Loss min- 

mizes the areas of T i and T j while maximizing the distance d i j 

close to α). Incorporating the template geometry into the learning 

bjective we enrich the learned space generation process and this 

ill result in better embedding representations (see Fig. 4 ). 

The main characteristics of the proposed SM-L metric learn- 

ng are: i) it maximizes the inter-class distance while preserving 

ntra-class compactness through batches composed by pairs of sets 

nstead of pairs of samples; ii) it produces highly discriminative 

eature spaces adequate for open-set classification problems where 

nference is conducted on samples of classes unseen in the learn- 

ng process, and therefore the feature space is constructed over un- 

een class relationships; and iii) it is able to learn highly discrimi- 

ative feature spaces from a limited number of samples per class. 

he number of possible set combinations is very high and the set 

eneration acts as a data augmentation technique. 

.2. Comparison with other loss functions 

Fig. 4 shows the feature space learned by different loss func- 

ions using the toy example presented in previous sections. The 

gure depicts the feature spaces for: Softmax Loss, ArcFace Loss 

15] , Contrastive Loss [9] , Triplet Loss [10] , N-Pair Loss [11] , and

ur SetMargin Loss in the two proposed implementations: SM-CL 

nd SM-TL. The angular distribution of classes observed for the 

oftmax Loss function is enhanced by the ArcFace Loss function 

15] . Contrastive Loss shows a feature space with a common pat- 

ern where all classes are distributed in the exterior regions and 
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Fig. 4. Circle Packing problem solutions from N = 10 to N = 19 and feature spaces learned by different loss functions. 
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ne class is located at center. These spaces are similar to those ob- 

ained by other loss functions such as Center Loss [13] . For large 

umber of classes, this type of distribution is highly inefficient. 

riplet Loss tends to create spaces with structures similar to those 

f the Circle Packing solution, but fails with N greater than 10. N- 

air Loss is based on a learning process guided by inter-class com- 

arisons. Thus, N-Pair Loss improves the margin between classes 

ith respect to Triplet Loss. The proposed SetMargin Loss shows 

eature spaces very similar to those obtained by the optimal solu- 

ion to the Circle Packing problem. The feature space obtained by 

ur method guarantees a good separation between classes, close to 

he theoretical maximum. 

We propose two quantitative metrics to evaluate the distribu- 

ion of classes in the learned spaces: minimum distance between 

entroids ( δ), and intra-cluster dispersion ( ρ). The minimum dis- 

ance between centroids δ is calculated as: 

= 

1 

N 

N ∑ 

i =1 

min 

j 
|| c i − c j || , (i � = j) (6) 

here N is the number of classes and { c i , c j } are the centroids of

he embeddings of the classes i and j. The intra-cluster dispersion 

is calculated as: 

= 

1 

N 

N ∑ 

i =1 

( 

1 

L i 

L i ∑ 

k =1 

‖ c i − f 
(
x 

i 
k 

)‖ 

) 

(7) 

here L i is the total number of data points (i.e., number of sam- 

les) of the class i (L i ≥ G 

i ) and f ( x i 
k 
) is the embedding vector k of

he class i . The maximum δ for a given N can be calculated using 

he Circle Packing solution as: 

N 
max = 

1 

2 R 

N − 1 

(8) 

here R N is the minimum radius of the circular region D that 

ontains the N unit circles. In a similar way, the maximum dis- 

ance between centers of adjacent unit circles is calculated as 
N 
CP 

= 1 / 2 R N . 

Table 1 presents the ρ and δ obtained for learned spaces 

rained with Contrastive Loss (CL), Triplet Loss (TL), and our pro- 
5 
osed implementations (SM-CL and SM-TL). Note that for all N, the 

roposed SM-CL and SM-TL outperform the previous implemen- 

ations in both ρ and δ. Larger values of δ mean larger distance 

etween classes (i.e., high inter-class distance), while lower values 

f ρ mean lower distance between samples from the same class 

i.e., low intra-class distance). Table 1 also includes the theoretical 

aximum distance obtained by the optimal Circle Packing solution. 

he results show that the proposed distances (SM-CL and SM-TL) 

utperform the Circle Packing optimal solution δN 
CP 

with distances 

lose to the theoretical maximum δN 
max . This is possible as the em- 

eddings of the proposed learned feature spaces tend to be clus- 

ered in the border of the unit circle instead of the center. 

. Experiments 

The SetMargin Loss has been developed mainly to improve the 

earned space in open-set classification scenarios (anticipating that 

t will be also very helpful in many other machine learning scenar- 

os). To evaluate our loss function, we therefore propose to experi- 

ent on a challenging keystroke biometric identification task, where 

ubjects are identified based on their typing behavior [3,7,34–36] . 

.1. Dataset 

Our experiments are conducted with the Aalto University 

ataset [37] that comprises keystroke sequences from 168,0 0 0 

ubjects. Specifically, we employ the first 78,0 0 0 subjects available 

n the database. The acquisition task asked subjects to memorize 

nglish sentences and then to type them as quickly and accurately 

s they could. The English sentences were selected randomly from 

 set of 1,525 examples taken from the Enron mobile email and Gi- 

aword Newswire corpus. The example sentences contained a min- 

mum of 3 words and a maximum of 70 characters. Note that the 

entences typed by the subjects could contain a bit more than 70 

haracters because each subject could forget or add new characters 

hen typing. All subjects in the database completed 15 sessions 

ith a different sentence in each session on either a desktop or 

aptop keyboard. See [37] for more details including demographic 

nd acquisition information. 
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Table 1 

Results of the minimum distance between centroids δ and intra-cluster dispersion ρ (in 

parenthesis, multiplied by 100) for the different loss functions. We also include the values 

of δ for the Circle Packing optimal solution ( δCP ) and the theoretical maximum ( δmax ). 

Method N= 12 N= 14 N= 16 N= 18 N= 20 

δCP 0.25 0.23 0.22 0.21 0.19 

δmax 0.33 0.30 0.28 0.26 0.24 

Contrastive [9] 0.23(0.55) 0.15(0.29) 0.10(1.09) 0.09(1.25) 0.08(1.26) 

Triplet [10] 0.22(0.27) 0.15(0.30) 0.09(0.34) 0.08(0.39) 0.08(0.39) 

SM-CL [ours] 0.26(0.13) 0.25(0.14) 0.25(0.20) 0.21(0.18) 0.20(0.21) 

SM-TL [ours] 0.30(0.15) 0.26(0.18) 0.25(0.19) 0.21(0.20) 0.20(0.21) 

Fig. 5. Example of the 37 temporal features extracted from the keystroke sequence “ELSEVIER”: 8 × Hold time ( t H 

) + 7 × Inter-key Latency ( t IL ), 7 × Press Latency ( t PL ), 7 

× Release Latency ( t RL ), 8 × key codes ( k ). P = key Press event; R = key Release event. 
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.2. Pre-processing and keystroke dynamics 

The keystroke raw data comprises a three dimensional time se- 

ies including (see Fig. 5 ): key press timestamps, key release times- 

amps, and the keycodes. Timestamps are in UTC format with mil- 

isecond resolution, and the keycodes are integers between 0 and 

55 according to the ASCII code. The input to the model comprises 

equences of keycodes plus 4 temporal features: (i) Hold Latency: 

he elapsed time between press and release key events; (ii) Inter- 

ey Latency: the elapsed time between releasing a key and press- 

ng the next key; (iii) Release Latency: the elapsed time between 

wo consecutive release events; and iv) Press Latency: the elapsed 

ime between two consecutive press events. These 4 features are 

ommonly used in both fixed-text and free-text keystroke biomet- 

ic systems [38] . This feature extraction process results in a K × 5 

eature vector where textcolorBlue K is the number of keys pressed 

note that keycode is added for each key pressed). In order to train 

he model with sequences of different lengths K within a single 

atch, we truncate the end of the input sequence when K > M and 

ero pad at the end when K < M, in both cases to the fixed size M.

he size of the time dimension M was fixed to M = 50 , which was

etermined heuristically based on the characteristics of the dataset 

sed in the experiments (see Section 4.1 ). Error gradients are not 

omputed for the padded zeros which do not contribute to the loss 

unction. 

.3. Implementation details: RNN model and experimental protocol 

In our experiments we used the architecture proposed in [7] : 

ypeNet. TypeNet is a RNN architecture composed of two Long 

hort-Term Memory (LSTM) layers of 128 units, and an initial 

asking layer. Between the LSTM layers, the model performs batch 

ormalization and dropout at a rate of 0.5 to avoid overfitting. Ad- 

itionally, each LSTM layer has a dropout rate of 0.2. The output of 

he model f (x ) is an array of size 128 that we use as an embedding

eature vector. 

In our experiments, a batch was composed of 256 set pairs 

 { x i 
k 
} k =1 , 2 , 3 , { x j q } q =1 , 2 , 3 ) randomly chosen from the dataset available

or learning. The number of possible set pairs is at billions scale. 

e used 500 batches per epoch. The learning converges with less 

han 40 epochs which means around 5M set pairs in total. 
6 
Training protocol: The RNN model was trained using the first 

8,0 0 0 subjects in the dataset according to the method proposed 

n [7] . From the remaining 10 0,0 0 0 subjects, we employed another 

0,0 0 0 subjects to perform the evaluation of the different loss 

unctions, so there is no data overlap between the two groups of 

ubjects. The distance between two keystroke sequences was com- 

uted by averaging the Euclidean distances between the T gallery 

mbedding vectors f ( x i g ) and the query embedding vector f ( x j q ) as 

ollows: 

 i, j = 

1 

T 

T ∑ 

g=1 

|| f ( x 

i 
g ) − f ( x 

j 
q ) || (9) 

The experiments include two scenarios: identification and veri- 

cation. The results reported in the next section are computed in 

erms of Rank- n and Equal Error Rate (EER). We used the same 

rained models for both scenarios. 

Identification protocol: As a 1: N problem, the identification ac- 

uracy varies depending on the size of the background set. The 

ackground is conformed with identities (i.e., classes) not used in 

he learning process (i.e., open-set problem). The goal is to iden- 

ify the query identity among all the background subjects. In our 

xperiments, the size of the background was equal to 5,0 0 0 iden- 

ities (i.e., subjects). Additionally, our experiments include another 

,0 0 0 subjects employed as query set for a total of 10,0 0 0 differ-

nt subjects in testing (5K background + 5K query). We divided the 

5 keystroke sequences available for each subject into a gallery set 

the first 10 keystroke sequences) and a query set (the remaining 

 keystroke sequences). Remember that it is a free-text scenario, 

o the model must identify the subject typing different keystroke 

equences between gallery and query. We evaluated the identifi- 

ation accuracy by averaging the distance between the query set 

f samples x 
j 
q , with q = 1 , . . . , 5 belonging to the subject j and the

allery set x i g , with g = 1 , . . . , 10 belonging to all 5,0 0 0 background

ubjects i . Rank- n is a measure of 1: N identification system perfor- 

ance. A Rank-1 means that d i,J < d I,J for any i � = I. We then iden-

ify a query subject J to be present in the gallery as subject I as 

ollows [39] : 

 = arg min 

i 
d i,J (10) 
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Fig. 6. Block diagram of the keystroke biometric verification system ( 1 : 1 compar- 

ison) based on the TypeNet [7] architecture. τ is a decision threshold. 
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Table 2 

Identification performance in terms of Rank- n accuracy for different 

methods in the literature. G is the number of samples conforming 

each set of samples employed to train the SetMargin Loss. Back- 

ground dataset of 5,0 0 0 subjects. 

Method Rank-1 Rank-5 Rank-20 

Digraph [8] 0 . 5% 0 . 9% 1 . 2% 

POHMM [6] 6 . 1% 10 . 3% 13 . 8% 

TypeNet: Contrastive Loss [7] 17 . 8% 31 . 5% 38 . 9% 

TypeNet: DeepLDA [40] 34 . 2% 63 . 2% 84 . 2% 

TypeNet: Softmax 37 . 9% 64 . 9% 84 . 4% 

TypeNet: Triplet Loss [10] 38 . 2% 68 . 2% 88 . 5% 

TypeNet: Quadruplet Loss [12] 38 . 6% 68 . 7% 87 . 9% 

TypeNet: N-Pair Loss [11] 38 . 7% 67 . 7% 87 . 0% 

TypeNet: SM-CL, G = 3 31 . 0% 59 . 9% 82 . 7% 

TypeNet: SM-CL, G = 6 37 . 5% 67 . 0% 86 . 8% 

TypeNet: SM-CL, G = 9 36 . 7% 65 . 8% 86 . 3% 

TypeNet: SM-TL, G = 3 39 . 4% 68 . 3% 88 . 1% 

TypeNet: SM-TL, G = 6 45 . 8% 73 . 9% 91 . 0% 

TypeNet: SM-TL, G = 9 45 . 3% 72 . 4% 89 . 5% 
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This identification protocol did not include a decision threshold. 

he identity with the minimum distance was chosen among all the 

ackground subjects. 

Verification protocol: The EER is a measure of 1:1 verification 

ystem performance. EER is defined as the operational point where 

alse Rejection and False Acceptance are equal. The goal is to ver- 

fy the identity of a query sample using its corresponding gallery 

et. This experiment includes a total of 5,0 0 0 different subjects in 

esting. We divided the 15 keystroke sequences available for each 

ubject into a gallery set (the first 5 keystroke sequences) and a 

uery set (the last 5 keystroke sequences). The score d i, j was ob- 

ained as the average distance between the query vector and the 

et of gallery samples. In this experiment, each query sample was 

valuated separately for a total number of 50,0 0 0 genuine scores 

5 query samples × 5,0 0 0 subjects). The impostor scores were ob- 

ained choosing one query sample per subject for a total number 

f 24,995 scores (5,0 0 0 × 4,999). We evaluated the verification ac- 

uracy averaging the EER obtained for each subject. Fig. 6 presents 

he block diagram of the verification protocol for a comparison 

 : 1 T = 1 . 

.4. Results 

Table 2 presents the identification performance of Type- 

et [7] incorporating our proposed SetMargin Loss ( SM-CL and 

M-TL ) in comparison to other popular loss functions: Triplet Loss 
7 
10] , Contrastive Loss [9] , Softmax, Deep Linear Discriminant Anal- 

sis DeepLDA [40] , Quadruplet Loss [12] , and N-Pair Loss [11] . We

lso include there as reference the results of two competitive algo- 

ithms for free-text keystroke biometrics based on statistical mod- 

ls: Partially Observable Hidden Markov Models [6] , and Digraphs- 

VM [8] . Note that all approaches were trained using the same 

umber of training sequences. Depending on the ML approach, the 

umber of samples employed to compute the loss function varies. 

n order to make a fair comparison between loss functions, the 

atch size of the different approaches has been modified to incor- 

orate the same number of samples per batch (1,0 0 0 samples per 

atch). 

The results show how Triplet Loss obtains an accuracy two 

imes higher than Contrastive Loss and similar performance than 

oftmax, Quadruplet Loss [12] , and N-Pair Loss [11] . In compari- 

on with traditional statistical approaches [6,8] , the Deep Learning 

odel (TypeNet) is clearly superior. The proposed SM-CL obtains 

 much higher performance than traditional Contrastive Loss but 

he accuracy achieved is still under other loss functions. Finally, 

M-TL improves the best related loss function (N-Pair Loss) by 18% 

elatively with a Rank-1 accuracy of 45 . 8% . SM-TL is able to cap-

ure the intra-class structure of samples from the same class and 

t the same time maximizes the inter-class distance. This learning 

rocess is appropriate for open-set classification tasks where query 

amples are matched to multiple different classes not seen during 

earning (5,0 0 0 in our experiments). These accuracies increase up 

o 73 . 9% and 91% for Rank-5 and Rank-20 respectively. 

The results prove how the performance improves when incor- 

orating sets of samples into the loss function. The superior per- 

ormance of SM-TL cannot be attributed exclusively to the larger 

umber of samples included in the computation of the loss func- 

ion. As an example SM-CL showed lower performance with the 

ame number of samples and N-Pair loss showed lower perfor- 

ance with larger number of samples. We have not included the 

erformance of ArcFace in our comparison because of the poor re- 

ults obtained. This poor performance can be caused by different 

actors including the low number of samples available per subject 

only 15 in contrast with hundreds of samples in [15] ), the archi- 

ecture (RNN instead of CNN), or parameter tuning. 

Table 3 presents the verification performance of our proposed 

etMargin Loss ( SM-CL and SM-TL ) and other popular methods and 

oss functions. The verification scenario is characterized by higher 

ccuracies in comparison with the identification experiments. In 

his case, the proposed method (SM-TL) is capable of achieving 

 performance of 1 . 85% of EER. The method shows superior per- 

ormance than previous approaches and popular loss functions. 
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Table 3 

Verification performance in terms of Equal 

Error Rate (EER) for different methods in 

the literature. G is the number of samples 

conforming each set of samples employed 

to train the SetMargin Loss. The best perfor- 

mance is obtained for G = 6 . 

Method EER 

Digraph [8] 43 . 1% 

POHMM [6] 24 . 7% 

TypeNet: Contrastive Loss [7] 5 . 40% 

TypeNet: DeepLDA [40] 4 . 21% 

TypeNet: Softmax 10 . 8% 

TypeNet: Triplet Loss [10] 2 . 20% 

TypeNet: Quadruplet Loss [12] 2 . 33% 

TypeNet: N-Pair Loss [11] 2 . 51% 

TypeNet: SM-CL, G = 6 2 . 42% 

TypeNet: SM-TL, G = 6 1 . 85% 

N

m

n

v

n

v

4

b

d

a

p

p

t

o

s

s

@

t

e

5

c

a

f

fi

n

r

l

c

i

o

t

d

j

s

o

a

i

(

S  

E

m

d

E

s

t

i

o

l

m

s

D

A

2

(

g

l

R

 

 

 

 

 

[  

 

 

 

 

 

 

onetheless, in the verification scenario the margin of improve- 

ent is lower than in the identification experiment. It should be 

oted that we used the same model for both the identification and 

erification scenarios. The results demonstrate the high discrimi- 

ation capacity of the learned spaces for both identification and 

erification. 

.4.1. Computational load 

Metric Learning approaches suffer from data expansion when 

atches are conformed by pairs or triplets of samples instead of in- 

ividual samples. This expansion offers some advantages (e.g. data 

ugmentation), but also increases the computational load. The pro- 

osed SM-L learning process is defined by pairs of sets, instead of 

airs/triplets of samples. Thus, our method exponentially increase 

he number of possible combinations. However, the convergence 

f the learning process is relatively fast and affordable for a per- 

onal computer with high specifications. All the experiments pre- 

ented in this work were made with an Intel Core i7-8760H CPU 

 2.2Ghz, 32 GB RAM, NVIDIA GeForce RTX2080. As an example, 

he time needed to learn the SM-CL and SM-TL models used in our 

xperiments were 7.6 and 8.8 h, respectively. 

. Conclusions 

We have presented a new Distance Metric Learning approach 

alled SetMargin Loss (SM-L). Our approach improves intra-class 

nd inter-class structures in learned spaces, which is specially use- 

ul (among other machine learning problems) for open-set classi- 

cation. We have also introduced the Circle Packing problem as a 

ovel way to gain insights into the feature space of learned rep- 

esentations. A feature space that satisfies the Circle Packing prob- 

em guarantees a theoretical maximum inter-class distance given 

ompact intra-class distances. Our experiments suggest that SM-L 

s capable of obtaining a feature space close to the Circle Packing 

ptimal solution. 

We have finally applied SM-L to keystroke biometric Identifica- 

ion using the Aalto University Dataset [37] . Our experiments, con- 

ucted over a learning set with typing sequences from 68,0 0 0 sub- 

ects and evaluated over a testing set with 10,0 0 0 subjects, demon- 

trate the superior performance of the proposed approach over 

ther popular loss functions. The proposed approach showed an 

ccuracy (Rank-1 for identification and EER for verification) signif- 

cantly superior than traditional statistical methods and 18% better 

relatively) than Softmax, Triplet, and N-Pair Losses. The proposed 

M-TL approach obtained a Rank-1 accuracy of 45 . 3% and 1 . 85% of

ER. This performance is still far from the most accurate biometrics 

odalities, but it provides new opportunities in applications in the 

igital domain (e.g., online authentication, digital forensics). The 
8 
ER under 2% obtained for the user verification scenario demon- 

trates the potential of keystroke dynamics in large-scale user au- 

hentication applications. For future work we suggest going deeper 

n the theory behind the proposed methods in order to seek the- 

retical limits on the achievable performance and to inspire new 

earning methods. Finally, we also plan to explore the developed 

ethods in other problems beyond the ones explored here both in 

upervised and unsupervised learning. 

eclaration of Competing Interest 

None. 

cknowledgements 

This work has been supported by projects: PRIMA ( MSCA-ITN- 

019-860315 ), TRESPASS-ETN (MSCA-ITN-2019-860813), BIBECA 

RTI2018-101248-B-I00 MINECO), edBB (UAM), and Instituto de In- 

enieria del Conocimiento (IIC). A. Acien is supported by a FPI fel- 

owship from the Spanish MINECO. 

eferences 

[1] M.L. Ali , K. Thakur , C.C. Tappert , M. Qiu , Keystroke biometric user verification

using Hidden Markov Model, in: Proc. of IEEE 3rd International Conference on 
Cyber Security and Cloud Computing, 2016, pp. 204–209 . 

[2] J. V. Monaco, Robust keystroke biometric anomaly detection, 
arXiv preprint arXiv:1606.09075 (2016). 

[3] A. Morales , J. Fierrez , R. Tolosana , J. Ortega-Garcia , J. Galbally , M. Gomez-Bar-

rero , A. Anjos , S. Marcel , Keystroke biometrics ongoing competition, IEEE Ac- 
cess 4 (2016) 7736–7746 . 

[4] F. Bergadano , D. Gunetti , C. Picardi , User authentication through keystroke dy- 
namics, ACM Trans. Inf. Forensics Secur. 5 (4) (2002) 367–397 . 

[5] A. Morales , M. Falanga , J. Fierrez , C. Sansone , J. Ortega-Garcia , Keystroke dy-
namics recognition based on personal data: a comparative experimental eval- 

uation implementing reproducible research, in: Proc. of IEEE International Con- 

ference on Biometrics Theory, Applications and Systems, 2015 . 
[6] J.V. Monaco , C.C. Tappert , The partially observable hidden Markov model and 

its application to keystroke dynamics, Pattern Recognit. 76 (2018) 449–462 . 
[7] A. Acien , J.V. Monaco , A. Morales , R. Vera-Rodriguez , J. Fierrez , TypeNet: scaling

up keystroke biometrics, in: Proc. of IEEE/IAPR International Joint Conference 
on Biometrics, 2020 . 

[8] H. Aeker , S. Upadhyaya , User authentication with keystroke dynamics in long–

text data, in: Proc. of the IEEE International Conference on Biometrics Theory, 
Applications and Systems, 2016 . 

[9] R. Hadsell , S. Chopra , Y. Lecun , Dimensionality reduction by learning an invari-
ant mapping, in: Proc. Computer Vision and Pattern Recognition Conference, 

2006 . 
[10] K.Q. Weinberger , L.K. Saul , Distance metric learning for large margin nearest 

neighbor classification, J. Mach. Learn. Res. 10 (2009) 207–244 . 

[11] K. Sohn , Improved deep metric learning with multi-class n-pair loss objective, 
in: Advances in Neural Information Processing Systems, 2016, pp. 1857–1865 . 

12] W. Chen , X. Chen , J. Zhang , K. Huang , Beyond triplet loss: a deep quadruplet
network for person re-identification, in: Proc. of the IEEE Conference on Com- 

puter Vision and Pattern Recognition, 2017, pp. 403–412 . 
[13] Y. Wen , K. Zhang , Z. Li , A discriminative feature learning approach for deep

face recognition, in: Proc. of the European Conference on Computer Vision, 

2006 . 
[14] W. Liu , Y. Wen , Z. Yu , M. Yang , Large-margin softmax loss for convolutional

neural networks, in: Proc. of International Conference on Machine Learning, 
vol. 2, 2016, pp. 507–516 . 

[15] J. Deng , J. Guo , X. Niannan , S. Zafeiriou , ArcFace: additive angular margin loss
for deep face recognition, in: Proc. IEEE Conference on Computer Vision and 

Pattern Recognition, 2019, pp. 4690–4699 . 

[16] J. Snoek , O. Rippel , K. Swersky , R. Kiros , N. Satish , N. Sundaram , M. Patwary ,
M. Prabhat , R. Adams , Scalable Bayesian optimization using deep neural net- 

works, in: Proc. of the International Conference on Machine Learning, 2015, 
pp. 2171–2180 . 

[17] Q. Qi, J. Rong, Z. Shenghuo, L. Yuanqing, Fine-grained visual categorization via 
multi-stage metric learning, in: Proc. of the IEEE Conference on Computer Vi- 

sion and Pattern Recognition, 2015. 
[18] Y. Taigman , M. Yang , M. Ranzato , L. Wolf , DeepFace: closing the gap to hu-

man-level performance in face verification, in: Proc. of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2014, pp. 1701–1708 . 
[19] D. Deb , A. Ross , A.K. Jain , K. Prakah-Asante , K.V. Prasad , Actions speak louder

than (pass) words: Passive authentication of smartphone users via deep tem- 
poral features, in: Proc. of the IEEE International Conference on Biometrics, 

2019 . 

https://doi.org/10.13039/100014439
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0001
http://arxiv.org/abs/1606.09075
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0019


A. Morales, J. Fierrez, A. Acien et al. Pattern Recognition 122 (2022) 108283 

[  

[

[

[

[  

[  

[

[

[  

[

[

[  

[  

[  

[  

[  

[

[  

[

[  

[  

A
v  

U
c

J

H
a

Y
F

A

d  

i

w

R
P

e
i

a

I
t

I
B

p

20] F. Schroff, D. Kalenichenko , J. Philbin , FaceNet: a unified embedding for face
recognition and clustering, in: Proc. of the IEEE Conference on Computer Vi- 

sion and Pattern Recognition, 2015, pp. 815–823 . 
21] O. Rippel , P. Dollar , Metric learning with adaptive density discrimination, in: 

Proc. of International Conference on Learning Representations, 2016 . 
22] A.F. Beardon , K. Stephenson , The uniformization theorem for circle packings, 

Indiana Univ. Math. J. 39 (4) (1990) 1383–1425 . 
23] H. Melissen , Densest packing of eleven congruent circles in a circle, Geome- 

triae Dedicata 50 (1994) 15–25 . 

24] F. Fodor , The densest packing of 12 congruent circles in a circle, Beitrge zur
Algebra und Geometrie 41 (20 0 0) 401–409 . 

25] F. Fodor , The densest packing of 13 congruent circles in a circle, Beitrge zur
Algebra und Geometrie 44 (2003) 431–440 . 

26] M. Hifi, R. M’Hallah , A dynamic adaptive local search algorithm for the circular 
packing problem, Eur. J. Oper. Res. 183 (3) (2007) 1280–1294 . 

27] M. Hifi, R. M’Hallah , Beam search and non-linear programming tools for the 

circular packing problem, Eur. J. Oper. Res. 1 (4) (2009) 476–503 . 
28] D. Ha , D. Eck , A neural representation of sketch drawings, in: Proc. of Interna-

tional Conference on Learning Representations, 2018 . 
29] K. Simonyan , A. Zisserman , Very deep convolutional networks for large-scale 

image recognition, in: Proc. of International Conference on Learning Represen- 
tations, 2015 . 

30] K. Stephenson , Circle packing: a mathematical tale, Not. AMS 50 (11) (2003) 

1376–1388 . 
31] E.G. Birgin , L.H. Bustamante , H.F. Callisaya , J.M. Martínez , Packing circles within

ellipses, Int. Trans. Oper. Res. 20 (3) (2013) 365–389 . 
32] F. Schroff, D. Kalenichenko , J. Philbin , FaceNet: a unified embedding for face

recognition and clustering, in: Proc. of the IEEE Conference on Computer Vi- 
sion and Pattern Recognition, 2015, pp. 815–823 . 

33] A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-

identification, arXiv preprint arXiv:1703.07737 (2017). 
34] F. Monrose , A. Rubin , Authentication via keystroke dynamics, in: Proc. of the

ACM conference on Computer and Communications Security, 1997, pp. 48–56 . 
35] D. Gunetti , C. Picardi , Keystroke analysis of free text, ACM Trans. Inf. Syst. Se-

cur. 8 (3) (2005) 312–347 . 
36] S.P. Banerjee , D.L. Woodard , Biometric authentication and identification using 

keystroke dynamics: a survey, J. Pattern Recognit. Res. 7 (1) (2012) 116–139 . 

37] V. Dhakal , A.M. Feit , P.O. Kristensson , A. Oulasvirta , Observations on typing
from 136 million keystrokes, in: Proc. of the Conference on Human Factors in 

Computing Systems, 2018 . 
9 
38] A. Alsultan , K. Warwick , Keystroke dynamics authentication: a survey of free–
text, Int. J. Comput. Sci. Issues 10 (2013) 1–10 . 

39] A . Morales , A . Acien , J. Fierrez , J.V. Monaco , R. Tolosana , R. Vera-Rodriguez ,
J. Ortega-Garcia , Keystroke biometrics in response to fake news propagation in 

a global pandemic, in: Proc. of IEEE International Workshop on Secure Digital 
Identity Management, 2020 . 

40] L. Wu , C. Shen , A. Van Den Hengel , Deep linear discriminant analysis on fisher
networks: a hybrid architecture for person re-identification, Pattern Recognit. 

65 (2017) 238–250 . 

ythami Morales Moreno M.Sc. in Electrical Engineering, and Ph.D from the Uni- 
ersidad de LPGC in 2006 and 2011. Since 2017, he is Associate Professor with the

niversidad Autonoma de Madrid. In his work, he combines his interests in ma- 
hine learning, biometric processing, security, and privacy. 

ulian Fierrez received the M.Sc. and Ph.D. degrees in 2001 and 2006, respectively. 

e is now Associate Professor at UAM. His research interests include signal and im- 
ge processing, pattern recognition, security, and biometrics. He received the IAPR 

oung Biometrics Investigator Award 2017 and is Associate Editor of Elseviers IN- 
ORMATION FUSION. 

lejandro Acien received the MSc in Electrical Engineering in 2015 from Universi- 

ad Autonoma de Madrid. In October 2016, he joined the Bida Lab group, where he
s currently collaborating as an assistant researcher pursuing the PhD degree. He is 

orking in Behaviour Biometrics, HCI, Cognitive Biometric Authentication. 

uben Tolosana received received the M.Sc. in Telecommunication Engineering, and 
h.D. from Universidad Autonoma de Madrid in 2014 and 2019. His research inter- 

sts are mainly focused on pattern recognition and machine learning, particularly 
n the areas of face manipulation and fake detection, human-computer interaction 

nd biometrics. 

gnacio Serna B.S. degree in mathematics and B.S. degree in computer science from 

he Autonomous University of Madrid, Spain, in 2018, and M.S. degree in Artificial 

ntelligence in 2020. He is currently pursuing a Ph.D. in Computer Science at the 
iDA-Lab. His research interests lie in computer vision, pattern recognition and ex- 

lainable AI, with applications to biometrics. 

http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0032
http://arxiv.org/abs/1703.07737
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00463-5/sbref0040

	SetMargin loss applied to deep keystroke biometrics with circle packing interpretation
	1 Introduction
	2 Distance metric learning: loss functions
	2.1 Circle packing and learned feature spaces
	2.2 Limitations of the circle packing solution

	3 Proposed method: Setmargin loss (SM-L)
	3.1 Intuition of the learning process
	3.2 Comparison with other loss functions

	4 Experiments
	4.1 Dataset
	4.2 Pre-processing and keystroke dynamics
	4.3 Implementation details: RNN model and experimental protocol
	4.4 Results
	4.4.1 Computational load


	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


