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Abstract—The new regulatory framework proposal on Ar-
tificial Intelligence (AI) published by the European Commis-
sion establishes a new risk-based legal approach. The proposal
highlights the need to develop adequate risk assessments for
the different uses of AI. This risk assessment should address,
among others, the detection and mitigation of bias in AI. In
this work we analyze statistical approaches to measure biases in
automatic decision-making systems. We focus our experiments
in face recognition technologies. We propose a novel way to
measure the biases in machine learning models using a statistical
approach based on the N-Sigma method. N-Sigma is a popular
statistical approach used to validate hypotheses in general science
such as physics and social areas and its application to machine
learning is yet unexplored. In this work we study how to apply
this methodology to develop new risk assessment frameworks
based on bias analysis and we discuss the main advantages and
drawbacks with respect to other popular statistical tests.

Index Terms—Artificial Intelligence, AI, Bias, Explainable,
Risk Assessment, Trustworthiness, 5-Sigma

I. INTRODUCTION

Artificial Intelligence (AI) can play an important role to

achieve the Sustainable Development Goals (SDGs) by 2030

[1]. AI brings enormous benefits in several critical areas for

our society (e.g., health, security, sustainability), but it can

also significantly compromise the safety of citizens worldwide.

The development of a Responsible AI technology needs an

international multidisciplinary effort to ensure the trustworthi-

ness, sustainability, and safety. This effort involves a multi-

stakeholder work including academia, industry, civil society,

and public agencies, among others.

The absence of international standards for the development

of Responsible Artificial Intelligence has motivated a wide

variety of approaches [2], [3]. The regulation is moving from

a technology-based framework to a risk-based framework [4].

The new regulatory framework proposed by the European

Union defines 4 levels of risk in AI: i) Unacceptable, ii)
High, iii) Limited, and iv) Minimal. As an example, high-

risk technologies will be subject to strict obligations including

adequate risk assessment and mitigation systems. This risk-

based framework requires protocols and technologies capable

of assessing and explaining the results of AI systems based on

parameters beyond the traditional performance metrics (e.g.,

overall accuracy).

How to measure or assess the fairness of an automatic-

decision algorithm is not a trivial task. Fairness is a human

concept that can be mathematically defined in different ways

[5]. Traditionally, fairness is measured as a difference in

performance between population subgroups (e.g., performance
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Fig. 1: Performance differences of 4 AI models (e.g., Face

Recognition technology) evaluated over 4 different demo-

graphic groups (A,B,C,D). The difference is measured in

number of sigmas (σ) with respect to a reference group. The

bias level is represented with different colors.

for different demographic groups). The literature has pro-

posed several approaches to measure such a difference with

traditional statistical methods [6], [7] or machine learning

approaches [5], [8], but none of these methods has been yet

adopted as a widely recognized standard.

On the other hand, the 5-sigma approach is widely used for

statistical analyses in many fields including natural [9] and

human sciences [10]. In this work we extend this 5-Sigma

approach and apply it to bias analysis of data-driven learning

models (see Fig. 1). The contributions of this work are:

• The proposal of a common experimental protocol to

achieve a fairer and more standardized evaluation of AI

models.

• We analyze two pointwise metrics and a traditional

distribution metric for bias analysis in machine learning

models. (More specifically, in discrimination-aware face

recognition models.)

• We extend 5-Sigma into N -Sigma for bias assessment of

machine learning. This proposed extension is compatible

with a risk-based evaluation framework where a variable

(N ) can be associated to each risk level (see Fig. 1).

II. RELATED WORKS

Bias in ML systems is an increasingly studied topic for

which various notions of fairness have been applied [8],
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[11]. The most common way to measure bias is through

performance in demographic groups, but it is not the only

way. Researchers have also looked at how models respond at

the level of activation and how this is different across different

groups [12], [13].

Among other AI application fields, face biometrics is per-

haps the most popular and evolved one regarding bias analysis

[14]. From the fairness criteria proposed in the literature, the

statistical parity criterion is inadequate for Face Recognition

(FR) models. The work [15] shows that a perfect model does

not imply demographic parity with entangled variables, which

is the case of FR, where sensitive demographic characteristics

are linked to identity. It is unreasonable to think that the

outcome of a face recognition system is independent of a

person’s ethnicity when a white user is trying to impersonate

a black user. Equalized odds are often used; for example, the

NIST report uses false negatives and false positives for each

demographic group to measure the fairness [16].

Except a few exceptions [17], most of the literature studying

bias in facial algorithms does not clearly define what bias

is and merely shows that the performance varies between

population groups. Recent research is attempting to mitigate

biases after quantifying them. These recent papers typically

use a form of standard deviation of the algorithm performance

across individuals of different populations as a measure for

bias, both implicitly and explicitly [17]–[20].

A. Bias in face recognition

The number of academic studies analyzing the fairness of

face recognition algorithms has grown significantly in recent

years, and the number of published works pointing out the

biases in the results of face detection [21] and recognition

algorithms is large [14], [22]–[24]. Facial recognition systems

can suffer from a variety of biases, ranging from those arising

from unconstrained environmental variables such as illumi-

nation, pose, expression, and face resolution, from systematic

errors such as image quality [25], [26], and from demographic

factors [27] like age, sex, and race. Among these different

covariates, the skin color is repetitively remarked as a factor

with high impact in the performance [28].

III. DATABASE AND MODELS

In our experiments we used Racial Faces in the Wild (RFW)

[29]. This database is divided into four demographic classes:

Caucasian, Indian, Asian, and African. Each class has about

10K images of 3K individuals. There are no major differences

in pose, age, and sex distribution between Caucasian, Asian,

and Indian groups. The African group has a smaller age

difference than the others, and while females account for

approximately 35% in the other groups, they account for less

than 10% in the African group.

The model used is a ResNet-100 network [30], trained

on the MS1Mv31 database [31] (93K identitites and 5.2M

1https://github.com/deepinsight/insightface/tree/master/recognition/
datasets #ms1m-retinaface

images) with ArcFace [32] loss function. A model with 101

convolutional layers and 44 million parameters.

When using facial recognition systems in verification mode,

two faces are assigned the same identity if their similarity

distance is smaller than a threshold τ . The similarity is

computed between the two face descriptors xr and xs obtained

from a face model. A similarity score is known as a genuine

score or authentic score if it is the result of matching two

samples of the same biometric trait of a user. It is known

as an impostor score if it involves comparing two biometric

samples originating from different users [33]. Several metrics

can be used to compute similarity, the two most frequent are

euclidean distance and cosine similarity.

From the similarity results, EER (Equal Error Rate) and

TPR (True Positive Rate) are computed for a specific thresh-

old. The decision threshold τ for each model is different and is

set using genuine and impostor comparisons. The EER is the

error at a given threshold at which FMR (False Match Rate)

and FNMR (False Non-match Rate) are equal. The TPR is the

probability of correctly identifying two user samples as being

from the same user.

IV. METHODS: EXPERIMENTAL PROTOCOL

A. Training protocol

To have a reference of the performance of the metrics,

different biased and unbiased Face Recognition models have

been trained using the base model explained in the Section III.

Basically, a finetuning was carried out: a dense layer was

added at the end of the model and trained with different data

depending on the aimed bias. For example, to positively bias

Asian ethnicity, the dense layer is trained only with faces of

Asian people. If non-bias is intended, this dense layer is trained

with data from all ethnicities. Triplet Loss function [34], [35]

is used, whose objective is to bring the feature embeddings

of the same user closer together and to pull apart those of

different users, in the feature space.

For this training, 50% of the RFW database users were used.

To avoid that the results depend on the training of a single

model, M models are trained (M = 20 in this work) for each

aimed bias. In this way, we obtain average results not affected

by the stochastics associated with the training process. The

M models are trained by bootstrapping the 75% of the users

within the 50% belonging to the training set. Bootstrapping

[36] is a method of inferring results of a population from

the results found in a collection of smaller random samples

from that population, using replacement during the sampling

process.

B. Evaluation protocol

The other 50% of the RFW users serve for the evaluation

stage. In this stage, the values of the 4 metrics explained in

Section V (SP, EOP, T-Test, N-Sigma) were obtained for each

model. These metric values were obtained by ethnic group to

compare performance differences between ethnic groups and

to establish the existence or not of bias.
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Fig. 2: Experimental Framework for the analysis of biased learning processes. A, B, C, and D represent different demographic

groups used to introduce bias in the learning process.

For clarification, a model was trained to be positively

biased for one ethnicity and then tested on all ethnicities

independently in order to study the differences in performance

across them.

Measuring bias in a model is not trivial, it can yield results

that are difficult to interpret and compare. When a performance

value (for example, EER or TPR) is obtained from a neural

network, it has a margin of error, i.e., that value may be a little

higher or a little lower depending on the specific data used. To

try to avoid this variability and not lose valuable information,

in this work the metrics for measuring bias, are obtained from

a group of K EER/TPR values (each value obtained from a

subset). In other words, several EER/TPR values are calculated

to reflect the variability of the performance results in a model

and in 1) Pointwise metrics (SP, EOP): performance values

are compared one by one, or in 2) distribution metrics (T-
Test, N-Sigma): the group of performance values is compared

as a distribution.

C. Optimizing subsets

For the computation of the 4 metrics analyzed in this

work, K subsets are created within each ethnic group, and

each of these subsets is used to obtain one EER/TPR value.

The K subsets have to be representative of the database to

obtain a valid set of performance values. Bootstrapping [36]

as explained before is a statistical technique that enables us to

estimate the characteristics of a population by taking multiple

random samples from it. The method involves creating smaller

subsets from the larger population, with replacement, and

using them to calculate the desired statistics:

1) A small number of samples in a subset will give values

dependent on the samples selected.

2) A large number of samples may be unnecessary and may

complicate the computation.

D. Experimental framework

The entire workflow is presented in Figure 2:

1) The RFW database is divided in training (50%) and

evaluation (50%).

2) The training stage is used to create the Biased Models as

explained in the Subsection IV-A. As a result, we have

M biased models for each of the 4 ethnic groups and M
unbiased models, in total: M × 4 +M models.

3) At the evaluation stage, K subsets of each ethnic group

(A,B,C,D) are selected from the database, that is, K ×
4. Consequently, the models are evaluated with K × 4
randomly selected subsets. K×4 new subsets are sampled

for each batch of models. As M models of each type are

trained (M batches of models), (K × 4) × (M) subsets

are created.

4) Each evaluation metric (SP, EOP, T-Test, N-Sigma) pro-

duces a single value for each ethnicity. Thus, initially, we

obtain (number of ethnicities = 4) × M values on each

evaluation metric for each of the model types (ethnically

biased A,B,C,D and unbiased U).

5) M models per type were trained to avoid stochastic

effects associated with training in the results. Therefore,

the results presented in Section (VI-A) show the average

over the M model batches. For this reason, the final

results show number of ethnicities × 1 values on each

evaluation metric for each type of model (A,B,C,D,U).

V. MEASURING BIAS IN AI APPLICATIONS

Bias refers to the unequal behavior of an algorithm; this

irregular behavior may render its decisions unfair and is

therefore called biased. Thus, in AI terms, bias is measured in

terms of differences in performance between different groups.

In this work we are going to focus on measuring bias using

the experimental protocol previously described applied on two

pointwise metrics and two distribution metrics.

A. Pointwise metrics

The experimental protocol is applied to two metrics used

in the literature and particularized to our use case. Therefore,
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the definitions of the metrics undergo certain changes which

are shown below.

Consider a binary classifier Ŷ . An outcome Ŷ = 0
represents a “non-match” decision (i.e., comparison between

samples of different classes), while Ŷ = 1 represents a

“match” decision (i.e., comparison between samples from the

same class). The literature includes specific measures proposed

to detect biased results in machine learning models [37]. In

this work we will use two:

• Statistical Parity (SP) or Demographic Parity [37]:

P (Ŷ |s = 0) = P (Ŷ |s = 1) which means that the

predictions must be independent of attribute s, and the

probability of obtaining an outcome must always be the

same regardless of the attribute (e.g. gender, ethnicity,

age). This metric is not suitable for FR as we already

explained in Section 2, however in this case we are going

to use a particularity of this definition which can be

adequate to measure the bias in FR systems. Statistical

parity between groups can be expressed in terms of both

False Match Rate (FMR) and False Non-Match Rate

(FNMR) at a certain decision threshold [38]:

SP(τ) = 1− (αA(τ) + (1− α)B(τ)) (1)

where α defines the weight of the importance of False

Matches, A(τ) is an specific operational point (defined

by the threshold τ ) of the FMR differential across groups

for a given threshold and B(τ) is the FNMR for this

operational point. If taken the threshold at which FMR

and FNMR are equal, then the FMR and FNMR became

the EER (Equal Error Rate) and A = B. The equation

simplifies to:

SP(τ) = 1−A(τEER) = 1−B(τEER) (2)

Defining A() as the mean of the EER differences between

two groups (G1 and G2), where each EER is obtained

from each of the K subsets of the group, we get:

SP(τEER) = 1− 1

K

K∑

i=1

|EERG1
i − EERG2

i | (3)

• Equality of Opportunity (EOP) [5]: P (Ŷ = 1|s =
0,Y = 1) = P (Ŷ = 1|s = 1,Y = 1). Used

in biometric literature as differential value, this metric

is a relaxed version of the equalized odds criterion.

EOP considers only the True Positive Rates (TPR). This

definition of EOP serves to indicate that the TPR between

different groups must be equal. In this case, the formula

depends on the operational point (threshold τ ):

EOP(τ) = 1− 1

K

K∑

i=1

|TPRG1
i (τ)− TPRG2

i (τ)| (4)

The operational point chosen in this work is the one

corresponding to an FPR of 0.01.

B. Distribution metrics
Instead of comparing the performance values (TPR/EER)

independently as it is done with the previous metrics (Equa-

tions 3 and 4), in the distribution metrics the performance

values are understood as a group, and the aim is to compare

them as a distribution.
1) Traditional statistical test (T-Test): In our case, an

appropriate statistical approach to compare the distributions

is the T-Test. This test is used to evaluate the statistical

significance of the difference between the means μG1 and μG2

of two populations, in situations where the populations follow

a normal distribution, the standard deviation is unknown, and

the sample size is small. It uses an estimation of the standard

deviation instead of the true value. The selected statistic in our

case is the Welch corrected unpaired T-Test:

Z =
μG1 − μG2

s
where s =

√
(
s2G1 + s2G2

n
) (5)

where n = nG1 = nG2 is the number of samples and s2G1 and

s2G2 are the unbiased estimators of the population variance.

The null hypothesis H0 : G1 = G2 (the distribution of FR

results for both groups is the same) is rejected if |Z| > t1−α/2,

where tγ is the γ-quantile value of the t distribution.
2) The N-Sigma method: The 5-Sigma method in particle

physics refers to the probability in a mass spectrum of hav-

ing a statistical fluctuation (a peak) in the background. The

probability (p-value) of a chance peak must not exceed 5σ
of a normalised Gaussian distribution. The sigma (σ) is the

deviation from the mean (μ) of the distribution that includes

approximately 68% (34% on each side of the mean) of the

data. If we select two sigmas from the mean, we would have

around the 95% of the data. If we select 5 sigma, the samples

not included are only about a 3× 10−7%.
When searching for discovery, the data statistic used to

discriminate between background only (known as the null

hypothesis H0) and “background plus signal” (H1) is usually

the L1/L0 likelihood ratio for the two hypotheses; and the

5σ criterion is applied to the observed value of this ratio,

as compared with its expected distribution assuming just

background [9]. In this work the N-Sigma method can be

expressed as:

N =
μG1 − μG2

σG1
(6)

where μG1 and μG2 are the means of the two populations being

compared. σG1 is the standard deviation of the population used

as reference.
Here, unlike in the T-Test, we do not reject or accept the

hypothesis by setting a threshold. In this case the result yields

a distance N between the two distributions. This distance can

be used to define risk levels.

VI. EXPERIMENTS

A. Results
First of all, in Table I we have the mean EER/TPR value

(%) for each ethnicity group on the models created. Also,
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Ethnicity Evaluated
Eth. Finetuned African Asian Caucasian Indian
All 1.83/78.8 1.58/78.1 1.69/82.1 2.07/79.1
African 1.98/78.3 1.88/74.4 2.04/78.4 2.31/74.3
Asian 2.26/73.4 1.72/76.6 1.95/76.7 2.51/72.3
Caucas. 2.15/74.6 1.82/73.7 1.95/79.3 2.33/73.3
Indian 2.19/73.6 1.88/72.7 2.07/77.1 2.22/76.7

TABLE I: EER/TPR mean values (%) for each ethnicity after

unbiased (none, first row) and biased training (performing a

fine tuning for an specific ethnicity, following 4 rows).

the values of the evaluation metrics are shown in Table II. It

is important to understand that the metrics in our work are

applied with an evaluating group with respect to a reference

group, since bias is a human concept which must be measured

with respect to something. The reference group (named as G1
in Equation 3, 4, 5 and 6) has been chosen as the one with

the lowest mean in Table I and a similarity value is given

for all evaluation groups (G2 in Equation 3, 4, 5 and 6) with

respect to it. The reference group could very well be another

one (e.g. the one with the highest mean). In the case of the

EOP, SP, and the T-Test, a higher value implies more similarity,

although understanding the meaning of the value is not trivial.

In the case of the N-Sigma method, a lower value implies

more similarity, the specific value being the distance between

the distributions in sigmas. In the case that the reference group

(G1) is the same as the group being evaluated (G2) the SP,

EOP and T-Test metrics will give the maximum value which

is 1, while the N-Sigma metric the minimum which is 0. This

is because the groups are identical.

All the values present in Tables I and II are an average of

the values obtained for the M = 20 trained models.

1) Discussion: The best results in terms of mean are

achieved with the model trained with all the ethnicities (Table

I) because they self-regulate each other. In this case, it can be

seen that for the EER, the best results are achieved with the

Asian ethnicity, while for the TPR the best results are obtained

with the Caucasian ethnicity.

Having seen this, analyzing the tables it is observed that

when the model is biased for a particular ethnicity, the

similarity value increases with respect to that ethnicity for all

the metrics (these results can be seen in subtables IIb,IIc,IId,IIe

when compared to subtable IIa). The Caucasian ethnicity is

the exception: training only with the Caucasian samples has

not decreased the bias with respect to this ethnicity. We do

not have a groundtruth that tells us what should come out and

therefore we cannot say in terms of values which metric works

best, but must speak in other terms such as interpretability.

Regarding the interpretability of the different metrics, dif-

ferent aspects can be analyzed.

• The EOP and the SP simply measure differences at the

subset level and gives you an average value. So what you

can see here is a result based simply on a mean difference

in performance between groups, and the results should be

understood as such.

TABLE II: The next five subtables (a-e) present performance

metrics Mean for the models favored in different ethnicities.

(a) Finetuned for All Ethnicities (U). Sigma value:
0.196

Eth Eval T-Test EOP SP N-sig

African 1.00×10−09 0.967 0.997 1.30
Asian 1.00 0.961 1.00 0.00
Caucasian 0.16 1.00 0.998 0.58

Indian 4.94×10−23 0.970 0.995 2.53

(b) Finetuned for African (A). Sigma value: 0.206

Eth Eval T-Test EOP SP N-sig
African 0.12 0.998 0.998 0.52
Asian 1.00 0.959 1.00 0.00

Caucasian 1.00×10−03 1.00 0.998 0.81

Indian 2.81×10−16 0.959 0.995 2.10

(c) Finetuned for Asian (B). Sigma value: 0.205

Eth Eval T-Test EOP SP N-sig

African 8.96×10−31 0.966 0.994 2.64
Asian 1.00 0.999 1.00 0.00

Caucasian 1.62×10−07 1.00 0.997 1.16

Indian 5.41×10−51 0.955 0.992 3.89

(d) Finetuned for Caucasian (C). Sigma value: 0.210

Eth Eval T-Test EOP SP N-sig

African 1.44×10−14 0.952 0.996 1.58
Asian 1.00 0.943 1.00 0.00

Caucasian 6.0×10−3 1.00 0.998 0.59

Indian 1.70×10−24 0.938 0.994 2.32

(e) Finetuned for Indian (D). Sigma value: 0.207

Eth Eval T-Test EOP SP N-sig

African 5.16×10−18 0.964 0.996 1.56
Asian 1.00 0.954 1.00 0.00

Caucasian 2.0×10−4 1.00 0.998 0.94

Indian 3.60×10−27 0.995 0.996 1.62

• The interpretability of the T-Test and the N-Sigma is a

bit different. In this case, you take the values by subsets

and make a comparison of the distributions between the

ethnic groups. Therefore, the value tells how far apart

the distributions of values are. Both metrics give a value

of the difference between the distributions, however, the

results of the T-Test are somewhat more difficult to

interpret. In this case, a significance level that can be

alpha = 0.05 is chosen, and whenever the T-Test result

is below that level, it is said that the distributions are

statistically different. Subsequently, the lower the value,

the more different they are, but the values themselves

have no meaning. As for the N-Sigma method, the results

represent the same thing but it is easier to interpret what

the value itself means. What it means is, with respect to

the variance of the favored distribution, how far away the

rest of the distributions are, i.e., a value of 1 means that

it is at 1 variance and a value of 2 would imply that it is

twice as far away.

Dissecting the results we realize that with the distribution
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comparison methods the difference between the ethnic groups

can be appreciated more clearly and allows deeper analysis.

And between these two methods, the N-Sigma method offers

more easily understandable results.

As we have just explained, N-Sigma and T-Test values do

not represent the same thing, one is the result of a statis-

tical test while the other is a distance between distributions.

Therefore, although the T-Test and N-Sigma results show some

correlation (i.e. lower T-Test values are related to higher N-

Sigma values), it is not a perfect inverse correlation (otherwise

both values would mean the same thing without contributing

anything new). For this reason, for a nearly same value of

N-Sigma (0.58 in Table IIa Eth eval = Caucasian and 0.59 in

Table IId Eth eval = Caucasian) the T-Test value is different.

VII. CONCLUSION

In this paper we propose the use of metrics to measure bias

under an experimental protocol and specifically, a metric called

N-Sigma widely used in other fields but unexplored in AI. This

metric is based on the well-established idea of 5-sigmas used

in fields such as physics or economics. We have evaluated a

model fine-tuned to be biased for different ethnicities with the

distribution and pointwise metrics.

The results show that the distribution methods yield re-

sults more interpretable. Among the distribution comparison

methods the N-Sigma method results are more user-friendly.

The use of this metric makes it possible to adapt very easily

to different use cases by varying the sigma at which bias

is considered to occur, e.g., defining different risk levels

associated with different values of N. In applications where

the presence of bias is critical (high risk), a lower sigma value

can be assigned, while if the application is more flexible in

this regard, the allowed sigma value can be increased.
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